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Abstract

In spite of our current knowledge regarding the biology underlying cancer genesis, reliable
methods for the discovery of cancer driver (CD) genes are still in great need. The rather
recent incorporation of epigenetic markers to the cancer paradigm has nevertheless opened
the door for the development of new computational approaches to the problem.

This work is aimed to study the enrichment of certain genome regions with the histone
post-translational modification (PTM) H3K4me3. This epigenetic marker can be used to
distinguish cancer driver genes from neutral genes (NGs). To this end, a convolutional neu-
ral network (CNN) comparing H3K4me3 enrichment profiles for matching healthy and can-
cer samples is proposed and evaluated. The obtained results for OriGENE, the presented
model, show promise in pan-cancer but also tissue-specific cancer driver gene detection.



Popular introduction to the project: On the miracle of

cancer therapies, the genome bible and the power of

teachers

According to the World Health Organization (WHO), in 2020 nearly 10 million people died
of cancer worldwide. Cancers are known to emerge when groups of cells divide and grow at
higher rates than usual. Therefore, if one wants to understand the Genesis of the disease,
it is compulsory to discover the core elements regulating the aforementioned processes.

These fundamental elements are the genes, discrete pieces of DNA encoding the information
about “how to create and maintain alive” almost any living being that one can imagine.
This information is encoded using four basic molecules that are named with the letters
A,T,G and C. Our genes can then be thought as the words constituting a book that could
be called The Human Genome. Since the book is genuinely large and has had a huge
impact on our understanding of human nature, we’ll baptize it the Genome Bible.

Let’s assume that our body works like the Theology faculty at a certain university. Even
though the text book in both cases is the same in all the classes (which in the analogy
would be the cells), the parts of the book that a professor is going to read and the sections
that will be skipped are at the end as important as the actual text. Moreover, not only
what is read matters but also how the text is read plays probably one of the most important
roles: the interpretation and enthusiasm with which the theology professor transmits the
message to the students will deeply shape their minds and their future behavior. These
factors, which are not intrinsic to a message that has only suffered slight mutations over
the past centuries, have led to outcomes as different as the Crusades and the creation of
some of the most altruistic and useful NGOs.

The same picture arises in the field of genetics, but in this field it turns out to be even
more explicitly a matter of life and death. Enthusiasm, interpretation and book chapter
selection are in our case mapped into gene expression levels, gene roles within tissues
and gene silencing and activation. All these features and processes are regulated by the
so-called epigenetic factors, external elements to the DNA that control how the encoded
information is expressed and read.

In our work, we will try to pinpoint which genes are prone to be related with cancer genesis.
To do so, a specific type of epigenetic factors that induce changes in the proteins around
which the DNA is wrapped will be studied. Our focus will therefore be on the behavior
of the teacher and the lecture itself rather than the book. The characterization of the
genes will be done by means of machine learning related techniques. This will allow us
to find the patterns in the epigenetic factors that lead genes to be expressed in aberrant
manners. The results obtained in the project will shed light on the role of epigenetics in
tumorigenesis and could have implications in drug and therapy development.
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1 Introduction

Once one starts to delve into the world of biology, an honest truth slowly reveals itself: life
is an extremely fragile process. This fragility is manifested at its best at the cellular level,
where the perfect trade-off established between cell death and proliferation continuously
pushes our tissues away from a fatal fate.

Even though there are many factors that can alter the trade-off between cell death and
division, one can most of the times track down the origin of the complications to the gene
level. More precisely, problems tend to stem from the network of genes that are active
and silent given a specific cellular context. Misregulation or changes in the functionality
of a certain set of genes involved in cell growth and division, for example, will lead the
cells to grow and multiply out of control. This process, outlined in Figure 1, is known as
tumorigenesis, carcinogenesis or oncogenesis, and is the ultimate cause of cancer.

Hence, it is of utmost importance to pinpoint which genes can be linked with the emergence
and development of the disease. These genes are called cancer drivers (CDs), and can be
further divided into two categories: oncogenes (OGs), the upregulation of which is directly
linked to carcinogenesis, and Tumor Suppressor Genes (TSGs), which inhibit the aberrant
expression of the first group. For classification purposes, oncogenes and tumor suppressors
are usually compared with housekeeping genes. These are highly conserved neutral genes
(NGs) required for the proper functioning of any kind of cell, independently of the cell’s
identity.

Originally, the scientific paradigm regarding the genetic nature of cancer contemplated
mainly the mutations that happened in the bodies of the genes. Such changes could allow
the proteins encoded in OGs to acquire undesired functions, for instance. They could also
reduce or even abolish the expression of TSGs. The first computational methods were
therefore developed trying to tackle the problem from a purely genomic and mutational
perspective [1]-[10].

However, it became more and more apparent that higher than average mutation rates
could not explain all the known cancer drivers [11], [12]. This realization led part of the
scientific community to shift their attention from the DNA and the genes to the external
elements that regulate how DNA is actually read and expressed. Although there are many
definitions, the study of ”heritable changes in gene function that do not entail a change in
DNA sequence” is known as epigenetics [13].

The most studied epigenetic markers as of today are probably histone post-translational
modifications (PTMs) [14]. Histones, the proteins around which DNA is coiled, can un-
dergo a number of modifications after they are translated. In this work we will focus
on methylations (monomethylation me1, trimethylation me3) and acetylations (ac) of the
lysines (K) found at the tails of such proteins, in particular the last aminoacids of histone
H3. The methyl and acetyl groups added can display for example a harbouring effect
for transcription factors (H3K4me3), leading to a higher transcription of the surrounding
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Figure 1: Cancer emergence schema. On the left, the central dogma of molecular biology
is presented. Genes are first transcribed into RNA. RNA will then be translated into proteins
with a role, e.g. functional or structural. On the right, the emergence of cancer is outlined from
the genetic level to a macroscopical scale. Apart from the well studied gene mutations, elements
such as misregulation of epigenetic markers can also be linked with cancer development. Note
that the path leading to the macroscopical tumor is not unique.
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DNA [15]. They can also have a silencing nature (H3K27me3) or point towards other
functional domains in the genome such as enhancers and superenhancers (H3K4me1 and
H3K27ac). The hypothesis that different markers and combinations of them can encode
functional information beyond the genetic material is known as the histone code [16].

The spatial distribution in the genome of such modifiers can in fact hide information linking
certain genes with cancer. Broad domains of H3K4me3, for example, have been shown to
be an intrinsic property of tumor suppressor genes [17], while repressive markers such as
H3K27me3 can in turn silence oncogenes [18].

The power of epigenetic markers in functional classification tasks has also already been
tested. In the Roadmap epigenomics project [19], a Hidden Markov Model (HMM) using
several markers was trained pursuing to find different functional domains. Jie Lyu et
al. developed a machine learning approach that involved epigenetic features such as peak
width (how long is the region where we can find the marker) and height (how significant is
the concentration of the marker locally), and combined them with genomics data in order
to discover OGs and TSGs [11]. Another notable project that merged machine learning
and cancer gene prediction was conducted by R. Schulte-Sasse et al. [12]. The group
also integrated many data types including DNA-methylation and trained an explainable
computational method based on graph convolutional networks.

Despite all these advances in the development of computational tools for cancer gene pre-
diction, we found the following fronts to be poorly explored. We noticed that epigenetic
information had played an auxiliary role in most of the research projects published to date.
Bo Xia et al. already started to dive deeper into feature extraction from such markers in
a cell identity gene (CIG) identification task [20]. However, the epigenetic features to ana-
lyze had been manually curated and introduced to a neural network later in all mentioned
studies. Furthermore, tissue- and patient-specific algorithms were still in great need, since
most projects adopted a pan-cancer perspective. The possibility to use machine-learning
to extract information from the raw epigenetic data, and the ability to use it in tissue- and
patient-specific contexts constituted still a gap in our current knowledge.

The goal of this project was therefore to develop a new approach to the cancer driver
gene classification problem addressing these needs. To this end, we explored the ability of
deep convolutional neural networks (CNNs) to retrieve information from the most basic
representation of the epigenetic marker signals, their enrichment profiles. From H3K4me3
profiles for single genes, the networks would bring out and integrate the necessary features
to classify each gene as CD or NG. The designed CNN would also compare, for liver and
lung cancer patients, the differences gene-to-gene between tumor and healthy samples.

Our work, which culminated with the creation of the deep convolutional neural network
OriGENE, is presented in this thesis as it follows. Sections 1 and 2 introduce the stud-
ied problem and motivate the project. Section 3 provides the reader with the necessary
theoretical background. The obtained results and subsequent discussion are presented in
Section 4. The main findings of this work are then summarized in the Conclusions.
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2 Problem description

In this thesis we propose a machine learning model aimed to classify genes as either Cancer
Drivers (CDs) or Neutral Genes (NGs). The model is tested in several case scenarios.

This section will cover what data the model requires and how it can be exploited for the
classification problem. First, the used data will be introduced and described. Subsequently,
an outline of how the algorithm analyzes the data will be presented. Finally, we will show
why the proposed approach improves our current knowledge.

2.1 The data

The genes. The first task in a gene classification problem is to find genes that can fall
into the desired categories or classes. These genes need to have well known ground truth
labels, which will define their target classes. Genes labelled as CDs (both OGs and TSGs)
will be assigned the target class 1, while NGs will be assigned the target class 0.

The number of well established cancer driver genes was still scarce by the time this thesis
was written. This fact deeply impacted our project and is discussed in the following
sections. The original gene set was constituted by 480 CDs and 489 NGs. Around 80%
of these genes were stored in a combined Training and Validation set, while the remaining
part was put aside for testing the final model.

For the pan-cancer stage of our study, the curated list of genes that are known to play a
role in cancer (CDs) and the opposite set of housekeeping genes (NGs) were obtained from
[11]1. Their original data sources were the Cancer Gene Census (CGC v.87) from COSMIC
[21] for CDs, and T. Davoli et. al. [5] for NGs. Cancermine [22] curated genes substituted
the original cancer drivers when the project was brought to a tissue-specific level.

The samples. The findings presented in this thesis concern the dataset GSE67471. The
data was provided by [17] and found at the Gene Expression Omnibus [23]. The said
dataset contains data from four cancer patients. Two of them were diagnosed with liver
cancer (Liver I, II) while the other two were known to have lung cancer (Lung I, II).
Samples from the cancer tissue of interest and the respective matching healthy tissue were
extracted for every single patient.

More information regarding data accessibility can be found in Appendix A.

The sequences. The epigenetic marker of interest was the addition of three methyl groups
(trimethylation) to the fourth-to-last amino-acid in histone H3 (H3K4me3). Figure 2
shows the levels of this marker along an example gene. We will refer to these plots as
H3K4me3 enrichment profiles for specific genes. H3K4me3 enrichment profiles describe
how the relative amount of trimethylation, represented in the y-axis, changes depending
on the position in the genome, represented in the x-axis. These profiles were retrieved for

1Chromosome Y CDs were skipped in order to generalize to any sample, independently of sex.
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Figure 2: H3K4me3 enrichment profiles for the gene C16ORF80. C16ORF80 is neutral
gene (NG) encoded in the negative strand. The shown profiles correspond to the healthy sample,
plotted in green, and the cancer sample, plotted in red, for the patient Liver II. Note that
H3K4me3 enrichment profiles are highly localized around a short region of the gene.

all curated genes from the eight tissue samples. The profiles from healthy and matching
cancer samples for each gene were then paired, and constituted the input data to our
model.

Note the critical difference between cancer sample and cancer driver gene. Cancer samples
will be used as inputs, together with their healthy counterparts. Cancer driver (CD) is in
turn a label that refers to the target class of a certain gene, not a sample. Hence, this label
does not concern the origin or health status of the input tissue.

2.2 Motivation

Recent attempts to use machine learning techniques in gene category classification problems
introduced to the networks already curated sets of genetic or/and epigenetic features as
inputs [11],[20]. On the contrary, we wanted to follow the late trend to work as much as
possible with the raw original data, and put to trial ”the machine learning dogma”.

We believed that a CNN should a priori have the capability to extract the necessary infor-
mation from the unprocessed H3K4me3 profiles. To perform at its best the classification
task, the network would create a set of tailored filters bringing out different signal features.
All the extracted features would then be integrated in the final set of fully connected layers.
The network would lastly output a probability for each gene to be a cancer driver, with
the genes being described in our model by the pairs of profiles used as inputs.

Thus, the most fundamental novelty of our work was the use of a CNN to perform an
unconstrained, multi-scale and spatially resolved feature extraction process from the input
signals.
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This approach had some drawbacks. For instance, the interpretation of the elements that
the network could be looking at was not straightforward. Moreover, given the considerable
length of the genes, a significant size reduction of the sequences was required in order to
keep the number of parameters of the model low.

Nevertheless, the approach had definitely its advantages, presented below.

This method could study the changes that H3K4me3 profiles for each gene undergo when
a patient develops a cancer, both for neutral genes and cancer drivers. The architecture
would end up naturally analyzing simple features as peak width and height. These features
could be compared between CDs and NGs, but also between both samples if relevant. More
importantly, the network could go further in the abstraction and complexity of the studied
features.

In addition, this approach allowed the project to be extended to a cancer-specific level.

Finally, the data requirements of the method were relatively low. In our multi-omics era,
this project relied only on data for some epigenetic markers in single patients. The network
could still be generalized and include input tracks with genomic information if needeed2.

As a summary, all points above motivated the present thesis, aimed to tackle the cancer
gene classification problem. This was done by means of a CNN, which could compare and
analyze the enrichment profiles of the epigenetic marker H3K4me3 for single genes.

2Variant calling to find genetic mutations could be coupled to the epigenetic information already in
use.
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3 Theoretical Background

This section will cover the most important concepts and tools required to contextualize
our work. Both basic concepts and technical details regarding the machine learning side
of the project can be found in Appendix B.1.

3.1 Biological insights

The most intuitive way to get an understanding of the system we studied is to start from
the fundamental building blocks and zoom out little by little, in a bottom-up approach.

The first building block is Deoxyribonucleic acid (DNA). DNA is a macromolecule consti-
tuted by a set of paired nucleotides matching the nucleobases Adenine with Thymine and
Guanine with Cytosine. Paired nucleotides are separated 3.4 Å from each other, and are
then coiled in a double helix shape of around 20 Å of diameter3.

The second group of building blocks, which are the most relevant for the project, are
the histones. Histones are proteins with a high content of the aminoacids arginine (R)
and lysine (K). These proteins play a crucial role in DNA packaging, providing structural
support to the chromosomes, but are also involved in the regulation of gene expression.
Histones H2A, H2B, H3 and H4 are doubled and assembled into a complex called histone
octamer, which is rather cylindrical, illustrated in Figure 3.

DNA is wrapped approximately 1.7 times around the octamer, which corresponds to 147
basepairs (bp). The histone octamer with the DNA wrapped around is called a nucleosome
core. Then, histone H1 acts as a linker histone. Finally the nucleosome core, together with
the linker DNA and H1 constitute the so-called nucleosome. In its chromatin state, DNA
is distributed as sets of nucleosomes, which have a direct impact on DNA accessibility and
packaging [24].

Histones, and especially the last positively charged aminoacids at their flexible N-terminal,
can be covalently modified after being translated. Some of the most common modifications
that these tails flanking the ends of the central histone fold can undergo are phosphorilation,
acetylation, mono- or pluri- methylation and ubiquitination. As mentioned in the sections
above, this work will be devoted to the study of H3K4me3, i.e. the trimethylation of the
fourth lysine (K4) of the histone H3.

The addition of methyl or acetyl groups to different aminoacids of the histones has been
shown to play a signaling role, by recruiting other proteins with specific domains able
to recognize such markers [25], for instance transcription factors (TFs). These molecular
markers and combinations of them can hence encode inheritable functional information
[16], as the control on the regulation and expression of the surrounding genes that they
exert can be maintained after cell division [26].

3For context, we remind the reader that the hydrogen atom has a diameter of ∼ 1Å.
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(a) (b)

Figure 3: Global picture: from the double helix to the chromosome. a) The DNA
double helix is wrapped ∼ 1.7 times around the histone octamer, originating the most basic DNA
packaging unit: the nucleosome. Nucleosomes, which are connected by linker DNA in this image,
can be condensed even further to create the chromatin fiber that will constitute the chromosomes.
b) Histones H2B, H2A, H3 and H4 are doubled in the histone octamer. The last aminoacids of
the said structural proteins, illustrated as small beads in their flexible tails, will undergo post-
translational modifications that will display a functional signaling role, shaping the accessibility
of other proteins to the DNA.
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Promoter regions, enhancers, silencing domains and gene bodies, for example, constitute
some of the main functional domains in the genome. These domains can be characterized
by the presence of certain histone modifiers.

Promoters are specific sequences in the DNA that define where and in which direction
will the RNA-polymerase start the transcription. Promoter regions tend to be located
immediately upstream the transcription start site (TSS) and are marked with a significant
enrichment of H3K4me3 when the genes are active [27].

Enhancers are DNA regions where proteins will be gathered, increasing the transcription
of closeby genes4. Enhancers are open chromatin domains, with no nucleosomes, which
appear as H3K4me3 devoided regions. This depletion is accompanied by an increase of
the competing enhancer marker H3K4me1, while H3K27ac is also found in enhancer and
superenhancer domains.

Histone PTMs can also display the opposite effect in silencing domains. Important repres-
sive markers such as H3K9me3 and H3K27me3, found in tighly packed DNA regions known
as heterochromatin, contribute to the downregulation of nearby genes [18][28]. Other mark-
ers such as H3K36me3 point towards the body of the genes and have been proven to be
involved in DNA repair and stability.

As a summary of this section, DNA is coiled around a rather cylindrical complex of proteins,
the so-called histones, creating a fundamental DNA packaging structure: the nucleosome.
These proteins can accept signaling molecules at their flexible tails that will characterize
the functional role of the surrounding DNA. Higher structures like chromatin fiber or the
chromosomes are out of the scope of this project.

3.2 Retrieving the enrichment profiles of the epigenetic marker
H3K4me3

This section will guide the reader through the data acquisition process, pursuing to provide
an overview of the origin, appearance and content of the signals we will work with.

Chromatin ImmunoPrecipitation (ChIP). A technique called Chromatin Immuno-
Precipitation (ChIP) can be used to determine the level of enrichment of distinct DNA
regions with various histone PTMs.

The proteins of interest, in our case the histones, are initially cross-linked with the DNA
material from numerous nuclei using formaldehyde5. The cross-linked DNA is subsequently
sheared into mononucleosomes, which will have small DNA fragments attached. For this
purpose, the enzyme Micrococcal nuclease (MNase) is used to cut the DNA region linking
nucleosomes and digest the free DNA ends toward the nucleosome. Since MNase cannot go

4The regulated genes are not necessarily close in the DNA chain as the 3D folded structure can lead to
interactions between distant regions.

5In the protocol ∼ 5 · 107 nuclei were yielded [17].
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Figure 4: Final H3K4me3 profiles illustrated. The gene CASP9, a tumor suppressor gene
(TSG) encoded in the negative strand is shown. A well conserved nucleosome location can be
seen. The wiggles with nucleosome positioning information are still partially kept when removing
duplicates, and would be missed in a broad domain analysis. Note that the profiles will be flipped
and cropped if necessary in the data preprocessing steps.

further than the nucleosome, the fragments left will implicitly contain information about
the expected location of such octamers in the genome [29].

Seeking to separate H3K4me3-bound DNA fragments from the rest, the described DNA-
protein complexes are immunoprecipitated with protein-specific antibodies attached to
magnetic beads. Considering that the DNA fragments are still linked with the proteins,
cross-linking must be reversed. The remaining pieces of DNA are purified and amplified
using the widespread Polymerase Chain Reaction (PCR) technique6.

Sequencing. The nucleic acid sequences of the purified DNA fragments are at this point
obtained with the next generation sequencing technology. The sequencing machine, in
our study, outputs files containing the first 50 basepairs of each single stranded fragment.
These short sequences, which can come from any of the two strands, are called single-end
reads. The reads will then be aligned and mapped to a reference human genome assembly
called hg38. This mapping will allow us to track the original location of each read.

Enrichment profile obtention. Once the reads have been mapped to specific genome
regions, one can pile them up and create a bin-like enrichment profile. The enrichment
intensity for the desired epigenetic marker at every single basepair will correspond to the
number of reads that overlap in that particular genome location7. An example of the
enrichment profiles for H3K4me3 was already presented as Figure 2 in Section 2.

After normalization, standardization and relative alignment of the different samples, the
signals will be ready to be analyzed. An example of the final signals is shown in Figure 4.
The described procedure is further explained in Appendix B.2.

610 PCR cycles were performed in [17].
7This step is illustrated in Figure 16 at the Appendix C.
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As it can be noticed in Figure 4, one can expect to find a high enrichment of H3K4me3 at
the beginning of the gene, around its promoter and TSS. The profile can also be extended
towards the gene body.

One can also start to identify H3K4me3 devoided sections or gaps related to enhancer
regions. In addition, it can be seen that the signal presents oscillations at many differ-
ent spatial frequencies, which will be shown to contain both functional and structural
information.

Finally, the coupled peaks and pillars, which are smoothed but kept when removing ex-
actly duplicated reads, point implicitly towards the location of the nucleosomes (For more
information, see Appendix C).
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4 Results and Discussion

The main section of this thesis is divided in two distinct blocks. The first part will cover
the qualitative pieces of information and preliminary tests that would motivate and shape
the future development of our deep learning approach to the problem. In the last section,
the details of our proposed CNN are presented and its performance in different contexts is
evaluated and discussed.

4.1 Preliminary considerations

Figure 5: General overview of the gene set. Top left: cumulative gene length distribution.
Top right: strand distribution. Bottom: Chromosome distribution.

The distribution of the chosen genes across chromosomes, strands and their lengths were
studied before starting a detailed analysis of the profiles. The purpose of this step was to
bring to light trivial imbalances between genes corresponding to different classes, if any.
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The top left plot in Figure 5 shows that the chosen NGs are on average shorter than the
curated CDs, including OGs and TSGs. More than 80% of the NGs already appear before
105 bp. However, one should keep in mind that traditional ways to detect OGs and TSGs
have been based on gene mutations, especially in coding regions. This could introduce a
clear bias towards the discovery of longer cancer drivers. We can therefore only say that
the already known and verified cancer drivers are indeed slightly larger on average.

The top right plot in Figure 5 shows that both NGs and CDs are almost equally split
between the two strands. The total number of NGs doubles TSGs and OGs for class
balance purposes. As expected, there is no asymmetry or preference for CDs to be encoded
in a specific strand.

The plot at the bottom of Figure 5 shows how CDs and NGs are spread over all the different
chromosomes. From the chromosomal distribution one can see that no TSGs were included
from chr 21 and a significant number of NGs come from chr 19. Some chromosomes, e.g.
8 and 9, present a high number of CDs when compared with their NGs.

None of the gathered pieces of information points towards a clear natural tendency to find
CDs and NGs in distinct chromosomes, strands nor length ranges. Consequently, these
elements will not be introduced in our model.

4.1.1 Structural and functional information

At the beginning of the project we considered histone PTMs, for instance H3K4me3 or
H3K27ac, to play mainly a functional and signaling role. However, the structural informa-
tion encoded in the profiles of these markers was found to be way more significant than
what we expected originally, in agreement with [30].

Previous studies such as [17] and [18] had approached cancer driver gene characterization
from a broad domain perspective, studying peaks that spanned more than 4 kbp. Nev-
ertheless, the H3K4me3 signals for different tissues and samples obtained in independent
experiments did actually show similar trends down to a ∼50 bp resolution. Figures 4, 6
and 7 illustrate this phenomenon. This information would be completely lost when ap-
proaching the problem in terms of broad domains and averages over different datasets, and
could be potentially useful for our purposes.

Sequence independence. The spatial distribution of the epigenetic marker H3K4me3
constitutes a signature of the gene. This fact is revealed in Figure 6, where inter-gene
variability (from column to column) is considerably more significant than the intra-gene
feature differences (from row to row). As a result, sequences or profiles corresponding to a
specific gene, even if they belong to different individuals or have a different health status,
cannot be considered fully independent.

The lack of independence between sequences must be taken into account when designing
a machine learning-based approach. More specifically, sequences for the same gene should
not be put both in Training and Validation sets. Otherwise, the network would recognize
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Figure 6: Highly shared structure for the same gene in different samples. Liver I, Liver
II, Lung I and Lung II paired samples are shown in different rows for the following genes presented
in columns a) TSG DDX3X, b) OG KDM5A and c) NG FAM179B. Signals were subsampled to
a scale of 10 bp ≡ 1 dbp to ease visualization. Each sequence starts around 2000 bp before the
transcription start site (TSS) of the gene. This range ensures that the promoter region of the
gene, found just before the TSS, will be captured.
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the whole profile, especially for the healthy sequences, as something already seen during
the training stage. This could lead to non-real astonishing validation performances.

Conversely, the performance of the model could drastically drop when assessing the actual
capability of the network to predict genes from an independent test set with new genes.
This would be an example of overfitting to the validation set, and constituted one of the
strongest limitations of our approach. It meant that in our case introducing more samples
would not necessarily provide a better model, but instead could risk its generalization
power, unlike most machine learning related projects.

Our approach is thus limited by the available curated sets of OGs and TSGs and their
reliability, especially if one wants to pursue a tissue-specific project. This results deeply
shaped our future work.

Pattern translation. Figure 7 depicts some concepts that deeply motivate using CNNs
when trying to solve the cancer gene classification problem.

The first concept, pattern or structure translation, is illustrated in Figure 7a). In the figure
one can see that, once more, almost the same chromatin structure characterizes different
samples and tissues. This similarity is most evident for the healthy samples, depicted in
green. In this particular case, the arbitrarily chosen gene ZNF394 is found close to another
one, ZKSCAN5, encoded in the opposite strand. This allows us to observe the enrichment
at the promoter regions of both genes simultaneously.

As explained in the previous section, basic building blocks of the signals such as the en-
hancers, which appear as H3K4me3 devoided wells (highlighted in gold), and nucleosome-
related structures like the coupled pillars (highlighted in blue) are shared among different
genes. These elements can appear translated, permuted or even rotated if the strand
information is not considered.

CNNs are known to display their maximum potential when identifying translated patterns,
and hence they are especially suitable for this problem.

Aligned comparison. Figures 7b) and c) illustrate why it is interesting to keep the
spatial information of the signals. The local and aligned juxtaposition of the tracks for
matching healthy and cancer tissues allows a CNN to study the combined behaviour of
both signals in a spatially resolved fashion.

With an input like b), CNNs have the capability to analyze how the methylation pattern is
extended towards the gene body in TSGs. Such networks can also assess if the pattern is
shortened or milder in the cancer track. These features could be linked with an insufficient
expression of the gene in a cancer scenario, as presented in [17].

The exact opposite case arises in Figure 7c). The figure also shows how H3K4me3 can im-
plicitly point towards aberrant gene expression levels. Here, the cancer sample’s H3K4me3
signal exceeds its healthy counterpart. The higher enrichment band could be accompanied
by an increased harbouring effect for transcription factors [15]. The previous process can
lead to overexpression-induced oncogenesis, one of the types proposed in [12], which is not
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necessarily linked to somatic mutations. This information, usually provided by RNA-seq
data, could already be hidden partially in H3K4me3 signals.

In addition, the first nucleosome downstream of a start site has been shown to exhibit
differential positioning in active and silent genes [30]. This implies that cancer-induced
changes in the activity of a gene could also give rise to shifts in the profiles, which could
be measured from the aligned inputs.

It must be stressed that these examples were arbitrarily picked for illustration purposes,
with the only aim to convey the following message: the discussed features or other similar
signal characteristics, if conserved and shared among sequences within a certain class, would
cause the creation of specific sets of filters in the first set of layers of a deep convolutional
neural network. Moreover, these filters would emerge as a natural consequence of the link
weight optimization when training a neural network using back-propagation (See Appendix
B.1). The outputs from such filters can then be reintroduced in the final steps of the
algorithm, where the classifier decides whether the found patterns and the way in which
they are related spatially are useful in order to predict the class correctly.

Figure 7: Pattern translations and local feature comparisons motivate the use of
CNNs. a) Pattern translations. Enhancer H3K4me3 devoided regions are highlighted in gold,
while well located nucleosomes are shaded in purple. b) Gene body extension of H3K4me3 in
TSGs. c) Potential higher methylation levels for aberrantly expressed OGs.

As a summary, in this section we showed the suitability of CNNs to analyze the properties
of H3K4me3 enrichment profiles. Yet, it was not clear if the use of a deep neural network
was in fact necessary, or if it would constitute an improvement from more conventional
methods. Whether a simpler approach would be satisfying enough remained to be checked.
To do so, a Principal Component Analysis and Clustering of the signals were conducted.
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4.2 Principal component analysis and clustering

Principal Component Analysis (PCA) and subsequent clustering of the cropped H3K4me3
signals around the promoter were performed for all cancer tissues and their respective
matching healthy samples. We included in the study both Training-Validation (subset A)
and the Test (subset B) genes. For simplicity and without loss of generality, we will discuss
and illustrate the results using Lung I and Liver I as references.

This early step in the data analysis pipeline was conducted with the idea to bring to light
possible fundamental differences between sequences corresponding to different categories,
for example cancer driver genes vs. housekeeping genes, or healthy vs. tumor samples.
PCA analysis would in principle provide some insights regarding the nature of the signals
and allow us to assess the difficulty of a classification task using H3K4me3 ChIP-seq data.

Pursuing to explore how much information is encoded in the main principal components,
scree plots with the eigenvalues of the respective covariance matrices and the cumulated
variance ratio were plotted in Figure 8. The eigenvalues of the covariance matrix quantify
the relevance of each new direction or principal component, while the cumulated variance
describes the percentage of information covered by the main components.

Scree plots for both cancer and healthy samples are shown at the leftmost part of Figure 8.
These curves present the main elbow, the point where the slope of the curve changes the
most, close to the third component. In a normal picture that would imply that the main
three components should be enough to describe our sequences.

However, the second plot in Figure 8 shows that this is not the case. The first ten compo-
nents together did not reach to explain a standard minimum of 80% of the total variance,
meaning that not even the main principal components can synthesize our data properly. It
is important to note that, independently of the amount of variance encoded in the principal
components, one cannot infer anything about the separability of the signals.

The signals were then represented in the three dimensional space defined by the first three
principal components. As a representative example, the results obtained from the Training
and Validation sequences for Liver I are presented in Figure 9.

Figure 9a) shows that the studied cancer samples are characterized by a lower variance than
the ones obtained from healthy tissue. This phenomenon, observed even after sequence
normalization, agrees with the results presented in Figure 8. This explains the lower values
for the eigenvalues in cancer samples, and why the curves for these samples generally lie
below their matching healthy counterparts. As a consequence, sequences obtained from
the cancer tissue are clustered in a narrower region within the PCA space. This region,
nevertheless, clearly overlaps with the area occupied by the sequences from the healthy
sample.
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Figure 8: Principal Component Analysis. Scree plots for healthy and cancer samples,
showing the eigenvalues of the covariance matrix. Cumulative variance vs. component shows the
amount of information encoded until a certain PC.

(a) (b) (c)

Figure 9: Sequence representation in PC space a) Cancer vs. healthy samples. Cancer
samples cluster in a narrow region within the volume occupied by healthy samples. b) Clustering
algorithm data classification for sequences from the healthy sample. The algorithm splits the
data in two regions geometrically. c) Cancer drivers vs. neutral genes. CDs and NGs appear
mixed in PC space.
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Figure 9b) illustrates that, if there are any intrinsic differences between the sequences
corresponding to different target categories, they do not appear when performing a stan-
dard PCA. To ease visualization, only sequences from the healthy sample are shown in
Figures 9b) and 9c). Several clustering algorithms were tested, including K-means, hier-
archical clustering and agglomerative clustering, which is the one shown in Figure 9b).
None of these methods were able to find meaningful boundaries in the low-dimensional
representation of the data, but rather proposed geometrically based classes that had no
biological relevance.

Figure 9c) confirms that genes cannot be classified by clustering their H3K4me3 profiles.
In this figure, which is the most important for our purposes, the data points for each
sequence are filled with a color representing their ground truth labels, i.e. CD or NG. The
main conclusion one can extract from this plot is that cancer drivers and normal genes
seem to be mixed in the PCA space, with no apparent geometrical way to classify them.
Nonetheless, even though there are many CDs in the bulk of NGs, a significant number of
them spread in the directions of PC2 and PC3 for this particular subset of genes.

From these results and the information gathered from a visual inspection of the signals in
the previous section, one can already obtain the following meaningful conclusions.

First, a linear transformation of the data is not enough to capture properly the nature of our
dataset. The performed PCA analysis strongly suggests the need to go deeper in the level
of complexity of our approach. Second, the H3K4me3 enrichment profiles for oncogenes
and tumor suppressors will be genuinely similar to those characterizing housekeeping genes.

This means that the information concerning the category of the gene that could be encoded
in the sequences, if any, could involve ”how” the features are used or ”where” in the signals
do they appear. The possibility that the differences between CD and NG profiles involve
the use of completely different patterns seems unlikely.
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4.3 Introducing artificial neural networks for the analysis of ChIP-
seq signals for histone PTM enrichment.

Our preliminary results suggested the potential of CNNs to extract information from
H3K4me3 enrichment profiles8, proved the suitability of CNNs to be used in the can-
cer gene classification task, and illustrated the necessity to go deeper in the complexity
level of our approach to the problem.

The above considerations inspired the creation of a customized deep convolutional neural
network, OriGENE, presented in the following section.

4.3.1 Architecture

At an early stage, Recurrent Neural Networks (RNNs) were considered given their widespread
use in sequence analysis and motivated by the fact that genes vary in length. This research
path was abandoned for several reasons: 1) Online learning, i.e. updating the model’s
weights sample to sample, would be the only way to exploit the potential of RNNs to han-
dle inputs with varying sizes. Zero padding of the sequences would otherwise be required
in order to train in batches. 2) There is only a significant enrichment of H3K4me3 at the
beginning of the genes. Cropping the signals to a standard size seemed thus to be justified.
3) The patterns we are analyzing are static and 4) a final fully connected classifier would
already take into account their spatial distribution and order of appearance.

Given these facts, using a convolutional-based method was the most logical way to proceed.

The goal was to develop a CNN tailored to the needs of the project, especially given the use
of 1D sequences. The ideal architecture should be complex enough to have the potential to
identify subtle trends and non-trivial details in the data. It should also have the capacity
to integrate them to give accurate predictions. At the same time, the number of trainable
parameters of such architecture should remain low enough not to over-fit the model to the
reduced dataset.

These basic principles guided our exploration of the hyperparameter space, i.e. the possible
combinations of layers, filters and regularization elements. The best trade-off was achieved
with the architecture we propose in the next section.

8As a reminder, these profiles illustrate the significance of a certain histone post-translational modifi-
cation (PTM) like H3K4me3 throughout a genomic region. The profiles were obtained using Chromatin-
ImmunoPrecipitation and Sequencing (ChIP-Seq).
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Figure 10: OriGENE illustrated. a) Input signals before and b) after being binned for the
healthy track, with a 20 bp resolution. c) Inception module structure, with convolutions of
kernel one aimed to lower the number of trainable parameters, followed by different size kernel
convolutions that process information and study signal features at different spatial scales. d)
Output of one of the 16 final filters, which will be flattened and fed into e) the final fully connected
layers, which will perform the classification. f) Shows the global architecture of our model, with
the different blocks and layers specified.
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Table I. The architecture of OriGENE
Layer Type Output shape Parameters

I. Input
A Original signal Input layer (None, 10000, 2) 0
B Binned signal AveragePooling1D (None, 500, 2) 0

II. Feature extractor
C Basic Convolutional (I) Conv1D (None, 249, 32) 224
D Basic Convolutional (II) Conv1D (None, 247, 16) 1552
E Size reduction (I) AveragePooling1D (None, 123, 16) 0
F Inception A (I) Inception (None, 123, 32) 1072
G Inception A (II) Inception (None, 123, 32) 1584
H Size reduction (II) MaxPooling1D (None, 61, 32) 0
I Inception B (I) Inception (None, 61, 16) 664
J Inception B (II) Inception (None, 61, 16) 408
K Size reduction (III) MaxPooling1D (None, 30, 16) 0

III. Classifier
L Flattened array Flatten (None, 480) 0
M Dropout (I) Dropout (None, 480) 0
N Fully Connected (I) Dense (None, 32) 15392
O Dropout (II) Dropout (None, 32) 0
P Fully Connected (II) Dense (None, 16) 528
Q Dropout (III) Dropout (None, 16) 0
R Last Fully Connected Dense (None, 1) 17

Table 1: The architecture of OriGENE. Three distinct blocks characterize the network. I.
Input, II. Feature extractor and III. Classifier. The output shape of each layer (a,b,c) describes a)
the number of paired samples used, which depends on the stage of the procedure, b) the sequence
length and c) the specific number of outputted channels or filters. A significant dimensionality
reduction takes place before the third block, while most of the trainable parameters come from
the first fully connected layer.
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4.3.2 The model: OriGENE

The architecture of OriGENE9, illustrated in Figure 10 and described in Table 1, consists
of the following three blocks:

I. Inputs.- The use of paired tracks for healthy-tumor matching samples as aligned and
parallel inputs seemed promising, since the objective is to find genes linked with cancer.
This method was favoured instead of using a higher number of epigenetic markers for
unmatched samples.

Our second conclusion was that it was better to study in detail the region surrounding the
TSS, where transcription of the gene starts, than trying to analyze a broader region. As
shown in previous sections, there is only a significant enrichment at the promoter of active
genes [27], although H3K4me3 can also appear in DNA-repair regions. However, the signal
in the gene body is considerably milder than around the promoter and we lack the genetic
context of the said region.

The above points left us with two aligned sequences of 10.000 basepair enrichment values,
starting around 2000 bp before the TSS of each gene.

The desired resolution of the input sequences constituted a first degree of freedom for our
network. In spite of counting with enrichment values at a basepair level, the effective
resolution of the raw signals was indeed lower. The smallest relevant details starting to
emerge at a scale of 20-50 bp.

The original inputs were hence binned in 20 bp averaged blocks before extracting any
features from them. This step contributed to a remarkable size reduction of the sequences,
as seen in the first block of Table 1.

II. Feature extractor.- The general design of the feature extractor introduced a level
of arbitrariness. Starting with a high number of filters and reducing it as one goes deeper
into the network, in an inverted pyramid-like shape, proved to be useful in this particular
project for the following reasons.

First, the network needs to collect as many low-level features from the original signals as
possible in order to combine them in later steps. The algorithm starts from scratch to
analyze and process the almost raw enrichment profiles. Therefore, the first filters will
play an important role in identifying basic properties. Given that we were comparing just
two 1D sequences, there was no need for the moment to count with more filters at the
deepest and most abstract layers.

Second, having fewer filters to flatten at the deepest layers of the feature extractor short-
ened to a great degree the vector that constituted the input to the first fully connected
layer.

9Given that the network is based on the INCEPTION module, named after a movie title translated as
Origen in Catalan and Spanish, I decided to call the model OriGENE.
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The inception module was introduced as the core convolutional element in this second
block of the network. This was motivated by the necessity to analyze the structure of the
signals at varying spatial frequencies. The module, presented for the first time in [31], is
constituted by a small set of pooling and convolutional filters of varying kernel size that
enable it to find and combine the information at different spatial scales and resolutions.
The inception module is further detailed in Appendix B.1.

As a common practice, several pooling layers were added between the different inception
modules. These were aimed to further reduce the size of the data before proceeding to
integrate all the extracted features in the final stage.

III. The classifier.- The last filter outputs are flattened and a set of fully connected
layers integrates all the extracted features. The classifier gives a unique output for the
final node: the probability of the input sequences to be attributed to a cancer driver gene.

These last fully connected layers were in fact the main contributors to the number of
trainable parameters, as shown in Table 1. They were thus proportionally regularized
using dropout (See Appendix B.1).

Unlike the original INCEPTION network presented in [31], where only one last dense layer
was used in the main branch, the use of more than one fully connected layer before reaching
the final node was justified in our problem. The spatial and sequential distribution of the
found patterns could play a role in H3K4me3 signals, and hence it had to be taken into
account by allowing connections between different regions of the final vectors.

4.3.3 Benchmarking OriGENE

Our findings can be partially benchmarked using the data and results presented by Jie Lyu
et al. in Table 1 of [11].

Their study, in which the performances of different models were tested when given OGs and
TSGs from the COSMIC’s Cancer Gene Census (CGC) v.87 [21], showed that most of the
available algorithms by 2020 ([1]-[10]) were proficient at identifying genes that were labelled
as ”neutral”, since their performances were characterized by truly remarkable specificities.
Nevertheless, once a false-positive discovery rate below 1% was imposed, even DORGE
[11] had a limited ability to filter out the actual oncogenes and tumor suppressors, with a
combined sensitivity that without a proper context would seem to be rather low10.

Their results give us an idea of the difficulty level of the problem we are trying to solve,
and are the ones that will be used as a reference to assess the potential and limitations of
the method we propose.

10DORGE achieved the best sensitivity of all the presented algorithms, 0.611, when predicting CGC
genes at an imposed 1% false-positive rate.
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4.4 Binary classification problem: Cancer Driver vs. Neutral
Gene

The project was originally conceived as a three-class classification problem, with the cate-
gories OG, TSG and NG. Such a procedure would allow the network to reuse and combine
features from different classes simultaneously, if necessary, making the learning process
more efficient.

The labels TSG and OG are however non-exclusive attributes, which can in addition be
tissue- or sample-dependent. These categories, when referring to the functional role of
such genes, should therefore not be an intrinsical property of a region in the genome
regardless of the context. As an example, unmutated OGs operating normally are called
proto-oncogenes and are necessary for the well-functioning of the cell.

This subtlety implies that 1) the labelling scheme already introduces errors into the system
in a pan-cancer study, since the same gene can be a TSG in a cell line but an OG in another,
and 2) increases the need of a significant amount of samples for each class for an algorithm
to be reliable.

A tissue-specific approach could in principle solve point 1), but the data in our first refer-
ence and carefully curated dataset, the CGC [21], was scarce enough not to justify a three
class classification algorithm in a tissue-specific context at that stage of the project. Be-
sides, the realization that different datasets could not be integrated in our training process
limited even further the data we could work with.

These constraints led us to adopt a less restrictive approach, and ask whether the genes
with the given H3K4me3 profiles could be causally related to cancer genesis or not. OGs
and TSGs were put under the umbrella category of cancer drivers (CDs), and the number
of NGs was doubled in order to keep the class balance, since the known housekeeping genes
outnumber the known CDs.

4.4.1 Model development: Training and Validation

The first 190 OGs, 190 TSGs and 380 NGs stated in the supplementary data table S2 of
[11] constituted our Training-Validation set. In order to make the most of the available
data, the corresponding 760 pairs of samples (H3K4me3 aligned tracks for healthy and
matching cancer tissues) for these genes were distributed randomly in 10 stratified splits,
aiming to keep the class balance. We then proceeded to perform K-Fold validation of
several candidate network models11.

11In every fold, 76 pairs of sequences were hidden to the network and saved for validation, while the
remaining 684 pairs were used to train it. The networks learned the best when training in batches of 98
samples, which smoothed the contributions of noisy sequences to the weight’s updates, throughout 100
epochs. Weights were updated 7 times per epoch, corresponding to 6 minibatches of 98 paired sequences,
and a last one that contained 96. Within the chosen number of epochs one could not see signs of overfitting
to the training set.
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Designing OriGENE. Rather early in the development stage we could notice that the
limited number of known genes linked to cancer narrowed the range of reasonable sizes
for our network. Hence, we dismissed the possibility of basing our model on complete and
sophisticated deep networks such as the ResNET.

The introduction of the inception module helped to ease and smooth the training process.
This can be seen in the stable loss curves and slow but rather smooth learning shown in
Figure 11a). After 100 epochs, the loss curves started to flatten, although not completely.
The accuracy for both validation and training sets, though, stagnated after this point.

The use of inception also reduced significantly the amount of trainable parameters. This
was a consequence of the module using size one convolutions. After tuning model hy-
perparameters such as the number and type of layers, regularization elements such as L2
or dropout, etc. we obtained our final model (See Appendix B.1 for more information
regarding the inception module and hyperparameter tuning).

Validation remarks. The predictions of OriGENE for the different validation splits were
then joined. The corresponding Receiver Operating Characteristic (ROC) curves with
their Area Under the Curve (AUC) values were calculated and plotted in Figure 11b). This
procedure was performed for each patient individually. The robustness and reliability of the
models trained on different individuals were estimated by AUC 90% confidence intervals,
which were assessed by bootstrapping 1000 times from the predicted class probabilities and
analyzing the corresponding AUC value histograms, as seen in Figure 11c).

A thorough analysis of the training results and validation performances, which in principle
should give a hint on what to expect when testing new data, already unravelled several
facts.

First of all, we realized that no matter how complex the network was, a 100% classification
accuracy for the training data was never achieved without clearly overfitting the data.
Secondly, the performance of the model in different folds was highly sensitive to the splitting
scheme, an effect that was smoothed when combining all validation predictions.

These phenomena, which would also impact the following steps, are unavoidably enrooted
in the nature of our approach and deserve to be studied in some detail.

Upper performance bounds and fold dependence. The labelling scheme and the
input sequences were intrinsically noisy, as it was seen in Section 4.4 and discussed in
Appendix B.2.1 respectively. Such noise sources would constitute a first constraint on the
top performance our models could achieve.

In addition, our network had the potential to pinpoint CDs from only a subset of types12.
Our approach would only enable the network to find the CDs that can leave a distinct
fingerprint in the H3K4 trimethylation profiles around the promoter and beginning of the
gene body. According to [11], [12], [17], [18] and [32] though, using H3K4me3 as the

12In [12], CDs were classified according to their nature in: interactome-driven, mutation-driven, DNA-
methylation driven, expression-driven and copy number aberration-driven.
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(a) (b) (c)

Figure 11: Validation summary plots. a) Learning curves and loss evolution for one valida-
tion fold example. Slow but steady learning curves were achieved during training, with validation
and training loss curves following similar trends due to the introduction of the inception mod-
ules. After 100 epochs the accuracy stagnated. b) ROC curves with the combined validation
predictions for all the available tissue samples. Similar ROC curves for OriGENE predictions are
obtained when the network is trained on different datasets. c) AUC histograms for the validation
bootstrapped predictions. Rather narrow distributions led to tight confidence bounds for single
model predictions.

(a) (b) (c)

Figure 12: Test ROC curves. a) Original test ROC curves when predicting and training with
data from the same patient. b) ROC curves for OriGENE trained on Liver I predicting the test
set for other patients and tissues. c) ROC curves for final assessment loop predictions, using all
data split randomly.
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unique marker could introduce in our current procedure a bias towards TSG detection.
Despite the marker having a certain prediction power for OGs, they are known to be
better characterized by other elements such as promoter and gene body DNA-methylation
aberrations, H3K27me3 silencing domains or DNA mutations.

An uneven distribution of the targetable CDs could hence be at the core of the observed
significant fold-dependent performance fluctuations. The observed split-dependent behav-
iors were further enhanced by the limited number of sequences. This last contribution can
be compensated in several ways, e.g. combining the predictions for different folds as it was
done here.

The potential of OriGENE. In spite of the already known limitations of the model, we
started to observe the main conclusion from our work: OriGENE could effectively learn
from all datasets independently.

OriGENE showed way above random ROC curves for all tissues, presented in Figure 11b),
and AUCs ranging from 65 to 68 with narrow confidence intervals, presented in Figure 11c).
Not only the model seemed to retrieve useful information from the sequences, but according
to the validation performances the model could in principle achieve significant sensitivities.
The model’s specificity was finally the best performance metric in this early stage of the
pipeline, pointing towards a better ability to distinguish NGs than CDs that is shared with
all the algorithms presented in [11]. These results are summarized in Table 2, and will be
further confirmed and elaborated in the following section.

4.4.2 Model evaluation: Hold-out testing

Once the final OriGENE model was fully designed and settled, the model’s weights were
trained using all the training-validation sequences. Its ability to generalize to unseen data
was then assessed using a completely independent test set constituted by 109 NGs and 100
CDs.

The results obtained in this case are shown in Figure 12a). The presented ROC curves are
characterized by AUCs between 70 and 80%, and rather narrow confidence bounds. High
specificity values, showing the notable contribution of the correct NG classification to the
model’s performance, can be highlighted from the second block in Table 2. This trend
agrees with what was observed in the model’s validation stage presented in Section 4.4.1.

The fact that the performance in the test set was indeed better than that of the validation
stage further corroborated the dependence of the model performances in the way the data
is split. Our arbitrary and uninformed original choice of test sequences had been, at least,
unfortunate.
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On the other hand, these results constituted a strong proof that the model had the potential
to predict previously unseen data. Unlike the validation sequences, which had been used to
fine tune the model’s architecture and hyperparameters, the new test set was constituted
by genuinely independent genes that had not played any role in the model selection process.

The model’s capability to extract utile and generalizable information from the almost
raw H3K4me3 profiles could not be doubted anymore, and further justified our project’s
previously unexplored approach.

Ensemble averaging. Every time a model is trained, even with the same data, it ends
up with completely different sets of weights that can perform the classification task in a
similar fashion. We noticed that in some runs the correct classification of negative samples
slightly dominated the training, while sometimes the opposite picture arised.

In order to counteract the effects of different weight initialization maps, ensemble averaging
was performed (See Appendix B.1). The model was hence trained 10 times for each patient,
and the classification outputs of single sets of weights were averaged aiming to obtain a
more accurate prediction for each test sequence pair. Ensemble averages are known to add
an extra level of regularization, and ensure that the final performance will be as good or
even better than the averaged predictions of single models.

The results obtained from this sanity check, which induced little to no changes in the orig-
inal performance metrics’ values, are the ones shown in Table 2 and Figure 12a). This step
made us discard weight initialization as the source of the test performance improvement.

Cross-patient and cross-tissue prediction. An additional feature of OriGENE that
could also be tested was the ability of a model trained on a specific dataset to predict
samples of a different tissue or patient origin.

Models trained on Liver I and Lung II displayed an outstanding capacity to cross-predict
genes. The ROCs for Liver I shown in Figure 12b) corroborate it. This result provides
additional support to our first conclusion, namely that the incredible variability among
the trimethylation patterns of different genes is undercovered by a more than substantial
similarity of same-gene profiles, even in different individuals.

The apparent limitation of the approach we followed turned out to be one of the properties
that could make it appealing for its generalizability.
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Table II. Summary of the main performance metrics

Stage Tissue Acc Sp Sn Prec AUC 90% CI

Validation

Liver I 0.607 0.655 0.558 0.618 0.650 [0.616 – 0.684]
Liver II 0.618 0.695 0.542 0.639 0.655 [0.622 - 0.687]
Lung I 0.618 0.663 0.574 0.630 0.685 [0.653 - 0.716]
Lung II 0.626 0.637 0.616 0.629 0.673 [0.641 - 0.708]

Test

Liver I 0.675 0.872 0.460 0.767 0.782 [0.723 - 0.834]
Liver II 0.536 0.844 0.200 0.541 0.742 [0.682 - 0.798]
Lung I 0.608 0.890 0.300 0.714 0.791 [0.735 – 0.843]
Lung II 0.684 0.734 0.630 0.685 0.717 [0.658 – 0.775]

Looped
test

Liver I 0.633 0.632 0.633 0.628 0.676 [0.647 – 0.704]
Liver II 0.636 0.622 0.650 0.628 0.683 [0.655 - 0.712]
Lung I 0.670 0.693 0.646 0.674 0.710 [0.683 - 0.736]
Lung II 0.657 0.654 0.660 0.652 0.687 [0.659 - 0.714]

Cross-tissue
prediction

Liver I 0.675 0.872 0.460 0.767 0.782 [0.723 - 0.834]
Liver II 0.603 0.899 0.280 0.718 0.797 [0.742 - 0.849]
Lung I 0.656 0.734 0.570 0.663 0.726 [0.668 - 0.784]
Lung II 0.675 0.771 0.570 0.695 0.736 [0.676 - 0.793]

Table 2: Performance metrics for the different stages in the procedure. Values were
rounded to the third decimal cypher.

Table III. Liver specific performance metrics

Stage Tissue Thr Acc Sp Sn Prec AUC 90% CI

Tissue specific Liver I
0.61 0.616 0.877 0.356 0.743

0.639 [0.605 - 0.674]
0.50 0.618 0.655 0.580 0.627

Table 3: Liver specific performance metrics.
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4.4.3 K-fold cross testing

Given the unexpected better results for the test set than the ones obtained in the valida-
tion stage, a further evaluation and compensation of the bias introduced by the original
arbitrary splitting strategy proved to be crucial at this point of the project.

Estimating the model’s prediction power. An additional K-folded loop with all the
available data was conducted as a final and more reliable estimate of the actual prediction
power of the model. All sequences were now randomly split in five stratified blocks, of
which four where used to train and one to test. All folds’ test results were then gathered
for the final evaluation as done in Section 4.4.1.

It should be noted that this procedure was not fully devoided of bias. Data used to train
and validate before, which played a role in the model selection stage, is now being tested.
Therefore, there could be an information leakage. Besides, the training sets now contained
775 sequences in order to split the dataset in rather uniform batches, meaning that the
network had slightly more available data13.

Albeit the aformentioned problems, the proposed protocol would ensure that each training
set had enough samples to learn from, while counting with a large effective test pool that
would counteract the effects of limited dataset sizes and partition-induced imbalances.

Final evaluation in a pan-cancer scenario. Our last results are presented in Figure
12c), the confusion matrices presented in Figure 13, and the performances in the third
block of Table 2. AUCs close to 70% with narrow confidence intervals characterized once
more the ROCs obtained. Remarkably, this final evaluation of the model showed a slight
drop in specificities, which made way for sensitivities above 60% while keeping the precision
high. Regarding this second critical performance metric, the model’s precision, a minimum
of 6 out of 10 cancer driver predictions would be correct independently of the patient and
tissue used to train.

It is of key importance to point out that sensitivity and precision are the metrics one
wants to enhance. The main goal of our work is to discover new cancer drivers, while the
confirmation of already known neutral genes is desirable but remains in the background.

The final precision and sensitivity combined values for OriGENE prove that, when us-
ing the same CGC v.87 CDs and a subset of the further curated NGs from [5] used in
the evaluations presented in [11], the proposed model outperformed other well-established
genome-based algorithms in the binary classification framework. According to [11], only
DORGE displayed a better performance when filtering out actual cancer drivers from the
chosen database than the model proposed in this thesis.

The precision-recall curves and the related average precision values, which correspond to
the Area Under the Precision-Recall Curve (AUPRC), are shown in Figure 14. These
curves were plotted to ease the comparison with other models, in particular DORGE.

1315 extra sequences, 2% more than the original dataset
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(a) Liver I (b) Liver II

(c) Lung I (d) Lung II

Figure 13: Final test confusion matrices setting the cutting threshold at 0.5. K-fold
loop on whole dataset split in fully randomized and stratified blocks. Performance metrics are
shown in Table 2
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DORGE-TSG and DORGE-OG, when using only epigenetic predefined features and all
NGs available, achieved AUPRCs of .6 and .295 respectively. OriGENE reached combined
AUPRCs of .65 or greater in all samples with a NG-to-CD ratio of ∼1:1.

Although these numbers cannot be directly compared due to the impact of varying class
ratios in the precision values, they would support our working hypothesis. The proposed
unconstrained feature extraction process for H3K4me3 enrichment tracks could in fact
constitute an improvement when comparing with the manual curation of features. These
results would motivate further research in the same line.
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4.5 Tissue-specific prediction

The project was lastly redirected towards the discovery of tissue-specific cancer-driver
genes.

The ability to work in a tissue-specific picture is an extremely desirable feature for a cancer
gene classifier that OriGENE could incorporate naturally. Single cancer-healthy matching
pairs of samples were already available from [17] and we counted with an architecture that
could analyze them. The only element to be updated was the specific pool of genes, or
more precisely the sequences and their corresponding labels, that could be used to train
the network.

For this purpose, cancer drivers that were known to play a role in liver cancer, angiosar-
coma, carcinoma and lymphoma were obtained from Cancermine [22] and extracted from
Liver I samples. The collated table in Cancermine contains a list of cancer driver genes
that have been cited in at least one publication. The 374 new liver-specific CDs were
compared with 374 NGs following the same procedure as in Section 4.4.3. Data was now
split in 9 folds and trained in batches of 83 sequences.

We noticed a slight increase in the number of noisy and low enrichment level sequences
with a certain structure for the new pool of positive genes. A fact that would explain the
nature of some of the low enrichment sequences would be a higher number of reads being
mapped to secondary alignment hg38 domains for the new set of CDs14. Whether the new
CDs are expected to be active or not could also play a role in the H3K4me3 profiles, since
this PTM is known to be a mark of active genes.

Our preliminary results are presented in Figures 14b) and 15 and described in Table 3.
These results support the robustness of OriGENE with a performance that was not com-
promised when changing to a tissue-specific context.

Specificity had still the best values, while sensitivity and precision were somewhat better
when compared with the validation stage of the pan-cancer assessment. In addition, the
false-positive discovery rate could be lowered to 12.3% while keeping OriGENE’s sensitivity
in a tissue-specific scenario above that of all the only-genomic models presented in [11] when
using CGC genes in a pan-cancer scheme.

While the ability to discard neutral samples was kept to the same level, the network
could also distinguish CDs that showed the expected average levels and profiles for both
tracks. CDs where the cancer track clearly dominated in high enrichment regimes were
also pinpointed by the network. More interestingly, it classified correctly positive sequences
where one could observe mild but sustained enrichment levels and small blobs for the tumor
track in the first part of the gene body.

14Gene coordinates were queried using The Genome Browser [33] for each gene. The domains related
to single genes had multiple entries with non-unique coordinate limits, including secondary alignments for
hg38. Some reads could hence be lost when mapping them to different sections of the reference genome.
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(a) Testing loop. (b) Liver-specific.

Figure 14: Precision-Recall curves and AUPRCs. Final test loop and liver-specific
Precision-Recall curves with the corresponding areas under the curve, which can be understood
as the average precision.

(a) 0.5 threshold (b) 0.61 threshold (c) ROC

Figure 15: Liver specific performances. a), b): Confusion matrices setting the decision
thresholds at 0.5 and 0.61. c) ROC curve for the prediction of liver-specific genes.
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If these features were not artifacts, e.g. background noise induced by the lack of a non-
specific input, they would motivate the need to efficiently extend the network to the body
of the genes. In this region the known gain- and loss-of-function (GoF, LoF) mutations for
OGs and TSGs respectively could modify the histone PTM environment locally.

Further evaluation of OriGENE in this last scenario is required, but the potential of the
model to handle distinctive properties of a single tissue, in this case liver, and to tailor
the weights of the already designed network to specific patients and cancer types, holds
promise and encourages us to continue with this research path.
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5 Conclusion

The enrichment profiles of the epigenetic marker H3K4me3 around the promoter of ac-
tive genes encode both functional and structural information that can be useful for the
characterization of cancer driver genes. These profiles constitute a signature of each gene.
Therefore, sequences corresponding to a certain gene, even if they belong to different indi-
viduals or they have a different health status, cannot be considered completely independent.
Inter-gene variability is more significant than the intra-gene feature differences, and this
must be considered when designing a cross-validated project.

Principal component analysis (PCA) of the samples could not represent the data effi-
ciently, given the need of many principal components to capture a reasonable amount of
variance. Moreover, several clustering algorithms including K-means and hierarchical clus-
tering failed to find meaningful boundaries in the low-dimensional representation of the
data, highlighting the need to go further in the level of complexity and abstraction of our
study.

The aforementioned preliminary results motivated the development of OriGENE, a deep
convolutional neural network based on the inception module aimed to analyze, compare
and bring out features from matching healthy and cancer samples. OriGENE introduces
a novel unconstrained, multi-scale and spatially aligned feature extraction process, which
allows it to process information down to a 20 bp resolution.

Several factors imposed an upper bound on OriGENE’s performance. First, the network
had to be trained on a limited number of highly curated genes using single tissues. Second,
the labelling scheme and the sequences themselves were intrinsically noisy. Last, H3K4me3
had a lower ability to predict oncogenes than tumor suppressors, which led to a pronounced
fold dependence. This behaviour was compensated and smoothed by adding different
stratified and randomized fold predictions together.

These limitations provided the perfect environment to explore new properties of our model,
namely its potential to be trained and predict CDs using different tissues, but also the
capacity to operate in a cancer-specific context, with both attempts being fruitful. Even
though OriGENE displayed on average better specificities, it stands out by a noteworthy
sensitivity to precision relation, i.e. a significant number of actual CDs are detected (60%+
in the final pan-cancer evaluation of the model on CGC [21] genes), combined with a still
higher than 60% chance of the predicted CDs to be correct. OriGENE would also show
promise in the tissue-specific and patient-specific front, since the presented model can
already be trained but also predict single-tissue data with the same reliability as in the
pan-cancer picture.
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All in all, the obtained results consolidate OriGENE as a model with performance strengths
that are complementary and comparable to other already well established algorithms such
as OncodriveFM [1], MuSIC [2], MutSigCV [3], OncodriveCLUST [4], TUSON [5], Ac-
tiveDriver [6], 20/20+ [7], OncodriveFML [8], MutPanning [9] and GUST [10], the perfor-
mances of which were presented in DORGE [11].

We hope that this project, born as a proof of concept, will serve as a precedent for future
studies merging deep CNNs and cancer gene prediction.

Outlook

This section’s purpose is to suggest new ways to expand the scope of the project, and to
discuss the possible impact of the proposed method.

It would be of interest to extend the studied regions further into the gene body, where the
most studied somatic mutations take place. The addition of mutation sites and types as
complementary input tracks could also be coupled to the epigenetic information currently
used.

Further research is necessary in the tissue-specific and patient-specific scenario, and also
regarding the explainability of the studied features. Whether new predicted cancer genes
have cancer driver attributes or not is also left to be explored in follow-up projects such
as gene knockout essays or interactome analyses.

Despite these open fronts, the research presented in this work could make its highest impact
when designing cancer treatments at a patient-to-patient scale. OriGENE uses data from
single patients and compares, at a gene level, the differences between a healthy and a tumor
sample. When trained with enough reliable data, the approach we propose would enable
the network to discover patient-specific aberrations in the profiles of single genes. This
would allow a medical doctor to target the set of aberrantly modified genes, even if they
differed between patients diagnosed with the same type of cancer.
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A Data & Code Availability

The original sample files used in our project were produced by Chen K et al. and were
part of the paper: Chen K, Chen Z, Wu D, et al. Broad H3K4me3 is associated with
increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat
Genet . 2015;47(10):1149-1157., cited as [17]. The samples can be accessed and downloaded
from the Gene Expression Omnibus at the following link:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67471.

The curated sets of genes and the performances of the models with which this work is
benchmarked were obtained from Lyu J, Li JJ, Su J, et al. DORGE: Discovery of
Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features. Sci Adv.
2020;6(46):eaba6784. Published 2020 Nov 11., cited as [11].

For the tissue-specific prediction, liver-specific CDs were retrieved from Lever J, Zhao
EY, Grewal J, Jones MR, Jones SJM. CancerMine: a literature-mined resource for
drivers, oncogenes and tumor suppressors in cancer. Nat Methods. 2019;16(6):505-507.,
cited as [22].

All the code can be accessed at the thesis’ GitHub repository upon request.
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B Methods

B.1 Machine learning methods

Performance metrics. The main performance metrics used in this work are summarized
here. The decision threshold or cut for the final node’s output was set to 0.5 unless
otherwise stated.

• Sensitivity (Sn). This metric, also known as recall, measures the number of cancer
drivers that a model can pinpoint out of the total number of cancer drivers given.

• Specificity (Sp). Magnitude that quantifies how many neutral genes have been
correctly classified out of the total number of neutral genes.

• Precision (Prec). Percentage of actual cancer drivers detected out of all the pre-
dicted positive genes.

• Accuracy (Acc). The accuracy of a model quantifies the ratio of correct predictions,
including positive and negative genes, out of the total number of genes.

• Receiver operating characteristic (ROC) curve and Area Under the Curve
(AUC). The ROC curve plots Sn, which coincides with the true positive rate (TPR),
against the false-positive discovery rate (FPR = 1-Sp). The AUC is a quantitative
estimate of the general performance of a model, without imposing a specific decision
threshold. Decision thresholds can be tuned depending on the necessities of the
project.

• Area under the precision-recall curve (AUPRC). The area below the precision-
recall curve (AUPRC) quantifies the average precision of a model. Note that this
metric is deeply influenced by the class ratio.

Activation functions. In every node, a weighted summation of the inputs is performed:

a =
K∑
k=1

ωkxk + ω0

where ω0 is called a bias term. This value is not directly passed to the next layer, but
instead it is used as the argument of a function, the activation function, the output of
which will be propagated forward: φ(a).

The two main activation functions used in this project are the Rectified Linear Unit (ReLU)
φ(a) = max(0, a), which has strong mathematical and biological motivations and eases the
training of deep networks, and the sigmoid φ(a) = 1

1+e−a , which is used for the final node
in a binary classification scheme.
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Loss function. Binary cross-entropy was used for the classification of the final two classes,
cancer driver genes vs. neutral genes:

E(~ω) = − 1

N

∑
n

[dn ln (yn) + (1 − dn) ln (1 − yn)]

The loss function was normalized to the batch size by default.

L2 regularization was added to all the convolutional layers, including the ones inside the
Inception modules, which gave an effective loss function like:

E(~ω)′ = E(~ω) + αΩ(~ω)

Where the regularization term Ω = 1
2

∑
i ω

2
i is equivalent to assuming a Gaussian prior for

the set of weights ~ω, and the regularization strength was set to α = 1 · 10−2.

Dropout, described as the omission of a fraction of nodes randomly chosen when training
the network, was introduced for the final layers of the classifier. In order of appearance
after the flattening step, the final dropout values were 0.4, 0.3 and 0.1 respectively. Finally,
the chosen optimizer was ADAM, with a learning rate set to 4 · 10−4.

Backpropagation. Given the dependence of the loss function E(~ω) in the set of weights
characterizing the network, this method calculates the gradient of such function with re-
spect to every single weight by means of the chain rule, starting from the last layers and
going backwards. Weights will then updated in that direction aiming to minimize the loss.

Ensemble averaging. An ensemble of M networks trained on the same dataset constitutes
an added level of regularization. When averaging the outputs of single models, it can be
shown that the squared error of the ensemble’s predictions is equal to the mean error
introduced by each individual network minus a term that quantifies the variance of the
different networks in the ensemble. This implies that the performance of an ensemble will
be at least as good as the average of the single models constituting it, if not better.

yens(~x) =
1

M

M∑
i=1

yi(~x) ; Pens ≥
1

M

M∑
i=1

Pi

Inception modules. Two different 1D INCEPTION modules were used in our final
model, which are based on the results presented in [31]. Figure 17, which is part of Figure
5, and Table 5 summarize both modules, since they only differ on the number of filters
used. Filter f1 performs merely a kernel 1 convolution, while filters f2 and f3 perform kernel
3 and kernel 5 convolutions after an initial kernel 1 convolution. Finally, filter f4 performs
a max pooling on bins of 3 values with stride 1 and a posterior kernel 1 convolution. All the
filters are finally stacked on top of each other, since they share the size given an imposed
”same” padding.
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This configuration of layers is aimed to analyze different features of the signal at varying
spatial scales, while keeping the number of weights rather low thanks to the initial kernel
1 convolutions.

Hyperparameter tuning. During the model selection process, the following elements
were allowed to vary.

1. Inputs

• Sequence length: ∼ [104 - 105] bp. Shorter genes were zero-padded to the pre-
defined length and larger genes were cropped.

• Sequence resolution: Binning of the signals to bins of [1,10,20,50,100,200] bp.

2. Feature extractor

• Number of layers : Nl < 10 (plus pooling layers).

• Number of filters per layer : Nf ≤ 256.

• Type of layers : Convolutional, MaxPooling, AveragePooling, LSTM, GRU. For
the convolutional layers:

– Kernel size: Kernels of size 3 and 5 were tested.

– L2 strength, α: α = [0, 10−1, 10−2, 10−3] were tested.

– Stride for the convolutions : Strides 1 and 2 were allowed.

3. Classifier

• Number of layers : Nl ≤ 5.

• Number of nodes per layer : Nn ≤ 256.

• Dropout rate: Dropout values ranging between [0.0-0.8] were allowed.

4. Training parameters

• Learning rate: The ADAM optimizer was tested with learning rates of the orders
[10−3, 10−4, 10−5].

• Number of epochs : 50-400 epochs were tested.

• Size of the minibatches : 50-150 paired sequences per minibatch, depending on
the number of samples to split into regular parts.

• Number of folds, K : Between 4 and 10 folds, depending on the stage.

The activation function was ReLu for all layers except from the last one, for which the sig-
moidal function was used. Also, note that the inception module imposes a ’same’ padding
that does not apply to the rest of the layers.
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B.2 Bioinformatics methods

This section will give an overview of the input data conversion process, from the original
SRA files containing the raw sequenced reads to the final bedgraph.sorted files with the
continuous H3K4me3 enrichment binned values. A Snakemake workflow was written at a
late stage of the project, when assessing the effects of removing duplicated reads on the
performance of OriGENE, in order to ease and automatize the process. It can be found in
https://github.com/mpielies/MSc-Thesis.

Software required. The software used in this protocol includes:

• SRA toolkit: NCBI’s SRA toolkit was used to dump the content of the SRA files
into fastq files.

• Bowtie2: Bowtie2 was used when aligning the reads to the reference human genome
hg38.

• Samtools: Samtools allowed us to convert the sam files into the corresponding binary
format, bam, and sort the reads.

• Bedtools: Bedtools was introduced when representing the content of the bam files
as enrichment bins in a bedgraph format.

• Ucsc-bedsort: Bedsort was useful for sorting the last bedgraph files.

Most of the packages can be installed using conda and are included in bioconda.

Protocol. The followed protocol with unspecific examples is presented here:

1. Retreive the data:

wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/.../SRR------.-

2. Dump the SRA files to a fastq file:

fastq-dump SRR------.-

3. Map the file to hg38, the latest standarized assembly of the human genome, and get
a sam file with all the alignments:

bowtie2 -x /.../hg38 -p 4 SRR------.-.fastq -S SRR------.-.sam
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4. Convert the SAM files to their binary equivalent BAM format:

samtools view -S -b SRR------.-.sam > SRR------.-.bam

5. Sort the resulting BAM files:

samtools sort SRR------.-.bam -o SRR------.-.bam.sorted

6. Rewrite the content of the BAM files as binned enrichment levels in a bedgraph
format:

bedtools genomecov -bg -ibam SRR------.-.bam.sorted \

> SRR------.-.bedGraph

7. Sort the created bedgraph files:

bedSort SRR------.-.bedGraph SRR------.-.bedGraph.sorted

The SRR——.-.bedGraph.sorted resulting file could look like:

chr1 10000 10007 1

chr1 10007 10029 2

chr1 10029 10030 3

chr1 10030 10031 4

Where the name of the chromosome appears in the first column, the first and last
position of a bin (in basepairs, from left to right in the genome for the positive strand)
are shown in second and third columns, and finally the number of reads that were
found to overlap in this region.

8. Split the file into chromosomes: The easiest, fastest and most efficient way to split
the previous file into chromosomes is by running the following command from the
output directory:

awk ’{print > "{SRA file title}_"\$1".txt"}’ \

.../{SRA file title}.bedgraph.sorted
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At this point, separate txt files were created for each gene, for example:

GSE67471 GSM1647620 Shifted 2000 H3K4me3 SGK1 neg OG.txt

Where we have the GEO accession number, the name of the sample, how many basepairs
before the TSS were approximately included, the epigenetic markes used, the name of the
gene and the strand where it is encoded, and finally its ground truth label. These sequences
were further preprocessed as described in Section B.2.1, and were the ones OriGENE
worked with.

B.2.1 Sequence preprocessing and normalization

Enrichment profiles and the strand shift. As a consequence of MNase digestion,
fragments will come from the DNA at the edge of the nucleosome. Since sequencing takes
place only in the 5’-to-3’ direction for the 50 first basepairs of each fragment, the reads
coming from the positive strand and the negative strand will be mapped on average to
slightly shifted locations, which can be seen for the two pillars in Figure 16, with the
nucleosome being expected to be found in between. The intensity and definition of the
pillars in the original files from [17] arises from to the high number of identical read copies
in high enrichment regions, the effects of which are discussed in Appendix C.

Normalization. During the data acquisition steps, factors like the exact amount of genetic
material and MNase, the time the enzyme is reacting, etc. unavoidably differ sample to
sample, inducing the production of a varying absolute number of fragments and subsequent
reads for each experiment.

Aiming to compensate these imbalances, all samples were brought to a shared effective
global intensity level by multiplying the corresponding input track by a factor:

r =
Nreference

Nsample

Where Nsample is the number of read counts for each specific sample, presented in Table
4, and Nreference was set to 60000 reads in order to change the least the expected read
count scale. This procedure could be understood as a total area normalization. Further
normalization, for instance gene to gene between different tracks, was discarded because
of the following reasons: the area below healthy and matching cancer gene samples is not
necessarily expected to be the same, since one could indeed find a shortened profile tail
in TSGs for cancer tissue, i.e. less area, or a higher trimethylation level for aberrantly
expressed oncogenes, as seen in Section 4.1.1 . A gene specific normalized area could then
introduce more bias than the one we want to compensate.

In a normal case scenario, an extra input track obtained from the non-specific precipita-
tion of fragments would have allowed us to assess the relative enrichment of H3K4me3-
bound fragments. Since we did not count with such track, relative enrichment levels were
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compared directly between healthy and cancer matching samples. Artifacts such as miss-
aligned reads leading to fake enrichment bands in repeated regions, e.g., would hence
remain in the sequences as an added intrinsical signal noise.

Standardization. To be analyzed by a CNN, all gene samples had to present the same
shape: two aligned tracks of 10000 values, one for each basepair (10000,2). To this end,
the profiles for negative strand encoded genes were flipped and all genes were cropped or
zero-padded depending on their size, which is a common practice, up to the desired length.
A window of 10000 basepairs allowed us to capture the enrichment at the promoter of the
genes, and how the profile was extended towards the gene body.

Alignment. Given the sample-to-sample dependence of the enrichment bin edges, basepair-
resolution enrichment vectors were computed by repeating the value of the left edge of a
signal bin until a new intensity value was found. This step permitted the relative alignment
of both tracks, but also specifying the position of each new signal value was not required
anymore.

In order to avoid zero pooling at the beginning of the signals to fit a predefined grid,
we allowed each signal to start at the first data point appearing after 2000 bp before
the beginning of the gene, and then cropped the start of the less restrictive track. This
means that sequences did not start exactly 2000 bp before the TSS, but that was not a
strong requirement given that CNNs are meant to handle translated patterns, and also the
promoter will display different features in different genes: we need to frame the enrichment
profile, and 1000-2000 bp are the standard values used in the literature.

The locations of the genes in the genome were obtained from [33].
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C Duplicated Read Removal

Another matter of concern was the nature of identically duplicated reads and their impact
in the performances of the models. Possibly due to the 10 PCR amplification cycles
stated in the library preparation protocol, a considerable number of reads appeared to
have exactly the same coordinates, especially in high enrichment regions15. Even though
some of them could have a natural origin, whether these duplicates contributed to the
information content of the signals or were in fact artifacts hiding the relevant structure
needed some clarification.

Despite the serious modifications introduced in the H3K4me3 enrichment profiles, Ori-
GENE performed rather similarly when trained and validated with re-normalized sequences
where all duplicates were removed, as seen in Table 6 and Figure 18. Accuracies were in-
deed slightly higher than in the original validation, mainly due to a rise in specificity in
three of the samples, but there was no clear gain regarding the ability of the models to
pinpoint actual cancer drivers. Thus, the magnitude of the observed performance improve-
ments did not justify introducing such a strong constraint, and therefore we decided to
proceed with the signals as they were published.

15More than half of the reads for Liver II, e.g., were non-unique. For more information visit
https://github.com/mpielies/MSc-Thesis
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Figure 16: Visualizing the H3K4me3 enrichment profiles for CASP9. The promoter
region and beginning of CASP9, encoded in the reverse strand, are shown. The unduplicated
50 bp long reads mapped to hg38, plotted as red and blue rectangles, are piled up. The binned
enrichment profile emerging as a combination of the reads from both strands leads to the signals
shown in Figure 4, which are comparable to the profiles shown below for 7 different cell lines when
flipped, with two clear H3K4me3 devoided regions. The distance between the expected position
of the reads coming from both strands can be appreciated, around the central peak corresponding
to a well located nucleosome, as two shifted pillars.

Figure 17: INCEPTION modules. 1D adaptation of the Inception module introduced in [31].
The outputs of all filters are stacked keeping the spatial information for the subsequent layer to
compare them.
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Figure 18: ROC curves for the validation sets of sequences with all duplicates removed

Table IV. Dataset information

Name Health status GEO Accession number Reads

Lung I
Healthy tissue GSM1647618 59251101
Cancer tissue GSM1647619 75836608

Liver I
Healthy tissue GSM1647620 62763610
Cancer tissue GSM1647621 65673468

Liver II
Healthy tissue GSM1647622 64811514
Cancer tissue GSM1647623 61400238

Lung II
Healthy tissue GSM1647624 34545390
Cancer tissue GSM1647625 32711856

Table 4: Dataset information

Table V. Number of filters for the INCEPTION module

Inception f1 f2 f3 f4
Module Output Input Output Input Output Output

A 8 8 8 8 8 8
B 4 4 4 4 4 4

Table 5: Number of filters for the INCEPTION modules A and B.

Table VI. Performance metrics when removing duplicated reads

Stage Tissue Acc Sp Sn Prec AUC 90% CI

Validation
Duplicates
Removed

Liver I 0.609 0.626 0.592 0.613 0.648 [0.615 - 0.682]
Liver II 0.621 0.721 0.521 0.651 0.666 [0.632 - 0.700]
Lung I 0.657 0.723 0.584 0.683 0.685 [0.655 - 0.718]
Lung II 0.649 0.684 0.613 0.660 0.688 [0.656 - 0.721]

Table 6: Performance metrics of OriGENE when trained and tested using sequences
with all duplicates removed.
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