
Multi-Camera
Multi-Person Tracking
Using Reinforcement
Learning

Axel Kärrholm, Linus Rickman
Master’s thesis

2022:E32

Faculty of Engineering

Centre for Mathematical Sciences

Mathematics

C
E

N
T

R
U

M
S
C

I
E

N
T

I
A

R
U

M
M

A
T

H
E

M
A

T
I
C

A
R

U
M

Abstract

The problem of multi-object-tracking in a network of cameras is an interest-

ing and non-trivial problem. Given videos from a number of cameras the goal

of Multi-Camera Multi-Object Tracking (MCMOT) is to find the full visible

trajectory of each pedestrian from the videos as the pedestrians move across

cameras. Compared to monocular tracking the main di�culties lie in asso-

ciating pedestrian detections to tracks in locations where the camera views

overlap. We develop two MCMOT methods; a traditional threshold-based

Simple Online and Realtime Tracking (SORT) algorithm and a reinforcement

learning track management method. The methods are evaluated on Blender

3D simulated data sets and on real-world recordings from calibrated cameras.

The reinforcement learning model outperforms the more traditional method

in Multi-Object Tracking Accuracy (MOTA) up to 4% on the simulated and

real data sets. Finally, our experiments show that the reinforcement learning

method can transfer knowledge from simulated to real data during inference.

Keywords: Multi-Camera Multi-Object Tracking, Reinforcement Learning,

Computer Vision, Machine Learning, Object Detection

Acknowledgements

We would like to thank Anders Robertsson for supervising us during the thesis
project. We would also like to direct a special thanks to our supervisor Maria Priisalu
for the tips on training the reinforcement learning agents and for her insightful
comments on our report.

Division of Work

We state that both authors have contributed equally to this thesis.

List of Abbreviations

CNN, Convolutional Neural Network

DLT, Direct Linear Transformation

HOG, Histogram of Oriented Gradients

IOU, Intersection over Union

MARL, Multi-Agent Reinforcement Learning

MCMOT , Multi-Camera Multi-Object Tracking

MOTA, Multi-Object Tracking Accuracy

MOTP, Multi-Object Tracking Precision

MTMCT, Multi-Target Multi-Camera Tracking

NMS, Non-Maximum Suppression

PPO, Proximal Policy Optimisation [37]

R-CNN, Region-Based Convolutional Neural Network [14]

RL, Reinforcement Learning

SIFT, Scale-Invariant Feature Transform

SORT, Simple Online and Realtime Tracking [2]

SVD, Singular Value Decomposition

TRPO, Trust-Region Policy Optimisation [36]

YOLO, You Only Look Once (image detection network) [32]

Contents

1 Introduction 1

1.1 Problem Formulation . 3

2 Background 5

3 Theory 7

3.1 Cameras . 7

3.1.1 Homogeneous Coordinates . 7

3.1.2 The Pinhole Camera Model 8

3.1.3 Camera Calibration . 9

3.1.4 Inverse Projection . 10

3.1.5 Sensor Fusion by Triangulation 11

3.2 YOLO Detections . 12

3.2.1 Feed-Forward Neural Networks 13

3.2.2 Convolutional Neural Networks 15

3.2.3 Activation Functions and Non-Linearities 15

3.2.4 The YOLO Architecture . 17

3.2.5 Non-Maximum Suppression 18

3.3 Kalman Filtering . 19

3.4 Data Association and the Hungarian Algorithm 20

3.5 Reinforcement Learning . 22

3.5.1 Proximal Policy Optimization 24

3.6 Performance Measures . 25

4 Methodology 28

4.1 Data Sets and Calibrations . 28

4.1.1 Simulated Data . 29

4.1.2 Real-World Data . 32

4.2 Introduction to Pipelines . 34

4.3 Multi-Camera SORT . 35

4.3.1 Local SORT Tracker . 35

4.3.2 Global Baseline Tracker . 38

4.4 Multi-Agent Reinforcement Learning for
Multi-Object Tracking . 40

4.4.1 Local RL Model . 40

4.4.2 Global RL Model . 41

4.5 Training Setup for RL . 43

4.5.1 Local RL-Agent Training . 43

4.5.2 Global Pre-Training and Training 45

5 Results 46

5.1 Camera Calibration . 46

5.2 Detection Results . 47

5.3 Tracking Results . 48

5.3.1 Visualisation of Results . 49

5.3.2 Triangulation Results . 53

5.4 Reinforcement Training Results . 54

5.5 Time Latency . 58

6 Discussion 59

6.1 Detections and Association . 59

6.2 Training and Behaviour of Reinforcement Learning Agents 60

6.3 Scene Variations and Simulation of Data 61

6.4 Coordinate Transformation . 62

7 Conclusion 64

7.1 Conclusions . 64

7.2 Future work . 64

A Appendix 69

A.1 Data sets . 69

A.2 Local Tracking Results . 71

A.3 Local RL agent training results . 71

A.4 Summary of hyperparameters . 74

A.5 Kalman parameters . 75

A.6 Images . 75

1 Introduction

The multi-camera multi-object tracking (MCMOT) problem arises in the context of
for example surveillance systems, autonomous driving, urban planning and sports.
In surveillance systems, one might want to automatically follow pedestrians’ move-
ments across a network of cameras without the need of having a human manually
monitoring the cameras. In sports, one could want to analyse players’ movements
across the field during a game. When it comes to urban planning, the flow of
pedestrians in public areas can be surveyed in order to better plan the layout of
walkways, street lights etc. In the autonomous car industry there is a need to accu-
rately track and forecast pedestrians in order to avoid accidents. All of these tasks
can be formulated as multi-camera multi-object tracking problems.

The MCMOT problem is closely related to the mono-camera (monocular) tracking
problem and many of the methods used in the multi-camera setting are based on
mono-camera tracking systems [21]. The need for multiple cameras arises when one
wants to cover and track a larger area than possible with a single camera. Moreover,
by using multiple cameras one can more accurately determine the object’s position
in 3D space by triangulating the detections from di↵erent cameras. There is no
unique definition of the MCMOT problem but it is often formulated as an estimation
problem, where the positions of a number of objects (pedestrians) are to be found.
The goal is to estimate the set of trajectories (tracks) {x1

t . . .x
i
t . . .x

Mt
t }t for all Mt

objects in the scene for each time frame t. A track or trajectory {xi
t}

Ni
t=ti is a sequence

of states from the time frame ti it enters the scene to the time Ni that it leaves the
scene with a unique id i. The state xi

t could di↵er widely depending on the approach
taken. A few common examples are to track the centre position of each object, or
some area that the object occupies. The estimation of the trajectories is done using
information from multiple cameras ck 2 C, that each give rise to a video sequence
{fk1 . . . f

k
t . . . f

k
N} where fkt is the frame (image) at time t from the video of camera

ck. Furthermore, N is the number of frames in the video sequence from each camera
ck (note that we assume that all cameras produce the same number of frames and
that they are synchronised in time).

The objective is to find trajectories that as closely as possible estimate the ground
truth positions while maintaining consistent correspondence to the correct identity
in the real world. In reality there will be a discrepancy between the track id numbers,
positions and the number of tracks for the estimated objects and the real objects in
the scene and in order to get a working system, we need to solve numerous di�cult
sub-tasks. These sub-tasks include object detection in video, the association of
detections to tracks, transformation from coordinates in image space to coordinates
in the 3D world, the fusion of associated detections and the estimation of the objects’
states. Some of the di�culties for the object detector to overcome are di↵erent
lighting conditions, sizes, orientations and occlusions of objects. When detections
are associated to tracks, false detections, missed detections and objects situated
closely together can cause problems. In the multi-camera setting we also have to
associate detections in di↵erent cameras to a common object in the 3D scene, adding
further complexity compared to the single camera system.

1

In this thesis we focus on real-time algorithms that can run approximately at a frame
rate of > 25 FPS. Specifically, our focus lies on pedestrian tracking in a network of
stationary, partially overlapping cameras. The tracking algorithms we analyse do
not depend on visual data and are therefore not limited to pedestrians. Like many
of the proposed algorithms to solve the MCMOT problem, our method will belong
to the tracking-by-detection paradigm [2, 26, 4]. Methods within this paradigm first
detect objects in video data and then associate the detections to existing trajectories
of objects. These associated detections are then used to update said trajectories. A
good way to visualise this paradigm is to consider the following figure:

Figure 1: Overview of a tracking-by-detection pipeline. Detections are made in
frames from video. The detections are used to create local tracks. The local tracks
are projected into a global coordinate system where they build the global tracks.

In Figure 1 we see how we first perform detections in video streams, to then associate
these detections to tracks and then finally fuse these local tracks in image space into
global tracks in the 3D world. We first implement a baseline model, namely the
Simple Online and Realtime Tracking (SORT) algorithm [2], proposed by Bewley et
al. for intra-camera tracking. This method was chosen for its real-time performance
and competitive accuracy and precision. With this method, the detections at each
time frame are associated to the active tracks by using the Hungarian algorithm [25].
The SORT algorithm uses a Kalman filter to update the estimates of the tracks. We
also extended the SORT algorithm to a multi-camera setting.

Furthermore, we implement a reinforcement learning algorithm for the tracking in-
spired by the article [34] by Rosello and Kochenderfer. In this article each track is
modeled as a reinforcement learning agent [34], thus treating the MCMOT problem
as a Multi-Agent Reinforcement Learning (MARL) problem. This reinforcement
learning method is intended to allow for a more dynamic decision process in the
tracking as opposed to the SORT algorithm where hard thresholds are used. These
thresholds are used for example to determine when to use a detection, discard it or

2

terminate a track. The RL agents instead learn from training data when to initiate
tracks, terminate tracks or use the detections to update the tracks. While Rosello
and Kochenderfer implemented a MARL method for the mono-camera setting, we
extend this method and implement a multi-camera reinforcement learning model
for the MCMOT problem. The details for all algorithms can be found in the the-
ory and methodology sections 3 and 4. Lastly, to evaluate the performance of the
algorithms in this thesis we apply the widely used metrics Multi-Object-Tracking
Accuarcy (MOTA) and the Multi-Object-Tracking Precision (MOTP) [1].

1.1 Problem Formulation

This thesis aims to explore methods for solving the multi-object multi-camera track-
ing problem. We have briefly touched upon the definition of this problem in the
introduction above, but will now give the formal definition that we use. In the MC-
MOT problem we have a network with K cameras C that are all synchronised in
time with the same frame rate. These cameras produce video footage that cover the
scene that we are interested in. Each camera ck in the camera network C produces
a video sequence {fk1 . . . f

k
t . . . f

k
N} of length N . The goal is to track, i.e, estimate

the states {oj
t}

Nj

t=tj of all M objects that are present in the scene at any time. The
object j in the scene produces a sequence of states from the first frame tj to the
last frame Nj for which it is visible in any of the cameras. The sequence of states

{oj
t}

Nj

t=tj together with a unique id number is what we will refer to as a track or a
trajectory of an object. The length of the trajectory is the number of frames for
which the object is present in the scene, in any camera.

The goal of any MCMOT algorithm is to produce tracks {xi
t}

Ni
t=ti that correspond

to the true tracks of the objects in the scene. The algorithm will at the end of the
tracking output Me number of tracks. If the tracking is done perfectly, we will have
found a one-to-one correspondence between the estimated tracks {xi

t}
Ni
t=ti and the

true object tracks {oj
t}

Nj

t=tj in the scene. This means that M = Me and that for all
object tracks j, there exists a corresponding estimated object track i of equal length
and same starting frame with each xi

t = oj
t for all frames t. In general this will not

be the case and we will have di↵erences both in the number, length and states of
the tracks meaning we can not find this one-to-one correspondence.

Any algorithm that tries to solve the MCMOT problem and outputs a number of
tracks needs to have a way of deciding when to start a new track, when to update a
track and when to terminate a track. Starting a new track means that the MCMOT
algorithm decides that an object has entered the scene. Updating a track means
that the length of the track is increased by one and that a new state estimate for
the next frame is found. Terminating a track {xi

t}
Ni
t=ti means that its length is fixed

and can no longer be updated.

There are many ways one could go about improving a pipeline that solves the MC-
MOT problem. We propose a novel method to perform multi-camera multi-object
tracking using reinforcement learning. With this method, some tracking decisions

3

are made by a neural network trained on simulated data using reinforcement learn-
ing. These decisions include starting, updating and terminating tracks. It also
includes decisions as to which detections it should trust and when to use them.
This RL-method will be compared to the more traditional SORT algorithm. The
aim of this thesis is to answer the question: how well suited is the reinforcement
learning approach for track management in a multi-camera setting, compared to the
more traditional SORT method, evaluated using the multi-object-tracking accuracy
and precision metrics?

4

2 Background

Algorithms proposed to solve the MCMOT problem generally consist of several
parts and can take widely di↵erent approaches to the problem. In this section we
will introduce some of the most common approaches to multi-camera tracking and
how they have evolved with time. This includes introducing how the detections are
obtained, how the data association is made and how the trajectories are updated.
Some of the first detection algorithms in tracking systems were based on background
subtraction. With this method, a reference background model is used [43]. The
di↵erence between the background model and the current frame is used to determine
where in the image pedestrians are located. This type of detection is sensitive to
any changes in the scene from the reference image and if the background changes,
without the background model being updated, the detections will be very noisy.
Changes in pixel intensities are also not always the result of a person being present.
Another method for object detection that have been commonly used is the Histogram
of Oriented Gradients (HOG) method [9].

The background model and HOG approach to pedestrian detections have been
widely used but are no longer considered state-of-the-art. Today, most image detec-
tion algorithms are deep learning-based. Two of the most commonly used methods
are YOLO [32] and R-CNN [14]. The field is however being researched extensively
and many new approaches become available every year [28, 47, 16]. In the tracking-
by-detection paradigm one usually tries to associate the detections to already ex-
isting tracks, or create tracks from leftover detections. There exist many di↵erent
approaches to the data association problem. A common method is to use the Hun-
garian algorithm to associate new detections to existing tracks with a predefined
distance function [2]. Others try to learn this distance function with a neural net-
work [44] and then apply the Hungarian algorithm. Clustering methods are also a
common choice such as DBSCAN [45].

Apart from di↵erent detection and data association algorithms, an important dis-
tinction between MCMOT algorithms is that of online and o✏ine methods. An
o✏ine method is a method that can not be deployed in real-time, either because it
is too slow or because it uses information from future detections [46, 40, 5]. In an
o✏ine setting, large parts or even the whole video sequence is known beforehand
and the tracks can be created using global information over all time frames. In this
setting it is common to formulate the multi-object tracking problem as a network-
flow problem [49]. With this approach, a graph is created where the detections in
each frame are represented as nodes in a graph. The nodes from adjacent frames in
this graph are connected by weighted edges, where the weights are the probability
for the detections to originate from the same object. The tracking problem can then
be solved by optimising the network flow with a min-cost flow algorithm. In certain
applications, such as urban planning or sport analysis, the o✏ine approach might be
acceptable. However, in this thesis we focus on online, real-time algorithms that are
more suitable, for example, in autonomous driving and camera surveillance systems.
If a tracking algorithm is fast enough to be run in real-time (� 25 FPS), we refer to
it as an real-time method, otherwise we refer to it as an o✏ine method.

5

Tracking algorithms can also be split into two further categories namely visual and
non-visual methods. Visual methods make use of the appearance of a person in
a detection, while non-visual methods only take the detections’ spatial properties
into account. An example of a visual tracking system is the so called deep-SORT
algorithm that uses of the appearance of a pedestrian to associate detections to
tracks [44]. A related problem is the so called Re-Identification (Re-Id) problem.
Here, one wants to associate the id:s of persons reappearing in the scene after having
been lost in the tracking. This is especially relevant in non-overlapping camera
settings. This is usually done by first extracting features from detected pedestrians
using convolutional neural networks and then comparing them using for example
another network [16].

In tracking algorithms it is common to use some motion model to better track the
concerned objects. A common approach is the Kalman filter which has been used
extensively [2]. Other filtering approaches are the particle filter [17] and the joint
probabilistic data association filter [33]. Lastly, due to the cumbersome process of
annotating large amounts of video data, some work has been done on simulated data
sets for multi-camera multi-object tracking. The JTA data set [10], for example, is
extracted from the video game Grand Theft Auto for pose estimation and multi-
camera tracking. Other publically available data sets used for benchmarking include
the WILDTRACK data set [7], the PETS 2009 data set [11] and the EPFL data
sets [13].

6

3 Theory

In this section, the mathematical models and theory used in this thesis are explained.
We start by going over the camera model as it is commonly used in the field of
computer vision and its calibration. Then, the neural network used for human
detection is described. After the detector model has been explained, we go over the
Kalman filter used for tracking followed by the data association algorithm. Next,
the basic concepts of reinforcement learning and the Proximal Policy Optimisation
algorithm are described. Finally, we will describe the evaluation metrics used to
evaluate the tracking results.

3.1 Cameras

When working with cameras and projective geometry homogeneous coordinates are
often used. This coordinate system simplifies a lot of the calculations and is therefore
introduced before moving on to the camera model.

3.1.1 Homogeneous Coordinates

A point p = (x, y)T 2 R2 in the Cartesian coordinate system will in homogeneous
coordinates be represented by the set of vectors

p̃ = �(x, y, 1)T 2 R3
, (1)

where � 2 R\{0} [18]. We use tilde to indicate that a vector is written using homo-
geneous coordinates. Thus, the homogeneous coordinates (5, 2, 1)T and (10, 4, 2)T

both represent the same point, (5, 2)T in Cartesian coordinates. Adding an extra
element to represent points will allow these points to be translated and rotated with
a single matrix multiplication, something that would not be possible in Cartesian
coordinates. A translation and rotation of a point p̃ in homogeneous coordinates can
be expressed with a single matrix multiplication by concatenating a 3 ⇥ 3 rotation
matrix R with a 3⇥ 1 translation vector t 2 R3 and multiplying them together like

�
R t

�
p̃ =

�
R t

�✓p
1

◆
= Rp+ t. (2)

In general, if we have a vector p 2 Rn in Cartesian coordinates, its homogeneous
representation is p̃ = �(p, 1)T where � 2 R \ {0} as before. With this short intro-
duction of homogeneous coordinates we move on to introduce the pinhole camera
model.

7

3.1.2 The Pinhole Camera Model

Images are 2D-representations of the 3D-world. The pinhole camera model can be
used to model the projections of points in the camera’s local 3D coordinate system
xc = (x, y, z) 2 R3 onto points xim = (x, y) 2 R2 in an image plane. The projected
points we see in the image are located in this image plane. The easiest way to
visualise the pinhole camera model is to consider the following image.

Figure 2: The pinhole camera model

From Figure 2 above we see how a point xc in the camera’s coordinate system
projects onto the image plane at a point xim along the line connecting xc with the
origin. The projection xim is obtained by dividing the scene point xc with the z

coordinate and multiplying with f

(x, y, z) !

fx

z
,
fy

z
, f

!
,

where f is called the focal length of the camera and defines the distance between
the camera centre c 2 R3 and the image plane. Since we project the point along a
line towards the origin and the z-coordinate becomes f , this gives us the point xim

in the image plane in the camera’s coordinate system.

When dealing with the pinhole camera model we need to distinguish between two
di↵erent coordinate systems. The first system is the camera’s local coordinate sys-
tem. This coordinate system has the camera at the origin with its principal axis
along the z-axis as seen in Figure 2. The second coordinate system that we consider
is the global world coordinates which is required as the camera can be rotated and
translated anywhere in the world. Hence, to get the projection xim, a point xw 2 R3

in the global world coordinates first needs to be transformed into the cameras local
coordinate system. This can be done by applying a 3⇥ 3 rotation matrix R and a
translation vector t 2 R3 to the point xw in the world coordinate system and we
get:

xc = Rxw + t, (3)

where xc is the point in the camera’s coordinate system [18]. Moreover, when
we are dealing with images we usually consider the image plane in terms of pixel

8

coordinates. By projecting a scene point xw to a point xim in the image plane we
do not get this immediately. The pixel coordinates can be found by mapping the
image plane to the ”pixel plane”. This mapping can be done linearly in the pinhole
camera model with the so called intrinsic parameters of the camera that we store in
a 3⇥ 3 matrix, usually denoted by K. The whole projection from a 3D scene point
xw 2 R3 in world coordinates to an image point xp 2 R2 in pixel coordinates can
now be expressed as a single matrix multiplication:

P

✓
xw

1

◆
= K (R t) x̃w = �

✓
xp

1

◆
= �x̃p, (4)

where x̃w and x̃p are the world and pixel-coordinate expressed in homogeneous
coordinates. The matrix P in Equation (4) is often referred to as the projection
matrix and consists of the intrinsic matrix K and the extrinsic matrix [R t]. Here
R is a unitary rotation matrix and t the translation vector from Equation (3). We
define the intrinsic parameters K of the camera as

K =

0

@
rf ↵f u0

0 f v0

0 0 1

1

A . (5)

In Equation 5, f is the camera’s focal length, r is the aspect ratio, ↵ is the skew
coe�cent between the x- and y-axis and (u0, v0) is the camera’s principal point. In
this formulation, we use homogeneous coordinates, and the � is introduced because
the scale is arbitrary. So, in order to get the pixel coordinate xp after multiplying
the world coordinate x̃w with the projection matrix P, we need to normalise the
output vector’s third coordinate to 1 in order to project the coordinate onto the
image plane.

The pinhole model is not a good model for all cameras and is an approximation of
how a camera work. Some phenomena that this model does not take into consid-
eration is lens distortions and blurring. The former commonly correlates strongly
with the distance to the centre of the image and is in those cases called radial dis-
tortion. However, without having to resort to more di�cult models, this model is
enough for our purposes and for the cameras used in this thesis. This concludes the
introduction to the pinhole camera model and we now move on to how we can find
the sought after projection matrix P.

3.1.3 Camera Calibration

To be able to transfer detections from a camera to world coordinates, the camera’s
projection matrix P needs to be estimated for each camera. There exists a handful
of methods to find the projection matrix. Furthermore, a camera is called calibrated
if its intrinsic parameters are known. We use Direct Linear Transformation (DLT)
to calibrate the camera as in [29]. With this direct method, a homogeneous linear
system of equations is constructed. This system might not be solvable directly due
to imprecise point matches so we solve it in a least square sense. In order to do this

9

we need a set of at least six point matches (x̃i
p, x̃

i
w) between the homogeneous world

coordinates x̃i
w and the homogeneous pixel coordinates x̃i

p. Given that we have m

point matches (x̃i
p, x̃

i
w) with a corresponding �i we can construct a system of linear

equations from Equation 4:

Av =

0

BBB@

B1 �x̃1
p 0 . . . 0

B2 0 �x̃2
p . . . 0

... 0 0
. . . 0

Bm 0 0 . . . �x̃m
p

1

CCCA

0

BBBBBBB@

pT
1

pT
2

pT
3

�1
...
�n

1

CCCCCCCA

= 0, (6)

where pi are the rows of the projection matrix, x̃i
p are the homogeneous pixel co-

ordinates of the image corresponding to the homogeneous real world coordinate x̃i
w

and Bi are 3⇥ 12 block matrices defined as

Bi =

0

@
(x̃i

w)
T 0 0

0 (x̃i
w)

T 0
0 0 (x̃i

w)
T

1

A .

The solution to the corresponding least square problem min ||Av||2 is the eigenvector
of ATA with the smallest eigenvalue. The derivation of this can be found by using
Lagrange multipliers [29]. The smallest eigenvalue of ATA can be computed with
a Singular Value Decomposition A = USVT and the solution is the column of V
corresponding to the smallest singular value.

After the camera matrix P has been estimated, the intrinsic and extrinsic matrices
can be determined by RQ-decomposition. We note that P = [KR | Kt] and use the
RQ-decomposition of KR into an orthogonal and a upper triangular matrix to find
the intrinsic and extrinsic matrices. The upper triangular part corresponds to the
intrinsic matrix, K, and the orthogonal rotation matrix corresponds to the extrinsic
rotation matrix, R.

3.1.4 Inverse Projection

We now go on to describe how we project points in the image space onto a ground
plane in the global coordinate system. This is used for example for data association
in the multi-camera tracker. When a camera’s projection matrix P = K[R t] is
known, it is possible to transform pixel coordinates in the image space back to a
line in world coordinates.

By knowing the camera centre c, we can more easily express the inverse projections.
Since the camera centre c in the camera coordinates is located at the the origin, we
can find the coordinate in world coordinates from Equation (3) by setting xc = 0.
This gives us the equation

0 = Rc+ t,

10

where c is the camera origin in global world coordinates. Since R is a unitary
rotation matrix we get that

c = �RTt. (7)

In order to go from a pixel coordinate xp 2 R2 to a set of world coordinates xw 2 R3

we need to solve the inverse projection problem. From Equation (4), we solve for
the world coordinate xw

K(Rxw + t) = �x̃p (8)

Rxw + t = �K�1x̃p (9)

xw = �RTK�1x̃p �RT t, (10)

where xw is the Cartesian world coordinate and x̃p is the homogeneous pixel coor-
dinate and � 2 R. Here, xw in Equation (10) is a line on parametric vector form
representing all world coordinates that projects to the image point xp. This line l

can be formulated using the camera centre, c as expressed in Equation (7), and a
ray direction, r,

l(�) = c+ �r, (11)

where r = RTK�1x̃p is the ray direction in world coordinates. This line can then be
projected onto a ground plane by finding the intersection between the ground plane
and the line defined by equation (10). Assuming that the ground plane is z = 0, the
intersection with the ground plane is

� = �
cz

rz
, (12)

where rz is the z-coordinate of r, and cz is the z-coordinate of the camera center, c.
The projection onto the same plane in Cartesian coordinates becomes

xw = l(�
cz

rz
) = c�

cz

rz
r. (13)

This method can be used to transform a detection in image coordinates to world
coordinates for data association, and to update the tracks’ states if only a single
camera detects the person. If on other hand multiple cameras detect the same per-
son, we can use triangulation to perform data fusion, described in the next section.

3.1.5 Sensor Fusion by Triangulation

To fuse multiple image points xk
p in di↵erent cameras into one common point xw

in the 3D world coordinate system, we use triangulation. The problem can be
formulated with Equation (4) where xw is an unknown world point and the camera

11

projection matricesPk are di↵erent. Given that we havem cameras we can construct
the system of equations

Ap =

0

BBBBBBBBB@

p1
1 �x

1
p 0 · · · 0

p1
2 �y

1
p 0 · · · 0

p1
3 �1 0 · · · 0
...

...
...

...
pm
1 0 0 · · · �x

m
p

pm
2 0 0 · · · �y

m
p

pm
3 0 0 · · · �1

1

CCCCCCCCCA

0

BBBBBBBBB@

xw

yw

zw

1
�1
...
�n

1

CCCCCCCCCA

= 0,

where pk
i is the i:th row of the projection matrix from camera k, xk

p, y
k
p are the pixel

coordinates of the image point xk
p in camera k and xw, yw, zw are the corresponding

world coordinate we seek to find. This system might not be solvable due to the
accuracy of the calibrated cameras Pk or errors made in finding the point corre-
spondences in image space. Thus we instead solve it in least square sense and try
to find min

v
||Av||

2. The solution can be found by using an SVD of A like in [29].

3.2 YOLO Detections

Given an image the detection method should identify the bounding boxes of all
objects in the image and provide a class for each bounding box. Each bounding box
should also get probabilities of belonging to each class that the detection method
(detector) can detect. The assigned class label is the class with the highest class
probability. An illustration of bounding box detection is shown in Figure 3.

Figure 3: Illustration of bounding box detections. The detector outputs a number
of bounding boxes with associated classes and probabilities.

12

The You Only Look Once (YOLO) detection model is a unified model for bounding
box detection in images, where a single convolutional neural network (CNN) gener-
ates detections of the objects in the image. The architecture of the model enables
fast classifications and makes the model suitable for real-time applications and was
first proposed by Joseph Redmon et al. [32]. Other methods like R-CNN [14] first
generate a number of proposal bounding boxes and then use a classifier on these
proposals to detect objects in the scene. Although R-CNN methods have been suc-
cessful, they are quite slow and thus not as suitable for real-time applications with
a high frame rate [32]. The YOLO network instead views the detection as a regres-
sion problem and simultaneously proposes bounding boxes and the corresponding
class probabilities. After a brief introduction to neural networks we will present the
YOLO architecture in detail.

3.2.1 Feed-Forward Neural Networks

A neural network f✓ is a non-linear function approximator that is also referred to
as a multi-layer peceptron. The basic building blocks of the neural network are the
so called perceptrons. The original perceptron is a function that works as a binary
classifier [19]. From an input x 2 Rn the perceptron outputs either a 0 or a 1
corresponding to the two possible classes the input x could have belonged to. The
function can be written as

f(x) =

(
1 wTx+ b > 0

0 otherwise,
(14)

where w 2 Rn is a weight vector and b 2 R is called the bias term [19]. The
input x 2 Rn is referred to as a feature vector (some numeric representation of
the object we are interested in). Neural networks are structured in ordered layers
of perceptrons. The feed-forward nature of the network comes from the fact that
each layer takes the output from the previous layers as input and feeds forward the
output to the next layer. One does not usually make the output of the perceptron
binary in a neural network. Instead it is common to apply a di↵erentiable activation
function � to wTx+ b that bounds the output of the perceptron. This gives a more
smooth decision boundary and the added di↵erentiability of the perceptron is very
useful when one wishes to learn the parameters of the network [19].

As mentioned the network is ordered in layers. This allows us to to view the network
as a composition of several functions, where each function is represented by a layer.
We have three kinds of layers, namely the input layer, the hidden layers and the
output layer. The input layer simply takes the input and forwards it to the next
layer. The hidden layer comprises of a set of perceptrons that are often called
neurons. These neurons are connected to the neurons in both the previous layer and
the subsequent layer with so called edges. Each edge has a corresponding weight
w 2 R associated to it. The perceptron applies a non-linearity � to the weighted
sum of its input vector. This input vector to the perceptron is the output from the

13

previous layer. More formally the perceptron j in layer k outputs

o
k
j = �(bkj +

X

i

w
k
i x

k
i),

where bkj is the neuron’s bias, w
k
i the weight from the incoming edge from perceptron

i in the previous layer and the input xk
i is the output ok�1

i from perceptron i in the
previous layer k � 1. The network is a composition of its layer fk with

fk(xk�1) =

2

666664

o
k
1
...
o
k
j
...

o
k
nk

3

777775
, (15)

where nk is the number of neurons and o
k
j is the output from the j:th neuron in

layer k. The output of the final layer thus becomes

y = fn · · · � fk · · · � f1(x0),

where x0 is the input to the input layer, y the output and each fk represents the
output from each layer. The final layer is what is called the output layer. Figure 4
below illustrates this feed-forward structure.

Figure 4: A small feed forward network.

The weights and biases of the neural network are optimised to minimise a loss
function L. We call the process of optimising the parameters training. A typical
loss function in classification tasks is the sum of the squared errors

L =
nX

i=1

(yi � ŷi(✓))
2
,

where yi is the ground truth of object i, n is the number of elements in our data
set and ŷi is the output and ✓ the parameters (weights and biases) of the network.
The ground truth labels are the true classifications of the elements in our data set.

14

Given a data set {(xi,yi)}Ni=1 that consists of input vectors xi and ground truth
labels yi of said input vectors, a loss function L measures the error of the model
(neural network) on the data set.

The training, or optimisation of the network parameters ✓ is often done using
Stochastic Gradient Descent (SGD). One usually splits the data set into a train-
ing set and test set. The training set is used to train the model and the test set
is used to evaluate the model. SGD is an iterative gradient descent method that
estimates the gradient of the loss function on a small batch of the data. The data
batch is a subset of the training data chosen at random. The minimisation in the
vanilla SGD takes the form

✓
i+1 = ✓

i
� ⌘rL(✓i), (16)

where ⌘ is called the learning rate. In gradient descent methods we take a step
in the negative direction of the gradient. The step size is what we referred to as
the learning rate. The method works by randomly selecting batches and taking a
small step in the negative direction of the gradient over the loss function defined on
this batch. There are many variations of SGD and a common choice is the ADAM
method [23].

3.2.2 Convolutional Neural Networks

In a fully connected layer each node in each layer is connected to all the nodes in
the surrounding layers. Image data is usually very large and the number of weights
in a fully connected network grows extremely fast as its depth increases. A way
to mitigate this in image data is to use convolutions in each layer instead of fully
connected layers. Convolutional filters extract local features in an image and feeds
it forward to the next layer as input. This means that the perceptron only receives
input from a local subset of the previous perceptrons. The convolution thus replaces
the weighted average wTx part in Equation 14. A convolution of a gray-scale image
is defined as follows:

y(i, j) =
X

u

X

v

x(i� u, j � v)w(u, v),

where w is the filter kernel and x is the image. Intuitively, the convolution can
be viewed as sliding a window over the image and multiplying its weights with the
pixels’ weights extracting local features resulting in a smaller input size to the next
layer. We now give a few examples of the most popular activation functions.

3.2.3 Activation Functions and Non-Linearities

One of the most common activation functions is the sigmoid function defined as

�(x) =
1

1 + e�x
. (17)

15

This function is intended to mimic neuron activation in the human brain. As signals
are sent through synapses, the neuron fires only once it has received a strong enough
input signal [19]. According to Equation (17), it outputs a very small number for
input values of x < 0 and the function quickly approaches 1 for x > 0.

Another commonly used activation is the Rectified Linear Unit (ReLU) activation
function. It is less computationally heavy than the sigmoid function and reduces
the vanishing gradient problem. The vanishing gradient problem occurs when we
update the parameters of the network with the chain rule. In the chain rule we
multiply the partial derivatives of each layer together and if these partial derivatives
are small the resulting gradient to update the network will also be small making the
network di�cult to train [19]. As can be seen from Equation (17) the gradient of
the sigmoid quickly become small for x far away from the 0. The ReLU function is
defined as

ReLU(x) = max(0, x).

Another variant is the leaky ReLu which allows for small gradients when x < 0 that
further helps reduce the vanishing gradient problem. As the gradient of the normal
ReLU function is zero when x < 0, the neurons that get input with x < 0 die and
will not be able to be updated. The leaky version rectifies this and is defined as

f(x) =

(
x x > 0

0.01x otherwise.

The final non-linearity that we present is the max-pooling layer. This is a way to
downsample and the remove the dependence on translations of the inputs. It is
similar to a filter and works by first deciding on a size of the pooling-kernel. The
filter then slides over the image and outputs the maximum value of the features
outputted by the previous layer [24]. This has the e↵ect of reducing the dimension
of the output from a layer. This can be visualised in Figure 5 below were the input
in a layer is reduced by max-pooling.

Figure 5: Example of max-pooling with a 2⇥ 2 kernel and stride 2.

16

From Figure 5 we see how the input dimension of the 6 ⇥ 6 input is reduced to a
3 ⇥ 3 image. This filtering can be done with di↵erent strides allowing for overlap
between input it slides over. In Figure 5 above we have a stride of 2, meaning that
we move the pooling kernel with a step of 2 in both the x and y direction of the
image.

3.2.4 The YOLO Architecture

The YOLO detection model is a unified detection model and consists of a single con-
volutional neural network, unlike R-CNN models that process the image in multiple
passes. The YOLO architecture takes a square 3-channeled RGB image of a fixed
size as input. In our case, the size of the input image is 608⇥608⇥3. This image is
passed through 7 convolutional layers followed by two fully connected layers leading
up to an output layer. All detections and classifications are generated directly from
this output.

The image is divided into S ⇥ S equally sized grid cells. For each grid cell, the
network predicts B bounding boxes b with an associated confidence value, c. So a
bounding box is in this setting defined by the five parameters

b = (x, y, w, h, c),

where x and y are the pixel coordinate of the bounding box’s center coordinates,
w and h are the width and height of the bounding box, and c is the confidence of
each bounding box. The confidence c represents the Intersection Over Union (IOU)
distance between the predicted bounding box and the ground truth bounding boxes
used in training. The IOU is a measure of how similar the bounding boxes are and
is defined as

IOU =
A(b1 \ b2)

A(b1 [b2)
,

where A(·) is the area function and b1, b2 are the compared bounding boxes. The
measure is illustrated in Figure 6.

Figure 6: Illustration of the intersection over union.

17

Apart from B bounding boxes, each grid cell also produces C class probabilities.
These probabilities represent the conditional probability that an object is of a specific
class, given that there is an object in the grid cell. By filtering out low confidence
bounding boxes and combining the remaining ones with the grids’ class probabilities,
the resulting detections are obtained. The process is illustrated in Figure 7.

Figure 7: Illustration of the YOLO pipeline from image to detections.

In our case, the grid parameter S is set to 7 and the number of bounding boxes per
grid cell B is set to 2. The maximum number of objects that theoretically could be
detected in a frame is therefore 7⇥ 7⇥ 2 = 98. Since only two bounding boxes are
generated for each grid, this prevents the YOLO architecture from detecting many
small objects located close together in the scene. The YOLO model is open source
and is currently available in its 4th incarnation, YOLO-v4 [3]. For the YOLO-v4
network, the number of classes C is 80. Even though we only use the class person
in this thesis, the same pipeline could be used to track other classes of objects.

3.2.5 Non-Maximum Suppression

Due to the structure of YOLO, sometimes multiple bounding boxes could be gen-
erated from a single object. To get a more accurate detection system, we need a
method to filter out duplicated detections. A commonly used greedy algorithm to
do this is the Non-maximum supression (NMS) method [35].

The NMS algorithm is the following Algorithm 1:

18

Algorithm 1 Non-Maximum Suppression

1. Place all detected bounding boxes in a proposal set P and let D be an ini-
tially empty set for the filtered bounding boxes and define a threshold N for the
maximum IOU.
2. Remove the bounding box bi with highest confidence ci from P and add it to
the set of filtered bounding boxes D.
3. Calculate the IOU between the selected bounding box bi and every bounding
box in the proposal set P and remove bounding boxes with IOU:s higher than the
pre-defined threshold N from P .
4. Repeat the process from 2 until no bounding boxes remain in the set P .

3.3 Kalman Filtering

A common approach to update the estimated states of the tracked objects is to use
Kalman filtering. In this thesis we use this filter both for tracks in pixel coordinates
and for tracks in the global coordinate system. The Kalman filter is the best linear
unbiased estimator and thus the optimal choice under linear and Gaussian assump-
tions [22]. In the context of tracking we assume that no control signal is present,
so this will be omitted in the following presentation. The dynamic model can be
described by the equations

xk = Akxk�1 + qk (18)

yk = Hkxk + rk. (19)

where xk 2 Rm is the hidden state that we wish to track, yk 2 Rn the noisy measure-
ments, Ak the m⇥m state transition matrix, Hk the n⇥m observation matrix and
qk ⇠ N (0,Qk) and rk ⇠ N (0,Rk) are m and n dimensional multivariate Gaussian
distributions, respectively, with corresponding covariance matrices Qk and Rk. The
Kalman filter proceeds by alternating between making predictions and updating the
beliefs of the states by using the received measurements. In the prediction step, the
previous state xk�1 is filtered through the transition model and updates the state
covariance matrix accordingly, as shown by Equation 20,

x̂k|k�1 = Akxk�1

Pk|k�1 = AkPk�1|k�1A
T
k +Qk,

(20)

where Pk�1|k�1 is the previous covariance matrix for our hidden states xk�1. Once
the prediction step is done, we update our belief of the current state with the new
measurement. The first part of the update step is to calculate the innovation residual
✏̃k (di↵erence between prediction and measurement) and its covariance Sk. This is
given by

✏̃k = yk �Hkx̂k|k�1

Sk = HkPk|k�1H
T
k +Rk,

(21)

19

where ✏̃k is the innovation and the Sk is the innovation covariance. The covariance
update in Equation 21 for Sk follows from Equation 19. Once the innovation and its
covariance have been calculated the Kalman gain Kk is used to update the estimate
of the state and the state covariance by

Kk = Pk|k�1H
T
kS

�1
k

x̂k|k = x̂k|k�1 +Kk ✏̃k

Pk|k = (I�KkHk)Pk|k�1.

(22)

With these equations we can now receive measurements from our cameras and up-
date our beliefs of the positions of the pedestrians. This concludes the presentation
of the Kalman filter. It will be used extensively in this thesis to update the beliefs of
the positions of the pedestrians, both locally in the pixel coordinates of each camera
and globally in world coordinates.

3.4 Data Association and the Hungarian Algorithm

When we now have methods to detect humans (Section 3.2) in images and to trans-
form these detections to a common coordinate system (Section 3.1.4), we need a
method to associate new measurements (i.e, detections) to existing tracks in real-
time. Thus, a fast algorithm for solving the so called Assignment problem is needed.
A commonly used algorithm to perform association in tracking problems is the
Hungarian algorithm. This algorithm is based on the work of the two Hungarian
mathematicians Dénes Kőnig and Jenő Egerváry and was first described by Harold
Kuhn in a 1955 paper [25].

Figure 8: A complete bipartite graph. The top vertices and bottom vertices repre-
sent two independent and disjoint sets where every vertex in one set is connected to
every vertex in the other set.

Given a weighted complete bipartite graph, as shown in Figure 8, the Hungarian
algorithm will find the association between the elements of the two sets A and B

20

that minimises the sum of the weights of the associated edges. This assignment
problem can formally be expressed as

min
f

X

a2A

C(a, f(a)), (23)

where a 2 A and f is a bijection from A to B. If an element a 2 A is mapped
to b = f(a) 2 B we say that a is assigned to b. With the Hungarian algorithm,
this minimisation can be implemented in polynomial time with worst case time
complexity of O(n3), where n is the number of vertices in the largest set [25]. In our
case, one set in the bipartite graph consist of the tracks’ predicted state, x̂i. The
other set consist of the received detections di. The weights on these edges will be
determined by the distance between the track’s prediction and the new measurement.
In the SORT algorithm, the negative intersection over union distance is used. This
distance is defined as

IOUd = �
A(b1 \ b2)

A(b1 [b2)
, (24)

where A(·) is the area function and b1, b2 are the concerned bounding boxes. Note
that since the Hungarian algorithm is formulated as a minimisation problem, the
IOU is negated so that a smaller IOUd becomes preferable.

In the global coordinates, we use the Euclidean distance although other distance
measures, like the Mahalanbobis distance are sometimes used [8]. To solve the
assignment problem, we use the matrix formulation of the algorithm and let the
square, n ⇥ n, cost matrix C represent an adjacency matrix for a bipartite graph.
If the number of detections di↵er from the number of predictions in a frame, we
use zero-padding dummy values to create the square matrix, C. If we permute the
columns and the rows of the cost matrix, C, so that the resulting assignment costs
appear on the diagonal of the matrix, the problem will be equivalent to finding the
permutation matrices L and R that minimise the trace of the permutated matrix,

min
L,R

Tr(LCR). (25)

The algorithm finds a minimal matching for an n ⇥ n matrix and is described in
Algorithm 2 below.

Algorithm 2 Hungarian algorithm on the n⇥ n matrix C

1. Subtract the smallest element of each row from every element in that row
2. Subtract the smallest element of each column from every element in that
column
3. Cover all zeros in the matrix C by drawing horizontal and vertical lines so
that a minimum number of lines are used. If n lines were needed, encircle n zeros
so that the encircled zeros are the only encircled zeros on each row and column.
These are the resulting assignments. If less than n lines were needed, continue to
the next step.
4. Find the smallest entry not covered by any line and remove it from each row
that is not crossed out and add it to each column that is crossed out. Then go to
Step 3.

21

The algorithm is illustrated by the following example, using a 3⇥ 3 cost matrix.
0

@
7 4 5
3 8 9
11 15 12

1

A 1
�!

0

@
3 0 1
0 5 6
0 4 1

1

A 2
�!

0

@
3 0 0
0 5 5
0 4 0

1

A 3
�!

0

B@
3 0 0
0 5 5
0 4 0

1

CA!

0

@
3 0○ 0
0○ 5 5
0 4 0○

1

A

The encircled elements at positions i, j in the rightmost matrix corresponds to the
resulting assignment of element i in the first set with element j in the second set.
The minimal sum of association costs is in this example 4 + 3 + 12 = 19. This
concludes the overview of the data association algorithm.

3.5 Reinforcement Learning

In this section we will give a short introduction to Reinforcement Learning (RL).
Reinforcement learning is a subset of machine learning that deals with agents in-
teracting with an environment sequentially. The goal of the agent is to maximise a
utility function that describes the task that the agent should perform. The utility
functions can describe di↵erent tasks, for example winning a game of chess.

As the agent interacts with the environment it gets feedback based on the actions
it takes in di↵erent states. This feedback comes in the form of a scalar reward
for each action taken and the problem is formulated as a maximisation problem
over the accumulated rewards that an agent can get. This interaction between the
environment and the agent is illustrated by Figure 9.

Figure 9: Agent-environment interaction

Reinforcement learning solves an unknown Markov Decision Process. The agent
starts in some state S0 2 S that is defined by the environment where S is the set
of all possible states. It then takes some action a 2 A with A being the set of all
possible actions. Following this action it receives a scalar reward R1 2 R ⇢ R and
a new state S1. This procedure continues as time goes on and produces a trajectory
[38]

S0, A1, R1, S1, A2, R2 . . .

The outcome of an action only depends on the current state and not on previous
states. This is the Markov property

P (St+1 = s
0
|St = st, At = at, At�1 = at�1, ...S0 = s0) =

P (St+1 = s
0
|St = st, At = at).

22

This means that the probability that we end up in state s0 given that we have visited
all states s0, ...st and taken actions a1, ...at only depends on the previous action and
state pair (st, at) [30]. With this formulation we have introduced a new concept,
namely the transition probability P . This transition probability tells us that our
actions might not be deterministic. We may thus have a distribution of next states
St+1 that we end up in after having taken action at in state st. The goal of the
agent is to maximise the rewards that it receives. In fact, we are interested in
optimising the expected value of all future rewards. So our target objective function
to maximise is

J = E
⇥ 1X

t=0

�
t
rt

⇤
. (26)

Notice that we have added a so called discount factor � 2 (0, 1) that is used to
prioritise immediate rewards over future rewards. We are more interested in the
current reward than future rewards that we may potentially get. In the so called
infinite time horizon the discount factor is required. If an agent can continue to
take actions forever this could potentially result in an infinite sum of rewards (see
Equation 26) and make the problem unfeasible. For the finite time horizon however,
we still might want a discount factor to determine how much we value rewards in
the future compared to now. With a discount factor of 0 < � < 1 the future rewards
will decay exponentially.

The agents take actions according to a policy. The policy that we want to learn
takes the form

⇡ : A⇥ S ! [0, 1], (27)

where ⇡(a, s) is the probability of taking an action a when in the state s.

In this thesis we use the Proximal Policy Optimisation (PPO) [37] method that
has recently been found to outperform other methods in multi-agent reinforcement
problems [48]. With this method we immediately optimise the parameterised policy.
The policy is parameterised by a neural network. This makes use of something called
the advantage function and for this we need the definition of both the value function
and the Q-value function. The value function is defined as follows

V
⇡(s) = E⇡[rt + �rt+1 + �

2
rt+2 + ... | St = st] = E⇡[J | St = s],

and is the expected sum of the discounted future rewards, given that we are in state
st and use policy ⇡ to take actions. This can be viewed as an estimate of how good
it is for the agent to be in state st. The Q-value function is defined as

Q⇡(st, at) = E⇡[J | At = at, St = st]. (28)

where J is the sum of the discounted rewards as defined in Equation (26). The Q-
value gives us the expected total discounted future reward given that we are in state
st and taking action at under policy ⇡. The value function and Q-value function are
often approximated using neural networks.

23

For completeness we also present the equations to infer a policy from the Q-values
and the value function. The Bellman equations [30] gives us a policy through the
value function by

⇡
⇤(s) = argmax

a

X

s0

P (s, a, s0)[R(s, a, s0) + �V
⇤(s0)]. (29)

This means that we choose the action that maximises the reward Rt in the current
step t and the discounted sum of future rewards. Again P (s, a, s0) is the transition
probability. In a similar fashion we can infer the policy from the Q-values by

⇡
⇤(s) = argmax

a
Q

⇤(s, a). (30)

However, in this thesis we use the proximal policy optimisation method. We thus
immediately try to find the policy by approximating it with a neural network. To be
able to understand this method we first need to introduce the concept of advantage.
The advantage is defined as follows

A(s, a) = Q(s, a)� V (s). (31)

The advantage can be interpreted as how much we gain from taking action a in state
s compared to the ”average” action. This follows from that the Q-value gives us the
expected total discounted reward from taking action a in state s and that the value
V (s) gives us a measure on how good this state s is. With these concepts we now
briefly explain the PPO algorithm.

3.5.1 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) by Schulman, et al. [37] is a recent rein-
forcement learning algorithm that aims at finding the policy function directly. The
algorithm is based on Trust Region Policy Optimization (TRPO), which is another
policy gradient method with guaranteed monotonic improvement [36].

The Trust Region Policy Optimization defines a trust region that guarantees that
the policy distribution does not change too quickly. This is done by subjecting
the objective function to a Kullback Leibler-divergence (KL-divergence) constraint.
This constraint ensures that the old policy that we sampled from does not change
too much when we do a gradient descent update.

The PPO is similar to TRPO but optimises a lower bound of the objective func-
tion and is simpler to implement. Instead of employing a trust region with a KL-
divergence constraint it bounds the gradients to ensure that the policy does not
change too rapidly.

24

It is common to use neural networks for policy functions and to estimate the advan-
tage values. Usually one has two neural networks to achieve this, one policy network
and one value network. PPO utilises the following loss function

L
CLIP (✓) = Êt

h
min

⇣
rt(✓)Ât, clip (rt(✓), 1� ✏, 1 + ✏) Ât

⌘i
, (32)

where ✓ is the parameters of the policy. The term rt is defined as

rt(✓) =
⇡✓(at|st)

⇡✓old(at|st)
.

which is the ratio between the probability distributions of the policy being updated
⇡✓ and the old policy ⇡✓old . This term arrives from the fact that PPO (and TRPO)
performs importance sampling and allows us to reuse samples gathered with the
previous policy in an on-policy RL-method. This term is then multiplied with an
estimate of the advantage function Ât. We then clip this loss function, to only allow
the ratio of the policy we are updating to the old policy, to change with ✏. This
allows only small changes in policy and replaces the KL-divergence constraint in the
TRPO algorithm.

The estimate of the advantage is found by using a value network that is optimised
jointly with the policy. The advantage can then be estimated as

Ât = �V (st) + rt + �rt+1 + ...+ �
T�t+1

rT�tV (sT).

This advantage tells us how good the actions we are taking are [37]. In multi-agent
reinforcement learning (MARL) with policy sharing, multiple agents are present and
take actions in the environment using the same policy. The PPO algorithm then
works by letting agents take step in copies of the environment for a fixed number
of time steps. The advantages are calculated and the policy is updated with mini-
batches of the collected experiences. These agents share the same policy but act in
copies of the same environment to decorrelate the updates of the policy. This works
as the experiences encountered by a single agent are highly correlated. So by letting
agents act in copies of the environment the collected experiences and thus gradients
will be more diverse. This procedure is then repeated [37] and the agents collect
experiences in a rollout and the policy is updated via the PPO loss function.

3.6 Performance Measures

To train the model, evaluate the tracking results and compare the results between
algorithms we need an evaluation measure. Two of the most widely used perfor-
mance metrics in the field of Multi-Object tracking are the Multiple Object Tracking
Accuracy (MOTA) and the Multiple Object Tracking Precision (MOTP), proposed
by Bernardin and Stiefelhagen in the 2008 article [1]. Some common errors that can
occur in tracking can be visualised by Figure 10.

25

(a) Illustrations of false positives and false

negatives

(b) Illustrations of identity switches.

Figure 10: Examples of tracking errors. Small circles are tracking results and large
shapes are ground truth objects.

The MOTA score is a combined metric that takes into account three di↵erent types
of tracking errors: false positives, misses, and identity switches. We call the number
of these errors in each time frame t for fpt (false positives), mt (misses) and mmet

(identity mismatches). This sum is then normalised with the total number of ground
truth objects in all frames (

P
t gt) and this value is subtracted from 1 in order to

get the MOTA metric.

MOTA = 1�

P
t(fpt +mt +mmet)P

t gt
(33)

A perfect tracking would have no errors and a MOTA of 1. Since there is no
limit on the amount of errors that can occur, the metric is not bounded from below
and MOTA 2 (�1, 1]. In order to calculate the number of errors and types of
errors, we need to obtain a correspondence between the estimated tracks that our
tracking algorithm produces and the ground truth tracks for each time step t. This
is done using the Hungarian algorithm. In order for an estimated track to be asso-
ciated to a ground truth track g at frame t, we require that the distance between
their states at this frame is less than some threshold.

In the intra-camera tracking we require the IOU similarity between the ground truth
object’s bounding box and the estimated track’s bounding box at frame t to be at
least 0.5 for the assignment to be considered a match. For the global estimated
tracks, a threshold of 0.5 meters is chosen. A ground truth track that do not get
an associated track to it at frame t, is considered a miss at this frame. Similarly
an estimated track that do not get an associated ground truth track to it at frame
t, is considered as a false positive at this frame. Lastly, an estimated track that
gets a di↵erent ground truth track associated to it in frame t then in frame t � 1,
is considered an identity mismatch. However, if two estimated tracks swap ground
truth tracks in a frame t this is only counted as one identity mismatch as can be

26

seen in Figure 10 b). Note that during tracking, we allow a smaller IOU overlap (0.3
minimum) in the camera for a detection to be associated to a track. Furthermore,
in the global tracking we allow a max distance for the association to be 6 meters
both for the baseline and the RL-method.

Another common metric is the MOTP which describes how close the estimated
track positions are to its associated ground truth positions. For each time step t the
sum of the distances d between tracking estimates and the associated ground truth
positions are divided by the total number of matches m.

MOTP =

P
t dtP
t mt

(34)

Note that MOTP 2 [0,1). The Python package motmetrics [20] was used to
calculate the metrics.

27

4 Methodology

4.1 Data Sets and Calibrations

To train and evaluate our models, we generate six di↵erent data sets. Firstly, a real-
world test scene with two cameras is set up and calibrated. Recordings from these
cameras are manually annotated. The real-world scene is used to model one of the
simulated scenes. We implement a simulator environment using the open source 3D-
engine Blender. Using this simulator, we generate two scenes with di↵erent camera
configurations. From these scenes we generate a number of data sets with varying
number of pedestrians with di↵erent walking patterns.

(a) realworld1. (b) realworld2.

(c) realworld3. (d) First 1000 frames of the

simulated data set

trainingdata.

(e) testdata. (f) simdata.

Figure 11: Top-down view of the ground truth pedestrian positions. Squares rep-
resent the last position for each track in the interval. The data sets (a)-(c) were
manually annotated and the ground truth tracks for (d)-(f) were extracted from the
simulator. Scale in meters.

28

Figure 11 shows a top-down view of the ground truth positions of the pedestrians
for all data sets used in this thesis.

4.1.1 Simulated Data

For the training of the reinforcement learning agents, a large data set of anno-
tated video sequences is desirable. The process of annotating long video sequences
with many persons can, unfortunately, be very cumbersome and time-consuming
[7]. Thus, an automated and quick method for the generation of long, annotated
video sequences of pedestrians is preferable. We chose Blender for this automation
process due to its open-source nature and simple API for Python scripting.

We want the model trained on simulated data to be able to perform well on real-
world data. The simulated data set should therefore closely resemble the real-world.
Our pipeline does not use any visual features after the detection so we mainly want
the detections on the simulated data to behave similarly to the detection from real-
world data. For this purpose, a realistic 3D model of a person is created. This
is done using photogrammetry. Approximately 30 images of a person are taken at
di↵erent angles and put into a the AliceVision Meshroom photogrammetry pipeline
[15]. In this pipeline a point cloud is generated from the images, this point cloud is
then meshified and lastly texturised. The resulting 3D mesh is shown in Figure 12.
This model is imported into Blender. Lastly, a walk cycle animation is created for
the model.

Figure 12: The photogrammetrised model used in the simulator in di↵erent render
modes. From left to right the model is rendered with a wireframe, with simple
di↵use shading, and with textured shading.

Two model scenes are created in the Blender environment with cameras, lighting,
textured buildings, walls and ground. In these scenes, a number of person meshes
are added. A script for generating random walking paths in the simulator environ-
ment is written to simulate pedestrians. From a set of triangles, we define a domain

29

D ⇢ R2 in the simulator world as the union of these triangles. The domain D is used
to determine the x, y positions in the scene where a person could be positioned. By
using triangles to model the domain, we can achieve more complex domains than
what would be possible with, for example, rectangles. Within this domain, we guar-
antee that a person is not positioned inside a wall, too far away from the camera’s
field of view etc.

Each person’s path is then defined by a discrete set of ordered points xt = (x, y)t 2 D

inside this domain. These points are generated by first spawning an initial point,
x0 2 D, together with an initial direction, d0 2 R2 of unit length. Then, for N

steps, a hypothetical step is taken in the direction d 2 R2. We make sure that
the hypothetical step remains inside one of the triangles by transforming the point
xt+d into each triangles’ barycentric coordinates. If the point xt+d remains inside
the predefined domain D, this point is added to the list of ordered points and used
as a starting point for the next step.

If a hypothetical point is placed outside of the defined scene, a new direction is
randomly picked and if the new point remains inside the domain, that point is
added instead. Furthermore, after each step, the direction vector, d, is rotated by a
small random angle in radians, ✓ ⇠ N (0, �2) with � = 0.1, drawn from a Gaussian
distribution. The length of d is also resampled at each step so that |d| ⇠ N (1, �2),
with � = 0.1. From this set of points, a Bézier curve is interpolated. Each person
in the scene is then animated to follow their respective curve. The resulting paths
we use in the data sets in this thesis are visualised in Figure 11. We use Blender’s
built-in real-time renderer Eevee, to render video files from all cameras in the scene
and export them in mp4 format. A single frame from the data set simdata is shown
in Figure 13

We also write another script to export csv-files containing ground truth informa-
tion and scene description. We need this data to train our model and to evaluate it
using the evaluation metrics. For each frame t in the scene, the 3D positions of each
person that is visible in at least one camera is exported. A person is determined to
be visible in a camera if a ray cast from the person’s centre can reach the camera
centre without intersecting with another object. Hence, if a person is occluded in all
cameras, the person’s position is not exported to the ground truth position file. We
also need to obtain the ground truth bounding boxes in each camera’s image space.
This is done by projecting each vertex from the photogrammetrised mesh into the
pixel space and determining the minimum and maximum x- and y-coordinate of
those projections to get bounding boxes on the form [xmin, xmax, ymin, ymax].

30

Figure 13: One frame from Camera 2 in the simulated dataset simdata.

In summary, we use Blender to create a 3D scene with walls, ground, cameras,
lighting, textures, etc. In this scene, our simulation script generates random walking
pedestrians and exports the following:

• mp4 video files from all camera perspectives

• A csv file containing the cameras’ intrinsic and extrinsic parameters.

• A csv file containing ground truth bounding boxes of visible persons in the
images space for all cameras.

• A csv file containing ground truth world coordinate positions for persons vis-
ible in any camera.

• A csv file containing the scene description in the form of floor triangles.

We generate three data sets in the simulator environment. The two datasets training
-data and testdata are both modeled after the real-world test scene described be-
low. The trainingdata set is 5000 frames long, has a frame rate of 24 fps and
consists of three cameras and 12 persons. It would be possible to generate for exam-
ple 1000 di↵erent videos from the scene but due to time and storage limitation we
settled with one long 5000 frame training data set. The testdata set is 1000 frames
long, has a frame rate of 24 fps, and consists of three cameras and eight persons.
The data set simdata has three cameras, six persons and is set up with a di↵erent
scene and camera configuration compared to the first two data sets. This is used
to evaluate how dependent the global RL-agents are on the scene they were trained
on. In Figure 14 follows a top-down view of the trainingdata/testdata scene (a)
and a view of the simdata scene (b).

31

(a) Top-down view of simulated scene used for

trainingdata and testdata.
(b) View of simulated scene used

for simdata.

Figure 14: Blender scenes used in thesis.

4.1.2 Real-World Data

We also evaluate our models on video recordings from real cameras. We record these
videos from the building we model the trainingdata/testdata scenes from. In this
scene two cameras are used, placed on opposite sides of a passageway. A top-down
view of the test scene is shown in Figure 15. We record three test sets using this
set up. Note that the third camera in Figure 15 is only present in the Blender
simulations due to hardware limitations during the gathering of the real world data
set. The lack of the third camera does not a↵ect the SORT algorithm, since this
method is independent on the number of cameras. For our global RL-agent, this
means that the input from the third detector will always be zero on these scenes.
Camera one and camera two are placed at the same positions in the recorded scenes
as in the simulated video.

32

Figure 15: Test scene used both for the data sets trainingdata, testdata and
the real-world recordings in data sets realworld1-3. For the simulated data, all
cameras are used, and for the recorded data Camera 1 and Camera 2 are used.

We introduce a global coordinate system with the origin placed in the bottom left
corner of the building in Figure 15 close to camera one. The x- and y-axis are
aligned along the walls of the building, which we assume to be at a 90� angle.
In this coordinate system, we assume that the ground lies in a perfect plane with
coordinates (x, y, 0). Using these assumptions, we measure a number of interesting
real world coordinates, xi

w 2 R3 visible in the cameras with a laser rangefinder. The
corresponding image space pixel coordinates, xi

p 2 R2, are extracted from the video
to obtain a number of point correspondences (xi

w,x
i
p). In Camera 1, we extract 12

point correspondences, and in Camera 2, we extract 13 point correspondences. The
calibration process could be automated using, for example, Scale-invariant feature
transform (SIFT) [27] for feature extraction and the Random sample consensus
(RANSAC) [12] algorithms for calibration. This however falls outside the scope of
this thesis.

Since the recordings do not start at exactly the same point in time in all cameras,
the video sequences need to be synchronised. We do this manually by removing a
number of initial frames for the recording with the earliest starting time. Then we
remove the frames at the end of the longest video to make the video sequences have
the same length. Since both cameras have the same frame rate, the frames of the
video sequences correspond to the same time.

33

(a) Frame from realworld2. In this scene

two persons are walking on a line towards the

camera and another person is walking away

from the camera.

(b) Frame from trainingdata.

Figure 16: Single frame from Camera 2 in the data seta realworld2 and testdata.

After having synchronised and calibrated the real world recordings we manually
annotate them to obtain ground truth pedestrian positions in world coordinates.
For every 10th frame, the position between the feet of every person visible in the
image space are manually selected. Those positions are then projected onto the
ground plane using the calibrated camera matrices. If a person is visible in more
than one camera, the projected points are fused by triangulation of those points.
Finally, the ground truth is linearly interpolated to obtain ground truth positions
for all frames. Figures with the resulting annotations are shown in Figure 11.

4.2 Introduction to Pipelines

We will now introduce the two pipelines used in this thesis. First, we introduce our
baseline model, based on the Simple Online and Realtime Tracking (SORT) algo-
rithm [2]. In order to describe the baseline we go over the tracking algorithm used in
each camera and then the extension used to track pedestrians in the 3D world. Sec-
ondly, we introduce the Reinforcement Learning (RL) method. We describe the RL
method proposed by Rosello and Kochenderfer in [34] and then go over our proposed
multi-camera extension of this method. Before we introduce these pipelines we will
first give a few important definitions that we will use throughout the presentation
of the methods.

Firstly we reiterate that we define a track as a sequence of states with a unique
id that belong to a single object. The state can vary depending on what is being
tracked and what kind of track we are dealing with. In this thesis we will make a
distinction between what we will refer to as local tracks Lk and what we will refer
to as global tracks G. A local track l

k
i 2 Lk with track id i is a track that belongs

to a camera ck in the camera network C. The states of this track will be in pixel
coordinates. The tracked states of the local tracks are the centre positions (xp, yp),
areas s, aspect ratios r and corresponding velocities (ẋp, ẏp, ṡ) of the bounding boxes
of each object. A global track g is also a sequence of states of an object, but it does
not belong to any camera. This means that the local tracks that have formed each

34

global track can originate from any combination of cameras. The states of the global
tracks are 3D world coordinates. Specifically, we track the centre position of each
pedestrian (xw, yw) and its velocity (ẋw, ẏw) in the ground plane. For our data sets
we define the ground plane as z = 0 in the world coordinate system.

We also make the distinction between active and killed tracks. Active tracks are
tracks that are still being updated and can receive new detections. A killed track is
a track that can no longer be updated and can not get new detections. The active
and killed tracks can be both local and global tracks. Furthermore, we will use
local tracker and local method interchangeably when we talk about the multi-object
tracking algorithm that is run in each camera. In a similar manner we will use global
tracker or global method when discussing the tracking that is done in the 3D world.
With these definitions we will move on to describe the baseline in more detail and
then the RL method.

4.3 Multi-Camera SORT

The first approach we use to solve the real-time multi-camera multi-object tracking
problem is the Simple Online and Realtime Tracking (SORT) algorithm. This is
applied both for tracking in each camera’s pixel coordinates and for tracking in
world coordinates. When tracking is performed in world coordinates, we use a
version of the SORT algorithm that is adapted for a multi-camera setting. We start
by describing the tracking taking place in each camera and then describe how we
do the tracking in global coordinates.

4.3.1 Local SORT Tracker

We use the YOLO-v4 [3] network to detect the bounding boxes of the pedestrians
and track them using the SORT algorithm. In each time frame t the detector
network outputs a number of bounding boxes d that we will refer to as detections.
These bounding boxes are all compared to the active local tracks’ predictions in
the current frame. The predictions are formed by applying the motion model to
the most recently tracked state. This is done with a Kalman filter and is described
further down. The IOU is calculated between all predictions and detections and
a cost matrix C is formed from these. The Hungarian algorithm, as described in
Section 3.4, takes the computed cost matrix as input and solves the assignment
problem. In each frame, the SORT algorithm proceeds as in Figure 17 using these
associations.

35

Figure 17: Flowchart describing the decisions made in the SORT algorithm after
detections have been associated to tracks using the Hungarian algorithm.

The associations that are made are compared to the minimum association distance
dmax (0.3 IOU overlap). If a local track’s prediction and its associated detection
overlap more than this minimum association distance, the detection is used for a
Kalman filter update. Otherwise a new track is initialised with the detection and
with a new track id. Tracks that do not receive a detection for more than one frame
are terminated.

We will now describe the Kalman filter that is used in the SORT algorithm in the
camera’s image space [2]. This Kalman filter is used to correct noisy detections
and as a motion model to be able to perform predictions. In the image space the
SORT algorithm makes use of a constant velocity pedestrian motion model which has
also been shown to outperform many of the state-of-the-art pedestrian trajectory
forecasting models [39]. The states that are tracked in the Kalman filter are the
centre position, area and height-to-width ratio (aspect ratio) of the bounding boxes
together with their respective velocities (except for the aspect ratio as it is assumed
to be constant). The transition of the state space for each locally detected target in

36

the image is thus given by

xk =

0

BBBBBBBB@

xk

yk

sk

rk

ẋk

ẏk

ṡk

1

CCCCCCCCA

=

0

BBBBBBBB@

xk�1 +�T ẋk�1

yk�1 +�T ẏk�1

sk�1 +�T ṡk�1

rk�1

ẋk�1

ẏk�1

ṡk�1

1

CCCCCCCCA

+qk =

0

BBBBBBBB@

1 0 0 0 �T 0 0
0 1 0 0 0 �T 0
0 0 1 0 0 0 �T

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

xk�1+qk,

(35)

where �T is the time step length set to 1 as we are tracking from frame to frame,
xk and yk are the coordinates of the centre of the bounding box, sk is the area and
rk the aspect ratio of the bounding box. The remaining states are their respective
velocities and qk is the Gaussian noise as described in the theory Section 3.3. The
states modelled with the constant velocity model (all except the aspect ratio) should
have 0 acceleration. Therefore any acceleration in these states is modelled as noise.
In a similar fashion rk is assumed to be constant and so its velocity should be 0.
Thus any velocity in the rk state is modelled as noise and the final model noise
vector qk becomes

qk =

0

BBBBBBBB@

�T 2

2 axy
�T 2

2 axy
�T 2

2 as

�Tvr

�Taxy

�Taxy

�Tas

1

CCCCCCCCA

, (36)

where it is assumed that all the accelerations axy, as and the velocity vr are Gaussian
with zero mean. We also assume that each state is independent of the others, with
the exception of a state and its velocity state pair, i.e, (xk, ẋk), (yk, ẏk) and (sk, ṡk).
The �T terms in Equation (36) arise from the interpretation of the noise as the
accelerations and velocity, respectively.

Furthermore, the x and y accelerations are assumed to have the same variance axy.
Since we do the tracking on a frame-to-frame basis, the time interval �T = 1. With
this in mind we get that

Qk =

0

BBBBBBBBBB@

a2xy
4 0 0 0

a2xy
2 0 0

0
a2xy
4 0 0 0

a2xy
2 0

0 0 a2s
4 0 0 0 a2s

2
0 0 0 v

2
r 0 0 0

a2xy
2 0 0 0 a

2
xy 0 0

0
a2xy
2 0 0 0 a

2
xy 0

0 0 a2s
2 0 0 0 a

2
s

1

CCCCCCCCCCA

, (37)

37

where as and vr is the variance of the area and the aspect ratio modelled as accel-
eration and velocity respectively. The measurement model yk has the centre of the
bounding box, its area and its aspect ratio as measurement states. So

yk =

0

BB@

xk

yk

sk

rk

1

CCA =

0

BB@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

1

CCAxk + rk, (38)

with rk being the 4x1 vector with the Gaussian measurement noise where each
variable being assumed to be independent of the others. Thus the covariance matrix
of rk is a 4x4 diagonal matrix. Clearly the measurement states should not be
independent but the study of the true correlations in the measurement noise is
beyond the scope of this thesis and is left as future work. In the original SORT
paper the authors assume independent measurement noise and hidden state noise
(Qk and Rk to be diagonal matrices). We only make this assumption for Rk. The
full details of the Kalman parameters can be found in the appendix, Section A.5.
Next, we move on to describing the global baseline tracker.

4.3.2 Global Baseline Tracker

In each time step (frame) we take the current positions of the active local tracks and
map them into the global coordinate system to update the global tracks. In order
to do the tracking globally we use the an extended version of the SORT algorithm
in the world coordinates (that is, using the Hungarian algorithm for data associa-
tion and the Kalman filter for state estimation). We again use a constant velocity
pedestrian motion model but this time in a global plane as the local tracks have
been projected onto the ground plane in the 3D world. The mapping from image
space to the 3D world can be done either by inverse camera projections onto the
ground plane as described in Section 3.1.4 or by triangulation described in Section
3.1.5 if a global track has several local tracks assigned to it.

In the multi-camera SORT (the extended SORT algorithm) we start each frame by
performing data association between the local tracks originating from each camera
and the active global tracks. Since two local tracks from the same camera generally
originate from two di↵erent persons, we associate the local tracks with the set of
predictions from the global tracks, one camera at a time. Hence, no association
is performed between local tracks originating from the same camera. In order to
associate the local tracks with the existing global tracks a distance between a global
track and a local track is defined. The distance we use, Ck(x̂i, pj), is the Euclidean
distance between the prediction x̂i 2 R2 from the global track and the projected
state pj 2 R2 from the local track l

k
i with track id i in camera ck. This distance is

defined as:
Ck(x̂i,pj) = ||x̂i � pj||2, (39)

where pj is the projection of the midpoint of the bottom side of the bounding box

38

state (xmin+xmax

2 , ymax) [note that the origin of the pixel coordinates is in the left top
corner of the image and the y-axis is directed downwards, hence ymax is used for
the bottom side of the bounding box]. The distances from all local tracks in each
camera ck are stored in a cost matrix Ck. We solve the association problem for each
camera ck to the global tracks with the Hungarian algorithm. This means that each
global track can get either zero, one or multiple local tracks associated to it from
the di↵erent cameras.

After the associations are done we need to fuse the associated projections from each
local track. If a global track gets multiple local tracks associated to it from di↵erent
cameras, we use triangulation as mentioned before to fuse the local track states and
map them into the 3D world. The triangulation is done with the most recent state
of each local track. Otherwise, if the global track only got one local track associated
to it, we use the projected state from the local track.

We will refer to the fused and projected states from the local tracks as a global
detection dg. The global tracks that received a global detection dg during the asso-
ciation use these to perform a Kalman update. The global tracks that did not get a
global detection, but only have missed one consecutive global detection dg, performs
the Kalman update with its prediction instead. The track thus get one attempt to
use the prediction and potentially get another global detection dg in the next frame.
If however, the track missed more than one global detection in a row we terminate
the track. The psuedo-code for the global tracker is formulated below in Algorithm
3. In this pseudo-code we assume that each camera has performed a step in the
corresponding time frame.

Algorithm 3 SORT Tracking in world coordinates

for each f 2 Frames do
for each ck 2 C do

Associate the set of local tracks Lk from camera ck to the set of global
tracks G with the Hungarian algorithm.

end for
for each g 2 G do

if g got local tracks associated to it then
Fuse the associated tracks to a global detection.
Perform the Kalman update of global track g with the global detection.

else if g missed one global detection then
Peform the Kalman update with prediction of global track g.

else
Terminate global track g.

end if
end for
for each dg 2 Dg do

Initialise a new global track with dg and new id.
end for

end for

39

In the psuedo code in Algorithm 3 G is the set of active global tracks, Lk is the set
of local tracks from camera ck, g is a global track, Dg the set of global detections
not used by any existing global track and l

k
i is a local track in Lk. The Kalman

filter parameters can be found in the appendix, Section A.5. In the next section we
will describe a method used by Rosello and Kochenderfer [34] to more dynamically
decide when to terminate tracks, when to use detections versus predictions among
other things in image space. We will also describe how our method, inspired by the
article [34], do this in the 3D world coordinates in a multi-camera setting.

4.4 Multi-Agent Reinforcement Learning for
Multi-Object Tracking

In the following section, we describe the Reinforcement Learning (RL) based method
proposed to solve the MCMOT tracking problem. In this method each track has an
associated RL agent that manages the track. New detections are associated to local
tracks with the Hungarian algorithm and the positions of the tracks are updated
using a Kalman filter in the same way as in the SORT algorithm. However, with
this method, no predefined thresholds are used to determine when a track should be
started, terminated, made hidden, or when a track should update its state using the
Kalman predictions. Instead all of these decisions are made by the reinforcement
learning agent associated to the track. Based on the RL approach in [34], we extend
the method to a multi-camera setting where global context is taken into account
and where the data fusion is also managed by the RL agents. Before we present the
global RL agent we will first introduce the local RL agent in each camera.

4.4.1 Local RL Model

In each camera ck, we associate a reinforcement learning agent to each local track
l
k
i . The tracks are managed by individual agents with the same observation space
and action space that we will describe further down for a single agent. A track is
always in one of three di↵erent states: visible, hidden, or inactive. A hidden track
is a track that is not actively tracked but that keeps updating its state using the
Kalman predictions. This state is intended for situations with short to medium long
occlusions. Tracks are in the inactive state before being initialised and after having
been terminated. All tracks that are not hidden nor inactive are called visible tracks.
The visible tracks are the active tracks in the scene that are used for evaluation of
the tracking algorithm. This means that to calculate the evaluation metrics like
MOTA and MOTP, as described in Section 3.6, we only compare the ground truth
tracks at frame t with the tracks that are visible at frame t. Hidden tracks can also
be made visible while keeping the same track-id, if it should receive new detections.

Like the baseline, for each frame the detections are associated to the visible and
hidden tracks with the Hungarian algorithm. New inactive agent/track pairs are
created dynamically so that all detections can be associated to a track. After the
detections have been associated to the tracks, a local observation vector, ol, is con-

40

structed for each agent. This vector describes the local track and its associated
detection. For the local RL agent, ol 2 R18. The observation vector ol can be
divided into the states of the track xk and the associated detection d. An agent
observes its track’s state and the associated detection’s features. The track’s states
consist of the track’s predicted Kalman state x̂t 2 R7, the one-hot encoded track’s
current activation state (visible/hidden/inactive), the streak of detections and the
streak of misses. The detection features are the associated detection d, the associ-
ation cost and the confidence c of the YOLO detection d. The Kalman prediction
and the detection are described in Section 4.3.1. If no detection is associated to the
track, the detection, d, is set to all zeros. Following [34] the streak of detections and
misses are normalised using a sigmoid function to avoid numerical instability. Each
track’s observation vector ol is then used as an input to the neural network and
the agents take actions by sampling from a probability distribution over the actions
a ⇠ ⇡⇥(a|ol) where ⇡⇥ is the policy of the agent modelled by a neural network.

The possible actions an agent can make are shown in Table 1. By using action
a0, the agent terminates and resets a track and puts it in an inactive state. This
state is intended to be used when a person leaves the scene. Action a1 restarts the
track by resetting the Kalman states and initiating the Kalman filter with its current
detection. Action a2 takes the detection associated to the track by the Hungarian
algorithm and updates its Kalman filter using this bounding box. Action a3 ignores
possible detections and uses the Kalman filter’s prediction to update the track’s
state, intended for situations with short occlusions or missed detections. Action a4

is similar to action a3 but also puts the track into a hidden state. This action is
intended for situations with medium long occlusions.

Table 1: Actions defined for the local tracking agent.

Action Description State after action
a0 Terminate a track Inactive
a1 Restart a track using detection Visible
a2 Uses a detection to update track Visible
a3 Uses Kalman prediction to update track Visible
a4 Uses Kalman prediction to update track and puts track in hidden state Hidden

We now move on to describe the model for the global agent before we explain the
reward functions, network architectures and the training setup used.

4.4.2 Global RL Model

The global RL model we propose in this thesis is similar to the local RL model.
All global tracks get an RL agent associated to it. For each frame, the active and
hidden local track’s current states are associated to the global tracks’ predictions in
the same way as in the SORT algorithm using the Hungarian algorithm. In this way
a list of local tracks are associated to each global track. Then an observation vector,
og 2 R27, is constructed for the global track. In a similar fashion to the local RL

41

agent we can divide the observation vector for the global RL agent into two parts.
The observation vector will consist of the states of the RL agent’s associated global
track and features from the possible local tracks from the three closest cameras. The
global track’s states again consist of the track’s Kalman prediction x̂ 2 R4 consisting
of the predicted position in the ground plane x, y and the predicted velocities ẋ, ẏ,
the one-hot encoded activation states of the track, the streak of detections and the
streak of misses.

The features from the possible local tracks lk from each camera ck are the associated
local track’s state projected onto the ground plane xp = (xd, yd), the association
cost between xp and the global track, the distance between xp and the camera ck it
originated from, a one-hot encoded element of whether the global agent has got an
associated local track l

k
i and the YOLO confidence of the detection track l

k
i received

to estimate its state. If the local track does not get a detection from a camera at
this frame the confidence is simply put to zero. Furthermore, if no local track l

k
i

from camera ck is associated to a global agent, all the detection features are put to
zero. The streak of detections and streak of missed detections are normalised by a
sigmoid as in the single camera case. Inspired by the mono-camera approach, the
same actions are included in the Global RL agent, but instead of a single action for
using the detection, all combinations of the 3 possible associated local tracks lki are
used. In Table 2 below we summarise the possible actions.

Table 2: Actions defined for the global tracking agent. Action 2-8 are all possible
combinations of detections.

Action Description State after action
a0 Terminate a track Inactive
a1 Restart a track with new id Visible
a2 Uses local track from camera 1 to update Kalman filter. Visible
a3 Uses local track from camera 2 to update Kalman filter. Visible
a4 Uses local track from camera 3 to update Kalman filter. Visible
a5 Uses local track from cameras 1,2 to update Kalman filter. Visible
a6 Uses local track from cameras 1,3 to update Kalman filter. Visible
a7 Uses local track from cameras 2,3 to update Kalman filter. Visible
a8 Uses local track from cameras 1,2,3 to update Kalman filter. Visible
a9 Uses Kalman prediction to update track Visible
a10 Uses Kalman prediction to update track and puts track in hidden state Hidden

In total there are 11 possible actions for the agent to take. When action a0 is taken,
the track is terminated. Action a1 restarts a track with its associated detections
(fuses them) and gives the track a new id if the agent is inactive, otherwise it keeps
its id. Actions a2�a8 represent all 23�1 = 7 combinations of associated local tracks
from the three closest cameras where at least one local track is used to update the
global track. Action a9 uses the Kalman filter prediction and keeps the track visible.
Finally, action a10 puts the track in a hidden state and updates the Kalman filter
using the filter’s prediction x̂.

42

In this global setting, the agents should be able to take every action at all times
without the program crashing. If an agent tries to fuse tracks from cameras where
no track has been associated to the global track, we simply ignore that action and let
the track stay in its current position. Just like in the single-camera case only visible
tracks contribute to the global MOTA and MOTP measures. Now that the action
and observation spaces of the agents, both local and global, have been explained we
continue to describe the details of the training in Section 4.5 below.

4.5 Training Setup for RL

To train the reinforcement learning agents, we use the library stable-baselines3 [31]
that contains an implementation of the PPO algorithm. It also allows the creation
of custom policy and value-networks using PyTorch. Furthermore, to create the
environment the agents use for training, we use the multi-agent libraries PettingZoo
[41] and SuperSuit [42]. The PettingZoo environment allows one to easily create
custom environments with a similar API as the popular gym library [6] from Ope-
nAI. It also allows multiple agents in the environment to take actions in lock-step
and receive rewards simultaneously. For the training of both the local and global
agents we use fully connected neural networks with ReLu activations. All agents
share the same policy network.

The training is done on multiple copies of the environment in parallel and using a
GPU to parallelise the training. However, we found that since the networks are small
we do not benefit much from training on the GPU. Instead what benefits us the most
(in terms of training speed) is the number of cores on the CPU. The wrapper-library
SuperSuit is used to allow the vectorisation of our parallel PettingZoo environments.
SuperSuit also enables the sharing of the policy and value network across all copies
of the environment and across all agents.

4.5.1 Local RL-Agent Training

For the local RL agent we train three di↵erent neural networks, one for each camera
in the simulated Blender scene. The network size is the same as in [34], namely a
fully connected network with three layers [128, 64, 32], where the elements in the
vector are the number of perceptrons in each layer. We use this architecture for both
the value network as well as the policy network. The training is done by selecting
a random contiguous 200-300 frames long subset of the 5000 frames long training
data set. This interval is resampled for each new episode. In each step, each agent
takes an action based on its observation vector ot and then get (potentially) new
detections associated to it, giving rise to the observation vector ot+1 of the next
timestep t+1. After the association is done with the Hungarian algorithm the new
observation vector is formed and a reward rt is calculated for each agent. In [34] all

43

agents received the same reward, namely

rt =
1

T
�

mt + fpt +mmetPT
t0=1 gt0

. (40)

In this expression T is the length of the episode, mt misses, fpt the number of
false positives and mmet the number of mismatch errors in frame t. The

PT
t0 gt0

is the number of ground truth objects in the entire scenario. If we sum up all the
rewards over all the time steps, the total rewards becomes the MOTA. However, due
to di�culties making the RL agents converge using this reward function, we take
another approach. We start by pre-training the policy network. This is done by
constructing a composite reward function. The first part of it, rt1, gives each agent
a 1 in reward if it takes the action that our baseline would take, and 0 if it didn’t
in frame t. That is

r
t
1 =

(
1, if action taken was same as baseline’s action

0, otherwise.

The second part of the reward is made to incentivise good actions from a MOTA
perspective. This second part is for each frame t defined as

r
t
2 =

8
><

>:

1, if visible and part of a true positve (match)

0, if visible and part of a false positive or id-switch

r
t
3, otherwise,

where r
t
3 is the one step MOTA reward defined as

r
t
3 = 1�

fpt +mmet +mt

gt
,

where have that fpt, mt and mmet are the same as in Equation (40).The reward r
t
2

gives active agents a big reward if they successfully become part of a match. This
can be calculated as we have access to the ground truth of the tracking data during
training. Furthermore, we give visible agents a reward of 0 if they take part in
false positives or id-switches. The rt3 is intended for the hidden and inactive agents.
We can’t say which hidden or inactive agents are a part of misses (false negatives)
and so we simply give these agents the one step MOTA (rt3) as reward. This is
done so that the reward falls in the same range in both pre-training and the main
training afterwards, thus allowing for the learned value network to be useful after
pre-training. Finally the pre-training reward is set as

r
t
local�pre =

r
t
1 + r

t
2

2
. (41)

We pre-train three policies (one for each camera) with the reward (41) before starting
the final training. For the final training we instead drop the supervised part of the
reward (rt1) that motivates the agent to act like the baseline. Instead we choose a

44

mixture between r
t
2 and r

t
3 as the final reward. The reason that we still do not train

on pure MOTA like the authors of [34] is that we found that giving each agent a
unique reward helps the training converge for the local RL agents. The final training
reward is given as a mean of the r

t
3 and r

t
2 described above, i.e,

r
t
local�final =

r
t
3 + r

t
2

2
. (42)

The policy is pre-trained for approximately 20 million time steps and then trained
for additionally 65 million steps. The results of the single-camera training can be
found in the Section A.3 of the appendix. The details about the hyper-parameters
including batch sizes, learning rates etc can also be found in the appendix, Section
A.4.

4.5.2 Global Pre-Training and Training

We now move on to the training of the global RL agents. For these agents we use
a slightly bigger policy network but let the value network remain the same size as
in the local case, described in Section 4.5.1. The policy network that we use is a
fully connected neural network consisting of four layers and ReLu activation. The
number of nodes in each layer is [192, 128, 64, 32]. We also experienced some trou-
bles getting this agent to converge using the suggested reward function in [34]. We
therefore again pre-trained the agent for about 30 million steps to behave similarly
to the baseline before training on the one step MOTA reward r

t
3.

The pre-training reward is the same as rt1 for the global RL agent, except that the
actions are taken to make decisions about global tracks in the 3D world ground plane
as opposed to in the image space. After the pre-training is done we train with a pure
one step MOTA reward r

t
3 and do not include the agent specific rewards r

t
2 as we

did for the local agent. That is, we use only the rt3 function as the reward function.
The pre-training is done on 100 frames long subsets of the training data. The ”post”
training is done on 500 frames long subsets. The details of the hyper-parameters
can again be found in the appendix Section A.4.

45

5 Results

In this section we present the results of our two methods, the threshold-based SORT
method and our proposed reinforcement learning method. We evaluate these on
video from a recorded scene, and on video from a Blender simulation modelled on
the same scene. We start by presenting the calibration of the cameras for the real-
world data. Then, we proceed by presenting the results of the detections on the
simulated data sets. We then present the Multi-Object Tracking Accuracy (MOTA)
and the Multi-Object Tracking Precision (MOTP) on all data sets and showcase
the behaviour of the algorithms with a few examples. Lastly, we also present the
training results from the reinforcement learning agents and some properties of their
learned policies.

5.1 Camera Calibration

Figure 18 shows the world coordinate points xi
w projected by the calibrated projec-

tion matrix P as red circles for camera two. In the same figure, the blue crosses are
the corresponding image space points xi

p manually selected from the camera’s image
space.

Figure 18: Calibration of the real-world data set in the pixel space of Camera 2. The
blue crosses are the selected image points in pixel coordinates. The red circles are
their corresponding world coordinates projected with the calibrated camera matrix,
P.

46

5.2 Detection Results

The basis of our pipeline are the detections from the cameras. The YOLO detector
performed well on the simulated data as well as on the real-world data. Figure 19
shows a frame with almost perfect detection on the simulated data set trainingset.
Note the missing detection on the right-hand side of the image. Additionally, Figure
20 shows the detections on a frame from the real-world data set realworld1.

Figure 19: YOLO detection bounding boxes from trainingset. Each yellow box
represents a detection.

Figure 20: YOLO detection bounding boxes from realworld1 dataset. Each yellow
box represents a detection.

Table 3 shows the result of the YOLO detector on the two simulated data sets. The
detections and ground truth were associated using the Hungarian algorithm and a
detection was considered a match if IOU > 0.5. Otherwise it would generate a false
positive and a false negative. The detector accuracy was similar on all evaluated
data sets.

47

Table 3: Table with results from the YOLO detection network on two data sets with
ground truth annotations for the local bounding boxes. FP, is the number of false
positives, FN is the number of false negatives, GT is the number of ground truth
bounding boxes.

Dataset FP# FN# Matches" GT Precision" Recall"
trainingdata, camera 1 773 2079 45600 47679 98.3 % 95.6 %
trainingdata, camera 2 767 490 23861 24351 96.9 % 98.0 %
trainingdata, camera 3 159 666 24825 25491 99.4 % 97.4 %
testdata, camera 1 107 210 6589 6799 98.4 % 96.9 %
testdata, camera 2 69 50 3025 3075 97.8 % 98.4 %
testdata, camera 3 25 95 4772 4867 99.5 % 98.0 %

5.3 Tracking Results

In the following section we show the main tracking evaluation results on all data
sets. When evaluating the RL agents we used the deterministic policy given by the
action with the highest probability. In training however, the actions were sampled
from the stochastic policy. In Table 4 we can see that the RL model reached higher
MOTA scores and lower MOTP scores (in meters) on all data sets except for the
simdata set, which was generated from a di↵erent scene with a di↵erent camera
configuration than the scene the RL agent was trained on.

Table 4: Table with global MOTA, MOTP scores and similar metrics for two sim-
ulated Blender scenes. FP is the number of false positives, FN is number of false
negatives, IDs is the number of identity switches.

Dataset Method MOTA" MOTP# FP# FN# IDs# Precision" Recall"

trainingdata
Baseline 75.2 % 0.190 7822 5782 205 86.5 % 89.6 %

RL 78.4 % 0.184 5997 5862 210 89.3 % 89.5 %

testdata
Baseline 79.8 % 0.179 876 720 15 89.2 % 91.0 %

RL 81.6 % 0.176 718 743 12 91.0 % 90.7 %

realworld1
Baseline 52.3 % 0.219 226 231 1 76.3 % 75.9 %

RL 56.2 % 0.217 210 210 0 78.1 % 78.1 %

realworld2
Baseline 52.5 % 0.243 261 264 2 76.4 % 76.2 %

RL 52.6 % 0.241 264 262 0 76.3 % 76.4 %

realworld3
Baseline 73.5 % 0.214 252 237 2 86.5% 87.2 %

RL 75.6 % 0.214 228 221 2 87.7 % 88.1 %

simdata
Baseline 87.5 % 0.130 240 201 9 94.4 % 86.5 %

RL -10.7 % 0.290 1290 2662 27 41.9 % 25.9 %

48

For conciseness, we only present the global tracking results here, i.e, when tracking is
performed in 3D world coordinates. The reader can find the results for the tracking
in each camera in image space in the appendix, Section A.2.

5.3.1 Visualisation of Results

In Table 4, we can see a trend that the RL model outperforms the baseline in MOTA
on almost all of the data sets. We now present some di↵erences in tracking results
in global coordinates, visualised as tracks from a top-down view.

In Figures 21–23, the ground truth tracks are represented by black solid lines and
the tracking results are shown as the coloured dashed lines. Each colour represents
a unique track-id. The round circle represents the end of the estimated tracks and
the square represents the end of a ground truth track in the interval. Note that
the baseline model and the RL model have the same max distance (6 m) for the
association of projections to active tracks. Hence, the improvement in the tracking
accuracy is only due to better track management (track birth, track termination,
when to use predictions, etc.).

The baseline model in Figure 21 loses track of the pedestrian in the semi-sharp
turn in the test set, and then re-initialises the track again when it gets new detec-
tions. The RL-agent, however, manages to keep the track alive long enough to keep
tracking the person using the same track-id.

In Figure 22 we compare the tracking results on a section of the realworld2 data
set. In this data set three people are present. Ones moves from the bottom up along
the line of x = 12 and the two others are walking behind each other along x = 10.
The baseline model loses track of the person multiple times, while the RL-based
model manages to keep the track-id:s consistent. Furthermore, the tracks are closer
to the ground truth in the RL-case and the baseline produced a more wobbly result
which is reflected in the MOTP.

Finally, we show the resulting tracks on the whole realworld1 data set in Fig-
ure 23. Also here, the RL-agents do a better job at not loosing track of a person
and the resulting tracks are also closer to the ground truth than for the baseline
case.

49

(a) Tracking results from the baseline model.

(b) Tracking results from the RL-based model.

Figure 21: Comparison of tracking results between baseline model (a) and RL-based
model (b) on a section of the testdata data set. The baseline model loses the track
in the sharp turn in the bottom right corner, while the RL model follows the ground
truth track. Scale in meters.

50

(a) Tracking results from the baseline model.

(b) Tracking results from the RL-based model.

Figure 22: Comparison of tracking results between baseline model (a) and RL-based
model (b) for a region of the realworld2 data set. Scale in meters.

51

(a) Tracking results from the baseline model.

(b) Tracking results from the RL-based model.

Figure 23: Comparison of tracking results between baseline model (a) and RL-based
model (b) on the realworld1 data set. Scale in meters.

52

5.3.2 Triangulation Results

We now show some further visualisations of the tracking. In Figures 24, 25 below
we show how local tracks from di↵erent cameras have been associated to the same
global track and are fused to form the states of the global track. The yellow, red and
blue dots are the states from each camera projected onto the ground plane. We also
show the triangulated and Kalman filtered states in purple and the ground truth
in black. In the top figure, we see how the associated ground projections from two
local tracks, one in Camera 1 and one in Camera 3 are fused using triangulation
and then filtered to produce the purple global track. In Figure 25 we see how the
pedestrian always visible in camera two, disappears in camera 1 and enters the field
of view of Camera 3 and then again becomes visible in Camera 1.

Figure 24: Projected image points as dots and the triangulated and Kalman filtered
states as crosses on the testdata data set. Solid black line represents the ground
truth positions. Scale in meters.

53

Figure 25: Projected image points as dots and the triangulated and Kalman filtered
states as crosses on the testdata data set. Solid black line represents the ground
truth positions. Scale in meters.

5.4 Reinforcement Training Results

In this section, some results of the training process and the distributions of actions
taken by the global reinforcement learning agents are presented. In Figures 26 and
27 below we show a visualisation of the actions taken by the RL-agents on the data
sets trainingdata and testdata. Each row represents the distribution of actions
taken by the agents when they received a combination of associated local tracks from
the di↵erent cameras. The first row represents the situation where no local tracks
were associated to the agent ([0,0,0]). The second row represents the situation where
the agents receive a local track from the first camera only ([1,0,0]), and so on. Note
that a0 terminates the track, a1 restarts the Kalman filter, a2�a8 use a combination
of local tracks to update the Kalman filter, a9 uses the Kalman prediction to update
its state, and a10 also uses the prediction but in addition, also puts the track in a
hidden state.

In Figures 26 and 27 we can see that when the global RL agents received local
tracks, they learned in most cases to use all of them to update the Kalman filter.
The RL model however sometimes used a subset of the associated local tracks as
opposed to the baseline. Furthermore, the RL model also occasionally ignored the
local tracks associated to it and updated the filter using the Kalman prediction,

54

and occasionally restarted the Kalman filter. When no local tracks were associated
to it, illustrated on the first row of Figure 26, the RL agents sometimes used the
Kalman prediction and put the track in a hidden state. Sometimes it terminated
the track, and sometimes it used an illegal action (triangulating non existing local
tracks), making the track stay at the same location.

Figure 26: Proportion of times actions a0 � a10 were taken by the RL agents on the
trainingdata data set. Each row in the figure represents the combinations of local
tracks associated to the agent from the cameras, [Camera 1, Camera 2, Camera 3].
A zero (0) means that no local track is associated to the agent from the camera, and
a one (1) means that a local track was associated to the agent from the camera. Note
that a0 terminates the track, a1 restarts the Kalman filter, a2�a8 use a combination
of local tracks, a9 uses the Kalman prediction to update its state, and a10 also uses
the prediction and in addition puts the track in a hidden mode.

55

Figure 27: Proportion of times actions a0 � a10 were taken by the RL agents on
the testdata data set. Each row in the figure represent the combinations of local
tracks associated to the agent from the cameras, [Camera 1, Camera 2, Camera 3].
A zero (0) means that no local track was associated to the agent from the camera,
and a one (1) means that a local track was associated from the camera.

Figure 28: Proportion of times actions a0� a10 were taken using the SORT baseline
on testdata data set. Each row in the figure represent the combinations of local
tracks associated to the agent from the cameras, [Camera 1, Camera 2, Camera 3].
A zero (0) means that no local track was associated to the agent from the camera,
and a one (1) means that a local track was associated from the camera.

56

The average episode reward for the global RL agent during both pre-training and
training are shown in Figures 29 and 30. The local training results have been put
in the appendix, Section A.3.

Figure 29: Pre-training reward for the global RL agent

In the pre-training, the RL agent seems to have converged to around 97, meaning
that it mimics the baseline thresholds almost perfectly on the training data. Since
an episode had length 100, a policy identical to the baseline would get the reward
100. Next we show the results of the training with the final training reward function.
According to Figure 30, the RL agents ended up with an average reward of around
410 (the number of steps per episode during training was set to 500 frames), but
the variance was still quite high.

Figure 30: Main training reward

57

5.5 Time Latency

The YOLO detection had a latency of ⇡ 23 ms per frame. Furthermore, the local
tracker that runs on a single CPU took ⇡ 1.4 ms and the global fusing update
took ⇡ 4.5 ms per frame on average on the trainingdata data set. The code
was evaluated using Python and an optimised C implementation would probably
be faster. In a setup where the local tracking is run locally in each camera, the
resulting process time for each frame would thus be ⇡ 23 + 1.4 + 4.5 = 28.9 ms or
34.6 FPS. It is worth to note that this does not take into account communication
latency between the camera and the fusing centre. The estimated FPS shows that
the algorithms can be considered real-time. The reinforcement learning-network also
had a very short inference time, and thus did not a↵ect the latency of the algorithm
compared to the baseline (SORT).

58

6 Discussion

We will now proceed to discuss the results of this thesis. The first thing to notice
is that the reinforcement learning algorithm is on par with the SORT baseline,
outperforming the baseline with a few percentages in most scenarios in global setting.
Similarly to the results of [34] our experiments confirm that the local RL agents can
outperform the local SORT baseline in MOTA score, as can be seen in the appendix
Section A.3. However, we only managed to reproduce the results of [34] in Camera
2.

The max distance for the association of detections and tracks (described in Section
4.3.1) was the same for the baseline model and the RL-model, so the improvement
in MOTA and MOTP was only due to better choices of what was done with those
associations. The baseline model was sensitive to our predefined thresholds. By
changing the thresholds in the SORT baseline, we could improve some evaluation
measure, while impairing others. The idea with the reinforcement learning approach
was to have a more dynamic, non-linear, decision making process for managing the
tracks and the detections associated to those tracks. By analysing the actions taken
by the RL agent on our data sets, we can conclude that a new, more dynamic deci-
sion process was actually learnt.

6.1 Detections and Association

The quality of the detections was a bottleneck in our pipeline. Without accurate
detections it is not feasible to achieve a high tracking accuracy. As shown in Table
3 the YOLO detection model had a high accuracy on our data sets. A good data
association method is also needed to make the track management work well. The
Hungarian algorithm is a good choice but requires that the distance function can
accurately compare detections and tracks. For each local camera we used the popular
IOU metric.

In the global tracking, the projections of the local tracks from the cameras to the
ground plane introduces an error bias. The projections of the local tracks often end
up closer to the camera than the ground truth position, which can be detrimental
to the associations. The bias can be seen in Figure 24 and is due to multiple
factors. Mainly because the central point between the pedestrians’ feet (which we
project onto the ground plane for association) does not always correspond to the
centre bottom position of the bounding box. This problem arises due to the feet
not always being aligned with the bottom of the bounding box and that humans
are not planes, but have a thickness. The bias thus leads to the projections often
being biased towards the direction of the camera. One way to mitigate this is to try
to learn the bias or to use a di↵erent association cost. There are several algorithms
that use visual and motion features for the association like in [26]. We, however,
mainly focused on improving the track management.

59

There is also an important di↵erence between the associations of the local RL agent
and the global RL agent. During the association of detections in a camera to a local
RL agent, no threshold for the association cost was set (as opposed to the baseline
that requires IOU > 0.3). This means that in the local RL method it was entirely
up to the agent to decide if it wants to use a detection or not. Thus no detections
were filtered away in the association.

For the global RL agents it is slightly more di�cult to not filter the associations in
some way. When associating the local tracks to the global RL agents we perform
the Hungarian algorithm over all global tracks, even if the global track is not in
the field of view of the camera. Since we do not want to associate local tracks to
global tracks that are not not in view of the camera, we implement a threshold of 6
m for association to mitigate most of this problem. The main issue arise when new
objects enter the scene and could be erroneously associated to a global track that is
not in the field of view of the camera that the object first appeared in. This makes
it more di�cult to initiate new global tracks as the Hungarian algorithm would try
to associate the local track to an existing global track, even if it is outside of the
cameras field of view. With a 6 m threshold this would rarely happen and it is up
to the agent to learn to not use local tracks associated from cameras in the wrong
place.

We could work around this threshold by defining a domain for each of the cameras’
(ck) field of view in world coordinates. Then we could decide to only associate a
local track l

i
k to the global tracks g 2 G positioned in the domain of camera ck. This

would ensure that new global tracks could be initiated from local tracks and not be
associated to a global track not in field of view. Due to time constraints we did not
have time to implement this and the threshold method worked well on our scenes.

6.2 Training and Behaviour of Reinforcement Learning Agents

As mentioned in Section 4.5.1 we had some troubles to get the RL agents to converge
in training using only a reward based on MOTA like [34]. We managed to work
around this by pre-training the policy network to mimic the policy of the baseline.
The reason that the MOTA based reward did not work from start could be that
the training data was not diverse enough, that we did not manage to choose good
training hyperparameters or that the network architecture was not suitable.

Due to the convergence problems, we pre-trained the RL agents to behave like the
baseline first and their polices were quite similar after this stage. After the pre-
training (see Figure 30) we managed to get a converging behaviour in training with
the MOTA based reward of around 410. This training was done to change the poli-
cies of the global RL agents to maximise the MOTA and would thus allow them
to move away from the baseline policy. The distributions of actions taken by the
RL agents on the test set however showed that the global RL agents still behaved
similarly when deciding when to use actions a2 � a8. These actions correspond to
using di↵erent combinations of associated local tracks from the cameras to update

60

the Kalman filter. However, with regards to the other actions the policy changed
more. It is interesting to note that the learned policy seems to exploit the fact that
”illegal” actions made the track stay in the same position. Those illegal actions
were used more often than the Kalman predictions, indicating that the Kalman pa-
rameters might not be optimal, or at least that the Kalman predictions were not
accurate in situations with missing detections. It would have been interesting to
stop the pre-training early and not let the RL-agent learn too much of the baseline’s
policy. For some of the training cases (for example the local RL agent in camera one
see Figure 34 in Section A.3 in the appendix) the training seemed to only fluctuate
around some value and not improve much after the pre-training. Perhaps once the
local agent learnt the approximate baseline it ended up in some local maxima that
was di�cult to get out of. If we instead stopped the pre-training earlier and then
continued with only a MOTA based reward we might learn a policy further from
the baseline. However due to time constraints we did not have time to do this.

We believe that a more diverse training set and a more advanced policy network
might increase the performance of the global RL agents. Furthermore, our neural
network is a shallow network with ReLU activations. Perhaps using more complex
architectures and tricks to help training would help the RL agent to take better ac-
tions. This would include things like batch normalisation, skip connections, dropout
layers etc. More importantly we believe the agent did not have time to encounter
enough situations where actions di↵erent from the baseline would benefit the MOTA,
and therefore it could not learn a more complex behaviour than it did. These situ-
ations could be occlusions as they were somewhat sparse in the training data. The
global agent did however outperform the baseline on both the simulated test set and
the real-world data. From the results in Table 4 we can see that the agent trained on
a synthetic data set got improved tracking results compared to the SORT algorithm
on real video recordings. This indicates that it is possible to train our proposed
method on simulated data and improve the results on real world data.

6.3 Scene Variations and Simulation of Data

We now proceed and discuss some variations in the scenes and their impact on the
performance of the RL agents. First we remind the reader that we have modelled
two simulated scenes. The first scene is where we generated the training and test
data sets. The second scene is where we generated the simdata set (see Figure
14). As expected, the local RL agents performed the best on the camera that they
were trained on. The di↵erence in performance between the local RL method and
the SORT method was quite small for all the data sets which can be seen in the
appendix Section A.3. For Camera 2 in the training and test set, we managed to
recreate the results in [34] and gained approximately 3% in MOTA score on the test
data set set compared to the SORT algorithm. However, for the other cameras this
was not the case and RL agents performed slightly worse on the test set. Due to
time constraints we only trained the local RL agents on the cameras from one of

61

the scenes and we did not train any local RL agents on the cameras of the simdata
set. Instead, we evaluated the RL agent, trained on Camera 2 in the trainingdata
set, on the cameras of the simdata set. The performance of this local RL agent still
managed to perform comparably well on the simdata set compared to the SORT
algorithm. This was most likely due to the input in image space being normalised
with the resolution of the cameras and that the scenes were quite similar from a
single camera perspective (i.e parts of the image space that were occluded were in
approximately the same locations in both scenes etc).

In a few cameras however, spatial context of the scene di↵ered quite a bit. For
example Camera 2 in the training data, when pedestrians enter the scene from the
right, they can only do so where the door is located as can be seen in Figure 32b.
This di↵ers from Camera 3 where pedestrians can enter along the majority of the
right side of the image space (see Figure 32 c). We can thus not expect the local
RL agent trained on Camera 2 to perform equally well on Camera 3.

The performance of the global RL policy was highly dependent on the scene. The
learned policy did not transfer its knowledge to other scenes with di↵erent coordi-
nate systems and camera setups, as shown by the poor results on simdata in Table
4. This indicates that the model was overfitted to our particular setup of cameras.
However, this bias to a specific camera network and scene is perhaps expected. One
could try to train on a much larger model and on more scenes and with di↵erent
camera locations to reduce the overfitting to a specific scene setup. One could also
try to add some type of scene description and camera matrices as input to the policy
network to reduce the bias.

Another limitation of the simulated scene we trained on was that the pedestrians
were in constant motion. To get more realistic behaviour we would have to spend
more time creating the simulated scene but since the constant velocity pedestrian
model works quite well as shown in [39] we did not do this. A benefit of simulating
data in Blender however is that it allows one to choose exactly what scenarios to
train on and it gives you the ground truth of these scenarios too.

6.4 Coordinate Transformation

While the ground in all simulated data was modelled as a perfectly flat plane, this
was not true for the real-world data sets where the plane was a coarse approximation.
When the ground is not a perfect plane, transformation between image space and
the 3D space will not be perfect. In our case, the plane was a rough approximation,
but if a more complex ground model exists for a scene, a height map for example,
then we could use other techniques such as ray marching to find the intersection
between ray and ground plane instead.

As can be seen in Figure 24, the projections of the local tracks had a clear bias.
However, as can be seen in the same figure, by using triangulation to fuse the local
tracks and filtering the track using the Kalman filter, we managed to get a better

62

transformation between local coordinates and world coordinates. Furthermore, the
further away form the camera a detection was made, the less accurate the projection
became. One of the reasons behind using the RL based model was to be able to
dynamically use detections with good projections depending on the distance from
the cameras, etc. The RL agent did this, at least to some extent, as is shown in
Figure 26.

63

7 Conclusion

7.1 Conclusions

The results show that the simple SORT-baseline works well on our test set. The
model is fast, simple and produces tracks close to the ground truth which can be
seen by the MOTA and MOTP scores. We also show that the RL method can
improve the tracking results compared to the baseline in both image space and in
the global coordinates. The global RL method was however highly dependent on
the scene that it was trained on.

Finally, we were able to achieve higher tracking accuracy for the RL method com-
pared to the SORT baseline on real-world data by training a model on synthetic
data. The network may need to be trained on a more diverse set of scenes in order
to produce consistent improvements in tracking results in a more general setting.

7.2 Future work

In the future it would be interesting to incorporate scene descriptions and camera
set ups in the RL agent’s observation space to remove the scene dependency of the
agent.

64

References

[1] Bernardin, K., Stiefelhagen, R. (2008) Evaluating Multiple Object Tracking Per-
formance: The CLEAR MOT Metrics. J Image Video Proc 2008, 246309.

[2] Bewley, B., Ge, Z., Ott L.,Ramos F. and Upcroft B. (2016) Simple Online and
Realtime Tracking, IEEE International Conference on Image Processing (ICIP)
pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003.

[3] Bochkovskiy, A., Wang, C-Y. and Liao, H-Y. M. (2020)
YOLOv4: Optimal Speed and Accuracy of Object Detection. url:
https://arxiv.org/abs/2004.10934v1 (Accessed: 20-03-2022).

[4] Brasó, G., and Leal-Taixé, L. (2020) Learning a Neural Solver for Multiple Ob-
ject Tracking. IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 6246-6256 doi: 10.1109/CVPR42600.2020.00628.

[5] Brendel, W., Amer, M. and Todorovic, S. (2011) Multiobject tracking
as maximum weight independent set. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 6246-6256, doi:
10.1109/CVPR42600.2020.00628..

[6] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.
and Zaremba, W. (2016) OpenAI Gym. url: https://arxiv.org/abs/1606.01540
(Accessed: 15-04-2022).

[7] Chavdarova, T. et al., (2018) WILDTRACK: A Multi-camera HD Dataset
for Dense Unscripted Pedestrian Detection, 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, pp. 5030-5039, doi:
10.1109/CVPR.2018.00528.

[8] Chiu, H-K., Prioletti, A., Li, J. and Bohg, J. (2020) Proba-
bilistic 3D Multi-Object Tracking for Autonomous Driving. url:
https://arxiv.org/abs/2001.05673 (Accessed: 17-06-2022).

[9] Dalal, N. and Triggs, B. (2005) Histograms of oriented gradients for
human detection. IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), 2005, pp. 886-893 vol. 1, doi:
10.1109/CVPR.2005.177.

[10] Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R. and Cucchiara,
R. (2018) Learning to Detect and Track Visible and Occluded Body Joints in a
Virtual World. url: https://arxiv.org/abs/1803.08319 (Accessed: 17-06-2022).

[11] Ferryman, J. and Shahrokni, A. (2009) PETS2009: Dataset and challenge, 2009
Twelfth IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, pp. 1-6, doi: 10.1109/PETS-WINTER.2009.5399556.

[12] Fischler, M. A. and Bolles, R. C. (1981) Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM 24, 6 (June 1981), 381–395, doi: 10.1145/358669.358692.

65

[13] Fleuret, F., Berclaz, J., Lengagne, R. and Fua, P. (2008) Multi-Camera Peo-
ple Tracking with a Probabilistic Occupancy Map IEEE Transactions on Pat-
tern Analysis and Machine Intelligence. Vol. 30, num. 2, pp. 267-282, doi:
10.1109/TPAMI.2007.1174.

[14] Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014) Rich feature
hierarchies for accurate object detection and semantic segmentation IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580-587, doi:
10.1109/CVPR.2014.81.

[15] Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., et al.. (2021)
AliceVision Meshroom: An open-source 3D reconstruction pipeline. 12th ACM
Multimedia Systems Conference (MMSys 2021), Sep 2021, Istanbul, Turkey.
pp.241-247, doi: 10.1145/3458305.3478443.

[16] Guo, Y., Cheung N-M. (2018) E�cient and Deep Person Re-Identification using
Multi-Level Similarity. IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2335-2344, doi: 10.1109/CVPR.2018.00248.

[17] Gustafsson, F., Gunnarsson F., Bergman. N., Forssell, U., Jansson, J., Karls-
son, R., Nordlund, P-J. (2002) Particle filters for positioning, navigation, and
tracking. IEEE vol. 50, no. 2, pp. 425-437, doi: 10.1109/78.978396.

[18] Hartley R. and Zisserman A. (2003) Multiple View Geometry in Computer Vi-
sion Second Edition. Cambridge University Press.

[19] Haykin, S. (2009) Neural networks and machine learning 3ed. Pearson.

[20] Heindl, C. (2021) py-motmetrics, GitHub repository, url:
https://github.com/cheind/py-motmetrics (Accessed: 17-06-2022).

[21] Iguernaissi, R., Merad, D. and Aziz, K. et al. (2019) People tracking in multi-
camera systems: a review. Multimed Tools Appl 78, pp. 10773–10793, doi:
10.1007/s11042-018-6638-5.

[22] Kalman, R. E. (1960) A New Approach to Linear Filtering and Prediction Prob-
lems. ASME. J. Basic Eng. March 1960; 82(1): 35–45.

[23] Kingma, D. P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations.

[24] Krizhevsky, A., and Sutskever, I. and Hinton, G. E. (2012) Ima-
geNet Classification with Deep Convolutional Neural Networks. url:
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf (Accessed: 17-06-2022).

[25] Kuhn, H.W. (1955) The Hungarian Method for the assignment problem, Naval
Research Logistics Quarterly 2: 83–97.

[26] Liu, W., Octavia C. and Sznaier, M. (2017) Multi-camera Multi-object Tracking
url: https://arxiv.org/abs/1709.07065 (Accessed: 17-06-2022).

66

[27] Lowe, D G. (1999) Object recognition from local scale-invariant features (PDF).
Proceedings of the International Conference on Computer Vision. Vol. 2. pp.
1150–1157. doi:10.1109/ICCV.1999.790410.

[28] Mukilan, P. , Wogderess, S. (2021) Human object detection: An enhanced
black widow optimization algorithm with deep convolution neural network. url:
https://link.springer.com/article/10.1007/s00521-021-06203-3 (Accessed: 17-
06-2022).

[29] (2015) Lecture notes in computer vision url:
https://www.maths.lth.se/media11/FMA270/2015/alllectures.pdf (Accessed:
17-06-2022).

[30] Priisalu Maria, Lecture notes in machine learning at LTH

[31] Ra�n, A., Hill, A., and Gleave, A., Kanervisto, A., Ernestus, M. and Dor-
mann, N. (2021) Stable-Baselines3: Reliable Reinforcement Learning Implemen-
tations. Journal of Machine Learning Research. http://jmlr.org/papers/v22/20-
1364.html (Accessed: 17-06.2022).

[32] Redmon J., Divvala S., Girshick R. and Farhadi A. (2016) You Only Look Once:
Unified, Real-Time Object Detection, IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[33] Rezatofighi, S. H., Milan, A., Zhang, Z., Shi Q., Dick, A. and Reid, I. (2015)
Joint Probabilistic Data Association Revisited. IEEE, International Conference
on Computer Vision (ICCV), pp. 3047-3055, doi: 10.1109/ICCV.2015.349.

[34] Rosello P. and Kochenderfer M.J. (2018) Multi-Agent Reinforcement Learning
for Multi-Object Tracking. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS ’18). International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
1397–1404.

[35] Salscheider, N. O. (2020) FeatureNMS: Non-Maximum Suppression by Learning
Feature Embeddings. url: https://arxiv.org/abs/2002.07662 (Accessed: 17-06-
2022).

[36] Schulman J., Levine S., and Moritz P., Jordan M.I. and Abbeel P. (2015) Trust
Region Policy Optimization. url: https://arxiv.org/abs/1502.05477 (Accessed:
20-05-2022).

[37] Schulman, J., Wolski, F., Dhariwal P.,Radford, A. and Klimov O. (2017) Prox-
imal Policy Optimization Algorithms. url: https://arxiv.org/abs/1707.06347
(Accessed: 05-06-2022).

[38] Sutton R.S and Barton A.G. (2018) Reinforcement Learning: An Introduction.
Second Edition. MIT Press, Cambridge.

67

[39] Schöller, C., Aravantinos, V., Lay, F. and Knoll, A. (2019) What the Con-
stant Velocity Model Can Teach Us About Pedestrian Motion Prediction. url:
https://arxiv.org/abs/1903.07933 (Accessed: 17-06-2022).

[40] Sugimura, D., Kitani, K. M., Okabe, T., Sato, Y., Sugimoto, A. (2009) Using
individuality to track individuals: Clustering individual trajectories in crowds
using local appearance and frequency trait. IEEE 12th International Conference
on Computer Vision 2009, pp. 1467-1474, doi: 10.1109/ICCV.2009.5459286..

[41] Terry, J. K. et al. (2020) PettingZoo: Gym for Multi-Agent Reinforcement
Learning. url: https://arxiv.org/abs/2009.14471 (Accessed: 17-06-2022).

[42] Terry, J. K. and Black, B. and Hari, A. (2020) SuperSuit: Sim-
ple Microwrappers for Reinforcement Learning Environments. url:
https://arxiv.org/abs/2008.08932 (Accessed: 17-06-2022).

[43] Thiago T.S. and Morimoto C.H. (2011). Multiple camera people detection and
tracking using support integration,Pattern Recognition Letters, Volume 32, Is-
sue 1, Pages 47-55, ISSN 0167-8655.

[44] Wojke, N., Bewley, A. and Paulus, D. (2017) Simple and Online Realtime Track-
ing With A Deep Association Metric. url: https://arxiv.org/pdf/1703.07402.pdf
(Accessed: 17-06-2022).

[45] Xu, S., Shin, H. and Tsourdos, A. (2019) Distributed Multi-Target Tracking with
D-DBSCAN Clustering. Workshop on Research, Education and Development
of Unmanned Aerial Systems (RED UAS), 2019, pp. 148-155 doi: 10.1109/RE-
DUAS47371.2019.8999712.

[46] Yang, B., Huang, C., Nevatia, R. (2011) Learning a�nities and dependen-
cies for multi-target tracking using a CRF model. CVPR pp. 1233-1240, doi:
10.1109/CVPR.2011.5995587 .

[47] You, Q., Jiang, H. (2020) Real-time 3D Deep Multi-Camera Tracking. url:
https://arxiv.org/abs/2003.11753 (Accessed: 17-06-2022).

[48] Yu, C., Velu, A., Vinitsky, E. Wang, Y., Bayen, A. M. and Wu, Y. (2021)
The Surprising E↵ectiveness of MAPPO in Cooperative, Multi-Agent Games.
https://arxiv.org/abs/2103.01955 (Accessed: 17-06-2022).

[49] Zhang, L., Li, Y., and Nevatia, R. (2008) Global data association for multi-
object tracking using network flows. IEEE Conference on Computer Vision and
Pattern Recognition, 2008, pp. 1-8, doi:doi: 10.1109/CVPR.2008.4587584.

68

A Appendix

A.1 Data sets

The following table displays information about the data sets used in this thesis.

Name Type Number of cameras Number of persons Frames FPS Duration (s) Resolution

simdata Simulated 3 6 600 24 25 2688 ⇥ 1512

realworld1 Recorded 2 3 321 30 10 2688 ⇥ 1512

realworld2 Recorded 2 3 371 30 12 2688 ⇥ 1512

realworld3 Recorded 2 5 441 30 17 2688 ⇥ 1512

trainingdata Simulated 3 12 5000 24 208 2688 ⇥ 1512

testdata Simulated 3 8 1000 24 41 2688 ⇥ 1512

Figures 31 - 33 show the views from the cameras in the di↵erent data sets.

(a) Camera 1. (b) Camera 2.

Figure 31: Frame from data set realworld1.

69

(a) Camera 1. (b) Camera 2.

(c) Camera 3.

Figure 32: Frame from data set testdata.

(a) Camera 1. (b) Camera 2.

(c) Camera 3.

Figure 33: Frame from data set simdata.

70

A.2 Local Tracking Results

The following tables show the results for mono-camera tracking in each camera in
all of our data sets using both the baseline and reinforcement learning method.

Dataset MOTA" MOTP# FP# FN# IDs# Precision" Recall"

trainingdata, Cam 1, Baseline 92.3 % 0.229 1420 1933 319 97 % 95.9 %

trainingdata, Cam 1, RL 93.9 % 0.225 470 2138 294 99.0 % 95.5 %

trainingdata, Cam 2, Baseline 91.4 % 0.253 1320 635 142 94.7 % 97.4 %

trainingdata, Cam 2, RL 94.7 % 0.245 373 804 117 98.4 % 96.6 %

trainingdata, Cam 3, Baseline 97.0 % 0.226 232 409 136 98.4 % 99.1%

trainingdata, Cam 3, RL 94.9 % 0.235 516 693 81 98 % 97.3%

Dataset MOTA" MOTP# FP# FN# IDs# Precision" Recall"

testdata, Cam 1, Baseline 94.6 % 0.212 150 194 25 97.8 % 97.1 %

testdata, Cam 1, RL 94.1 % 0.209 93 286 25 98.6 % 95.8 %

testdata, Cam 2, Baseline 88.6 % 0.234 198 144 10 97.8 % 97.1 %

testdata, Cam 2, RL 91.4 % 0.219 96 157 11 96.8 % 94.9 %

testdata, Cam 3, Baseline 97.8 % 0.209 37 57 15 99.2% 98.8%

testdata, Cam 3, RL 97.7 % 0.214 42 65 7 99.1 % 98.7 %

Dataset MOTA" MOTP# FP# FN# IDs# Precision" Recall"

simdata, Cam 1, Baseline 92.4 % 0.231 62 153 31 98.0 % 95.3%

simdata, Cam 1, RL 83.8 % 0.237 322 176 24 90.4 % 94.5 %

simdata, Cam 2, Baseline 97.0 % 0.226 19 52 28 99.4 % 98.4 %

simdata, Cam 2, RL 96.1 % 0.239 38 80 13 98.9 % 97.6 %

simdata, Cam 3, Baseline 82.3 % 0.223 98 377 33 96.2 % 86.9 %

simdata, Cam 3, RL 79.8 % 0.220 180 372 28 93.3 % 87.0 %

Note that the evaluation on the simdata set in the table above, we used an RL agent
trained on the trainingdata set due to time constraints. The RL agent was trained
on Camera 2 (we only include it for completeness).

A.3 Local RL agent training results

In the following section we show the training results of the pre-training and ’post-
training’ in each camera of the training data set.

71

(a) Average rewards during pre-training per episode for Camera 1.

(b) Average rewards during training per episode for Camera 1.

Figure 34: The figure shows how the reward increased during training. The episode
lengths were in this case 300 frames both in pre-training and training.

72

(a) Average rewards during pre-training per episode for Camera 2.

(b) Average rewards during training per episode for Camera 2.

Figure 35: Shows how the reward increased during training. Note that the pre-
training were trained over 200 frames and 300 frames in training..

73

(a) Average rewards during pre-training per episode for camera 3.

(b) Average rewards during training per episode for camera 3.

Figure 36: Shows how the reward increased during training. Note that the training
was done with an episode length of 200.

A.4 Summary of hyperparameters

Hyperparameter Local pre-training Local training Global pre-training Global training

Learning Rate 10�4 5⇥ 10�5 10�4 5⇥ 10�5

Discount Factor � 0.95 0.95 0.95 0.95

Clip Range 0.2 0.2 0.2 0.2

Batch Size 256 256 128 128

74

A.5 Kalman parameters

Global Kalman parameters:

R = diag(4, 4), �xy = 1

Local Kalman parameters:

R = diag(1e1, 1e1, , 1e2, 1e2), �xy = 1, �a = 1e� 4, �r = 1e� 4

A.6 Images

Figure 6 licensed under the Creative Commons Attribution-Share Alike 4.0 Inter-
national license. Source: Wikimedia Commons. Author: Adrian Rosebrock.

Illustration 10 from [1] under Creative commons licence.

75

Master’s Theses in Mathematical Sciences 2022:E32
ISSN 1404-6342

LUTFMA-3480-2022
Mathematics

Centre for Mathematical Sciences
Lund University

Box 118, SE-221 00 Lund, Sweden
http://www.maths.lth.se/

	Introduction
	Problem Formulation

	Background
	Theory
	Cameras
	Homogeneous Coordinates
	The Pinhole Camera Model
	Camera Calibration
	Inverse Projection
	Sensor Fusion by Triangulation

	YOLO Detections
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Activation Functions and Non-Linearities
	The YOLO Architecture
	Non-Maximum Suppression

	Kalman Filtering
	Data Association and the Hungarian Algorithm
	Reinforcement Learning
	Proximal Policy Optimization

	Performance Measures

	Methodology
	Data Sets and Calibrations
	Simulated Data
	Real-World Data

	Introduction to Pipelines
	Multi-Camera SORT
	Local SORT Tracker
	Global Baseline Tracker

	Multi-Agent Reinforcement Learning for Multi-Object Tracking
	Local RL Model
	Global RL Model

	Training Setup for RL
	Local RL-Agent Training
	Global Pre-Training and Training

	Results
	Camera Calibration
	Detection Results
	Tracking Results
	Visualisation of Results
	Triangulation Results

	Reinforcement Training Results
	Time Latency

	Discussion
	Detections and Association
	Training and Behaviour of Reinforcement Learning Agents
	Scene Variations and Simulation of Data
	Coordinate Transformation

	Conclusion
	Conclusions
	Future work

	Appendix
	Data sets
	Local Tracking Results
	Local RL agent training results
	Summary of hyperparameters
	Kalman parameters
	Images

