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Abstract

Suppose that an infinite population is partitioned into different species. Given
a random sample from the population of species, we are interested in estimat-
ing the species richness, which is the number of different species inhabiting a
given area. The species richness is a symmetric functional of the probability
mass function. A suitable model for estimating the probability mass function
is via the pattern maximum likelihood. When the pattern maximum likeli-
hood cannot be found analytically, a sieved version of the pattern maximum
likelihood can be used to find a numerical solution to the likelihood problem.
The sieved pattern maximum likelihood estimator is consistent and can be
calculated numerically using the SAEM algorithm.

I



Acknowledgements

I am grateful to my supervisor Dragi Anevski for supporting me not only
during the process of this thesis but also during all the courses he taught me.
It has been a great pleasure working with you and learning from you.

II



Contents

1 Introduction 1

2 Symmetric functionals of the probability mass function 3

3 The problem 5

3.1 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Extended model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Sieved model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Estimation of the sieved model 9

4.1 The expectation-maximisation (EM) algorithm . . . . . . . . . . 9

4.1.1 Compact representation of the data . . . . . . . . . . . . 11

4.1.2 Estimation of the sPML estimator via the EM algorithm 13

4.2 The stochastic approximation expectation-maximisation (SAEM)
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 The Metropolis-Hastings (MH) algorithm . . . . . . . . . 15

4.2.2 Draw samples from Ψ via the MH algorithm . . . . . . . 16

4.2.3 Estimation of the sPML estimator via SAEM algorithm . 19

5 Conclusions, discussion and open problems 21

III



References 22

IV



1 Introduction

How many words did Shakespeare know, cf. [7]? How many rare species of
Malayan butterflies could Corbet find if he went back to British Malaya for
two more years, cf. [8]? These are examples of the unseen species problem,
which deals with estimating the number of species that have not been observed
in samples. The problem was first studied in the early 1940s by Fisher in [8].
Since then, it has been studied extensively from different perspectives and
using different methods, as reviewed in [4].

This thesis presents a detailed study of the so-called profile maximum likeli-
hood estimator for estimating the unknown population frequency distribution
for species in a natural habitat. The estimator was first introduced by Orlitsky
et al. in [10], and a more detailed study was done by Anevski et al. in [3].
We follow the exposition of [3], and in particular, describe the Monte Carlo
techniques used for the computation of the estimator. These techniques use
an expectation-maximisation (EM) algorithm approach cf. [9], which we make
a careful exposition of, as well as the stochastic approximation expectation-
maximisation (SAEM) algorithm cf. [5], which we also discuss in detail. Fi-
nally, the research question of interest for us, and the question underlying the
study of the species population distribution that we undertake, is the estima-
tion of the species richness. The species richness is a function of the species
population distribution, and it is a symmetric functional, a concept that we
also discuss briefly.

Given a random sample from an infinite population of species in a specific area,
it is interesting to determine the species richness, i.e. the number of species
that have a positive probability of being observed. The species richness S(p)
is an example of a symmetric functional of the probability mass function p.
A species richness estimator can be found using the plug-in approach. If p̂ is
an estimate of the probability mass function, then S(p̂) is the estimate of the
species richness.

Given a sample, the naive estimator of the relative frequencies of the species is
given by the vector of relative frequencies of the observed species. For example,
consider a sample of 7 observations. If two different species are observed three
times and another species is observed once, the naive estimator of the relative
frequencies is (3/7, 3/7, 1/7) for the observed species.
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For the naive estimator the species-richness estimate equals the number of
species observed. However, if the species have small probabilities of being
observed, it is possible to see species that have not been observed before when
taking a new sample. The evident problem with the naive estimator is that it
assigns zero probability to unobserved species.

The thesis is organised as follows:

In section 2, we define and give examples of symmetric functionals of the prob-
ability mass function that are interesting for population estimation, ecology,
biology, and information theory, among others. These functionals can be esti-
mated by the profile maximum likelihood (PML) plug-in estimator.

In section 3, we introduce different models to estimate the probability mass
function for problems where the observed data comes from a population with
unknown relative frequencies. The observed data can be seen as an ordering
of the true data. The true data can be seen as an observation coming from a
multinomial distribution with unknown parameters of probabilities. The basic
model uses a bijection between the observed and true data. However, the
maximum likelihood for this model does not always exist. The extended model,
or PML model, was first introduced in [10]. The extended model introduces
a continuous part, consisting of uncountably many species, each with zero
probability of being observed. Each species from the continuous part can be
observed at most once in a sample. The pattern maximum likelihood estimator
can be shown to exist. The PML estimator can be calculated analytically for
small models. When it is not possible, one can use the sieved version of the
PML (sPML) estimator. The sPML introduces a truncation level in the vector
of unknown probabilities.

In section 4, we present estimation methods for the sieved version of the pattern
maximum likelihood estimator. The EM algorithm is a method to maximise
the likelihood of the observed data. However, this method requires knowing the
density of the unobserved mappings ψ. The SAEM algorithm is a modification
of the EM algorithm that can be applied to finding the sPML estimator.

Finally, in section 5, we present a conclusion and some open problems.
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2 Symmetric functionals of the probability

mass function

Given a random sample from an infinite population of species in a specific
area, it is interesting to determine the species richness, that is, the number of
species that have positive probabilities of being observed. The species richness
can be seen as a symmetric functional of the probability mass function.

Let ∆ = {(p1, p2, ...); pi ≥ 0, ∀i ∈ {1, 2, ...} and
∑∞

i=1 pi = 1} be the set of
probability mass functions. A functional f : ∆ → R of the probability mass
function is symmetric if it is invariant under label permutations, i.e.

f(p1, p2, ...) = f(pϕ(1), pϕ(2), ...)

for all bijections ϕ from {1, 2, ...} to {1, 2, ...}.

Some examples of symmetric functionals of the probability mass function are

Support size: S(p) =
∑∞

i=1 1{pi>0}, the number of elements with posi-
tive probability.

Support coverage: Sm(p) =
∑∞

i=1(1− (1−pi)m), the expected number
of elements observed in m samples.

Shannon entropy: H(p) = −
∑∞

i=1 pi log pi, the measure of the degree
of indeterminacy of a random variable.

Let p be a list of probabilities and let f(p) be a symmetric functional. Given
p̂, any estimator of p, one can estimate f(p) with the plug-in approach, so
that f(p̂) is the estimator of f(p). An estimator of the probability that will
be discussed in the sequel, the pattern maximum likelihood (PML) plug-in
estimator, is shown to be competitive for estimating any symmetric functional
in [1].

The species richness equals the support size of the vector of relative frequencies
for the species. The vector of relative frequencies (θ1, θ2, ...) is unknown. In the
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next section, we look at different models for the unknown vector. If the PML
estimator θ̂ can be found analytically, the species richness can be estimated by

S(θ̂) =
∞∑
α=1

1{θ̂α>0}.

An interesting question that was not investigated further is: if we know that an
estimator of the probability mass function has some asymptotic properties, e.g.
being consistent, whether or not the plug-in estimator also has such properties.
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3 The problem

The naive estimator for the probability mass function assigns zero probability
to unobserved species. This is problematic when the relative frequencies are
small, since it is possible to observe species that were not observed in previous
samples. To also be able to calculate the relative frequencies of unobserved
species, the observed data can be seen as an ordering of the true data coming
from a multinomial distribution. Three different models are presented in this
section that make use of a mapping χ that relates the observed data with the
true data.

3.1 Basic model

Let the random sample consist of T observed individuals from U different
species. Denote by N1, ..., NU the set of absolute frequencies in decreasing
order so that Ni is the number of individuals observed from the ith most
frequently observed species in the sample. Since T is the number of observed
individuals, N1, ..., NU sums up to T and the set N1, ..., NU can be seen as a
partition of the positive integer T . Consider as an example T = 7 = 3+1+2+1,
so that one species is observed three times, another species is observed twice
and two species are observed once. The partition of the integer 7 is (3, 2, 1, 1).
Let N = (N1, N2, ...) be the list of absolute frequencies in decreasing order
to which a list of zeros is appended representing unobserved species, so that
Ni > 0 for i = 1, ..., U and Ni = 0 for i > U .

Let A be the set of all possible species, and ℵ be the number of species in the
population that have positive probability. Denote by θ1, ..., θℵ the set of un-
known probabilities in decreasing order so that θα is the probability of finding
the αth most common species. Let θ = (θ1, θ2, ...) be the list of unknown prob-
abilities in decreasing order to which a list of zeros is appended representing
non-existent species, so that θα > 0 for α = 1, ...,ℵ and θα = 0 for α > ℵ. The
infinite list of probabilities θ is required to sum up to 1 in the basic model.

The ith most observed species in the sample does not have to be the ith most
common species in the population. Therefore, the data N can be seen as an
ordering of the true data (X1, X2, ...), where Xα is the number of times the αth
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most common species was observed. Let χ be the bijection from N, the order
of the observed species, to A, the true order of the species in the population, so
that χ(i) = α if and only if the ith most frequent species in the sample is the
αth most frequent species in the population. The bijection χ is not observed.

The true data (X1, X2, ...) can be seen as an observation from a multino-
mial distribution Multi(T, θ1, θ2, ...). Thus, the list of absolute frequencies
(N1, N2, ...) ∈ Multi(T, θχ−1(1), θχ−1(2), ...), and therefore (N1, N2, ...) is a suffi-
cient statistic for θ. The sample space is the set of all possible partitions N of
the integer T , where T is the sample size. We can define a discrete probability
measure on the sample space with underlying parameter θ as

P (T,θ)(A) =
∑

(N1,N2,...)∈A

(
T

N1 N2 · · ·

)∑
χ

∏
i

θNiχ(i),

and the likelihood for θ based on the sample N as

L(θ) ∝
∑
χ

∏
i

θNiχ(i) =
∑
χ

∏
α

θ
Nχ−1(α)
α .

A maximum likelihood estimator (MLE) for θ can be introduced as

θ̂ = argmax
θ:θ1≥θ2≥··· ,

∑∞
i=1 θα=1

L(θ).

The maximum likelihood estimator for the basic model does not always exist.
An example of this can be found in [3]. Therefore, the extended model MLE
was studied, also called the pattern maximum likelihood (PML) estimator.
The PML estimator exists, cf. [3].

3.2 Extended model

In the extended model, the set of unknown probabilities in decreasing order
θ = (θ1, θ2, ...) is not required to sum up to one, allowing θ to be possibly
defective. We introduce a blob species state 0, with population frequency θ0,
and require that θ0 = 1 −

∑∞
α=1 θα. The blob corresponds to the collection

of species that each have zero probability of being observed, and an arbitrary
species in the collection of the blob is observed with probability θ0. Note,
in particular, that each species in the collection of blob species can only be
observed once in a sample. For that reason, the singletons in our sample could
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belong to either blob species or species with positive probability. Therefore,
the mapping χ satisfies that if χ(i) = 0, then Ni = 0 or 1. However, the
mapping χ satisfies that for species with positive probability, i.e. α ≥ 1, there
exists exactly one i so that χ(i) = α.

A possibly defective probability measure with underlying parameter θ may be
defined as

P (T,θ)(A) =
∑

(N1,N2,...)∈A

∑
χ

T !

N0!
∏

i≥1Ni!
θN0
0

∞∏
α=1

θ
Nχ−1(α)
α ,

where N0 = T −
∑∞

α=1Nχ−1(α). The measure is defective in the sense that
(θ1, θ2, ...) does not necessarily have total mass 1.

Then the extended model MLE or PML estimator is defined as

θ̂ = argmax
θ:θ1≥θ2≥··· ,

∑∞
i=1 θα≤1

∑
χ

T !

N0!
∏

i≥1Ni!
θN0
0

∞∏
α=1

θ
Nχ−1(α)
α .

The PML estimator exists and can be shown to be almost surely consistent in
L1-norm, cf. [3].

3.3 Sieved model

The PML estimator can be calculated analytically for small models, cf. [2].
For larger models, maximising the likelihood can be very computationally ex-
pensive since one needs to optimise over an infinite size vector. In order to
simplify the computations, a modification of the PML was studied in [3]. The
sieved PML (sPML) differs from the PML model in that the probability vector
θ is truncated. Given a truncation level K, let θ be the finite vector of decreas-
ing probabilities θ = (θ1, ..., θK) and let the blob have population frequency
θ0 = 1 −

∑K
α=1 θα. Similarly as for the PML model, the mapping χ satisfies

that if χ(i) = 0, then Ni = 0 or 1, and that for α ∈ {1, ..., K} there exists
exactly one i so that χ(i) = α.

When the sample size T is large and θ0 is positive, the observed data tends
to end in a long list of ones, where the singletons can either belong to species
with positive probability or species in the blob. For this model, the underlying
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data X = (X0, X1, ..., XK) can be seen as an observation from a multinomial
distribution Multi(T, θ0, θ1, ..., θK). Denote the partition of the integer X+ =∑K

α=1Xα by N+ = (N1, ..., NJ), where J is the number of species observed
that have positive probability Xα > 0, and note that J is unobserved. The X0

animals correspond to animals observed from different blob species, and thus
each species has zero probability of being observed and an animal from the set
of blob species is observed at most once with probability θ0. The observed data
is the ordered partition N = (N1, ..., NJ , 1, ..., 1), i.e. the ordered partition N+

to which we append a list of X0 ones.

We can introduce a sieved likelihood as

L(θ) =
∑
χ

T !

N0!
∏

i≥1Ni!
θN0
0

K∏
α=1

θ
Nχ−1(α)
α ,

where N0 = T −
∑K

α=1Nχ−1(α).

Then the sPML estimator is defined as

θ̂ = argmax
θ:θ1≥···≥θK ,

∑K
i=1 θα≤1

L(θ).

The sPML estimator exists and can be shown to be almost surely consistent
in L1-norm, cf. [3].
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4 Estimation of the sieved model

The sPML model depends on the unobserved mapping ψ, ψ = χ−1. In section
4.1 the EM algorithm is presented. This algorithm can be used to calculate
an MLE of observed data where the model depends on unobserved, missing
or latent variables. In section 4.1.1 a compact representation of the data is
given. This representation is used to find an expression for the complete data
likelihood. In section 4.1.2 the EM algorithm is formulated to obtain the
sPML estimator. However, in this case the density of the latent variable Ψ
is unknown and the expression for the E step in the EM algorithm therefore
cannot be expressed in closed form.

To address this, in section 4.2 the SAEM algorithm is presented. The SAEM
algorithm is a modification of the EM algorithm that replaces the E step with
a simulation step and a stochastic approximation step. In the simulation step
of the SAEM algorithm, realisations of the missing data are used. In section
3, the Metropolis-Hastings (MH) algorithm is presented. This algorithm is a
Markov Chain Monte Carlo method to obtain realisations of densities when
direct sampling is tedious. In section 4.2.2 the MH algorithm is applied to
obtain a sample from Ψ. In section 4.2.3 the SAEM algorithm is formulated
to obtain the sPML estimator.

4.1 The expectation-maximisation (EM) algorithm

The expectation-maximisation (EM) algorithm is an iterative method to find
the maximum likelihood estimator of the observed data with respect to some
unknown parameter θ ∈ Θ, where the model depends on missing or latent
variables, cf. [9].

Consider the observed data y generated by the random variable Y , as well as
the missing or unobserved data from the random variable Ψ. The complete
data if observed, would be generated by the random variable X = (Y,Ψ),
where Ψ can be seen as being removed from X by the application of some
mapping Y = T (X). The random variable Y can be seen as a marginalisation
of X. Let the density with respect to the measure µ of X be denoted by
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fX|θ(x). The density of Y is then given by

fY |θ(y) =

∫
{x:T (x)=y}

fX|θ(x)dµ(x).

Maximising the likelihood of the observed data L(θ|y) = fY |θ(y) over θ ∈ Θ
is often more involved than maximising the likelihood of the complete data
L(θ|x) = fX|θ(x) over θ ∈ Θ. Since the complete data is not observed, max-
imising the likelihood of the complete data L(θ|x) is not possible. The EM
algorithm uses an approach where one iteratively maximises the expectation of
the likelihood of the complete data L(θ|x) = fX|θ(x) given the observed data
y and the current maximiser θ(t−1).

The EM algorithm maximises the likelihood of the observed data L(θ|y) with
respect to the unknown parameter θ. The algorithm is initialised at some
parameter value θ(0) and for iterations t = 1, 2, ... alternates between an ex-
pectation (E) step and a maximisation (M) step until convergence.

The E and M steps are characterised by:

• E step: Compute Qt(θ), the expectation of the log-likelihood of the
complete dataX, given the observed data y and the estimated maximiser
θ(t−1) at iteration t− 1

Qt(θ) = E
(
logL(θ|X)

∣∣y, θ(t−1)
)

= E
(
log fX|θ(x)

∣∣y, θ(t−1)
)

=

∫
log(fX|θ(x))fΨ|θ(t−1)(ψ)dµ(ψ),

where fΨ|θ(t−1)(ψ) is the density of Ψ with respect to the measure µ.

Given y and θ(t−1) the only random part of X is Ψ.

• M step: Update θ(t−1) by

θ(t) = argmax
θ∈Θ

Qt(θ).

Increasing Qt(θ) forces an increase in the observed data likelihood, cf. [6].
Convergence, and other properties of the EM algorithm, can be found in [11].
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4.1.1 Compact representation of the data

As seen in section 3.1, the observed sample can be reduced by sufficiency to the
partition N of the integer T , where T is the sample size and N is a decreasing
sequence of positive integers corresponding to the absolute frequencies for each
of the observed species.

The partition N can be represented more compactly by two sequences n and r
of equal length J . These are n = (n1, ..., nJ), n1 < · · · < nJ and r = (r1, ..., rJ),
where nj are the distinct absolute frequencies for different species, i.e. the
distinct numbers appearing in the partition N , ordered strictly increasing,
and rj are the number of times nj appears in the partition N . Consider
again the example T = 7 = 3 + 1 + 2 + 1. The partition of the integer 7 is
N = (3, 2, 1, 1), and the sequences are n = (1, 2, 3) and r = (2, 1, 1) since the
distinct numbers appearing in N ordered increasingly are (1, 2, 3), and number
1 appears twice in N and numbers 2 and 3 appear once in N . The sequences
n and r are a sufficient representation of the observed data, since knowing n
and r is equivalent to knowing N .

Assume that the sample contains singletons and non-singletons, i.e. n1 = 1
and J ≥ 2. Also, assume, as in the sieved model, that the number K of species
with positive probability is finite, so that the unknown vector of probabilities
is θ = (θ1, ..., θK), θ1 ≥ ... ≥ θK > 0, and the blob consists of uncountably
many species that each have zero probability of being observed, but a species
of the blob can be observed at most once with probability θ0 = 1−

∑K
α=1 θα.

The missing data, i.e. how the observed data relates to the order in nature, can
be represented by a function ψ : {1, ..., K} −→ {0, 1, ..., J} with the constraints

C1:
∑ℵ

α=1 1{ψ(α) = j} = rj for each j > 1,

C2:
∑ℵ

α=1 1{ψ(α) = 1} ≤ r1.

The species observed more than once are species with positive probability.
Then, for j > 1, C1 follows because rj, i.e. the number of species observed j
times, equals the number of species with positive probability observed j times.
However, for j = 1, C2 follows since r1, i.e. the number of species observed only
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once, could be from species with positive probability, as well as from species
in the blob. The sequences n and r together with the function ψ constitute a
sufficient statistic for θ based on the complete data.

To find a simple representation of the complete data, let f be the vector of
distinct relative frequencies for the observed species, so that fj = nj/T for

j ∈ {1, ..., J}, where T =
∑J

j=1 rjnj is the sample size. The vector f is
also a sufficient statistic for the observed data since f is equivalent to N .
Let g = (g0, g1, ..., gK) be the vector of relative frequencies for the underlying
population species in our sample, and note that this is unobserved. The vector
g is a sufficient statistic of the complete data, and it is uniquely determined
by the vector f and the missing map ψ. Given f and ψ, g is given by

gα = fj if ψ(α) = j ≥ 1,

gα = 0 if ψ(α) = 0,

g0 = n0/T,

for α ∈ {0, 1, ..., K}, where n0 = r1−
∑K

α=1 1{ψ(α) = 1} is the number of blob
species observed.

The likelihood of the complete data is

L(θ|g) = T !

n0!
∏

1≤α≤K:ψ(α)≥1 nψ(α)!
θn0
0

∏
1≤α≤K:ψ(α)≥1

θ
nψ(α)
α

∝ 1

n0!
θn0
0

∏
1≤α≤K:ψ(α)≥1

θ
nψ(α)
α , (1)

where (1) holds since n1 is equal to one and
∏

1≤α≤K:ψ(α)≥2 nψ(α)! =
∏

2≤j≤J(nj!)
rj ,

so the product in the likelihood is constant, i.e. does not depend on θ.

The log-likelihood of the complete data is

logL(θ|g) = −
n0∑
i=1

log i+ n0 log θ0 +
∑

1≤α≤K:ψ(α)≥1

nψ(α) log θα + C, (2)

where C is a constant, i.e. it does not depend on θ.

The likelihood of the observed data can be calculated by the sum of the like-
lihoods of the complete data, given in (1), over all mappings ψ allowed by the
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constraints C1 and C2. Therefore, calculating the sieved pattern maximum
likelihood estimator of the observed data in closed form seems a formidable
problem.

4.1.2 Estimation of the sPML estimator via the EM algorithm

We next apply the EM algorithm to obtain the maximum likelihood of the
observed data with respect to θ ∈ Θ for the sPML model. The EM algorithm
iteratively maximises the expectation of the likelihood of the complete data
L(θ|g) given the observed data f and the current maximiser θ(t−1).

Given the observed data f , the sieved pattern maximum likelihood can be ap-
proximated using the EM algorithm. The EM algorithm maximises the like-
lihood of the observed data L(θ|f) with respect to the unknown probabilities
θ = (θ0, θ1, ..., θK) in Θ, where

Θ =

{
θ; θ1 ≥ · · · ≥ θK ≥ 0, θ0 ≥ 0,

K∑
i=0

θα = 1

}
.

The algorithm is initialised at some θ(0), and for iterations t = 1, 2, ... alter-
nates between an expectation (E) step and a maximisation (M) step until
convergence.

The E and M steps are given by:

• E step: Compute Qt(θ), the expectation of the log-likelihood of the
complete data g, given the observed data f

Qt(θ) = E
(
logL(θ|g)

∣∣f, θ(t−1)
)

=
∑

ψ:C1,C2 hold

logL(θ|g) · fΨ|θ(t−1)(ψ),

where θ(t−1) denotes the estimated maximiser at iteration t − 1 and
fΨ|θ(t−1)(ψ) is the probability mass function of Ψ. Given f and θ(t−1)

the only random part of the complete data g is Ψ. The sum is over all
mappings ψ allowed by the constraints C1 and C2.
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• M step: Update θ(t−1) by

θ(t) = argmax
θ:θ1≥···≥θK≥0,θ0≥0,

∑K
i=0 θα=1

Qt(θ).

The expectation of the complete data Qt(θ) cannot be expressed in closed form
since the density of Ψ is unknown. However, it can be approximated via the
stochastic approximation of EM algorithm.

4.2 The stochastic approximation
expectation-maximisation (SAEM) algorithm

The E step in the EM algorithm consists of finding Qt(θ), the expected log-
likelihood of the complete data given the observed data. In some cases, this
expectation cannot be computed analytically. Instead, one can replace the
E step with a simulation (S) step and a stochastic approximation (AE) step,
yielding the stochastic approximation of EM (SAEM) algorithm, cf. [5].

The SAEM algorithm calculates the maximum likelihood estimator of the ob-
served data y with respect to the unknown parameter θ ∈ Θ. The algorithm
is initialised at some θ(0) and Q0(θ) and for iterations t = 1, 2, ... alternates
between a simulation (S) step, a stochastic approximation (AE) and a max-
imisation (M) step until convergence.

• S step: Generatem(t) realisations of the missing data ψt(i), i = 1, ...,m(t)
under the density fΨ|θ(t−1)(ψ), where θ(t−1) denotes the estimated max-
imiser at iteration t− 1.

• AE step: Set

Qt(θ) = Qt−1(θ) + δt

 1

m(t)

m(t)∑
i=1

logL(θ|y, ψt(i))−Qt−1(θ)

 ,

where {δt}t≥1 is a positive sequence of step size and y is the observed
data.
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• M step: Update θ(t−1) by

θ(t) = argmax
θ∈Θ

Qt(θ).

The convergence of the SAEM algorithm depends on the step size δt and the
number of iterations m(t) used in the stochastic approximation. It is rec-
ommended to decrease δt or increase m(t) as the parameter approximation
approaches a stationary point. If the maximisation step is computationally
faster than the simulation step, the number of simulations m(t) of the missing
data can be set to 1 for all iterations. In the SAEM algorithm all simulated val-
ues of the missing data contribute to the evaluation of Qt(θ), with a forgetting
factor δt.

More details on the SAEM algorithm in our setting is given in section 4.2.3.

4.2.1 The Metropolis-Hastings (MH) algorithm

The S step of the SAEM algorithm consists of generating realisations of the
missing data under the density fΨ|θ(t−1)(ψ) of Ψ. However, this is not always
possible. The Metropolis-Hastings algorithm can be used to obtain a sample
from the density of Ψ.

When it is hard to generate realisations of a density f or f is high dimensional,
such as in our case where f is the density for ψ, one can sample from the density
f by constructing a Markov chain having f as the stationary distribution. Note
that the constructed samples will be dependent.

Markov Chain Monte Carlo (MCMC) methods can be used to sample from the
distribution f by constructing a Markov chain {Xt}t≥0 with a unique stationary
distribution that equals the target distribution f . A realisation of the chain
Xt for sufficiently large t will have approximately the distribution f .

The Metropolis-Hastings (MH) algorithm is an MCMC method to construct
Markov chains. Assume that it is possible to simulate from a transition kernel
r(z|x) referred to as the proposal kernel. The MH algorithm is initialised at
some X0 and for iterations t = 1, 2, ... alternates between the following steps.
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• Generate the candidate X∗ from the proposal kernel r(X∗|Xt−1).

• Set the acceptance probability

A(Xt−1, X
∗) = min

(
1,

f(X∗)r(Xt−1|X∗)

f(Xt−1)r(X∗|Xt−1)

)
. (3)

• Draw U ∈ Un(0, 1).

• Set

Xt =

{
X∗ if U ≤ A(Xt−1, X

∗),

Xt−1 otherwise,

so that the candidate X∗ is accepted with probability A(Xt−1, X
∗).

The chain Xt constructed via the MH algorithm is Markov since Xt only de-
pends on the previous iteration Xt−1. One should check that the chain Xt

generated has a unique stationary distribution.

For symmetric kernel proposals, it holds that r(z|x) = r(x|z), for all x and z.
In this case, the acceptance probability in (3) reduces to

A(x, z) = min

(
1,
f(z)

f(x)

)
. (4)

4.2.2 Draw samples from Ψ via the MH algorithm

The Metropolis-Hastings (MH) algorithm can be used to draw new samples of
the missing data Ψ under the probability mass function fΨ|θ(t−1)(ψ) of Ψ . To
generate new candidates ψ∗ of Ψ, we define a random walk proposal on the
set of all mappings ψ allowed by the constraints C1 and C2. The two possible
kinds of moves in the random walk are exchange moves or blob moves.

Exchange moves: Exchange the values ψ(αi) and ψ(αj) of two dif-
ferent non-blob species αi and αj, so that ψ(αi) ̸= 0, ψ(αj) ̸= 0 and
ψ(αi) ̸= ψ(αj).
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Blob moves: Increase or decrease the number of blob species n0 by
one by choosing a species from the set of blob species and singletons
{α; ψ(α) = 0 or ψ(α) = 1}, and exchange the value of ψ(α) = 0 to
ψ(α) = 1 or vice-versa.

These moves are not always possible.

Lemma If J ≥ 3, then an exchange move is always possible. If the number
of singletons r1 is greater than 0 and the number of species with positive
probability K is greater than the number of non-singletons

∑J
j=2 rj, then a

blob move is always possible.

This lemma is proved in [3].

Note that we use the likelihood of the complete data instead of the density
of Ψ in the acceptance probability. The density of Ψ is unknown. Given the
observed data f and the candidate ψ∗ of Ψ, we can look at the ratio of the
complete data likelihoods. The log-likelihood of the complete data is given in
equation (2).

Exchange moves

To perform an exchange move, pick uniformly at random a pair of distinct non-
blob species (αi, αj), so that ψ(αi) ̸= 0, ψ(αj) ̸= 0 and ψ(αi) ̸= ψ(αj). The
proposal is symmetric since the pair (αi, αj) is chosen uniformly at random
and the number of candidate pairs before and after the move remains equal.

The logarithm of the complete-data likelihood after the move to before the
move equals

log

(
L(θ|f, ψ∗)

L(θ|f, ψ)

)
= nψ(αj) log θαi + nψ(αi) log θαj − (nψ(αi) log θαi + nψ(αj) log θαj)

= (nψ(αi) − nψ(αj))(log θαj − log θαi).

Since the proposal is symmetric, the acceptance probability is given by

A(ψ, ψ∗) = min

(
1,
L(θ|f, ψ∗)

L(θ|f, ψ)

)
,
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cf. equation (4).

The MH algorithm is initialised at ψ0 and at each iteration t performs the
steps:

• Given ψt−1, perform an exchange move to obtain the candidate move ψ∗.

• Calculate A(ψt−1, ψ
∗).

• Draw U ∈ Un(0, 1).

• If U ≤ A(ψt−1, ψ
∗), then the move is accepted and ψt = ψ∗. Otherwise,

the move is rejected and ψt = ψt−1.

Blob moves

The number of species in {α; ψ(α) = 0 or ψ(α) = 1} is the number of species
with positive probabilityK minus the number of non-singleton speciesM . The
exception is when the number of observed species L is less than the number of
species with positive probability K, and n0 the number of species in the blob
is 0, then the number of species in {α; ψ(α) = 0 or ψ(α) = 1} is the number
of singletons S which is smaller than K −M .

Choose a species from {α; ψ(α) = 0 or ψ(α) = 1}. The proposed move is to
change ψ(α) = 0 to ψ(α) = 1 or vice-versa.

If a species is chosen so that ψ(α) = 1, then n0 is increased by 1 and a non-blob
species is removed. The logarithm of the ratio before and after the move is

log

(
L(θ|f, ψ∗)

L(θ|f, ψ)

)
= − log(n0 + 1) + log θ0 − log θα.

This proposal is symmetric and the acceptance probability is

A(ψ, ψ∗) = min

(
1,
L(θ|f, ψ∗)

L(θ|f, ψ)

)
,

cf. equation (4), except when L < K and n0 is equal to 0, then the proposal
is not symmetrical and the acceptance probability is

A(ψ, ψ∗) = min

(
1,
L(θ|f, ψ∗) 1

K−M

L(θ|f, ψ) 1
S

)
.
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If a species is chosen so that ψ(α) = 0, then n0 is reduced by 1 and a non-blob
species is added. The logarithm of the ratio before and after the move is

log

(
L(θ|f, ψ∗)

L(θ|f, ψ)

)
= log θα + log n0 − log θ0.

This proposal is symmetric and the acceptance probability is

A(ψ, ψ∗) = min

(
1,
L(θ|f, ψ∗)

L(θ|f, ψ)

)
,

cf. equation (4), except when L < K and n0 is equal to 1, then the proposal
is not symmetrical and the acceptance probability is

A(ψ, ψ∗) = min

(
1,

L(θ|f, ψ∗) 1
S

L(θ|f, ψ) 1
K−M

)
.

For any of these cases with corresponding acceptance probability A(ψ, ψ∗), the
MH algorithm is initialised at ψ0 and at each iteration t performs the steps:

• Given ψt−1, perform a blob move to obtain the candidate move ψ∗.

• Calculate A(ψt−1, ψ
∗).

• Draw U ∈ Un(0, 1).

• If U ≤ A(ψt−1, ψ
∗), then the move is accepted and ψt = ψ∗. Otherwise,

the move is rejected and ψt = ψt−1.

Given the current state ψ, all other possible states can be accessed by perform-
ing several exchange or blob moves. Since all states communicate, the Markov
chain {ψt}t≥0 is irreducible. The state space of Ψ is finite for the sieved model.
All states of an irreducible Markov chain with finite state space are positive
recurrent. Consequently, the Markov chain obtained by the MH algorithm has
a unique stationary distribution.

4.2.3 Estimation of the sPML estimator via SAEM algorithm

We now give a slightly more detailed description of the use of the SAEM
algorithm for estimating the sPML estimator.
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The SAEM algorithm calculates the maximum likelihood estimator of the ob-
served data f with respect to the unknown parameter θ ∈ Θ. The algorithm is
initialised at some θ(0) and ψ0, and for iterations t = 1, 2, ... alternates between
a simulation (S) step, a stochastic approximation (AE) and a maximisation
(M) step until convergence.

The SAEM algorithm consists of the steps:

• S step: Draw ψt by doing one iteration of the MH algorithm. Given ψt
and the observed data f , determine gt, cf. section 4.1.1.

• AE step: Set

Qt(θ) = Qt−1(θ) + δt
(
logL(θ|gt)−Qt−1(θ)

)
,

where {δt}t≥1 is a decreasing positive sequence so that δ1 = 1,
∑∞

t=1 δt =
∞ and

∑∞
t=1 δ

2
t <∞. The suggested step size is δt = 1/t2/3 in [3].

• M step: Update θ(t−1) by

θ(t) = argmax
θ:θ1≥···≥θK≥0,θ0≥0,

∑K
i=0 θα=1

Qt(θ).

An implementation of the SAEM algorithm for estimating the sPML estimator
can be found in [3].

The maximiser θ(t) in the M step of the SAEM algorithm can be found using a
modification of the pool adjacent violators algorithm (PAVA) introduced in [3].
This modification consists of a bounded isotonic regression method in which the
last positive element of the estimator θ(t) = (θ

(t)
0 , θ

(t)
1 , . . . , θ

(t)

k̃
, 0, 0, ...), namely,

θ
(t)

k̃
is assumed to be greater than a constant c, where k̃ ∈ (0, 1/c) to ensure

that the vector θ(t) is a list of probabilities. This modification was introduced
for numerical reasons. When running the isotonic regression algorithm, the
elements in the tail of the estimator θ(t) get smaller in each iteration but
not exactly equal to zero, so it does not converge. To ensure that the al-
gorithm converges to the maximum likelihood estimator, one can modify the
isotonic regression algorithm to a lower bounded isotonic regression algorithm.
The bounded isotonic regression algorithm is proven to converge to the global
maximum in [3].
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5 Conclusions, discussion and open problems

The main goal of this thesis was to study symmetric functionals, in particular,
the study of the species richness, which is an example of a symmetric func-
tional of the probability mass function. To examine the performance of the
sieved pattern maximum likelihood (sPML) plug-in estimator, one needs to
understand the algorithm for obtaining the sPML estimator. The initial goal
was to implement the sPML algorithm and make simulation studies. However,
since the estimation problem and the algorithm are highly involved, in the
sense that it consists of many components, most of the study has been dedi-
cated to describing the algorithm in a detailed manner, so that it is accessible
to the reader.

This thesis has studied two different methods for estimating the probability
mass function. The first method is the pattern maximum likelihood (PML)
estimator, which exists but sometimes cannot be computed analytically. When
the PML estimator can be found, the species richness is estimated by the plug-
in approach. The second method is the sieved version of the PML estimator.
This estimator exists and can be estimated by the stochastic approximation
expectation-maximisation (SAEM) algorithm. The properties of symmetric
functional estimators for this method have not been studied in-depth in this
thesis.

Further studies with an empirical approach could use the implementation given
in [3] to study the performance of the sPML estimator or implement the algo-
rithm to obtain the sPML estimator and then examine its performance. One
could apply the algorithm on real data or simulated data, where the species
richness and species population frequency are known, and use the plug-in sPML
approach to obtain species richness estimates, consistency results and confi-
dence intervals.

A more theoretical approach for continuing this project would be studying
the properties of the symmetric functionals of sPML, in particular, how the
properties of the sPML estimator translate to the properties of the plug-in es-
timator. For example, it would be of interest to study whether the consistency
of the sPML implies consistency of the plug-in estimator.
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