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Abstract

Background 4D-flow is a powerful tool capable of capturing 3-dimensional,
time-resolved flow measurements of blood flow in the body. Their current
use is limited by resolution and scan times. A proposed solution is to use
Simulation Based Imaging (SBI). This combines lower resolution 4D-flow scans
with CFD simulations to improve resolution and reduce scan times. Previous
work has focused on inlet and outlet conditions. This thesis explores the
possibility of adding geometry correction to an optimization-based framework
for SBI.

Methods Three different ways of deforming the mesh were implemented
to explore geometry optimization. First finding the correct the diameter of a
simple channel, second finding an initial rotation and translation error, and
finally small boundary perturbations using Radial Basis Functions. The CFD
simulations were performed using higher order finite element discretization. To
compare the CFD simulations the MR images a forward function was used and
the optimization was performed using gradients calculated using the adjoint
method as well as finite differences.

Results All three cases managed to correct the geometry errors both with
and without noise in the MR-image, but the errors increased with increased
noise levels.

Conclusion The results shows that all three approaches worked in 2D
but was sensitive to noise and flow conditions.
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Abbreviations

CFD Computational Fluid Dynamics
CMR Cardiovascular Magnetic Resonance
FEM Finite Element Method

HIKING High-resolution Imaging with a priori Knowledge
Incorporating the Navier-Stokes equation and the
discontinuous Galerkin method

MRI Magnetic Resonance Imaging
PC-MR Phase Contrast Velocity Measurements
RBF Radial Basis Function
SBI Simulation Based Imaging
Voxel The three dimensional pixels of the 4D-flow image
WSS Wall Shear Stress



Chapter 1

Introduction

The leading cause of deaths today is cardiovascular diseases. According to one
study [1] these account for 31.8% of total deaths in the world. For comparison,
neoplasms (e.g. tumors and cancers) accounts for 17.1% of total deaths. It is
therefore important to further our understanding of how to diagnose, treat
and prevent these illnesses.

The cardiovascular system refers to the organs responsible for pumping
and transporting blood throughout the body, i.e. the heart and the blood
vessels. Through the advancement of Magnetic Resonance Imaging (MRI)
several non-invasive ways of studying the blood flow have become available for
physicians and researchers and one of these is the ability to take 3-dimensional
time-resolved images, so-called 4D-flow, of the blood flow. These images
enable both measurements of flow parameters such as stroke volume as well
as visualization of flow. The ability to acquire data over an entire volume in
just one scan is also potentially advantageous.

However, the use of 4D-flow in clinical applications is currently limited.
The main reason for this the long time required to acquire a single 4D-Flow
scan. Shorter scan times enables more patients to be scanned with a single
MR machine. It can also be unpleasant or sometimes impossible for patients
to remain stationary for the required time to take the images. It is therefore
desirable to minimize the time in an MR machine. Reducing the time required
for a scan is possible but this will result in either lower resolution or more
noisy images.[2]

One proposed solution to this is to combine lower resolution 4D-flow images
with computational fluid dynamics (CFD) into so-called Simulation-Based
Imaging (SBI). There are several researchers [3, 4] that have used the data from
4D-flow scans to acquire boundary conditions for CFD simulations and there
has also been some previous researchers [5, 6] that have used optimization-based
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approaches for improving SBI that uses fluid simulations that are optimally
matched to the 4D-flow data.

Simulation Based Imaging has shown some promising results[5]. However,
there are some limitations to these methods. One of these limitations is that the
geometry’s influence on the overall results is unknown as the current framework
only optimizes over inlet and outlet conditions. It has been hypothesized that
the framework is potentially sensitive to variations in the geometry. For
example the walls of the vessels are not rigid and so could potentially move
during the cardiac cycle, the scan has a limited resolution and the method for
extracting the geometry is subject to errors as well. All of these can have an
effect on the flow but so far this effect has not been properly evaluated.

1.1 Purpose

The purpose of this thesis is to explore if different errors in the initial geometry
can be automatically corrected using 4D-flow data and optimization.

1.2 Aims

The aim of this master thesis is to implement and evaluate how optimization
over different geometry parameters performs. This will be performed in steps
of increasing complexity starting with very simple optimization over only one
geometry parameter and working towards more and more complex problems
with multiple geometry parameters as well as inlet flow conditions.
To achieve these aims we will need to meet the following goals:

• Implement functions for moving and deforming the mesh of the geometry
to enable optimization over different geometry parameters.

• Evaluate performance of these parameters in isolation as well as simulta-
neously with optimizing over inlet velocity.

• Evaluate performance with varying noise levels.

1.3 Limitations

• Simple 2-dimensional steady-state simulations will be used, this enables
faster implementations and reduces calculation times.

• Synthetic data will be used for the 4D-flow data which enables more
control over establishing a ground truth for the simulations.
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Chapter 2

Background

2.1 The Cardiovascular System

Figure 2.1: The cardiovas-
cular system, the major blood
vessels in the body together
with the heart. Red is oxy-
genated blood and blue is the
deoxygenated blood.

The cardiovascular system, sometimes called the
circulatory system, refers to the heart and blood
vessels that are the organs responsible for pump-
ing and transporting blood throughout the body
(see Figure 2.1). These can be compared to a
system where the blood vessels are channels, the
heart is the motor/pump and the blood is the
transport medium responsible for supplying the
body with oxygen, vital nutrients and the re-
moval of waste products.

The cardiovascular system is a looping system
[7], beginning with the heart pumping the deoxy-
genated blood returning from the body through
the pulmonary circulation system, also known
as the lungs. Through breathing, the blood is
oxygenated in the lungs and returns to the heart
where it is pumped out to the rest of the body,
initiating the loop again. [8]

2.1.1 Cardiovascular Disease

Maintaining blood flow in the cardiovascular sys-
tem is vital for the functioning of the body. Any
defects that limits the cardiovascular systems
ability to do so can have severe consequences.
An example of such a heart disease that effects
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the flow in the circulatory system is Aortic coarctation. This is a narrowing
at the beginning of the descending aorta and is a congenital birth defect that
occurs in approximately 4 out of every 1000 births [9, 10]. However the most
common cause of death due to cardiovascular disease is coronary heart disease
(heart attack) and cerebrovascular disease (stroke). [11] These are often a
consequence of atherosclerosis [12], a buildup of plaques in the blood vessel
walls that can lead to disrupted blood flow as well as blood clots.

There have been multiple studies on the importance of flow when assessing
cardiac health and diagnosing patients [13, 14]. Stroke volume is one that is
commonly used when looking at cardiac heath. Another parameter that has
been investigated us wall shear stress and its influence on blood vessels. One
study [13] have linked atherosclerosis to low wall shear stresses in the blood
vessel. To detect these symptoms early and furthering our knowledge of the
blood flow has become an increasingly important part of understanding how
to treat and prevent these illnesses.

2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive technique for producing
images of internal organs and soft tissue. An MRI scanner is essentially a
large magnet with a very powerful magnetic field, usually in the magnitude
around 1.5 − 3T. To produce the image it uses the magnetic properties of
hydrogen nuclei that becomes aligned with the magnetic field of the MRI
scanner[15]. The scanner also includes elements that can introduce gradients
to the magnetic field along all three spatial dimensions as well as a radio
frequency transmitter and receiver. As hydrogen nuclei are present in varying
amounts in all water and organic molecules in the body and different tissues
responds differently to these inputs a detectable signal can be produced by
exposing the nuclei to different combinations of gradients and frequencies.
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(a) Example of MR-image. This figure
shows plane through the ascending and
descending aorta.

(b) Here can be seen the same plane
through the ascending and descending
aorta but with velocity encoding.

Figure 2.2: Example of MR image (a) and 2D-flow image (b) with velocity encoding.
Approximate position of imaging plane can be seen in Figure 2.1. Green outline
marks the ascending aorta and purple outline marks the descending aorta.

2.2.1 Cardiovascular Magnetic Resonance

Cardiovascular Magnetic Resonance (CMR) is a collective term for when MRI
is used for imaging the cardiovascular system. One particular type of CMR is
Phase Contrast Velocity Measurements (PC-MR) that enables measurement
of the velocity of blood flow.

The basic working principle of PC-MR is that the nuclei are exposed to
two subsequent and opposite gradients in the magnetic field. For stationary
particles this will have a net zero effect but for moving particles this will result
in a phase offset in the particles magnetization. This offset is dependent on the
velocity component of the particles compared to the direction of the gradients.
By measuring this offset it is therefore possible to determine both the direction
and the velocity magnitude of the particle compared to the normal of the
plane. [16, 17] When applying this sequence along one direction a velocity
encoded image of one plane can be acquired, a so called 2D-flow image. It
is possible to apply the sequence along all three dimensions. By doing this
a time resolved 3-dimensional velocity image over an entire volume can be
sampled, a so called 4D-flow image.

Capturing 4D-flow images that give information about flow in an entire
volume rather than just a single plane has multiple advantages. With just
one data acquisition, flow parameters at multiple different points is possible.
By visualizing the flow it is also possible to get insight into how and where
the blood flows. [18] There are however some downsides to 4D-flow, the main
one being the time required for sampling an image. It is possible to speed up
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the sampling but this will come at a cost of either lower resolution, increased
noise levels, or both.

2.3 Computational Fluid Dynamics

To understand how flow behaves there are two main approaches: experimental
and computational. The first method is to set up a controlled experiment
on either the real system or a model, where the desired parameters can be
measured. For example, building a prototype of a small scale airplane and
subject the prototype to wind-tunnel testing. This approach can yield very
good results but generally comes with some drawbacks. The downside to using
an experimental approach is that getting good and detailed measurements of
all quantities of interest, while controlling the environment to get consistent
results, can be both costly and time consuming.

The second method, known as Computational Fluid Dynamics (CFD), is
to numerically calculate how the flow will behave based on equations called the
governing equations derived from fundamental laws of physics. The governing
equations chosen for this application are the Navier-Stokes equations, which
will be further explained in Chapter 3. [19]. For very simple cases it is possible
to solve these equations analytically but for even moderately complex problems
a numerical approach is necessary to solve the equations.

One method for solving these equations is the finite element method (FEM).
Figure 2.3 shows how first a geometry is created (here a simplified aorta based
on the cardiovascular anatomy). After the geometry is created, boundary
conditions are applied to the model. The geometry is then split into multiple
tiny elements that together form the mesh. By discretizing the equations for
each mesh-element and connecting them together builds a system of equations
that can be solved to get the final result.
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Figure 2.3: Example of how a problem is solved using computational fluid dynamics
using the finite element method. 1. Geometry with boundary conditions: walls
(black), inlets (green) and outlets (red). 2. Finite Element Mesh 3. Final solution.

There are some advantages of using CFD compared to an experimental
procedure. For example, testing new design alterations or applied cases
can be done without building new prototypes and evaluating test data can
then be done more rapidly. however, the simulation can be complex and it
is computationally expensive to solve the exact equations accurately. The
computational model is after all trying to emulate reality with all of its
irregularities. Therefore many approximations have to be used to simplify the
equations. The results are also greatly dependent of the setup, if the setup is
inaccurate the results will be in distinctive.

2.4 Simulation Based Imaging

CFD as well as PC-MR are both powerful tools with their respective advantages,
but also with significant drawbacks. This is has led several research groups to
try and combine these in order to work around their respective shortcomings.
In this thesis all techniques combining CFD and PC-MR will be refer to as
simulation-based imaging, or SBI for short.

The most common solution [20] has been to use MRI for generating the
geometry and 2D flow to get the flow profiles at the inlets and outlets. This
data can then be fed into a conventional CFD solver and solved like a regular
fluid problem. CFD can give good results and for example, better Wall Shear
Stress (WSS) estimations but the results are hard to validate.

Another proposed solution is to use 4D flow instead of 2D-flow [5]. This
will use the entire 4D-flow volume to optimize the CFD simulations. The
basic operating principle is to have a lower resolution 4D-flow image, a high
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resolution CFD simulation, and a method for comparing the CFD simulation
to the 4D-flow data. [5, 6] Using this method a set of parameters, usually
controlling inlet and outlet conditions, are set as free parameters.

By comparing the 4D-flow image to the CFD simulation these free pa-
rameters are then adjusted through optimization in order to find the CFD
simulation that best agrees with the 4D-flow data. The final optimized CFD
simulation can then be used as a higher resolution SBI. So far only parameters
governing the inlet and outlet conditions of the flow has been optimized, and
the influence of optimizing for other parameters such as geometry has not
been explored.
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Chapter 3

Methods

In this chapter the underlying methods used for this thesis will be described.
By way of introduction, the Computational Fluid Dynamics set up is defined,
followed by an explanation of the optimization process. Lastly, the experimen-
tal set up, the generation of the synthetic data and the arrange of the different
cases is presented.

3.1 Overall Concept

The work presented in this thesis is based on development made for the 4D-flow
HIKING framework [5]. The overall goal for this framework is to produce
high resolution, 3D images of a patients blood flow from lower resolution
4D-flow data. By using a forward function, M, that mimics the process of
capturing 4D-flow data, the difference between the CFD solution (vµCFD) and
the 4D-flow data (vMR) can be compared using our objective function:

F (µ) = ‖vMR −MvµCFD‖
2
2 (3.1)

µ is a vector (µ ∈ Rp) containing all of the variables to the CFD setup
that can be changed. We call these our free parameters. By minimizing
the objective function, the best fit of the CFD solution given the set of free
parameters µ is acquired. The parameters µ that minimize Equation 3.1 are
called µ∗. The solution vµ

∗

CFD can then be used as the final image. In Figure
3.1 a flow chart of the framework is presented.

In previous research the parameters µ only includes the parameters that
control the velocities at the inlet and outlet, while the geometry of the blood
vessels were assumed to be rigid and known. This thesis will explore the
possibility of adding different aspects of the geometry to the free parameters
µ to see if these could be corrected for in the same way as the inlet and outlet
conditions.
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Figure 3.1: Flowchart over the program outlining the overall structure of the
proposed framework.

All code for this framework was written using Matlab 2019a (MathWorks
Inc, Natick, Massachusetts, United States) and uses the Finite Element Solver
mCaMO (Copyright ©[2020] [Matthew J. Zahr]).

Table 3.1: Important symbols

Important symbols
µ The free parameters, the variables for each CFD simulation

that can be changed.
vMR The velocity data from the 4D-flow scan.
vµCFD the velocity data from the CFD simulations.
u The state variables for of the PDE. Contains the velocity vµCFD

and pressure p
M The forward function, Transforms the CFD data to the same

dimension as the MRI data. (essentially aims to mimics the
4D-flow scan)

F (µ) The objective function

10



3.2 Experimental Setup

For this thesis three main cases using parameters affecting different aspects of
the geometry was investigated. This section will describe the three different
test Cases and the different methods used to optimize the geometries.

3.2.1 Geometries and Meshes

Two main geometries were used, that will be referred to as the simple stenosis
geometry and the Aorta geometry, respectively (see Figure3.2 and 3.3).

The simple stenosis was used for initial development as its simplicity
enabled quick simulation times and easy modifications to the geometry. The
Aorta geometry was used for the late stages of development as it more complex
shape enabled more investigations of how the framework handled different
aspects.

For each geometry, three different size settings for the element size was
chosen and for each element size one second order (p = 2) and one third order
(p = 3) mesh was generated resulting in a total of six different meshes for each
geometry. Multiple meshes were generated for two primary reasons. One, to
be able to simulate our reference solution vµ

∗

ref (see Section 3.3.2) on a different
mesh than our SBI flow vCFD. As vµ

∗

ref is calculated only once but vCFD
is calculated multiple times this will save some computing power. And two,
to have the possibility of comparing the performance of the framework for
different mesh resolutions. The simple stenosis geometry and mesh was made
using the mCaMO application and the Aorta geometry was created using the
free software Gmsh 4.8.2 [21].

The goal of this thesis was to investigate possibilities of optimizing for
different geometry parameters and not the flow itself. Therefore the speed of
the CFD simulations was much more important than mesh independence. A
mesh sensitivity analysis was still performed to find the most suitable meshes
to use for the simulations and the results for this can be seen in Section 4.1.
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3.2.2 Cases

Table 3.2 shows an overview of the three main Cases. Each Case was first
tested with static inlet conditions, i.e. the free parameters µ only contained the
geometry parameters being explored. Once this was working, the parameters
controlling the inlet velocities was added to the parameters µ for a second
evaluation.

Table 3.2: Overview of the different test cases.

Case 1: Diameter
Free parameters µ Geometry

1 vinletx , vinlety , Dy Simple Stenosis

Case 2: Rotation and translation
Free parameters µ Geometry

2 vinletx , vinlety , dθ, dx, dy Aorta

Case 3: Boundary Deformation
Free parameters µ Geometry

3a dxn, dyn; n = 5 Aorta
3b vinletx , vinlety , dx1, dy1, dx2, dy2 Aorta

3.2.3 Case 1, Diameter

Case 1 was the first and simplest Case run. It used a simple stenosis geometry
(see Figure 3.2) to investigate the possibility of finding the correct diameter
of the geometry. Due to the simplicity of the model, this could by done by
simply scaling the mesh in the y-direction with the scaling factor Dy.

Figure 3.2: Simple Stenosis geometry. Green represents inlet, red outlets and black
is the walls.
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3.2.4 Case 2, Translation and Rotation

During MRI scans it is possible that the patients will move slightly. This
could result in rotation and translation error in the geometry compared to the
4D-flow image. Case 2 used the aorta geometry (see Figure 3.3) to investigate
if the framework could correct for small errors in rotation and translation.

Figure 3.3: Aorta geometry. Green represents inlet, red outlets and black is the
walls.

For rotating the geometry all mesh nodes coordinates were multiplied by
the rotation matrix

R(θ) =
[
cos θ −sin θ
sin θ cos θ

]
(3.2)

and the offset was a simple addition of the desired offset in x-and y-direction
to the mesh nodes.

3.2.5 Case 3, Boundary Deformation

The aim for Case 3 was to explore more fine grained deformations of the
boundaries. There are several methods to parameterize a geometry so that
it can be deformed in a uniform manner. The method chosen for deforming
the boundary is to use radial basis functions (RBF), and specifically a version
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usually referred to as a bump function, see Equation (3.3).

ϕ(x) =

 e
− 1

1−((x−x0)r)2 , r < 1
(x−x0)

0 , r ≥ 1
(x−x0)

(3.3)

Each RBF is defined by a predetermined radius r and center x0. The
mesh motion can then be calculated by multiplying the basis function with
the desired motion in x- and y-direction (dx and dy) respectively and moving
the affected mesh nodes by that amount. (see Figure 3.5) In total each RBF
will add 2 parameters (dx and dy) to the free parameters µ.

To get a smoother transition from the bump function the square of the
bump function was used instead in order to get a softer transition (see Figure
3.4).

Figure 3.4: The two versions of the radial basis function used plotted in 1D.

As each RBF is independent from each other they can be used either in
isolation, or ad multiple together with some overlap to parameterize a larger
continuous part of the boundary. This makes them great for early development
as one can start simple and gradually increase complexity of the problem by
adding more parameters.
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Figure 3.5: Example of how the Radial Basis function moves the mesh. Left is
before and right is after the mesh motion was applied. Large arrow is total movement
and dashed arrows are the dx and dy offset respectively and x0 is the center of the
RBF. Blue dots are all nodes within the radius r.

3.3 4D-flow

As mentioned in Section 2.2.1 4D-flow images is the name for velocity en-
coded, 3-dimensional, time resolved images captured using Magnetic Resonance
Imaging.

The 4D-flow data is sampled in slices with consistent spacing along each
spatial dimension resulting in a structured mesh of cuboid elements of size
∆x×∆y ×∆z. These elements are called voxels and for each voxel we will
get the time resolved velocity data for each spatial dimension(vx, vy and vz).
Figure3.6 shows an example of a 2 dimensional voxel grid and the corresponding
velocity magnitude image.
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Figure 3.6: Example of simulated MRI image with 5% noise for two different voxel
resolutions, and the CFD simulation using the aorta geometry.

This project will be working exclusively in 2D with no time component.
This means the MR images used are technically not 4D-flow. For this reason
the images used in this thesis will therefore be called MR-flow instead of
4D-flow.

3.3.1 Forward Function M

In order to be able to accurately compare the MR-flow data to the CFD data
a forward function is needed. This forward function M has two main purposes.
First of all it needs to transfer the higher resolution CFD solution on to the
lower resolution voxel mesh so that they can be compared one to one. Second,
it should do this in such a way that it models some of the physical properties
of the MR scanner. The way this is modeled for a two dimensional voxel mesh
of size n×m can be seen in Equation (3.4).

Mv =
n∑
i=1

m∑
j=1

∫
Ω
Wij v dΩ eij (3.4)

eij is a matrix eij ∈ Rn×m where all entries equals zero except the ij-th entry
that equals one. By choosing the weight Wij the desired spatial smoothing
properties of the forward function can be acquired.

It has been shown [22] that the spatial smoothing of the velocity for each
voxel can be modeled by

ψ(x, y) = sinc
(
x

∆x

)
× sinc

(
y

∆y

)
(3.5)
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where ∆x and ∆y are the voxel size in x- and y-direction. The sinc-function
is defined as:

sinc
(
x

∆x

)
= ∆x
πx
· sin

(
πx

∆x

)
Although Equation (3.5) is the theoretically most accurate way of modeling
the spatial smoothing of the voxels its main drawback is that it approaches
zero very slowly. To keep down the computation time for calculating the
weights for each voxel the smooth box function is therefore used instead. The
one-dimensional version of the smooth box function can be seen in Equation
(3.6).

χ (x, x0) = α

( 1
1 + e−(x−x0+w)/σ −

1
1 + e−(x−x0−w)/σ

)
(3.6)

The smooth box function can be tuned to different shapes where w determines
the width of the function, σ determines how sharp the bounds of the function
is, and α determines the height of the function. The parameters used for this
thesis is w = ∆x/2, σ = ∆x/10 and α = 1/

∫∞
−∞ χdx (normalized so the area

under the graph is one). This results in the shape seen in Figure (3.7).

Figure 3.7: Comparison of a voxel of width ∆x = 0.5 in one dimension with the
sinc (x/∆x) function and the smooth box function as described in Equation (3.6) and
(3.5) respectively

To visualize some of the similarities and differences between using the
smooth box function and the sinc function for the weight Wij , a simple 1D
test was done as shown in Figure (3.8). This was done to validate that the sinc
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function could be substituted with smooth box function in order to speeds up
calculations of MvCFD and still provide a good enough approximation of the
MRI physics.

Figure 3.8: Example of how using the sinc-function versus the smooth box function
for the spatial smoothing translates to voxel velocities for a 1D parabolic velocity
distribution with a voxel width ∆x = 0.4

3.3.2 Generating the MR-flow data vMR

To get the MR-flow data for the development of the framework there are three
main options. Full 4D-flow scans of healthy volunteers, phantom measurements
of controlled flow experiments, and synthetic data.

The option used for this thesis was to use synthetic data. The downside of
using synthetic data for the MR-flow is that it could miss some of the physical
phenomena seen in real 4D-flow scans that could potentially influence the
results. The advantage is that it provides the most control over the reference
flow used to establish a ground truth that the final SBI flow can be compared
to. This enables quicker changes to the experimental setup compared to the
other two methods and easier evaluation of the performance of the framework.
The synthetic data is generated by using the same forward function already
constructed for the objective function from an initial truth CFD simulation.

vMR = Mvµ
∗

ref (3.7)

vMR is the MR velocity field, vµ
∗

ref is the velocity field from the CFD simulation
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using the truth setting µ∗ (see Section 3.4) and M is the forward function
(see Section 3.3.1).

Another benefit of using synthetic data is that artificial noise of varying
levels can be added to the MR-flow. The noise level is defined as a percentage
of the maximum velocity amplitude in the MR-flow image. Figure 3.9 shows
an example of a MR-flow and an example where normally distributed noise
was added to the image.

(a) MRI velocity field, no noise. (b) MRI velocity field, 10% noise.

Figure 3.9: Example MR-flow image: Example of the same MR-flow image with
and without 10% noise. The color scale shows the velocity magnitude for each voxel.
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3.4 Computational Fluid Dynamics

In order to acquire the higher resolution velocity field vµCFD this framework
uses a finite element based fluid solver for the incompressible Navier-Stokes
equations capable of using higher order elements. In this section some of the
underlying theory and implementation of the CFD solver will be described.

3.4.1 Navier-Stokes

Computational Fluid Mechanics (CFD) uses the Navier-Stokes equations to
compute the fluid flow. In its most general form the Navier-Stokes equations
consists of three main parts, conservation of mass, conservation of momentum,
and conservation of energy.

This thesis uses the incompressible, steady state version of the Navier-
Stokes equations meaning the density of the fluid is assumed to be constant and
the flow is constant over time. Using these assumptions the energy equation
can be removed and simplify the Navier-Stokes equations to:

∇ · v = 0 (3.8)

ρ(v · ∇)v = ∇p+∇ · τij (3.9)

There have been studies done highlighting the problems associated with
modeling blood as a Newtonian fluid [23] but for simplicity of the simulations
the fluid was assumed to be a Newtonian fluid giving us the following expression
for shear stress:

∇ · τij = µ∇2v (3.10)

Table 3.3 shows the values used to model the flow the density and viscosity
for blood.

Table 3.3: Values used for simulations.

Name Symbol Value
Density ρ 1060 kg/m3

Viscosity µ 0.003 kg/(m·s)

Reynolds Number

The Reynolds number the was defined as

Re = ρvD

µ
, (3.11)

where v is the inlet velocity and D is the inlet diameter. As there is no support
for turbulence modeling in the mCaMO solver all simulations where done with
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a Reynolds number of maximum 1500 to keep it in the laminar domain. For
the aorta geometry used in Case 2 and 3 a Reynolds number of 1500 resulted
in a inlet velocity of vin = 0.1698m/s. For comparison peak velocity in the
human aorta vary between 0.5− 2m/s with a mean velocity around 0.5m/s
[24].

3.4.2 Finite Element Formulation

To numerically discretize the Navier-Stokes equations a continuous Galerkin
Finite Element method was used. To approximate the solution u curved
tetrahedral elements of second (p = 2) and third (p = 3) order was used. The
advantage of higher order mesh elements is that they provide higher accuracy
for the same mesh size as the error is proportional to O(hp+1), where h is
the mesh size and p is the element order. The elements ability to curve also
enables them to better follow the curvature of the model compared to first
order elements as illustrated by Figure 3.10.

In following sections the resulting fully discretized equation system will
be written in its residual form as r(u,µ) = 0, where u are the state variables
(velocity vµCFD and pressure p) subject to the free parameters µ.

we use two notations for the

Figure 3.10: Comparison of linear, quadratic and cubic mesh elements. Each
element is denoted by the thin line and the element nodes are plotted as the blue
dots.

The equation system r(u,µ) is solved using the Newton-Raphson method.
This is a iterative method for finding the roots to a system of non linear
functions, i.e find u∗ such that r(u∗,µ) = 0. [25] It works by linearizing the
equation system using a Taylor expansion around the current estimate un.
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r(u) ≈ r(un) + ∂r

∂u
(un)(u− un) (3.12)

By using the root to this approximation as a guess for the new root
and repeating the process we get an iterative method of better and better
approximations of the root un.

un+1 = un −
[
∂r

∂u
(un)

]−1
r(un) (3.13)

it can be shown that this method converges quadratically assuming the initial
point uo is chosen sufficiently close to u∗.

Solving Flows 500-1500 Re

The Newton-Raphson method was generally only stable for Reynolds numbers
below 500. To mitigate this a second outer loop was implemented that
initialized the simulations at a lower inlet velocity such that the Reynolds
number was below 500. The solution to this simulation was then used as
an initial guess for a new simulation with higher inlet velocity. This process
was then repeated until the desired inlet velocity was reached. By tuning the
increase in velocity for each loop flows of Reynolds numbers up to 1500 Re
could be simulated.

3.4.3 Boundary conditions

For the walls and inlet, Dirichlet boundary conditions was used. At the walls
the velocity was set to vx = vy = 0. For the inlet a normalized parabolic profile
was fitted that could then be scaled by the factor µ0 to get the x-velocity
and µ1 to get the y-velocity as illustrated by Figure 3.11.The outlets are
pressure outlets modeled as Robin boundary conditions with the traction (
1
2(∇(v)−∇(v)T ) · n ), set to zero.
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Figure 3.11: Illustration of how the velocities are prescribed at the inlet boundary.
Here the solid line is using µ0 = 0 and µ1 = 1 and the dashed line is using µ0 = µ1 = 1
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3.5 Optimization

The CFD simulations are set up so that they will be dependent on a set of free
parameters µ, and an objective function that compares the difference between
the MR-flow data and the CFD solution have been defined (see equations
(3.1)). The goal of the framework is to find the set of parameters µ that
minimizes the objective function F (µ) with the assumption that this will
result in the CFD solution that best matches the real flow.

There are several methods to solving these problems that all follow the
same overall approach:

• Find a direction where the objective function decreases

• Determine the length of the step along that direction

• Repeat until a minimum is found

The parameters that solve (3.16) as denoted µ∗ and thus vµ
∗

CFD will be the
final solution.

3.5.1 PDE constrained optimization

In addition to the objective function the optimization problem can be subjected
to additional constraints. If at least one of these additional constraints
is a Partial Differential Equation (PDE) this is called a PDE constrained
optimization.

General Form:

The generalized form for our PDE constrained optimization problem will be:

min
u,µ

J(u,µ) (3.14)

subject to
r(u,µ) = 0 (3.15)

where J is our objective function, r is our PDE problem in its residual form
and u is the state variables.

By introducing a new variable u∗(µ) that is defined as the solution of
the PDE for the given parameters µ the constraint 3.15 can be removed as
r(u∗(µ),µ) = 0 will always be true by definition. From this a new function

F (µ) := J(u∗(µ),µ)
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is introduced and the new optimization problem becomes

min
µ
F (µ). (3.16)

This approach where the constraint of the PDE is remove from the opti-
mization problem is called a reduced space approach.

Quasi-Newton method

The basic idea behind the Newton method for optimization is to approximate
the function as a second degree polynomial using Taylor expansion and finding
the minimum of this new function. By using this minimum as a new guess we
get the iterative Newton method:

µn + 1 = µn −H(µn)−1∇F (µn). (3.17)

However, computing the inverse of the hessian matrix −H(µn)−1 is both
expensive computationally and requires a lot of memory. For this reason the
a quasi-Newton method is often used instead. In the quasi-Newton method
we replace the hessian matrix H−1

n with dnBn where B is an approximation
of the inverse hessian matrix computed using the gradient ∇F (µ) and d is a
distance computed using a one dimensional line search.

µn+1 = µn − dnBn∇F (µn) (3.18)

The Matlab function fminunc.m was used to solve the optimization. This
uses the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [26] to cal-
culate the B matrix and a cubic line search for finding the step size d [27].
In order to calculate the gradients ∇F both finite difference and the adjoint
method was used.

3.5.2 Finite Differences

There are many ways of numerically calculating the gradient of a function. One
of the simplest methods is the finite differences method. For this application
a version of the finite difference method called the central difference method
was used. This calculates the gradient as described in Equation (3.19).

dF (µ)
dµi

= f(µ+ δiε)− f(µ− δiε)
2ε (3.19)

Here δi is a vector that is 1 at index i and zero otherwise. ε was chosen
between 10−6 and 10−8 depending on the problem. Central difference was
simple to implement but computationally expensive as each derivative requires
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two function evaluations. To perform each function evaluation, in addition
to solving the Navier-Stokes equation, a complete set of new weights for the
forward model had to be computed to account for any changes caused by the
mesh motions. Two measures was taken to somewhat shorten the additional
time required for this calculations. First, as ε is very small the solver could be
initialized with the original solution to significantly shorten the time it took for
the Newton-Raphson method to converge. Second, each parameter µi could
be calculated independently from each other enabling great parallelization of
the gradient calculations.

3.5.3 Adjoint method

There are however more efficient ways of calculating the gradients of the
function than using finite differences. Two such methods are the sensitivity
approach and the adjoint method. These methods are quite similar and both
uses the residual of the PDE for calculating the gradient of the function
F (µ). A detailed derivation of these formulations can be found in [28] but a
summary will be done below. First using the definitions from Equation (3.14)
the gradient can be written as

dF
dµ (µ) = ∂J

∂µ
(u(µ),µ) + ∂J

∂u
(u(µ),µ)∂u

∂µ
(µ) (3.20)

Because u(µ) is defined so that r(u(µ),µ) = 0 is true, it will also be true
that

dr
dµ(u(µ),µ) = 0.

By applying the chain rule and rearranging the equation this can be used
to calculate

∂u

∂µ
(µ) = − ∂r

∂u
(u(µ),µ)−1 ∂r

∂µ
(u(µ),µ). (3.21)

This is called the sensitivity and by entering this into Equation 3.20 the
gradient of the objective function can be calculated as:

dF
dµ = ∂J

∂µ
− ∂J

∂u

∂r

∂u

−1 ∂r

∂µ
. (3.22)

By solving this linear equation system for each free parameter µ the sensitivity
method can calculate the exact gradient from p linear solves of size N ×N
where p is the total number of parameters µ, i.e. µ ∈ Rp and N is the number
of state variables of our PDE, i.e. u ∈ RN . Even though this is much faster
and more accurate than the finite difference method as seen in Section 3.5.2 it
can still require a lot of calculations if the parameter set µ is large. If that
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is the case the adjoint formulation can be used instead. This is acquired by
transposing the term ∂J

∂u
∂r
∂u

−1 to get:

dF
dµ = ∂J

∂µ
−
(
∂r

∂u

−T ∂J

∂u

)T
∂r

∂µ
= ∂J

∂µ
− λT ∂r

∂µ
(3.23)

λ can then be calculated using Equation (3.24).

∂r

∂u

T

λ = ∂J

∂u

T

(3.24)

Equation (3.24) is called the adjoint equation and to get this solution we
only have to solve the linear system once per constraint to our minimization
problem. Unfortunately, due to the way that the forward function is calculated
it proved quite difficult using adjoints when including mesh motions. Due
to this the finite difference method, more specifically the central difference
method shown in Equation (3.19), was used to calculate the gradients for all
parameters µ that would move the mesh.

3.5.4 Cost of Gradient calculations

In summary, three different ways of calculating the gradient of the objective
function has been presented; the sensitivity method, the adjoint method, and
the finite difference method. The sensitivity and adjoint method both have
the advantage of theoretically calculating the exact gradient as well as only
needing to solve linear equation systems which greatly improves performance.
The finite difference method in contrast requires solutions of the non-linear
equation system of the CFD simulation, which is significantly slower. In Table
3.4 is a summary of the number of solves required

Table 3.4: Comparison of the cost of the different gradient calculations, p is the number
of parameters µ, µ ∈ Rp and m is the number of constraints on the optimization
problem.

Method operations
Adjoint m-linear

Sensitivity p-linear
Central Difference 2p-non-linear

As can be seen, if p > m the adjoint method is faster than the sensitivity
method, otherwise the sensitivity method is faster while central difference is
theoretically always slower.
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Chapter 4

Results

4.1 Mesh Sensitivity

The results from the mesh sensitivity analysis can be viewed below. The mesh
sensitivity analysis was only done for the Aorta geometry and an overview of
the different meshes can be seen in Table 4.1.

Table 4.1: mesh statistics for the three meshes generated from the Aorta geometry
and the number of nodes for the 2:nd and 3:rd order elements respectively.

Mesh Elements Mesh nodes
2:nd order 3:rd order

1 718 1595 3469
2 1057 2312 4914
3 2316 4914 10846
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Figure 4.1: Comparison of the three different meshes used

Figure 4.2: Max wall shear stress for each element order of each mesh. Done for
Reynolds number of 500 and 1000.

Figure 4.2 shows the max wall shear stress for the different meshes as a
function of the total number of mesh nodes in each mesh. The coarsest second
order mesh did not converge for Re = 1000 and is therefore not included.

For the simulations with a Reynolds number of 500 the mesh appears to
be very well matched between the finest (mesh 3) and coarsest mesh (mesh 1).
At Reynolds number of 1500 some differentiation between the two meshes can
be seen between mesh 1 and 3.
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Figure 4.3: Comparison of the wall shear stress along the lower wall of the aorta
mesh for the coarsest mesh (mesh 1) and the finest mesh (Mesh 3) using an element
order of 3 and Reynolds number of 500

Figure 4.4: Comparison of the wall shear stress along the lower wall of the aorta
mesh for the coarsest mesh (mesh 1) and the finest mesh (Mesh 3) using an element
order of 3 and Reynolds number of 1500

As mentioned in Section 3.2.1 the focus is not on accuracy of the CFD
simulations so the meshes used was generally chosen based on performance
rather than results. In general mesh one with 3:rd order elements and mesh 2
with 2:nd order elements was used for SBI simulations for performance reasons
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while mesh 3 of corresponding element order was used for the reference flow.
Because mesh 1 using 2:nd order elements did not converge for Reynolds
number higher than 500 this mesh was not used for any simulations.

4.1.1 Simulation times

Figure 4.5: Comparison of computing times for CFD solution and forward model
using both quadratic and cubic mesh elements. Nodes here refer to the number of
mesh nodes.

In Figure 4.5 computing times has been plotted for the two most time con-
suming operations of the framework for the different meshes used. Both the
forward function and the CFD solution has to be calculated each time the
objective function is evaluated. For the optimization the objective function is
calculated once for every function evaluation and twice per gradient evaluation
for each parameter µn that can not be calculated through the adjoint method.
All calculations were done one a compute server with two 22 core Intel Xeon
6152 (Santa Clara, USA) processors and 384GB of RAM. The underlying
code was single threaded only using one core for solving solving our CFD
simulations but for the gradient calculations using central difference one core
was used for each parameter µ, which allowed us to use much more of the
available resources and significantly speeding up the optimization process. The
total memory required for larger simulations was usually around 100GB.
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4.2 Case 1, Diameter

Case 1 was the first and simplest case run. The primary purpose of Case 1
were early development of the basic functions and to validate if simultaneous
shape and velocity optimization was possible using the framework. Figure
4.6 shows the reference flow, initial guess and final SBI flow for a run using
the initial values and reference values seen in Table 4.6a. Here can be see the
difference in inlet velocity and diameter for this simple channel between the
initial guess and final SBI flow. Table 4.6a shows some results from repeated
runs of the same case but with different noise levels added to the MR-image.

(a) Case setup for Case 1 and two runs with different noise levels

Case 1
General: Re 100, 2:nd order mesh
µ vinletx vinlety Dy

µref 1.5 0 1
µ0 1.2 0 1.2

Run 1: 0% MR noise
µ∗ 1.49 0.000754 1.00556

Error 0.00991 -0.000754 -0.00557
Run 2: 15% MR noise

µ∗ 1.536 -0.190 0.954
Error -0.0362 0.190 0.0460

(b) Comparison of the CFD solution for the true flow, initial guess and
final SBI flow for run 1.

Figure 4.6: Setup, reference solution, initial guess and final SBI flow
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Figure 4.7 shows the objective function for the parameters Dy and vinletx

plotted for an area close to the true value of Dy = 1 and vinletx = 1.5. As
all of these simulations were run with the y- component of the inlet velocity
vinlety = 0 this parameter was left out of the plot to enable 2D-plotting. It
is generally very expensive to calculate all the data points required of the
objective function needed for this kind of plot but it was a very useful tool
when writing the code as it allowed for easy validation of the methods and
solvers.

Figure 4.7: Value of objective function (see Equation 3.1) for the inlet velocity and
diameter of the simple Stenosis. The target diameter was Dy = 1 and the target
inlet velocity was vinlet

x = 1m/s. The black + markers are the iterations for the
optimization with the initial guess of Dy = 1.2 and vinlet

x = 1.2.

With the results seen in Table 4.6a together with the information gained
from plotting the objective function in Figure 4.7 it was concluded that the
initial stage of shape optimization was working good enough. With added
noise to the MR-image the final error increases, but for this simple case the
results was still quite good.
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4.3 Case 2, Rotation and Translation

Table 4.2: Rotation, translation and inlet velocity

Case 2
µ vinletx , vinlety , dθ, dx, dy

Geometry Aorta

The second case was an investigation into if an initial offset and rotation of
the CFD simulation compared to the ground truth could be found. This was
motivated from the idea that patients could move during scanning, creating
an error between the geometry and the actual position for the ground truth
for example between different time frames.

Figure 4.8 shows the difference in velocity magnitude between the MR-flow
image (vMR) and the forward function of the CFD simulation (Mvµ

n

CFD) for
each voxel. These plots will be used several times and are called velocity error
plots. The red lines outline our reference solution and the green lines the
outline of the SBI flow. Figure 4.8a shows the configuration for the initial
guess with a total offset of 2 voxels (10mm).
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(a) Initial configuration (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) iteration 4 (f) Iteration 5

(g) velocity error (m/s)

Figure 4.8: progression of the first 5 optimization steps when optimizing over
rotation, translation and velocity. Green outline is the CFD geometry and red is the
target Truth geometry.

Figure 4.9 shows the results from a study to evaluate how the noise level
of the MR-flow image vMR influence the performance of the optimization.
Noise levels in the MR-image from 0%-25% were tested. For each noise level,
the optimization was run at least 10 times with different initial guesses. The
initial offset error was set to two voxels in distance (10mm total) in a random
direction. The rotation error was set at random to either 1 or -1 degree and
the inlet velocity was set to 5% over the true value.
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Figure 4.9: Result from study on the influence of noise in the MRI on final error for
mass flow, translation (offset), and rotation. Initial mass flow error was 5%, initial
offset error was 40%(10mm) and initial rotation error was 1 degree.

Figure 4.10: Effect of initial offset Comparison of mass flow error on the inlet
between optimizing over translation versus not optimizing over translation for noise
levels of 1%, 5% and 10%.

Figure 4.9 illustrates how the final error is affected by the noise level
when optimizing for both inlet velocity and offset. In order to get a better
understanding of how this compared to only optimizing over inlet velocity
a second study was performed. This was done by varying the initial offset
error between 0.25mm and 6.25mm. Each offset distance was run 10 times
with a random direction for the offset. Each direction was then run twice
with the same initial guess: first only optimizing for inlet velocity and then
optimizing for both inlet and offset. This was repeated for 1, 5 and 10 % noise
in the MR-image (vMR). In Figure 4.10 the result from this second study is
displayed. Red dots are the cases that were run with optimization over both
offset and inlet velocity, and blue dots are the cases that were only optimized
for inlet velocity.

The results displayed in Figure 4.9 and 4.10 indicates that optimizing offset
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in addition to inlet velocity could be beneficial even for quite small initial
offsets. Figure 4.10 shows that the mass flow error steadily increases when
not optimizing for the offset while the error for the runs optimizing for offset
appears to only be dependent on the noise level.
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4.4 Case 3

The final stage of the project was to investigate how the framework would
handle small perturbations of the boundary. This was done in two steps. The
first was to implement Radial Basis Functions (RBFs) that could deform an
area of the domain and explore how the framework handles small deformations
from 5 RBFs spread evenly along the the boundaries in Case 3a (see Figure
4.11). The second stage was to investigate if it is possible to find the degree of
blockage from an Aortic Coarctation using two RBFs to emulate the narrowing
of the aorta (see Figure 4.14).

4.4.1 Case 3a: Boundary Perturbation

(a) Case setup

Case 3a
µ vinletx , vinlety , dxn, dyn; 1 ≤ n ≤ 5

Geometry Aorta

(b)

Figure 4.11: General setup for Case 3a with inlet and outlet velocity and on to five
radial basis functions resulting in a total of 4-12 free parameters µ

The overall setup of Case 3a can be seen in Figure 4.11. Different runs
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using 5 RBFs numbered according to Figure 4.11b was done. The results from
this run can be seen in Figure 4.12. This Figure shows a comparison between
the true flow, initial guess and final SBI flow. The location of each RBF was
spread out to different places along the walls to see how well the optimization
would find the displacement for each RBF with varying flow conditions.

(a) Inlet veloity and a number of radial basis functions

Case 3a
General 0% noise, Re 1000, 2:nd oreder mesh

µ vinx viny dx1 dy1 dx2 dy2 dx3 dy3 dx4 dy4 dx5 dy5
Units cm/s mm mm mm mm mm mm mm mm mm mm
µref 0 113 -2.6 0.37 1.5 0 0 1.5 -1.5 0 1.5 0
µ∗ 0 113 -2.6 0.37 1.5 -2e-3 -4e-3 1.5 -1.5 -1e-3 1.5 -0.1

error 0 0 6e-6 1e-4 2e-3 2e-3 4e-3 8e-4 2e-4 1e-3 7e-3 0.1

(b) Comparison between the CFD solution for the True flow, initial guess and final SBI flow.
Displayed is the velocity magnitude in m/s.

Figure 4.12: General setup for Case 3a with inlet and outlet velocity and on to five
radial basis functions resulting in a total of 4-12 free parameters µ

Figure 4.13 shows the outline of the reference geometry (red) and CFD
geometry (green). The velocity error plot for Case 3a is shown to help
distinguish the influence of each RBF. The location for the RBFs are marked
with arrows in Figure 4.13a as well.
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(a) Initial configuration (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

(g) Velocity magnitude error (m/s)

Figure 4.13: In this figure is plotted the velocity error for each voxel for the initial
configuration and the first 5 optimization steps. The outline of the CFD geometry is
plotted in green and outline for the target reference geometry is plotted in red.

Figure 4.13a shows that RBF 1, 2 and 4 appears to have the largest affect
on the error and Figure 4.13d shows that good approximations for these are
found after only 3 iterations. On the other hand RBF 3 and 5 have less
influence on the flow and are therefore harder to find. Especially RBF 3 is
practically unchanged even after 5 iterations. Figure 4.11b shows that RBF 3
is located just after the flow detaches from the lower boundary. Because the
optimizer only compares differences in flow velocity it is very difficult to find
a good approximation for RBF 3.
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4.4.2 Case 3b: Aortic Coarctation

For Case 3b the goal was to see if a similar setup could be used to find the
degree of blockage from an aortic coarctation. In Figure 4.14 can be seen the
general setup for Case 3b. Compared to Case 3a (see Figure 4.11b), Case 3b
has fewer free parameters and the offset caused by each was set to a larger
value (see Table 4.3 and Figure 4.14b).

(a) Configuration for Case 3b.

Case 3b
Geometry Aorta

µ vinletx , vinlety , dx1, dy1, dx2, dy2

(b) Example of a reference flow for Case 3b with the bumps caused by the two radial basis
functions marked.

Figure 4.14: General setup Case 3b with inlet and outlet velocity and two radial
basis functions resulting in a total of 6 free parameters µ.

In in Table 4.3 can be seen the results from one run of Case 3b with no
noise added to the MR-image and a Reynolds number of 500. Figure 4.15
shows the CFD solution for the true configuration, the initial guess and the
final SBI flow for this run. This shows how the narrowing from the Aortic
Coarctation forces the flow to accelerate. It also shows how the flow detaches
from the lower wall.

To visualize the optimization process the velocity error plots for the initial
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configuration and subsequent 5 iterations are shown in Figure 4.16. The
outline of the SBI geometry (in green) and the reference configuration (in red)
are overlayed the velocity error plots.

Table 4.3: Configuration for Case 3b. with inlet and outlet velocity and two radial
basis functions as the free parameters µ, the true value µref , and initial guess µ0.

Case 3b
General 0% noise, Re 500, 3:rd order mesh

µ vinletx vinlety dx1 dy1 dx2 dy2

Unit cm/s cm/s mm mm mm mm
µref 0 5.66 4.9 2.8 -4.9 -2.8
µ0 0 2.83 1.5 0.84 -1.5 -0.84
µ∗ -0.008 5.66 4.52 3.62 -5.07 -2.47

Error (abs) -0.008 0.0015 0.376 -0.822 0.169 -0.331

Figure 4.15: Comparison between the CFD solution for the True flow, initial guess
and final SBI flow. Displayed is the velocity magnitude in m/s. In these simulation a
finer mesh was used for the Truth simulation than the SBI simulation.
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(a) Initial configuration (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

(g) Velocity magnitude error (m/s)

Figure 4.16: Alternative 2/3 The initial configuration and progression of first 5
optimization steps for a shape optimization using 2 RBFs. Green outline is the CFD
geometry and red is the target Truth geometry.

Figure 4.16a shows the initial configuration with an error caused by the
initial underestimation in inlet velocity. It also shows the velocity difference
caused by the coarctation. Another observation is that the optimizer finds a
good approximation for RBF 2 already in iteration 1 while it is slower to do
so for RBF 1. In Case 3a we saw how the framework had a hard time finding
the correct offset for RBFs that was in slow or stationary flow compared to
the max velocity (see Figure 4.13) and this appears to be the case in Case 3b
as well.

Table 4.3 shows the final error for each parameter µ. To get a better idea
of how good these results are the Wall Shear Stress along the lower boundary
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was plotted for the initial guess and final SBI flow together with the reference
solution in Figure 4.17.

Figure 4.17: Wall Shear Stress Comparison Here is plotted the Comparison
of the Wall Shear Stress distribution along the lower boundary before and after
optimization.

To get a quick idea of how the setup in Case 3b handle noise the wall shear
stress for the same setup but with 5 and 10 % noise respectively added to the
MR-image can be seen in Figure 4.18a and 4.18b.

(a) (b)

Figure 4.18: Same setup as in Figure 4.17 but with 5 and 10 % noise.

Figure 4.18a and 4.18b shows how the match in wall shear stress between
the SBI flow and the reference flow is still good for for 5% noise but for 10%
noise no good approximation for RBF 1 was found from the optimization.
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Looking at Figure 4.15 it appears that just like for RBF 3 in Case 3a this
RBF is located in an area of relatively slow flow as the faster flowing fluid
tends towards the outside of the bend. If the initial guess for RBF 1 is too
conservative it has a very low impact on the flow and when the initial MRI is
very noisy these small variations are not enough to find a good approximation
for the RBF.

Figure 4.19: Wall Shear Stress Optimization Comparison Here is plotted the
Comparison of the Wall Shear Stress distribution along the lower wall before and
after optimization. In this figure is plotted a comparison between optimizing over
only inlet velocity and optimizing over coarctation as well.

Finally, to better quantify the potential improvement from optimizing
the coarctation and velocity simultaneously Figure 4.19 shows a comparison
of optimization with and without optimization of the coarctation using the
same initial guess as seen in Figure 4.15. Figure 4.15 shows how the test
without shape optimization differs from the reference both directly at the inlet
and after the coarctation while the test using shape optimization matches
the reference solution much better. This illustrates how localized errors in
the geometry can have both upstream and downstream effects on the final
simulation.
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Chapter 5

Conclusion

The purpose of this thesis was to explore if it is possible to correct for different
errors in the geometry used for the Simulation Based Imaging. We have done
this in three main cases investigating errors in the diameter of a channel,
rotation and translation, as well as a more granular approach using Radial
Basis Functions for deforming the domain. These cases has then been tested
for robustness based on the initial magnitude of the error as well as the amount
of noise in the initial MR-image.

Case 1 showed that geometry correction based on MR-flow data was possible
for a very simple case. Case 2 demonstrated the possibility of correcting for a
rotation and translation offset of the geometry compared to the MR-image.
Optimizing over rotation and translation successfully removed any errors
caused by the offset and the accuracy of the final SBI was only dependent on
the noise level.

Case 3a and 3b was the most complex of the cases and showed both promise
as well as identifying some potential issues and problems to the approach.
While for both Case 3a and 3b we managed to demonstrate that the framework
could find the initial errors to the outer walls. They also showed that moving
the boundaries that was in stagnating or slower moving flow conditions was
more difficult. Any deformations located within these flow conditions will be
difficult to find as they have a very low impact on the flow and therefore as
the MR-flow image only contains information about the flow velocity. As seen
in Case 3b the introduction of noise makes this issue even harder as the noise
can hide the small effects the deformed bound still has.

5.1 Future Work

There are several interesting future steps and investigations to be done to
evaluate the framework. For example this thesis put a lot of emphasis on how
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the noise of the MR-flow image affected the different geometry corrections
but not how different MR-flow voxel resolutions would affect the performance
and accuracy. This could easily be conducted without any need to further
expand the framework and could provide further insight into the possibilities
and limitations of shape optimization.

As mentioned the current framework does not support calculating the gra-
dient for the mesh motions using the adjoint method. To improve performance
and enable using more parameters to control the boundary implementing this
support would be very beneficial.

The ultimate goal is to evaluate the methods in both 3D and with time
dependency. Due to limitations in the efficiency of the current code adding
time dependency would probably be more feasible than 3D in the near future
and could also provide more interesting results for the shape optimization.
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