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Abstract

Foveated rendering is a potential optimization that can have a big impact on
render times for computer graphics, and we have seen in recent years that image
upscaling and AI driven supersampling are getting more popular. Therefore we
investigate the relationship of these two areas and how well they work together
by testing Nvidia’s Deep Learning Super Sampling (DLSS) with foveated ren-
dering. We look at the image quality and performance and visually inspect the
results to see if the combination is useful. In the process we find that the two
technologies are not initially compatible and produce subpar images without ap-
plying other methods to reduce this issue. For this purpose we use a method that
makes use of temporal anti-aliasing to stabilize the resulting image and find that
we can get upwards of a 1.75X increase in foveated rendering performance for
a small reduction in image quality, all the while maintaining a temporally sta-
ble image. This seems like a promising result for future applications of foveated
rendering for areas such as virtual reality where we typically renders one screen
per eye and ideally at very high resolutions. In such use cases, there is a big need
for performance optimizations wherever possible and taking advantage of image
upscaling through DLSS would be ideal.

Keywords: ray tracing, DXR, real-time rendering, foveation, kernel log-polar, DLSS
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Chapter 1

Introduction

Foveated rendering is an important rendering technique for virtual reality (VR) graphics
applications, as it allows reducing the amount of work needed to get a good quality image
rendered. The principal idea is that areas where the eye is not focused can be rendered at
lower sample rates. Today, relatively high-quality real-time ray tracing is possible due to
advancements in graphics hardware. One such advancement is the use of hardware imple-
mented neural networks that can be used to generate super sampled and/or upscaled images
from relatively low sample resolution input images. Nvidia’s version of this is called deep
learning super sampling (DLSS) which is what we focus on in this project.
Since both the field of VR and ray tracing are seeing more widespread popularity and techno-
logical advancement, it can be important to study how compatible these fields are and what
kinds of problems are encountered when they interplay. Thus, we have looked at the effects
of applying DLSS to a foveated input image to determine the compatibility of current DLSS
technology and VR-optimizing foveated rendering techniques.

1.1 Project scope
For this project we implement a real time ray tracer that supports sampling according to the
foveal falloff of the human eye. We use a kernel log-polar transformation [19] to perform
such sampling. For the rest of this thesis, this kind of sampling method will be referred
to as foveated sampling for the sake of brevity. The ray tracer is built on DirectX 12 and
uses the DirectX Raytracing (DXR) API to do a simple form of Whitted ray tracing [29] with
some minor additional features such as cone sampled shadows that produce smoother shadow
results. The goal of the project is to evaluate the performance of Nvidia’s DLSS feature which
is an AI powered upscaling and anti-aliasing algorithm [28, 6]. We look in particular at the
results when DLSS is combined with the kind of foveated rendering technique mentioned
above.

The ray tracer is implemented to allow for some flexibility when adjusting settings but
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1. Introduction

we primarily use four major setting configurations for this project. We will refer to a setting
configuration for the ray tracer as a ray tracer mode for the remainder of the thesis. The four
primary ray tracer modes are firstly, a foveated rendering mode using the foveated rendering
technique described in sections 2.2 and 4.2. Secondly, we use two modes that are identical to
the first except for the fact that they either have enabled DLSS or have enabled both DLSS and
a temporal anti-aliasing (TAA) feature which is discussed in greater detail in sections 2.4.2
and 4.4. Finally, we have the ground truth mode that does not apply any foveated rendering,
instead sampling uniformly across screen space and using a higher sample rate per pixel. In
our case we use 36 samples per pixel in this mode to provide an accurate approximation of
the optimal visual quality we can achieve.

The results are evaluated on the basis of performance of the rendering in terms of time
taken per frame, split up over the various stages of rendering. Additionally, we measure the
quality of the images taken with the various modes of ray tracing. To do this we use the

FLIP metric which provides a perceptible difference evaluation [4].

1.2 Research questions
For this project we have chosen to mainly focus on the following research questions:

• What is the render time reduction gained by introducing DLSS to foveated ray traced
rendering?

• What is the visual quality loss of using DLSS with foveated ray traced rendering as
compared to the ground truth?

• How temporally stable is the foveated render result when DLSS is applied? Meaning,
how many visual artifacts do we see that manifest over time?

1.3 Contributions
This project contributes the following to the fields of real time ray tracing and eye-resolution
dependent rendering:

• A measurement of the trade off between visual quality and render time when applying
Nvidia’s DLSS technology to foveated rendering in a ray tracer.

• A method to selectively apply temporal anti-aliasing to improve the temporal stability
of the peripheral region of the rendering before applying DLSS.

8



Chapter 2

Background and theory

In this chapter we will cover any prerequisite knowledge required to understand the imple-
mentation of our ray tracer and the results we present. In order, we go over fundamental
computer graphics concepts and techniques, how foveated rendering is done, and how ray
tracing works, especially in the context of DXR. Finally we talk about what DLSS does and
how it works to the best of our knowledge.

2.1 Computer graphics basics
In order to understand the techniques employed in our ray tracer and also to understand the
problems that need addressing for applications of computer graphics we cover some relevant
topics below. This includes an overview of the rasterization rendering method, the rendering
equation and Phong shading.

2.1.1 The rasterized graphics pipeline
Most modern graphics cards rely on a rasterization pipeline to produce images that can be
put on screen. This has been the norm for decades now and as a result the rasterization
pipelines built into graphics cards have become complex and also quite well optimized. In
this following section we will give a basic overview of this rasterization pipeline by splitting
it into three basic stages, geometry processing, rasterization, and finally color processing.
This will provide a decent baseline understanding of basic computer graphics rendering and
some of the various terms used with it, as well as allowing us to compare this commonly used
rendering method to ray tracing later on. For this subsection we draw heavily from resources
provided by Akenine-Möller et al. [1], Lengyel [15] and Gregory [9].

9



2. Background and theory

Geometry processing
The first thing that happens in the rasterization pipeline is processing of geometry input.
Usually that comes in the form of a set of triangles, but other primitives and methods of
interpreting the geometry exist. The graphics card generally expects this geometry to be
passed in as a list of vertices and potentially also a list of indices pointing to various locations
in the vertex list that describes how to put these vertices together into some primitive shape.
For simplicity we will assume all geometry is always interpreted as triangles for the rest of
this section. Now, during this stage the graphics programmer has to provide the GPU with a
custom program called a vertex shader. This program allows for manipulation of the vertices
being processed, such that you could for example offset the vertices of a highly tessellated
plane to create hills and valleys. The vertex shading step is also crucially responsible for
transforming the vertices into clip space. In this space, any vertex that falls within a unit
cube with its extreme points at (-1, -1, -1) and (1, 1, 1) is in view of the camera. Thus, the
responsibility of defining what is in view of the camera falls on the programmer providing
the vertex shader.

Once the vertex shading is complete the transformed vertices are passed on to the rest of
the geometry processing stage which will proceed to clip the geometry. This means that any
geometry which falls outside of the unit cube and therefore, outside the view of the camera,
is discarded and the edge cases are cut and split into smaller triangles. The effect is that there
is a reduced number of triangles that have to be processed in subsequent stages.

Finally, all the remaining geometry is transformed into screen coordinates that represent
the position on the actual screen in pixels. The z coordinate of each vertex is also remapped
to a predefined range, usually [0, 1]. The screen pixel coordinates and the remapped z coor-
dinate, also known as the depth value, are then passed onto the next stage.

The rasterizer
The triangles that are output from the last stage now need to be mapped to sets of pixels on
the screen. Whilst the triangles are represented in screen space coordinates at this point, the
process of determining exactly which pixels that should be covered by each triangle is not
trivial. This is what rasterization solves and we will be covering a basic overview of the steps
involved below.

The rasterizer has to first take each triangle and determine which pixels should be consid-
ered for further processing. One way of determining this is to check whether a pixel’s center
lies within the triangle or not, if it does then it should be considered part of the triangle.
The rasterizer would therefore have to traverse some subset of pixels and check each one and
this traversal can be done in multiple ways. The most important aspect of the traversal is to
limit how many pixels you need to check and there are different approaches to accomplish
this, which we will not write about but commonly used in hardware today is a tile-based
rasterization system which splits the screen into tiles and selects tiles to process for each
triangle.

The rasterizer is also responsible for interpolating values across the pixels of the triangle.
Triangles consist of three vertices each containing at a minimum the position of the vertex,
but they can also contain additional attributes such as normals, colors, texture coordinates
and so on. Therefore, in order to get a smooth final result we have to interpolate all of these
values (including the vertex positions) along the triangle for each pixel that is covered by
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2.1 Computer graphics basics

the triangle. The way this is done is by using the triangles’ perspective corrected barycentric
coordinates at the pixel center; using them as weights for the values from each corresponding
vertex.

Another important job of the rasterizer is to determine pixel visibility, that is to check
if the current pixel is occluded for a given triangle. To do this the rasterizer uses something
called depth tests, which make use of the depth value calculated during geometry processing.
The depth test algorithm works as follows; first, we check the depth of the current pixel
for the current triangle and compare it to the minimum depth encountered at the current
pixel so far; then, if the depth is greater than the minimum it is occluded and therefore we
discontinue processing the pixel for the current triangle, otherwise, if the depth is less than
or equal to the depth we continue processing and store a new minimum depth for the current
pixel. This process ensures that where triangles overlap in screen space, they still appear in
the correct order.

Pixel processing
Each time a pixel gets processed and passes the depth test it, along with all of its interpolated
vertex attributes are passed along to finally calculate the pixel color and write that color to
a color buffer. This step is usually the bottleneck of the rasterization pipeline as the pro-
grammable pixel shaders that calculate the pixel color can often get complex and are also
often called several times per pixel.

The pixel processing stage is required to output a color that can be presented on screen
and the way the color is calculated is very dependent on what effect is desired. The complex-
ity of a pixel shader can be as simple as outputting a single color for all pixels or it can be
more involved, using textures, normals, material properties and more to create more complex
effects.

Below we briefly cover two commonly used techniques that we implement for this project;
those are normal mapping and mipmapping, which are explained in great detail by Akenine-
Möller et al. [2]. We also make use of Phong shading which is another common technique
and we cover that in section 2.1.2.

Normal mapping is used to give surfaces a detailed look without greatly increasing the
complexity of the geometry. The idea is to use a texture which encodes the normals on a per
pixel level along the surface. This allows using complicated normals on simple geometry that
when combined with lighting can give perfectly flat surfaces the illusion of depth and detail.
The encoded normals are usually stored as vectors in tangent space which is the space with a
basis consisting of the normal, tangent and binormal at the respective point on the surface.

Mipmapping is a technique that reduces texture bandwidth and texture aliasing due to
subsampling when several texture pixels map to a single screen pixel. The way mipmapping
works is by creating several versions of a texture at different resolutions and using smaller
resolution versions the more severe the subsampling is. As an example if you have a texture
with a resolution of 256 × 256 you could for example create versions of this texture at the
resolutions 128 × 128, 64 × 64, 32 × 32 and so on down to 1 × 1. Each successively smaller
version is downsampled from the previous version, usually applying some kind of filter in the
process. Another consequence of using smaller resolutions for your textures in some areas is
that not all textures have to be loaded at full resolution at all times and can therefore save on
bandwidth when textures are uploaded to the GPU. We use this technique to reduce texture
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2. Background and theory

Figure 2.1: Phong shaded Stanford bunny with a diffuse texture.
Here ka = (0.3, 0.3, 0.3), kd is obtained from the diffuse texture
and multiplied with (0.710, 0.396, 0.114) to obtain the orange tint,
ks = (0.3, 0.3, 0.3) and α = 70

aliasing only, we do not stream textures at runtime and therefore can not take advantage of
the reduced texture memory size.

2.1.2 Phong shading
Phong shading is a well known shading model for calculating a light source’s impact on a sur-
face with parameters for ambient, diffuse and specular lightning effects [22]. Phong shading
is generally calculated through

S = ka + kdmax(n · l, 0) + ksmax(r · v, 0)α (2.1)

where
S is the color of the surface.
ka is the ambient light parameter.
kd is the diffuse light parameter.
ks is the specular highlight parameter.
n is the surface normal.
l is the normalized direction vector to the light source.
r is the normalized direction vector of the light reflected off the surface.
v is the normalized direction vector from the surface point to the camera.
α is the shininess of the material.

In equation 2.1 above, ka, kd , ks represent colors for the respective lighting effect. In
practice we often obtain the diffuse color parameter, kd from a texture and in doing so allow
the diffuse color of an object to freely change across the surface. Also notably, the max(n·l, 0)
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2.2 Foveated rendering

factor from the diffuse term will grow until the surface normal is pointing straight at the light
source meaning that diffuse light contributions are predictably strongest where the surface
faces the light. On the other hand, the max(r · v, 0) factor from the specular term will grow
as the reflected light around the surface normal gets closer to pointing straight at the camera,
giving the surface some shiny spots mimicking how shiny objects get their specular highlights
in reality. The end results look something like in figure 2.1, and as you can see the resulting
surface often looks somewhat like plastic and this model is not enough to truly represent a
more diverse range of materials. However, it is still good enough for our purposes since we
are not focusing on any specific shading model.

2.2 Foveated rendering
As mentioned earlier, foveated rendering refers to the process of concentrating computa-
tional resources on areas of the screen that are close to the point where the eyes are focused.
This can be done in a variety of ways, some of which are summarized by Mohanto et al. [20]
and include:

– Reducing geometric complexity towards the periphery.

– Reducing the quality and bandwidth requirements of colors.

– Varying the shader complexity and cost.

– Rendering at variable resolutions at different areas of the screen.

– Reducing the rate at which peripheral areas are updated.

These can further be categorized based on whether they are static or dynamic. Respec-
tively that means either assuming the eyes are focused at some point or regions of the screen,
or adapting to the shifting focus of the eyes in real time as it changes by using something like
an eye tracker. The type of foveated rendering we chose for this project essentially renders at
variable resolutions and for our tests we assume the user is looking at the center of the screen
since we lack eye tracking hardware. However, our focus point for the eyes is freely movable
in real time without any issues. This means that we could integrate our implementation with
eye tracking hardware to make it adapt to the user without any obvious problems. For the
remainder of this chapter we go into more detail about why foveated rendering is promising
and what specific method we chose to implement.

2.2.1 Human eye acuity
The human eye is not uniform in how well it performs at various tasks across the visual
field [26]. This is related to the density of the photosensitive rods, cones and ganglion cells
being unequally distributed in the eye. The distribution is visualized in figure 2.2, in which
can be seen that the concentration of cone and ganglion cells are greater towards the center
of the view and decline with increased eccentricity. Part of that central area is called the
fovea and roughly encompasses the central 5 degrees of the human visual field [23]. However,
the density of ganglion cells drops drastically as eccentricity increases which is the primary
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2. Background and theory

Figure 2.2: Visualized here is the distribution of cones, rods and gan-
glion cells in the eye as a function of eccentricity [27]. The absence
of these cells at 10°–20°can be attributed to the blind spot of the
human eye.

reason that the peripheral vision suffers from reduced detail perception [7]. This is what we
attempt to leverage with foveated rendering in order to obtain better performance.

This falloff in visual acuity has the potential to save large amounts of rendering resources
with little impact to the perceived image quality, assuming that the rendering takes into ac-
count the current fixation point of the eyes and the periphery does not contain noticeable
visual artifacts. In fact, the foveated rendering approach presented by Meng et al. [19] man-
aged to obtain a 2.8 – 3.2 times speedup without losing much perceived detail according to
their user study. Koskela et al. [12] managed to achieve roughly a 2 times minimum speedup
with ray tracing on a head mounted display.

Application of foveated rendering to head mounted displays such as VR headsets is a nat-
ural optimization to make since only one user is supported per display and they tend to have
higher field of views and resolutions than traditional displays. Additionally, if displays start
reaching resolutions that rival the capabilities of the human eye it might become necessary to
apply some form of foveated rendering to these systems due to the sheer workloads involved.

2.2.2 Kernel log-polar space
A natural way of generating a foveated rendering is to utilize the log-polar transformation
since that is very similar to how our own eyes project the world onto their retinas [5]. This
transformation maps circles around a central point (the foveal point for our purposes) to
vertical lines in log-polar space and maps lines extending radially outwards from that central
point to horizontal lines in log polar space. For applications in rendering, this means that the
sample density decreases linearly with distance from the central point and is therefore useful
in reducing the rendering cost. However, since this type of transformation subsamples the
regions that are far from the central point we tend to get visual artifacts in said regions. Ide-
ally, one would want for each log-polar sample to represent the average of the corresponding
area that is covered in rectilinear space but that is not trivial to achieve with log-polar trans-
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2.3 Real time ray tracing

formations not aligning well with the pixels. One way to combat this effect is to increasingly
blur the result as the sample position gets further from the central point, which is what we
do. Another way is to not use log-polar transforms entirely and instead use something like
the log-rectilinear transformations suggested by Li et al. [16], wherein they use summed area
tables to efficiently obtain the average of the area covered in normal rectilinear space.

For this project, as we have mentioned before, we chose to use a kernel log-polar trans-
formation that is an extension on the log-polar transform provided by Meng et al. [19]. Given
the central point C = (x̊, ẙ) and rectilinear pixel coordinates (x, y), the transformation to
and from kernel log-polar coordinates (u, v) is described by equations 2.2 and 2.3 as follows.

u = K−1
(
log||x′, y′||2

L

)
· w

v =
(
arctan

(
y′

x′

)
+ 1[y′ < 0] · 2π

)
·

h
2π

(2.2)

x = eA·K(u) · cos(Bv) + x̊
y = eA·K(u) · sin(Bv) + ẙ

(2.3)

Where,

x′ = x − x̊
y′ = y − ẙ

1[y′ < 0] =
1 y′ < 0
0 y′ ≥ 0

A =
L
w

B =
2π
h

(2.4)

and, w denotes the width of the kernel log-polar buffer, h denotes the height of the kernel
log-polar buffer, L is the logarithm of the distance to the furthest corner from C and finally
K denotes the kernel function with K−1 meaning the inverse of the kernel function.

From these equations we can see that the kernel function K changes how densely the
rectilinear coordinates map to the u-axis of kernel log-polar space. When used in foveated
rendering this has the intended effect of allowing flexibility in how the foveated samples
are distributed radially outwards from the foveal point allowing easy adjustment and the
potential to better mimic the human visual system’s characteristics. We go into more detail
about which kernel function we chose and what parameters we use for this transformation
in Section 4.2.

2.3 Real time ray tracing
In contrast to rasterization which does a very good job of approximating the first recursion
level of the rendering equation, ray tracing allows for a simple method of further refining the
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2. Background and theory

rendered results by simulating the rays of light as they travel through the scene. However, the
cost of this is a significant performance impact as the rays can essentially go anywhere in the
scene therefore making optimizations harder to do. In order to make ray tracing feasible to do
in real time applications (i.e. interactive applications such as games, 3D modeling software
etc.) there has been a push towards producing hardware that specializes in calculating ray
intersections with the scene geometry. For the remainder of this section we will discuss the
concept and benefits of ray tracing in more detail and how ray tracing is done in practice,
using the work of Haines et al. [10] as reference. We also cover what DXR is as well as some
important technical details at the end.

2.3.1 Tracing rays
The basic idea of ray tracing is to shoot rays in random directions from each light source in the
scene and then let these rays interact with the scene geometry until they either don’t intersect
with anything or hit the camera. Each time a ray intersects a piece of geometry during this
process it can spawn zero, one or several other rays. For example, a ray intersecting a glass-like
material can spawn a ray for the reflected portion of the light and one for the refracted light.
The consequence of this is that the number of rays can quickly explode, resulting in degraded
performance. In practice it is therefore usually required to put a limit on the recursion depth
of the rays, with each newly spawned ray being one recursion level deeper. Depending on how
the ray tracing is done, there can also be a significant amount of noise in the final rendered
image due to the stochastic nature of how the rays can bounce around the environment and
how they are launched from the light sources. To reduce the prevalence of this noise there
are generally three approaches as follows; one could make all rays deterministic and in the
process reduce the quality of the lighting; one could employ a denoising algorithm as a post-
processing step; or finally you could also just increase the number of rays that are traced until
the rendered image converges.

One of the big benefits of ray tracing as compared to rasterization is that ray tracing
inherently provides an easy mean to produce effects that otherwise would be much harder
to produce. Shadows for example, are built into the rendered results, at least when using
the ray tracing strategy outlined above. For a rasterized renderer the process of producing
realistic shadows often involves additional calculations and still often only simulates shadows
convincingly within certain limitations. Another example would be reflections, which only
require launching a reflection ray when using ray tracing, but oftentimes rely on capturing
additional views or inaccurate screen space techniques when using rasterization.

Despite the relative simplicity and utility of ray tracing it has not been widely adapted
for use in real time rendering because of its low performance. When tracing rays, the ray
needs to be aware of all geometry in the scene in order to remain flexible in how and where
rays can be launched. This means that many ray intersections could end up having to be
tested, depending on the geometric complexity of the scene. Compounded with the rapidly
ray multiplying nature of effects such as refraction and global illumination, rendering times
become prohibitively long. It is only in more recent years as hardware has improved that ray
tracing has started seeing usage in real time applications.

So far we have described ray tracing as an algorithm simulating light rays as they leave
light sources, interact with the environment and eventually either hit or miss the camera.
This is usually not how ray tracing is done in practice however, as a significant portion of the
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launched rays might end up not contributing to the final image. To reduce wasted computa-
tions on rays that miss the camera, rays are usually launched from the camera instead. This
essentially means the rays are traced backwards into the scene. The color imparted onto the
ray by the lights in the scene has to be checked explicitly in this case, requiring rays to be cast
in the direction of the light sources and the contributions of each light source gets added up.
Shadows can also be calculated with those same rays.

2.3.2 The DXR pipeline
We built the ray tracer for this project using Microsoft’s DXR API which is their DirectX
12 ray tracing API1. In order to give some context for the rest of this thesis and to explain
some recurring terms we provide background information on the DXR API below. We cover
five areas of DXR, namely miss shaders, closest hit shaders, any-hit shaders, ray generation
shaders, and an overview of the pipeline structure.

Ray generation shader
The ray tracing starts by setting up the pipeline state and resources, and then dispatching
the rays into the scene. When that happens DXR will trigger a special shader type called a
ray generation shader which runs once for each pixel. The job of this shader is to create and
launch one or more rays into the scene and it is also usually desired to write the results of the
launched rays to a buffer for later use.

Closest hit shader
Each ray that is launched during ray generation has to find where the closest intersection
with the scene is, if any at all. If the closest intersection is found then DXR will invoke the
closest hit shader which can take into account where the intersection happened to change the
ray information payload. For example, this could be assigning the ray a color. The closest hit
shader can also launch other rays if need be, for example to calculate shadows or reflections.

Any-hit shader
While attempting to find the closest intersection DXR will search through an acceleration
structure in some order, the order is not guaranteed but is deterministic. Thus we can use
something called the any-hit shader to take advantage of otherwise wasted intermediate in-
tersections. The any-hit shader is similar to the closest hit shader but instead of only being
invoked for the closest intersection, it will be invoked whenever any intersection is found. It
also has the ability to change how the pipeline flows, by for example accepting the current
intersection as the closest one and stopping any further searching. This kind of shader can
be useful for transparency and shadow for example.

1https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
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Miss shader
In case of no intersections being found then the ray is handled by the miss shader. Its job
is to provide the ray payload with some information in case of a miss, such as rendering a
sky background or just a solid color. It can not launch new rays and has no intersection
information available since none were found for its respective ray.

Pipeline structure
Of the shaders covered in this section all but the any-hit shader are required for DXR to
function. There is also another shader type called the intersection shader which we do not
use since we assume all geometry will be supplied as triangles. The flow of the pipeline once
rays have been launched looks as follows

1. DXR finds a new intersection candidate and determines the intersection point, if any.

2. If the intersection is on transparent geometry then the any-hit shader needs to deter-
mine what to do with the intersection. Otherwise, DXR will update the closest hit to
be this new intersection and narrow the search.

3. Once all possible candidates are exhausted or if the search is ended prematurely, then
there are two possibilities. Either the closest hit was updated at some point and the
closest hit shader will run on that intersection or no hits were found in which case the
miss shader is run.

4. Finally, DXR returns control to the shader that launched the ray and if that happens
to be the ray generation shader then DXR is done with that pixel.

2.4 DLSS and TAA
We make use of both DLSS and TAA as integral parts of this project and thus we go into some
more detail about what they are and how they can be used in this section. It is also noteworthy
that DLSS can fulfill a similar role to TAA and seems to be intended as a replacement for
it. However, we found it useful (if not necessary) to use both for our application to provide
better results.

2.4.1 DLSS
DLSS stands for deep learning super sampling, and is intended to perform anti-aliasing by
approximating a super sampled result from relatively few input samples. Additionally, it can
perform image super resolution as part of its process, meaning that an input image can be
upscaled to a higher resolution and sharpened to hopefully produce a good high resolution
version of the input [28]. The way DLSS works is at least partially by utilizing a convolutional
neural network in what is called a recurrent autoencoder. The autoencoder works by taking
in a variety of input signals which it then encodes internally into a condensed signal form that
is thereafter decoded to produce the full image. The fact that the autoencoder is described
as recurrent is because it takes into account previous internal states when evaluating new
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input [6]. The input required in the case of DLSS is a depth, color and motion vector input.
It also requires the input to have subpixel jittering applied to it in order to vary the input
signal over time for improved results.

Depth refers to the same depth values mentioned earlier, that is a value that describes how
far away from the camera the geometry is. Color is simply the color value calculated through
rendering the scene, and when using DLSS often one might often want to render at a lower
resolution than intended for display to allow for upscaling. Subpixel jitter simply refers
to slight smaller-than-a-pixel perturbations applied to the sample positions for rendering.
This causes variation within the pixel from frame to frame and can be used for a cheap yet
effective anti-aliasing technique called temporal anti-aliasing, which is probably very akin to
what DLSS uses it for. Finally, motion vectors refer to vectors that describe how a sample
position has moved in screen space between frames. That is to say, how the geometry that
was sampled for the previous frame changed its position on the screen, either by the camera
moving, the geometry itself moving or both.

The ultimate goal of DLSS is to allow for increased rendering speed due to reducing
the render resolution and upscaling the result, as well as improving the rendered result by
reducing aliasing.

2.4.2 TAA
Temporal anti-aliasing is a method of performing anti-aliasing that amortizes the computa-
tional cost over several frames, essentially applying the effect over time, hence the reason it
has temporal in the name. The basic idea is that one introduces a slight randomization to the
samples every frame, a technique usually referred to as jittering, and then one can average the
contributions of each such history frame over time to attain a higher effective sample rate per
pixel as explained by Yang et al. [31]. To achieve good results one ideally wants to consider
the contributions of as many frames as possible, but since high resolution frames contain
a lot of data it is often infeasible to store all but a fraction of them in memory. However,
a common method to average the contributions which only requires storing one additional
history frame is to use an iterative accumulation function as seen in equation 2.5 below.

fn(p) = α · sn(p) + (1 − α) · fn−1(π(p)) (2.5)

where fn(p) is the current frames color at pixel p for frame number n, α is the retention
bias which decides the rate of accumulation, and π(p) is the reprojection of pixel p to the
history frame. In this case, reprojection refers to calculating the equivalent history frame pixel
position of the current pixel which is necessary since any motion between frames would cause
the history and current samples to become misaligned. To perform this reprojection we can
calculate the screen space motion vectors of the motion between the frames and use that to
offset our current pixel position. As explained by Yang et al. [31], it is common to set α = 0.1
in equation 2.5 which results in a steady state effective sample rate of about 19 samples per
pixel. However, when α is set too low it can introduce resampling errors that appear as
ghosting and blurring of the image when in motion. For this project we reduce this using a
heuristic based on the motion vectors and average frame rate which is discussed in greater
detail in section 4.4. Other stability optimizations such as history rejection for reprojected
pixels that have a depth difference to current depth values greater than some error tolerance,
and using a box filter on the color buffers to determine a suitable α, can be used as well.
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Chapter 3

Approach

In this following chapter we go over how we attempt to answer the research questions stated
in section 1.2. We split the approach up into two parts, one concerning the ray tracer modes
we use for our data gathering and one regarding how we evaluate the data once we have it.

3.1 Ray tracer modes
It is important we define exactly what we mean with each ray tracer mode to avoid con-
fusion as to what they each do. We have already briefly mentioned the four modes we use
in section 1.1 but we now describe them in much greater detail to hopefully minimize any
ambiguity when presenting and discussing results in the later chapters.

All modes have in common that they use a default recursion depth of 1, meaning that
besides the first rays generated, each ray can launch another level of rays. Furthermore, in
all modes but the ground truth mode we use a default sample rate of 1 sample per pixel.
Finally, all ray tracer modes across all attempts at data gathering are targeting a resolution of
1920 × 1080 which is a common resolution for desktop monitors.

3.1.1 The foveated modes
To start with we use a foveated rendering mode as the baseline for all experiments to provide
a reference point to compare with. This mode uses the kernel log-polar foveated rendering
technique discussed earlier and we set the kernel function to be the same as the one used by
Meng et al. [19]. We specifically set α = 4 as was found to be optimal in the user study they
did. In this mode we also replace a disk around the foveal area with a uniformly sampled
image to reduce the number of necessary rays which also means that even though we attempt
to sample once per pixel in practice we use fewer samples in the foveated rendering mode.

The DLSS mode is then just an extension on this by simply enabling DLSS. In our case
we have DLSS initialized with the NVSDK_NGX_PerfQuality_Value_MaxQuality quality
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setting, and we use a custom downscale ratio of δ = 0.555 which we also derive from the
optimal parameters from the user study mentioned earlier [19]. We obtain specifically 0.555
from the fact that they determined from the study that a downscale ratio of 1

1.8 ≈ 0.555
provides a good balance. This means that if we intend to target a resolution of 1920 × 1080
we actually render at 0.555 · 1920 × 1080 = 1065.6 × 599.4 which is then truncated to
1065 × 599 as the final render resolution, which we then let DLSS upscale to the target
resolution. We use this DLSS mode to determine the impact of DLSS on the baseline foveated
mode.

TAA can then finally be added on top of DLSS and that gives us the TAA mode and we
use the same TAA settings independent of other factors. However, our TAA implementa-
tion uses a retention bias that varies across the screen, the details of which can be found in
section 4.4. The impact of enabling our TAA implementation along with DLSS as compared
to the foveated baseline, can be ascertained by using this TAA mode.

3.1.2 The ground truth
To provide a ground truth image to compare all test images with, we use a uniformly sampled
ray tracer mode with a high sample rate that we are calling the ground truth mode. When
using the ground truth mode we set the ray tracer to take 36 samples per pixel and depending
on the scene we can also increase the recursion depth although by default it is still set to 1.
All other effects such as DLSS and TAA are disabled and the uniformly sampled foveal disk
is also disabled. To stabilize the image we also set any jitter offset to 0 such that each ground
truth image samples the same screen space positions every time. Care is also taken to ensure
that any stochastic behavior such as area light sampling, randomizes per sample such that an
increased number of samples converges the result. All of this combines to provide an image
that is fairly close to what is achievable with the ray tracing techniques we use without the
impact of DLSS or TAA factored in, which is ideal for comparisons to our test images.

3.2 Evaluation strategy
We evaluate the ray tracer modes on three primary metrics in order to determine the suitabil-
ity of applying DLSS to a foveated rendering scheme, and to determine how our proposed
improvement to the results actually affect the render. The first such metric is the image
quality for which we use an image difference evaluation, secondly we attempt to determine
temporal stability by examining the flicker over time, and lastly we measure the render times
to ascertain the impact on rendering cost.

3.2.1 Image difference metric
As mentioned, a part of our work involves determining the image quality and in order to
achieve this we employ an image difference evaluation tool called FLIP [4]. The focus of

FLIP is to provide an evaluation of the difference between a test image and a ground truth
reference image. More specifically, FLIP attempts to evaluate the difference a human would
perceive if they were to alternate the test and reference images back and forth.
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Using this evaluation method we can attempt to determine the impact on perceived dif-
ference when using the ray tracer in the foveated, DLSS, and TAA modes as compared to
the ground truth mode. The change in the perceivable difference between FLIP evaluations
performed on each mode can give us an idea of the effect, but since FLIP was never intended
for use on foveated rendering there will always be an inherent difference from the uniformly
sampled ground truth. That is why we use the foveated rendering mode as a baseline ref-
erence point to compare the DLSS and TAA mode with. It is not a perfect measure since
it does not account for foveated rendering, but luckily FLIP provides both a set of numeric
condensations and a heatmap image of the per pixel evaluated difference. Thus, we try to use
both of these information sources to better evaluate the actual perceivable impact of the ray
tracer modes. However, this means that it is hard to say exactly what perceivable difference
can be expected without an evaluation method geared towards foveated rendering specifi-
cally or as is the more common approach, performing a user study. However, FLIP should at
least provide an upper bound of the effect on image quality that can still be useful.

3.2.2 Flicker evaluation
An important aspect of any real-time rendering, but especially foveated real-time rendering,
is the temporal stability of the rendered images. It is usually not desirable to have flicker,
ghosting, or other temporal artifacts present in real-time graphics applications but when
using foveated rendering these effects can be exaggerated in the peripheral areas due to the
inherent subsampling that occurs in those areas. On top of that, temporal artifacts in the
peripheral region can often be very distracting and are often even more noticeable than those
in focus, likely due to the fact that the temporal resolution of the human eye tends to be
highest at around 30° − 60° of eccentricity from the foveal point [24].

In order to determine the temporal stability of the various modes we simply examine
the noticeable artifacts in video recordings of the application running. This will not provide
a precise numeric value for the temporal stability but with how big the temporal stability
changes are in our application it is still possible to gain useful insights from this method.
Ideally, we would want a temporal stability evaluation tool similar to FLIP but accounting for
foveated rendering, however it was only recently that a unified measurement of the temporal
resolution and spatial frequency of the human eye was proposed which would be required for
such an evaluation tool [13].

3.2.3 Render times
In order to determine the render time savings we can obtain by applying foveated rendering
in tandem with upscaling using DLSS we measure the render times of some of the ray tracer
rendering stages. The ray tracer has three interesting stages that we need to time for this
purpose, and those are the ray dispatching, the kernel log-polar remapping, and the DLSS
stages of the rendering pipeline. These together account for the render time that is specifi-
cally caused by our implementation of ray tracing, foveated rendering and our DLSS usage.
Also, by specifically looking at the ray dispatch time we can determine the savings in just ray
computations. Further, by looking at the kernel log-polar remapping we can see the cost of
calculating the remapped coordinates, and also the cost of blurring when foveated rendering
is used and any cost that might be associated with our TAA implementation. Finally, by
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considering DLSS in isolation we can determine what the render time trade off is between
DLSS and the rest of the considered pipeline stages.
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Chapter 4

Implementation

An overview of the four most important processing stages of the rendering process can be seen
in figure 4.1, where we have the ray tracing itself, the remapping and blurring of the foveated
buffer, a TAA effect that applies to varying degrees across the screen, and finally the DLSS
invocation. The process shown in the figure can be summarized as first dispatching rays to
gather information about the viewable scene, then remapping the resulting information to
rectilinear coordinates and blurring where appropriate. If we have enabled TAA then that
would be applied next and finally after all of that, if we are using DLSS then the final step is
to pass everything along to DLSS to produce the final image. You will notice that DLSS mode
skips the TAA step and foveated mode skips both DLSS and TAA. Only the TAA mode goes
through all four steps.

In this chapter we will go into more detail about the techniques used in this process.
We will cover how the ray color payload is calculated, how texture level-of-detail (LOD) is
calculated, and how supersampling for the ground truth tracer mode is done. We will also
cover the various steps involved in generating rays at kernel log-polar coordinates and how
the results are interpreted to produce the final foveated image out of those rays. We also
cover how the TAA is implemented in detail and what techniques we use for that. Finally,
we will discuss the DLSS post-processing layer and the inputs it receives.

4.1 The core ray tracing
For this project we implement a Whitted style of ray tracing [29] which only accounts for
basic reflection, refraction, shadows and diffuse color. The rays also need to be able to handle
transparency and variable sampling rates, all of which will be covered in greater detail in this
section.
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Figure 4.1: An overview of the important steps of the rendering pro-
cess that we use.

4.1.1 Color rays
The color of a ray is determined by a multiplicity of factors. The first recursion level of
a ray is imparted an ambient color term based on what it hits and a constant multiplier.
Furthermore, whenever the ray hits a textured surface, a texture sample is acquired and used
to determine the baseline diffuse color which is used for lighting the surface with various
scene lights. To calculate the lighting we launch three shadow rays at a slight offset from the
surface in the normal direction of the surface. Each shadow ray direction is randomly sampled
from a cone using blue noise to provide improved sample coverage of the cone. Using blue
noise as a method of generating soft shadows with ray tracing is a good approach when the
number of samples are limited, as is covered by Wolfe [30]. A shadow ray determines if the
light source in question is in direct line of sight or not by considering any hit with opaque
geometry to be blocking the light ray. Once all three samples have been taken we can then
average the contribution to get shadows with soft edges, but to reduce the noisiness of the
shadow we still need to employ something like TAA or DLSS. If a shadow ray does not detect
any hits we can allow the light to contribute color to the surface and in doing so we also apply
a diffuse and a specular shading factor inspired by the respective terms from classic Phong
shading [22]. Therefore, we end up with a mostly Phong shaded look to our materials when
reflection and refraction is not present.

All these calculations are done in a closest hit shader meaning that they only apply for
whichever surface intersection ends up closest to the camera. However, if a ray misses the
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Figure 4.2: Image demonstrating how the transparency of the
Sponza [21] plants look.

geometry of the scene, then the miss shader will trigger and the color payload becomes a gray
color by default. We will call the color resulting from these calculations, the hit color for the
rest of this section.

In order to handle transparency with the DXR pipeline we use an any-hit shader to cal-
culate colors and store them in a K-buffer. The specific method used is the one presented by
Krüger et al. [14] in their paper on tracing with transparency. In essence we store colors and
their transparency in a buffer with K elements as intersections are found along the ray. The
elements are stored in depth order until the buffer is full meaning that intersections further
from the camera end up further back in the buffer. So long the buffer is not filled yet we
ignore hits in the any-hit shader, meaning that the ray tracing max distance that is used by
DXR to narrow the search for the closest hit is never updated. However, once the buffer
is filled and further intersections are found, we start narrowing the search by updating the
max distance. Further, if new intersections are found when the buffer is full we combine
two elements of the buffer before inserting the color of the new intersection. This process
ensures that the information stored in the buffer relates to the K closest intersections that
were found. Finally, once the closest intersection along the ray has been found, the closest
hit shader is run, calculating the hit color and that then gets combined with the transmitted
color of each element in the K-buffer.

A note about this system for rendering transparency is that it was really not necessary for
our purposes. It is useful when you have complex transparent objects with varying degrees of
transparency and you need the colors to blend correctly, but we never render such objects.
The only transparent objects present in the scenes we use are the plants from Sponza [21] (see
figure 4.2) which all have textures with areas that are either fully opaque of fully transpar-
ent. For those plants it would suffice to just ignore ray hits that land on transparent areas,
regardless of how transparent they are.

4.1.2 Texure level-of-detail
In this section texture level-of-detail (LOD) refers to the anti-aliasing technique of sampling
textures at lower resolutions as more texels (texture pixels) map to a pixel on screen. When
using rasterization, it is fairly straightforward to determine what LOD to use. You could, for
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example, calculate the partial derivatives of the texture space coordinates with regard to the
screen space coordinates and use those values to estimate the mapping from screen space to
texture space [25]. Using the depth buffer calculated for rasterization and leveraging the fact
that the geometry is made up of planar surfaces makes the partial derivatives mostly trivial
to calculate. However, when ray tracing, the problem has to be solved differently since no
depth buffer is supplied by default when doing the texture sampling. One such solution is
to calculate cones traced through the pixel, along the ray direction as Akenine-Möller et al.
suggest [3]. We implemented a similar solution to the one suggested, however we do not take
reflection LOD into account and we also do not include the approximated triangle LOD term
in the final LOD level. This is because reflections are not very prevalent in our test scenes
and we use a different base bias than the approximated triangle LOD term with foveated
rendering and DLSS. Essentially we calculate the cone width at the point of intersection and
weight it by the intersected surface angle to the ray. This value is then used to calculate the
final LOD level as

L = b + log2(α||d||
1
|d · n|

) (4.1)

where d is the distance to the intersection point from the camera, α is the largest angle
of a cone that is launched from the camera through a single pixel, and n is the normal of the
triangle that was hit by the ray. Here, b is a LOD bias which is calculated as in equation 4.2
below.

b = 0.3 + δ + ϕ (4.2)

Where δ is a DLSS contingent bias and ϕ is a bias introduced to counter texture aliasing
in the periphery when using foveated sampling. In the case of δ we follow the Nvidia recom-
mendation to introduce a negative LOD bias to produce sharper upscaled images. We do not
however, use this negative bias if foveated sampling is in use as that introduces severe alias-
ing into the foveated result before it is upscaled which remains clearly visible after upscaling.
The ϕ term in equation 4.2 is calculated as

ϕ = 3 ∗ S1(ukα)3 (4.3)

wherein the S1(x) function is the smoothstep function in HLSL which is calculated as
a cubic Hermite interpolation of the input clamped to the range [0, 1]. Further, the u is
the normalized x screen space coordinate of the pixel being considered and kα is the kernel
functions alpha parameter.

The effect of the ϕ LOD bias is that the texture resolution goes down as u increases, which
means that the resolution is lower closer towards the periphery and the bias evaluates to 0 at
the foveal point.

4.1.3 Supersampling
The ground truth ray tracer mode relies on supersampling to produce the ground truth image.
To achieve this, we have implemented a regular grid pattern supersampling scheme. The idea
is simple; sample each pixel in a N × N grid and average out the color results to produce the
final sample. The supersampling happens during ray generation and happens before any
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kernel log-polar transformations are applied to the sample positions. That is to say that the
grid will be distorted when foveated rendering is used.

4.2 Foveated ray sampling
The foveated ray tracer mode uses kernel log-polar space (see chapter 2.2) to determine the
positions which the rays are launched towards. In the following section we will describe how
this is implemented in more detail and the steps involved in generating a foveated image
result. We will first go over the process of calculating the sampling positions and then the
process of mapping the log-polar buffer to Cartesian coordinates, including how we blur the
periphery. Finally we will cover how we ensure that an area at the foveal point is sampled at
one sample per pixel.

4.2.1 Calculating sample positions
In order to calculate the direction of a ray we have to take the pixel position and cam-
era view into account. To do this we use the ray dispatch coordinates as obtained by the
RayDispatchIndex() function which provides the coordinate of the pixel that we are cur-
rently considering for ray tracing. We can then remap the coordinates to the range [−1, 1]
with the point (0, 0) being the center of the screen. The coordinate at this point represents
the relative offset for the ray. Then by applying the camera view matrix we can calculate a
direction that aligns with the pixel coordinate that is to be traced.

When we wish to calculate ray directions that align with a foveated sampling pattern, we
perform a very similar process. In such cases we treat the ray dispatch coordinates as kernel
log-polar coordinates and do an inverse transform to Cartesian screen space according to
equation 2.3. Once we have the transformed coordinates we can then calculate the ray direc-
tion as above and launch the ray towards that direction instead. We are essentially sampling
the kernel log-polar space uniformly which means our samples end up warped such that the
sample density is higher close to the foveal point and gets progressively lower towards the
periphery. The result of the traced ray is then stored in an output buffer at the original, non-
transformed, Cartesian screen space coordinates. This means that the foveated rendering
output is a warped log-polar like image of the scene as illustrated in figure 4.3.

The kernel log-polar transformation includes a predefined kernel function which in our
implementation is K(x) = xα, where α is a manually set parameter. This is the same function
structure that Meng et al. [19] used in their user study, and therefore lets us decide on pa-
rameters that are somewhat experimentally supported. Specifically, using a user study they
determine that α = 4 when downscaling the kernel log-polar buffer by a factor of 1.8 is a
good balance since it provides the best performance boost whilst still providing no perceived
loss in visual quality 80% of the time. This does not mean that these are truly optimal pa-
rameters but they represent a good starting point with some experimental backing, hence we
use these values for our parameters as well.
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(a) (b)

Figure 4.3: When we apply the kernel log-polar transformation the
output color buffer looks like (a) when the same scene and camera
setup would normally produce a color buffer as in (b).

4.2.2 Transforming back to Cartesian coordiantes
Since the immediate output of foveated rendering is in kernel log-polar space, we need to
have a post ray tracing step that remaps the output back to Cartesian coordinates. In this
step we first start with a buffer index that we want to write the remapped color value to,
and in order to get the remapped value we transform the buffer index to kernel log-polar
coordinates using equation 2.2. Using the obtained log-polar index we can then sample the
foveated buffer and store the results at the original buffer index, thus mapping the foveated
buffer values back to Cartesian coordinates.

However, a problem occurs when remapping the colors close to the foveal point or close
to the periphery; each Cartesian space pixel will map to either many log-polar space pixels
(when close to the foveal point) or less than one log-polar space pixel (when close to the
periphery). The results are that there will be instability and aliasing issues near these areas
that have to be dealt with. Therefore, we also apply a blur when sampling the foveated buffer
for remapping by applying a radial Gaussian filter with a variable diameter, using a similar
method as Meng et al. [19]. The diameter η(x) is in our case determined by

η(x) = max(3 + 0.8
x − 0.1
0.05

, 0) (4.4)

where x is the normalized distance from the buffer index to the foveal point. This pro-
vides a blur diameter that grows quickly as the buffer index gets closer to the peripheral areas.
With this, when the resulting remapped color buffer is generated, the results are an image
that is anti-aliased at the foveal point (similarly to when supersampling is used) and blurred
towards the periphery which reduces distracting visual artifacts.

4.2.3 Foveal area sampling
In order to obtain a consistent performance improvement when using foveated rendering we
can ensure that the pixels in the foveal area are rendered at one sample per pixel. With this
method we should ideally end up with an image that is indistinguishable from a non-foveated
image similarly sampled at one sample per pixel. We implement this by skipping a disk at
the fovea when tracing rays with foveation enabled and later using a separate ray dispatch
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call to uniformly sample across the disk and trace the rays to fill it in. When we do this we
have to also fade out the blur such that no blurring occurs inside the disk which would be
detrimental for the disk image. We arbitrarily decide the radius of the disk and set it to be
15% of the distance to the furthest corner from the foveal point. However, having the radius
depend on the furthest distance to any of the corners is not ideal as when the foveal point
deviates from the center of the screen the radius will grow. This is not an issue in our case
since we always set the foveal point to the center of the screen but any future improvements
should include fixing this.

A disk at the foveal point in Cartesian screen space is equivalent to a rectangular area in
kernel log-polar space. This rectangular area will have opposing corners in (0, 0) and (l(r), h)
where h is the height of the kernel log-polar buffer, r is the radius of the disk, and l(r) is given
by

l(r) =
⌊
K−1(

log(r)
L

) · w
⌋

(4.5)

whereK−1 is the inverse kernel function, w is the width of the kernel log-polar buffer, and
L is the same one discussed in subsection 2.2.2, as in it is the logarithm of the distance from
the foveal point to the furthest corner of the screen. What we are calculating in equation 4.5
is the kernel log-polar u-coordinate where the circle of radius r lies.

When we have the bounds of the rectangle in kernel log-polar space all we have to do
is skip tracing the rays that originate from pixels inside those bounds, since we interpret
the pixel coordinates as kernel log-polar coordinates when foveation is enabled. Then in
the subsequent ray dispatch call we ensure that pixel coordinates are interpreted as they
normally are in Cartesian screen space but now only trace rays that fall within r pixels of the
foveal point. The colors from each separate ray dispatch call are stored in separate buffers to
avoid overwriting colors and then stitched together by the compute shader that also handles
remapping of the kernel log-polar buffer to produce the final result.

4.3 DLSS layer
One of the main components of our ray tracer is the DLSS post-processing layer and it runs
right after all buffers have been mapped to Cartesian coordinates. Any blurring and TAA
that needed to be done would also have happened by the time DLSS is run. As discussed
in section 2.4.1, DLSS requires additional inputs other than the color buffer and we cover
how those are generated and processed in this section. We also discuss the subpixel jittering,
where and how it is applied and how the offsets are generated.

4.3.1 Depth and motion vectors
The simplest of the additional inputs to generate is the depth buffer. When using DXR, rays
will by default keep track of the distance along the ray they have traveled which is what we
use to determine the depth. DLSS expects the depth in the range [0, 1] with 0 being nearest
to the camera and 1 being the furthest distance. By remapping the distance along the ray to a
value between 0 and 1 with a moderate choice of furthest distance, we can determine how far
the ray traveled into the scene. This is not exactly the same as the rasterization based depth
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buffer which relies on the near and far plane when determining the values of the depth but
it still seems to allow for DLSS to operate correctly.

The motion vectors require a more involved process to calculate and are an active research
area in and of themselves. The problem with accurate motion vectors is that colors on the
screen often do not move in the same way as objects in the scene. An example highlighted by
Hanika et al. [11] is that when a glass surface moves the highlights and backdrop of the glass do
not move in the same direction. This sometimes means it is very hard or even impossible to
obtain accurate motion vectors. Another issue is with motion vectors is handling reflections
as those also move differently to the objects in the scene and have to be tracked separately as
is done by Zheng et al. [33]. We do not handle these issues in our motion vector calculations as
they are beyond the scope of this project and would take too much time. Instead our solution
for this is a simple and limited motion vector calculation which relies on a world position
buffer from the previous frame. The way we do it is by recording the world position of the ray
intersection for each pixel and then we project that position information the next frame to
determine which pixel each recorded world position maps to. Thus by determining how the
pixel position changed between frames, we can derive a delta in screen space which tells us
how objects have moved. The projection of the world position only uses the view-projection
matrix derived from the camera properties. In more concrete terms, this means that if we
let p be the current pixel being considered for a frame, W be the world position 2D buffer
with the same dimensions as the render resolution, and f be the view-projection transform
function, we have

mp = p − f (W [p]) (4.6)

where mp refers to the motion vector for the current pixel p and W [p] is the world
position at the 2D index p from the world position buffer. From equation 4.6 we can see
that the motion vectors describe the opposite direction of movement in screen space which
is correct in terms of what DLSS expects. Additionally, it should be noted that this method
does not detect any motion vectors for moving objects in the scene since it only takes the
camera’s view-projection transform into account thus only detecting motion due to camera
movement. However, this is not an issue for our test scenes since we do not make use of
moving objects.

Both the depth and motion vectors are calculated during ray tracing in the ray genera-
tion shader. They are then processed by the compute shader responsible for remapping from
kernel log-polar coordinates to Cartesian coordinates, during which neither depth nor mo-
tion vectors get blurred (as opposed to the color buffer) in order to preserve the information
better for use by DLSS. However, tests with and without blurring these additional buffers
have shown no easily distinguishable differences.

4.3.2 Subpixel jitter
When we use DLSS for rendering we have to apply subpixel jitter to the color buffer we
supply DLSS with. We apply the jitter offsets according to a Halton sequence with a base of

2 and 3 for the x and y axis respectively. We use a phase of 16
⌈

W2
t

W2
d

⌉
, where Wt is the target

display resolution width and Wd is the render resolution width. This means that the number
of elements in the section of the Halton sequence that we repeat will grow proportionally
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Figure 4.4: An example sequence of subpixel jitter applied to sam-
ples over 6 frames. Each numbered circle here corresponds to a sam-
ple position and the number indicates for which frame this sample
position is used.

to the square of this factor. The Halton offset is then remapped from the range [0, 1] to the
range [−0.5, 0.5] and used as an offset when rendering. An illustration of a possible sequence
of sample positions when using subpixel jitter is displayed in figure 4.4; note that each pixel
has the same offset each frame. This offset is applied during the ray generation by simply
offsetting the dispatch index of the ray, and that produces a stable image when not using
foveated rendering in combination with DLSS.

However, when we do use foveated rendering and DLSS simultaneously we get heavy
flickering towards the periphery for unknown reasons. Initially we thought it might be caused
by the kernel log-polar transforms distorting the jitter offset to be larger than it should. But
when we use our TAA implementation which also utilizes subpixel jitter and apply that in-
stead of DLSS, in combination with foveated rendering we do not experience such flickering.
This seems to indicate that this problem does not stem from the subpixel jitters themselves
but instead comes from how DLSS makes use of the jitter when presented with a foveated
input image. This poses a big problem for using DLSS with foveated rendering, but to cir-
cumvent this and allow DLSS to be used with minimal flickering we apply TAA to the color
input before it is passed along to DLSS. This has the effect of eliminating the jitter offset
from the color buffer as the offset color sample is worked into the TAA results. The benefit
of this is that flicker from DLSS is reduced but it also means that DLSS will perform worse
since it no longer has a variety of sample offsets to draw from. As this would reduce the visual
quality of the whole image, we decided to leverage the fact that we only perform the kernel
log-polar transformations in the peripheral regions. This means that we only need to apply
TAA as a stability measure in the periphery. Additionally, since the periphery is blurred it is
hard to make out any loss in visual quality due to DLSS lacking jittered samples. Thus when
we are using what we have previously called the TAA ray tracer mode we only actually apply
TAA and DLSS outside the foveal area disk, and the disk itself only has DLSS applied.
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4.3.3 DLSS optimal resolution
Built in to DLSS are helper functions to query the optimal render resolution for a specific
targeted display resolution and quality. We mainly make use of these settings by querying
DLSS for the optimal render resolution whenever the display resolution changes, setting the
render resolution accordingly. However, DLSS does not put any restrictions on render reso-
lution and if so desired one could use the target display resolution to render which essentially
disables the super resolution feature and thus provides no render time speedup. That could
be suitable if DLSS is only to be used for anti-aliasing, but generally we want to be able to
vary the render resolution as needed. Therefore we additionally implement a setting that
allows free scaling of the render resolution when using DLSS. We can then set the downscale
factor to be 1.8 which should provide balanced results as mentioned in subsection 3.1.1. The
downscale factor we use is actually the same that is applied when you query DLSS for an
optimal resolution using the balanced quality settings.

4.4 Temporal anti-aliasing
We implement a version of TAA for this project that is primarily based on information gained
from the survey performed by Yang et al. [31], in which they outline a set of problems and
proposed solutions that come with TAA implementations. We decided to go with the com-
mon approach of accumulating an average color according to equation 2.5, as it is simple
to implement and provides good performance. However, as we mentioned in section 2.4.2,
there are issues that come with having α from equation 2.5 set close to 0 in some cases. To
remedy this we use a heuristic to increase the α when needed thus reducing any potential
ghosting artifacts we may get from having it set too low. For the remainder of this section we
will be referring to this α value as the retention bias, referring to the fact that α decides how
much of the history buffer information is retained between frames. Our heuristic is based on
the motion vector magnitude ||vm(p)||2 per pixel p and the average frame rate Rn for frame
number n calculated as a moving average as in equation 4.7 below.

Rn = 0.1 ·
1
∆tn
+ 0.9 ·

1
∆tn−1

(4.7)

where ∆tn is the time it took to process frame n. Using the values of Rn and vm(p) we
obtain our heuristic value H(vm(p),Rn) from equation 4.8 as follows.

H(vm(p),Rn) =
(
||vm(p)||2
||(w, h)||2

) 1
4

·
60
Rn

(4.8)

Where w is the width and h is the height of the render resolution. Using H(vm(p),Rn)
we get a value that monotonously grows as motion increases and shrinks as the frame rate
increases, and ends up taking on values in a reasonable range close to [0, 1] for motion and
frame rates that we can expect to see. Next, we have to apply the heuristic and in order to
do so we first calculate a minimum retention bias αmin for our current frame n by applying
a box filter to the error estimate for each pixel p between the current frame color cn and the
history buffer color cn−1. This method of finding a minimum starting retention bias is the
same as the one proposed by Yang et al. [32] and is intended to find a retention bias based on
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how different the current frame is from the last. A higher difference means that we should
retain less information from previous frames since we want the final image to represent the
current frame accurately. The box filter B3×3 is a 3× 3 filter that computes the average value
in the neighborhood of p to obtain a stabilized error estimate ε(p) according to

ε(p) = B3×3 ∗ (cn − cn−1)(p) (4.9)

and then we set the minimum αmin = max(0.1,min(ε(p), 1)), or in other words ε(p)
clamped to the range [0.1, 1]. With both αmin and H(vm,Rn) computed we can finally deter-
mine the retention bias α as

α = αmin + max(min((1 − αmin) · H(vm(p),Rn), (1 − αmin)), 0) (4.10)

which means that we have alpha ∈ [0.1, 1] with higher values when temporal artifacts
are expected to be more prominent.

The TAA techniques described so far are all implemented in the remapping compute
shader that is invoked as soon as all ray tracing has finished. The results from this algorithm
is an image with reduced visual artifacts while remaining anti-aliased. This image can then
be sent on as input to DLSS assuming the algorithm is constrained to run outside the foveal
disk as described in the previous section.

Finally, as for how we arrived at this specific heuristic, we started with our knowledge
of when you can expect to see artifacts due to a low retention bias. We then tried to factor
those things in to the final heuristic value while keeping the values from getting too large. We
then adjusted the constants in equation 4.8 to provide a balance between reduced artifacts
and anti-aliasing performance. After a few iterations of adjusting and checking the results
we arrived at the specific heuristic that was explained in this section.
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Chapter 5

Results

In this chapter we present and discuss the results of our FLIP image evaluation, render time
measurements, and the temporal stability evaluation, in that order. We evaluated the ray
tracer in general by the methods described in 3.2, but in some cases there are slight deviations
or other details that are important which we make sure to highlight. The graphics hardware
we used to obtain all the results below is an Nvidia RTX 2080 Ti GPU which we had available.
This graphics card has the prerequisite dedicated ray tracing hardware that we require to use
DXR to its fullest extents. Following this chapter we conclude with remarks on these results
and other future work that could be done.

5.1 FLIP still image comparisons
In order to evaluate the image quality of the ray tracer modes, we chose to use FLIP [4] as an
evaluation tool. We present the results separated based on which mode and further, which
scene the results pertain to; starting with the baseline foveated mode, then moving on to the
DLSS mode, and finally we present the TAA mode results. The results are showcased through
images produced for and by the FLIP evaluation, and we also use the weighted median that

FLIP provides as a condensed measure of the evaluated difference. The weighted median
in this case is calculated by using the median of the weighted histogram representation of
the FLIP errors, which itself is produced by distributing the pixels into buckets based on
their error value to form a classic histogram representation and then multiplying each bucket
by its own median FLIP error. This means that larger errors count for more than smaller
ones and should provide a more intuitive measurement of the overall error value. Also, for
reference we get a FLIP weighted median difference in the range 0.03-0.05 when comparing a
uniformly sampled, temporally anti-aliased image with ground truth. So we will consider this
as a low difference since it represents the minimum error we could achieve without foveated
rendering. Finally, for the heatmaps that FLIP produces we have that brighter colors indicate
larger differences and black indicates no perceivable difference.
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In the following subsections we look at the results for the baseline foveated mode, the
DLSS mode, and the TAA mode; looking at the scenes Sponza [21], the Cornell box [18], and
the Sun temple [8] for each mode. The scenes are commonly used in graphics research, but
there are significantly more complex scenes available. However, we do not use those since we
did not have the time resources to spend implementing support for the more complex scenes.
We also discuss the results themselves, any important details, and what we are trying to test
with the different camera and scene setups.

All figures referred to in this section can be found in Appendix A.

5.1.1 Baseline foveated mode
Here we present the baseline foveated ray tracer mode results when compared to the ground
truth mode with the FLIP tool. We go over Sponza, then the Cornell box, and finally the Sun
temple in that order.

Table 5.1: The weighted median FLIP error for each view of the
Sponza and Sun temple scenes when using the baseline foveated
mode.

View FLIP error
Sponza Central 0.228
Sponza Overview 0.187
Sponza Plant 0.189
Sun Temple Statue 0.239
Sun Temple Chamber 0.272

Sponza
For Sponza we chose three camera and scene setups to try and cover a variety of conditions.
We use a central position to showcase a balanced view at medium distance from most geom-
etry, we then use a overview position to capture the effect of distant geometry and this view
also includes a high contrast area which lights up on the FLIP error heatmap. Finally, we use
a close up of one of the plants in Sponza to investigate the effects of high frequency input.
The resulting images can be seen in figure A.1, in which we use the foveated ray tracer mode
with the foveal point set to the center of the screen. The FLIP error is quite high across the
board for these images as indicated by the brighter colors. For a uniformly sampled image
most areas would have been colored closer to black in the resulting FLIP heatmap. This high

FLIP error is expected since the foveated render is both subsampled and blurred in the pe-
riphery which creates an error offset that is not accounted for by FLIP . However, a circular
area in the center of the FLIP error heatmap is much darker than most of the rest due to the
uniform foveal area disk sampling that takes place there instead.

As for the weighted median values that we mentioned earlier, they can be found in ta-
ble 5.1 for this baseline measurement.
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Cornell box
The Cornell box is a simple scene that we mainly use to showcase refractions and reflections
clearly. Some reflections are present in the Sponza scene as well but could be harder to make
out than in the Cornell box. For this scene we use only a single view that looks straight into the
box with two material spheres at a medium distance. One of the spheres is quite reflective and
the other is less reflective but is also refractive. For this scene specifically we use a recursion
depth of 3 for the test image and 4 for the ground truth, since that better approximates the
interactions of light with the spheres and lets us more clearly see the effects of reflection
and refraction. The images of the results can be seen in figure A.2, which show that the
difference between a recursion depth of 3 and 4 is quite noticeable for the refractive sphere.
We see this because the refractive sphere on the right side of the image lights up bright in
the FLIP heatmap. We can also see that the stochastic soft edges around the shadows become
a hotspot for errors as the ground truth converges closer to the true shadow edge by taking
many more random samples. This FLIP comparison produced a weighted median of 0.133
which is lower than the rest of the other values observed but can be attributed to how simple
the Cornell box is.

Sun temple
For the Sun temple we use two views for our tests, each intended to investigate a different
aspect of the lighting. One is of the main statue to display the stretched out shadows of a
low hanging directional light that shines in from outside. This will cause the soft edges of
the shadows to spread out, introducing significant noise to the image. The second view is of
the inner chamber statue, which is lit by two local spherical lights, one that is relatively dim
and orange in color, and one that is brighter and blueish white in color. Additionally there
is some minor contributions from the directional light that shines in from the hallway that
leads to the main statue. This is intended to test many different light interactions at various
scales, with one view showing shadows at a low angle and the other showing multiple lights in
a single view. The exact positions and angles from which we capture the views are somewhat
arbitrary, we just try to ensure that most of the central objects and lights are visible. In
figure A.3 we can see, same as with the Sponza scene, that a darker region in the center of
each FLIP heatmap corresponds to the foveal area disk although it is not as clear, likely due
to the increased complexity of the lighting, geometry, and some textures introducing more
aliasing and shadow sampling errors. We also clearly see a higher weighted median for this
scene in table 5.1, indicating that these images indeed contain more discernible errors than
images from the other two scenes.

5.1.2 DLSS mode
Here we show the results in each scene similarly as in the previous subsection but instead
using the DLSS ray tracer mode. We will focus on evaluating the perceivable loss in visual
quality for these results by comparing them to the results of the baseline foveated mode. All
images that where taken in the DLSS mode have a small rectangle in the lower right corner
that covers up the watermark DLSS applies to the images. This way we avoid additional

FLIP errors when comparing the watermarked DLSS test images and the watermark free
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ground truth images.

Table 5.2: The weighted median FLIP error for each view of the
Sponza and Sun temple scenes when using the DLSS mode. As ex-
pected, we seem to observe a higher error across all the viewpoints.

View FLIP error
Sponza Central 0.263
Sponza Overview 0.221
Sponza Plant 0.200
Sun Temple Statue 0.281
Sun Temple Chamber 0.304

Sponza

Performing the same FLIP comparison as with the baseline foveated mode but now using
the DLSS mode instead we see a reduction in visual quality. The loss in visual quality can be
seen in figure A.4 when compared with the images from figure A.1, especially looking at the

FLIP heatmap we see a noticeable increase in brightness in many areas. There is also a loss
in quality in the foveal area disk due to the fact that it is now upscaled by DLSS from almost
half the render resolution. The loss in the foveal disk is fairly small however and not very
noticeable, at least from the viewpoint we observed. We also predictably see an increase in
the weighted medians listed in table 5.2, but the increase differs significantly per viewpoint
with the largest difference of 0.035 and 0.034 in the central and overview viewpoints and the
smallest difference of 0.011 in the plant viewpoint. This might indicate that we can expect
less loss in visual quality when viewing the scene close up, likely due to the reduced aliasing
from subpixel features.

Cornell box

Similarly to Sponza we see an increased loss of visual quality with the Cornell box. In fig-
ure A.5 we can see the resulting images and while it is hard to spot the difference, we can see
that areas that were relatively bright in the FLIP heatmap from the baseline tests are now
brighter. The weighted median for this test is 0.142 which is an increase over the baseline by
0.009, similar to the plant viewpoint of Sponza. The reason we see a fairly small difference
might be attributable to the simplicity of the scene which is largely free of high frequency
features and therefore do not cause perceptible differences when supersampling. To support
that idea, we point out that in the baseline we only saw hotspots in FLIP heatmap where
there were edge transitions, shadow noise or due to an additional layer of refracted color
contribution from the higher ground truth recursion depth. Those same hotspots are now
brighter in the heatmap while everything else remains dark, indicating that there is not much
room for the image to become distinctly more different than ground truth.
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Sun temple
Following the same pattern we also see an increase in loss of visual quality for the Sun temple
scene. From table 5.2 we see that the difference in the weighted median FLIP error is 0.042
for the statue view and 0.032 for the inner chamber view. The differences seem to roughly
match the difference observed in the Sponza central and overview viewpoints, which makes
sense as these views involve a fair amount of detailed, relatively high frequency features. Fig-
ure A.6 showcases the resulting images from these tests and we see yet again, an increase in
brightness across multiple areas in the heatmap while the foveal area disk remains relatively
unaffected. Interestingly, we also see FLIP error hotspots in areas with bright lights, likely
due to the increased contrast in these areas which might lead to an increase in perceived
spatial frequency.

5.1.3 TAA mode
This final part of the FLIP comparisons cover the TAA mode results. For this part we com-
pare the FLIP errors to the previous two modes and attempt to show that there is little ad-
ditional perceived visual quality lost when using the TAA mode as compared to the DLSS
mode alone.

Table 5.3: The weighted median FLIP error for each view of the
Sponza and Sun temple scenes when using the TAA mode. In this
case we see very little difference from the DLSS mode results.

View FLIP error
Sponza Central 0.262
Sponza Overview 0.220
Sponza Plant 0.200
Sun Temple Statue 0.280
Sun Temple Chamber 0.304

Sponza
The Sponza results in the TAA mode show very little difference in perceptible visual quality
loss as compared to the DLSS mode. In fact, manually examining the FLIP heatmaps in
figure A.7 and comparing them to the heatmaps from figure A.4, we see almost no difference.
The weighted median error values listed in table 5.3 confirms that there indeed seems to be
little change in the visual error compared to ground truth. This indicates that the visual
quality of each frame in isolation is similar between the TAA mode and DLSS mode.

Cornell box
Using the TAA mode we observe a weighted median FLIP error of 0.139 for the Cornell box
which is comparable to previous results in the baseline and DLSS modes. In figure A.8 we
see that the FLIP error heatmap has lost a pattern of hotspots on the sidewalls and on the
roof when comparing to the DLSS mode. Indeed, by comparing the foveated test images we
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can also clearly see some form of visual artifact at those same areas in the DLSS mode image,
which is not present in the TAA mode image. This could be a result of the fact that in TAA
mode we essentially eliminate the subpixel jitter in the peripheral regions of the DLSS color
input. DLSS might be interpreting the peripheral jitter incorrectly when used with foveated
rendering on its own.

Sun temple
Finally, the FLIP comparisons run in Sun temple with the TAA mode show the same pattern
of results as in the other scenes, with very litte change from the DLSS mode results. In fig-
ure A.9 we see that the FLIP error heatmap is very similar to the ones produced with DLSS
mode and again in table 5.3 we see that the weighted median error is almost the same as ob-
served for the DLSS mode, further confirming the similarity in visual quality of the isolated
frames. In all, we propose that DLSS has some effect on the visual quality depending on the
view as we observed increases in weighted median FLIP error ranging from 0.009 to 0.042.
We further propose that adding TAA with varying parameters across screen space before
invoking DLSS results in very similar visual quality to using only DLSS. This is supported
by the lack of any significant change in weighted median error between the DLSS and TAA
modes. This should mean that when using DLSS with foveated rendering we can also use our
TAA method without incurring any additional visual cost.

5.2 Render time measurements
In this section we present the render times we measured across the baseline foveated mode,
DLSS mode, and TAA mode. We measured how long the GPU took to compute each of the
ray tracing stage, the remapping compute shader stage, and the DLSS stage. As discussed in
section 3.2, we define each stage as follows; the ray tracing stage consists of the ray dispatch
calls which performs the ray intersection calculations and outputs all necessary data for the
subsequent stages; the remapping compute shader stage includes the dispatch call to the
compute shader which handles remapping the kernel log polar buffer, applies a blur to the
result, and handles TAA; the DLSS stage simply consists of the call to invoke DLSS on the
results of all previous stages or if DLSS is disabled, it will only copy the results so far to the
expected output buffer. As an additional note, we include the time to copy the color buffer
to the history buffer in our compute shader stage, as this is to be considered a part of the
TAA algorithm.

We chose to record the time measurements in the Sponza scene from what has been pre-
viously described as the overview position. For us, this proved to be the most taxing scene
and viewpoint to render and thus we chose it to make the effects of the various modes as clear
as possible. All rendering was done with a target resolution of 1920 × 1080.

Figure 5.1 displays the measurements taken for each stage wherein we recorded each stage
for 1000 frames, as we iterate over the three real-time modes; that is the foveated mode, DLSS
mode, and TAA mode. In this case with a target resolution of 1920 × 1080 it looks like the
time DLSS takes to compute is almost equal to the time saved in the compute shader stage.
From the figure it also looks like the effect of DLSS is a drop in ray trace and compute shader
render times when switching to DLSS mode. Indeed we see that the time spent ray tracing and
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the time spent in the compute shader are both roughly halved when DLSS mode is enabled.
Further, we unsurprisingly see that the TAA mode has little overall impact on performance.
To evaluate the magnitude of the render time difference before and after DLSS we use the
mean total render time for each mode. The means are listed in table 5.4, where we see that
the render time ratio between foveated mode and DLSS mode 5.193

9.158 = 0.567 and since TAA
mode performs similarly to DLSS in terms of render time we have that TAA mode takes
43.3% less time than the foveated mode.

The time measurements for each stage used a foveation threshold of 15%, meaning that
we replace the foveal area with a uniformly sampled disk at the foveal point with a radius
of 0.15 · λ where λ is the furthest distance to a corner from the foveal point. The 15%
value was chosen somewhat arbitrarily based on what we determined would provide a decent
performance improvement. We arrived at this value after testing a range of values between
0% and 100%. However, to provide a bit more of a well founded value for the percentage
that could be used, we measured the render time with a varying foveation threshold and
determined the foveation threshold that produced the minimum measured time. Figure 5.2
shows the results of these measurements and seems to indicate that an optimal foveation
threshold, at least for the kernel function K(x) = xα where α = 4, should be somewhere in
the range of 10% − 20% with our observed optimal value being 12.443%. The estimated
normalized render time that can be seen in figure 5.2 is calculated from equation 5.1. This
function evaluates the number of samples we should expect to be rendering by considering
the area of the screen that is covered by the foveal disk.

f (x) =
Ap(x) + Ac(x)

W · H
(5.1)

where,

Ac(x) = πr(x)2 − Aout(x) (5.2)

and

Ap(x) = (w − u(r(x))) · h (5.3)

In these equations we have that x ∈ [0, 1] is the foveation threshold, where r(x) is the ra-
dius of the foveal area disk given x. We further have that u(r(x)) is the kernel log-polar radial
coordinate, i.e. the coordinate that grows as we get further from the foveal point, expressed
in log-polar buffer pixels. In this case, we use u(r(x)) to get the coordinate that maps to the
border of the foveal area disk. Also, w and h are the rendering resolution width and height
respectively, W and H is the target resolution width and height respectively. Finally, Aout(x)
represents the area of the foveal disk that is outside the screen bounds, Ac(x) represents the
area of the foveal disk that is left inside the screen bounds, and Ap(x) represents the area of
the kernel log-polar buffer that maps to the remaining regions that are not accounted for by
the foveal area disk.

The numerator in the estimate in equation 5.1 consists of the amount of samples we trace
outside the foveal area disk in addition to the number of samples we can expect the foveal area
disk to contain. In figure 5.2 we show the observed and estimated render times normalized
to the range [0, 1]. The normalization is done separately for the observed and estimated
render times, and is calculated for each set of render times R by mapping each value r ∈ R
to the normalized value rn =

r−min(R)
max(R)−min(R) . In this case we see that the minimum render
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5. Results

Table 5.4: Table of the mean overall render time for each mode, de-
rived from the data displayed in figure 5.1.

Mode Render time (ms)
Foveated mode 9.158

DLSS mode 5.193
TAA mode 5.190

Figure 5.1: This graph shows the rendering time spent in the differ-
ent stages we measured.

time was achieved at a foveation threshold set to 12.443% of the distance to the furthest
corner from the foveal point. From the figure it seems that the observed render times and
the estimation derived above follow a similar pattern of change which could indicate that
equation 5.1 provides a good estimate of the behaviour with varying foveation threshold.
However, more testing would be required to provide a more statistically robust answer, but
in future render time measurements we would most likely use a value closer 12.443%.

5.3 Temporal stability evaluation
The temporal stability of the DLSS mode and the baseline foveated mode is low since we see
large amounts of flickering and rapid color changes in the periphery. The foveated render-
ing causes the periphery to be subsampled which leads to instability especially when coupled
with stochastic shadow samples. In fact, in our implementation the degree of subsampling
that occurs towards the peripheral areas increase with a higher α value in our kernel func-
tion K(x) = xα which means that pushing up the α to increase performance, will on the
other hand reduce the stability of the image. Further enabling DLSS on top of the already
unstable foveated mode as we do in the DLSS mode, has shown to either keep the temporal
stability roughly similar or even worsen it. The main reason we found for this result was that
DLSS, which relies on subpixel jitter, does not smooth out the accumulation of samples over
time enough for the jittering to be imperceptible in the periphery. This is most evident by
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5.3 Temporal stability evaluation

Figure 5.2: Here we see the observed and estimated render times,
normalized to the range [0, 1].

changing the magnitude of the subpixel jitter offsets when using DLSS, and as the magni-
tude approaches 0 we see an increase in temporal stability and the image starts to resemble
a upscaled version of the foveated mode image.

However, we saw big improvements to the temporal stability when using the TAA mode,
but we unfortunately could not provide a quantitative measurement of the improvement due
to lack of temporal stability metrics that we could implement in time. So instead we rely on
our visual perception and have taken a series of three videos to showcase the effect. The videos
depict the inner chamber of the Sun temple as the camera orbits around the statue in the
room. This scene and trajectory was chosen as it has several properties that make it especially
likely to produce unstable frame sequences. The area has several lights at different scales that
combine to produce both high contrast regions, and shadow with soft edges that are spread
out over large surfaces which increases shadow noise. It also contains various high frequency
geometry information that produce aliasing artifacts even when taking texture LOD into
account. Finally, the orbital trajectory brings both distant and close up objects into view and
puts the camera under constant predictable motion which puts our TAA implementation
under a fair amount of stress.

The baseline foveated mode video1 shows that the baseline foveated mode includes no-
ticeable temporal artifacts such as flickering in the periphery. There are some temporal arti-
facts in the foveal disk too in this case since no anti-aliasing is being done.

We then have the video for the DLSS2 mode, which shows that DLSS mode made the
temporal artifacts more intense. It almost looks like the periphery is shaking on top of the
already present temporal artifacts from the foveated rendering.

We then further show in the video for the TAA3 mode that TAA mode reduces the tem-
poral artifacts greatly. There are still some slight distortions and flickers that happen, es-
pecially in areas close to the foveal disk boundary. This might be due to the fact that TAA
is phased out before reaching the foveal disk, instead of after reaching the disk. In future

1https://youtu.be/cbpXxbaU-yY
2https://youtu.be/EVWUk1oZkqU
3https://youtu.be/FoKbaS0_4hk
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5. Results

implementations we would recommend to phase the TAA out after reaching the foveal disk
since an impact to the visual quality at the border of the disk is probably less noticeable than
flickering in this area.

Finally, we have a video for reference of the ground truth mode4 which shows how the
scene looks without foveation and at a high sample rate. These videos can all be found on
YouTube.

4https://youtu.be/FAiDEBwQB6c
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Chapter 6

Conclusion

This is the final chapter where we first give some final remarks on the results presented as
we try to evaluate the trade off between visual quality and render time that DLSS provides
a foveated renderer. We then also write about some of the limitations of the results we got
and discuss some future work that could be done on this and what we might have done
differently. Finally, we also summarize the answers we arrived at for the research questions
stated in section 1.2.

6.1 Final remarks
The results we obtained confirm that DLSS and foveated rendering indeed provides a re-
duction in render times and that DLSS also impacts the visual quality of the render both
temporally and for each frame in isolation too. Foveated rendering with log-polar transfor-
mations is well known to produce visual artifacts, and is never really used without TAA or
other methods to reduce these artifacts. However, we would argue that DLSS compounds
this problem as it does not work well with TAA and is not adjustable enough on its own
to be used with foveated rendering. This is what led us to use our TAA mode to selectively
apply TAA where it should not affect perceived visual quality and provide a practical way to
be able to use DLSS at all.

From the TAA mode results in sections 5.1.3 and 5.2 we can see that the worst case for
the reduction of visual quality to be an increase in FLIP weighted median error of 0.042.
Further, we see that the worst case overall TAA mode render time we found is 5.190 ms
which is a considerable reduction of about 43.3% over the foveated mode. This suggests
that the visual quality loss due the DLSS with TAA is not high overall considering we took a

FLIP difference in the range 0.03-0.05 to be low when discussing flip in section 5.1. Further
this also suggests that the performance increase is substantial since we see a 43.3% reduction
in render time. Since DLSS mode on its own produces a similar error as TAA mode we
can also likely conclude that the visual quality impact of DLSS alone is also not that high.
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6. Conclusion

It is hard however, to evaluate what the increase in the FLIP error means in terms of user
experience as we use foveated rendering to produce our images and FLIP does not account
for this.

From this we think that using the settings of the TAA mode has the potential to prove
beneficial due to the performance boost and low quality loss. But we also think that more
work is needed to more precisely determine the trade off between visual quality and perfor-
mance that we see in these results.

6.2 Limitations
In this section we write about some limitations with our implementation and observations,
as well as some potential sources of error for the results we obtained.

The fact that foveated rendering samples screen space in a non-uniform manner, and that
FLIP does not account for this means that the FLIP results are inconclusive. For example, all

the error differences we measured between the modes could have mostly been induced by
visual changes in the peripheral regions alone, which would mean that the actual perceived
quality was not impacted nearly as much as we observed. However, since we are uniformly
sampling the foveal area we can at least assume that the perceived quality should be the same
or similar to when using DLSS with uniformly sampled images.

We also need to mention that each FLIP error is based on the difference evaluation of a
single pair of test and ground truth images, we do not account for variations in the FLIP error
but it is likely small due to the dimensions of each image. Similarly, we only use 1000 data
points for each render time measurement but we also do not expect to see big variation
between frames, as the scenes are static and there is no camera motion in between the frames.

A note about the temporal instability results from section 5.3 is that whilst the foveated
mode produced significant noise in the periphery, it would likely never be used without
TAA or something similar applied to the results. This means that the temporal stability
of the foveated mode video is not indicative of what one might expect in real applications of
foveated rendering. However, the fact remains that the temporal stability is not helped by
DLSS and that DLSS doesn’t combine well with TAA, again why we apply the TAA selec-
tively in the blurred peripheral areas and avoid the high detail foveal area.

As for the implementation, we should mention that the TAA implentation we use does
not attempt to reject reprojected samples that are mismatched. This causes some noticeable
ghosting around edges in the direction of movement as geometry hidden behind said edges
suddenly becomes visible. There are ways to reduce this kind of error discussed by Yang
et al. [31], and we made an attempt at implementing a depth based rejection method but
it produced issues with the sampling of foveal area disk, and we dropped the idea due to
resource constraints.

6.3 Future work
We have briefly mentioned various areas for improvement through out this thesis, but here
in this section we describe these and some other potential future work in more detail.
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6.3 Future work

To begin with, we mentioned earlier this chapter that more work is needed to better
understand the impact of the reduction in visual quality. One way one might investigate this
is by performing a user study, preferably using eye-tracking hardware and a head-mounted
display, to determine perceived quality better. This would take the foveated rendering into
account as opposed to FLIP and could better account for variations from one person to the
next, as we do not all have identical eyes.

Another potential area for further improvement is to implement an evaluation tool, sim-
ilar to FLIP , but which takes foveated rendering into account. This could possibly be done
by weighting the perceived error that FLIP produces by known data about the spatial res-
olution of the human eye. Yet another tool which could be useful for this kind of work is
to attempt to apply the results produced by Krajancich et al. [13] to FLIP results. In their
work they present a unified measurement of the temporal resolution and spatial resolution
of the human eye with regards to eccentricity from the fovea. This could be used to produce a
temporal stability evaluation tool for use in providing numerical stability values for foveated
rendering. To do this one might save a sequence of color buffers and corresponding motion
vector buffers, and then use FLIP to evaluate the difference of the overlapping areas from one
frame to the next. Once the FLIP errors are calculated one could use the temporal resolution
measurements to weight the differences and produce something that is a closer representa-
tion of the perceivable change over time. Better yet, we could combine the temporal and
spatial FLIP based tools to produce something more generally applicable.

Another option instead of implementing a new image quality evaluation tool for foveated
images would be to try using FovVideoVDP developed by Mantiuk et al. [17] which could
work for evaluating our foveated images instead. FovVideoVDP is a video difference metric
similar to FLIP except it is meant for videos and takes into account the spatial, temporal, and
peripheral aspects of human vision.

More direct uses for the results presented by Krajancich et al. [13] might be to attempt to
use the human eye temporal resolution that they measure to affect the TAA retention bias
so that areas with less temporal resolution can have a higher retention of history buffer color
data, thus reducing any remaining perceivable flicker even more without majorly increasing
the amount of visual artifacts. However, to apply the temporal resolution measurements one
would also need to somehow measure the spatial frequency of the image itself which may not
be easy.

On another note, as we showed in the results, foveated rendering based on kernel log-
polar transforms definitely produces visual artifacts towards the periphery. We might have
been able to avoid some of those artifacts by using something like the log-rectilinear trans-
formations proposed by Li et al. [16]. This could have produced better results, and is probably
worth an attempt in the future.

We also briefly discussed the optimal foveation threshold to maximize performance, but
we did not have enough information to provide a conclusive answer. So that is another area
worth investigating, by taking more measurements, in a variety of conditions, and possibly
using a variety of foveation parameters, maybe even different kernel functions. Providing
a good set of optimal foveation threshold values to choose from for different scenarios and
kernel functions would give better tools for applying this kind of technique more generally
whilst still maximizing performance.

Finally, since it is hard to extract what the FLIP error differences mean for the quality
of the foveal area disk. We think that better results in that regard can be obtained by ad-
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6. Conclusion

ditionally only comparing the foveal areas themselves to the equivalent ground truth areas.
We expect that there will not be any difference between DLSS mode and TAA mode since
TAA is never applied in the foveal area disk, but that is not necessarily true. DLSS might
produce different results in the foveal area by the fact that the peripheral areas are less noisy,
not jittered, and just generally containing different information. Since it is unknown how
exactly DLSS currently processes images, we can not say what the results would be.

6.4 Summary
We now go over the three research questions from section 1.2 and provide a summarized
answer to each.

With the first question we set out to evaluate the render time reduction that we could
get with DLSS. To answer that we can look at the render time results we got in section 5.2
where we see that DLSS provides a 43.3% reduction in the render time.

The second question involved us asking what visual quality loss we would get from us-
ing DLSS with foveated rendering when comparing to ground truth. For this we used the

FLIP evaluations and arrived at a maximum visual quality loss of 0.042 which we classify as
a small loss since in section 5.1 we considered the FLIP error between a uniformly sampled,
anti-aliased image and ground truth to be small.

Finally, with the third question we asked about how temporally stable the foveated render
result is with DLSS applied. Unfortunately, we could not provide a quantitative measure for
this due to time resource constraints. However, by observing video recordings we saw that the
temporal stability with DLSS was probably worse or at best similar to the stability without
DLSS. Since the temporal stability of foveated rendering alone is poor we then conclude
that the combination with DLSS is also of poor temporal stability. But we also found that
selectively applied TAA helped with the stability issues.
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Appendix A

Figures

(a) Central position

(b) Overview position

(c) Close up plant view

Figure A.1: The FLIP evaluation images for Sponza using the base-
line foveated mode, each row representing a different view of the
scene. From left to right within each row we have, the foveated
test image, the ground truth reference image, and the FLIP error
heatmap. In these images the foveal point is set to the center of
the screen, and notice how the central area is quite dark in the

FLIP heatmap due to the foveal area disk.
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A. Figures

Figure A.2: The FLIP evaluation images for the Cornell box with a
reflective and a refractive sphere, using the foveated ray tracer mode.
The top left image is the foveated test image, the top right image
is the ground truth reference image, and the bottom image is the

FLIP error heatmap.

(a) Statue view

(b) Chamber view

Figure A.3: The FLIP evaluation images for the Sun temple using the
baseline foveated mode, each row representing a different view of
the scene. From left to right within each row we have, the foveated
test image, the ground truth reference image, and the FLIP error
heatmap. Similar to the Sponza images in figure A.1, we see a darker
center disk in the FLIP heatmap.
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(a) Central position

(b) Overview position

(c) Close up plant view

Figure A.4: The FLIP evaluation images for Sponza using the DLSS
mode. Each row of images are taken from a different viewpoint,
and for each row we have from left to right, the foveated test im-
age, the ground truth reference image, and the FLIP heatmap. The
images show a slight reduction in visual quality compared to base-
line foveated mode, especially in the periphery. This can be seen in
the brighter FLIP heatmap images and is confirmed by the weighted
median in table ??.

Figure A.5: The FLIP evaluation images for the Cornell box with a
reflective and a refractive sphere, using the DLSS mode. The top
left image is the foveated test image, the top right image is the
ground truth reference image, and the bottom image is the FLIP er-
ror heatmap.
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A. Figures

(a) Statue view

(b) Chamber view

Figure A.6: The FLIP evaluation images for the Sun temple using
DLSS mode, each row representing a different view of the scene.
From left to right within each row we have, the foveated test image,
the ground truth reference image, and the FLIP error heatmap.

(a) Central position

(b) Overview position

(c) Close up plant view

Figure A.7: The FLIP evaluation images for Sponza using the TAA
mode. Each row of images are taken from a different viewpoint, and
for each row we have from left to right, the foveated test image, the
ground truth reference image, and the FLIP heatmap.
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Figure A.8: The FLIP evaluation images for the Cornell box with a
reflective and a refractive sphere, using the TAA mode. The top
left image is the foveated test image, the top right image is the
ground truth reference image, and the bottom image is the FLIP er-
ror heatmap.

(a) Statue view

(b) Chamber view

Figure A.9: The FLIP evaluation images for the Sun temple using
TAA mode, each row representing a different view of the scene.
From left to right within each row we have, the foveated test im-
age, the ground truth reference image, and the FLIP error heatmap.
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Snabb rendering av VR-anpassad
strålspårning

POPULÄRVETENSKAPLIG SAMMANFATTNING Charlie Mrad

Virtuell realitet (VR) och strålspårning har blivit allt mer populära, och dessutom
investeras många resurser i dessa teknologier. I detta arbete använder vi Nvidias DLSS
för att skala upp strålspårade bilder som är anpassade för VR och uppnår en 1.75X
ökning i prestanda.

I dagsläget har strålspårning ökat i popularitet i
samband med att ny hårdvara lanserats och sto-
ra framgångar inom datorgrafiksforskning. Dessa
framgångar består delvis av nya lösningar för bild-
förstoring. Det är speciellt i applikationer som an-
vänder virtuell realitet (VR) där strålspårning kan
vara effektiv eftersom man kan lätt rendera rea-
listiska bilder med strålar som efterliknar riktiga
ljusstrålar, men VR är också extra kostsamt att
rendera för. Detta på grund av att VR oftast an-
vänder två högupplösta skärmar, en för vardera
öga. Mycket av det en människas ögon ser har
en låg upplösning och därmed en dålig känslighet
för detaljer. Denna kunskap har använts förr i da-
torgrafikrendering för att minska mängden arbete
som krävs för att generera bilder och benämns på
svenska som fovea-styrd rendering.

I det här examensarbetet utforskar vi möjlig-
heten av att kombinera en ny bildförstornings
teknologi kallad DLSS som utvecklats av Nvidia,
med fovea-styrd rendering. Kombinationen gör det
möjligt att generera bilder snabbare än om endast
fovea-styrd rendering används. Resultatet visade
att vi kan använda denna kombination för att nå
ungefär 1.75X snabbare renderingstider, dock in-
troducerar DLSS ökad instabilitet i bilden över
tid. Instabiliteten uppenbarar sig som flimmer i

periferiområdet av seendet.

För att åtgärda instabiliteten har vi använt en
teknik som bygger på en kantutjämningsmetod
vars engelska namn är temporal anti-aliasing. Vi
testade tekniken i flera sammanhang, med en va-
riation av olika 3D scener. I samtliga fall visade
sig vår teknik att inte minska bildkvaliteten och
samtidigt öka stabiliteten. I slutändan kunde vi
i stort sett eliminera all ostabilitet och slutresul-
tatet var en kraftig minskning av renderingstiden
med minimal förminskning av bildkvalitet.
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