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Abstract

Due to the steadily growing world chainsaw market and the market’s relative
competitiveness, high performing chainsaws are important for Husqvarna
Group AB to remain competitive. In the development phase a large number
of endurance tests are run to evaluate the product’s performance. Given the
data gathered from these tests, the main goal of this thesis was to model
the time until failure and evaluate the relationship between the measured
predictors and the failure times. To model the data, traditional survival
theory was used, which included fitting a Cox proportional hazard model
and an extended Cox model for time-varying variables.

The results of the analysis showed that the temperature of the surround-
ing equipment has a significant effect on the failure times of chainsaws for
both test methods. For the first test method the volatility of the revolu-
tions per second(RPS) in the engine also proved to have a significant effect.
Component cracks in power cutters seemed to increase with dry weather
and low temperatures, confirming what the engineers at Husqvarna Group
AB believed to be the case before this thesis was carried out.

Other future analysis methods were discussed together with some identi-
fied data collection challenges. When the technical difficulties for collecting
the proposed new data sets have been resolved, the models suggested in this
thesis may be improved by linking a number of new predictors to the failure
times.
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Chapter 1

Introduction

1.1 Background

According to the research company IMARC(2020) the global chainsaw mar-
ket grew at an annual rate of 5% (Compound Annual Growth Rate) over
the years 2015-2020. According to Precedence Research(2022) the global
market was estimated to 3.6$ billion 2021 and will reach 4.92$ billion 2030
with an annual growth rate of 3.5% from this year. This shows that there
undoubtedly seems to be an increasing demand for chainsaws worldwide.

The market is quite fragmented with many important players which leads
to relatively high competition. Husqvarna group is mentioned as one of the
major players by Precedence Research and Husqvarna themselves state that
they are number 2 world wide when it comes to handheld devices such as
chainsaws. The Husqvarna division responsible for handheld devices, such
as chainsaws, provides 62% of the groups net turnover. This highlights
the importance of competitive chainsaw models for both the future and the
present financial performance of the company(Husqvarna Group AB. 2022.
p. 27).

1.2 Test Systems Engineering at Husqvarna

The department Test Systems Engineering at Husqvarna group builds testbeds
for mechanical products and hardware objects. These are used to run tests
on complete products and components to evaluate their technical perfor-
mance. During the tests a great number of measurement data as well as
component failures are collected. Testing is both time and resource consum-
ing and it is of interest to continuously improve the testing methodology.



As of today there is uncertainty about what conclusions and knowledge can
be gained from the existing test data when looking at large amounts of tests
together in contrast to evaluating individual tests separately. If the rela-
tionship between the measurement data and the test time can be modeled
with high precision on a large scale then a great number of aspects around
the test procedure could be improved. To do this, there is a need to try
out some modern data analysis methods on the existing data to determine
what is possible in the existing situation and where the focus should be in
the future to improve the data analysis capacity.

Some examples of potentially positive results of being able to model the
relationship described above are related to three different aspects.

e Methodological aspect: If the time to failure can be predicted with
low margin of error then tests could be stopped close to failure, which
would enable dissection of the test object to increase knowledge about
the mechanical causes of failure. Greater knowledge about what causes
failures would improve the test methodology by measuring the right
things and running the right tests.

e Economic aspect: The data collection method could be improved by
collecting only the most relevant data and discarding irrelevant data.
This could lead to resource savings by saving data storage capacity and
investments in data collection equipment. Better understanding of the
test environment could also motivate investments in test equipment to
be able to control the surrounding conditions of the test environment.
Finally, measuring the right things and running the right tests is re-
lated to getting more for the invested money.

e Time aspect: Being able to stop tests earlier and, once again, running
the most relevant test would save time. This also has potential to
increase the product development speed.

1.3 Why survival analysis?

An interesting statistical method used to analyse failure time data is survival
analysis. When studying survival theory, examples related to the theory are
often related to clinical research(Kent, 2021). Studies in this area could,
for example, be the effect of a certain cancer treatment by studying the
time until death of the patient and different biological characteristics. This
method, however, can be used in a lot of other applications when the aim is



to investigate the time until a certain event occurs and what factors affect
it as for example a test failure at Husqvarna. As Kent(2021) points out in
his article about applications of survival analysis, one of the most important
reasons to use survival analysis is that one wants to make decisions before
observing all of the data. What he means with that is that some objects of
study have not been studied long enough in order to experience the event
in question. Take for example the time until a chainsaw fails in one of the
tests at Husqvarna, where a test might be stopped before a failure have
occurred. The reason for this is that, for practical and economical reasons,
there needs to be a limit for when the tests are stopped even if a failure have
not occurred. If an object have not failed during this time it will lead to
an ”incomplete” observation, or so-called censored data. The ability of han-
dling such observations is the strength of survival analysis and the strongest
reason that it is used in this study. However, as Kent(2021) points out, the
statistical methods of survival analysis only works if there are enough com-
plete, non-censored observations. The trade-off of having enough complete
data points and having data that are similar enough to be used in the same
analysis will be a recurrent challenge throughout this study.

1.4 Aim of the study

The first objective of the study is to describe and model the time until failure
for endurance tests on Husqvarna chainsaws. The relationship between the
measured predictors and failures of chainsaw tests will be analysed. The
analysis aims to answer the following questions:

e How well does the measured factors explain the component failures in
chainsaw tests?

e What predictors have the strongest effect on the time until failure of
chainsaws?

e Was the chosen statistical method suitable for the problem and what
other methods would be suitable to try out in the future?

e What improvements regarding data collection could be made in order
to enable better modelling of the time until failure in the future?

The second objective is to investigate the relationship between the local
weather conditions and cracks in components mounted on power cutters.
The following question will be answered:



e What weather conditions poses the greatest risk for cracks in compo-
nents in power cutters?

1.5 Restrictions

We will restrict ourselves to only look at chainsaw data for two different test
methods: 'real usage emulated’ and 'wear test’. These will be denoted test
method 1 and 2. The test methods are explained in Section 3.2.

We will not look at recurrent event analysis, even though there are mul-
tiple events registered per test in some cases.

For the analysis of components in power cutters the predictors to analyse
were restricted to the air humidity, air temperature and air pressure.



Chapter 2

Theory

2.1 Introduction to survival analysis

The basic problem in survival analysis is studying the time until a certain
event. That event can be many different things, typically the death of
an individual in biomedicine, the breakout of a disease, relapse in criminal
actions, recovery from a disease or breakdown of a component or mechanical
product. In this report the latter will be used in the provided examples
since it is the event of study in this report. In survival analysis one is often
interested in comparing groups of individuals that are exposed to different
types of external or internal factors and draw conclusions on how those
factors influence the time to event or risk of experiencing the event.

2.1.1 Data and basic terminology

Typically the data consists of a number of comparable individuals or objects
which either experienced the event or did not. The time that they have
been studied is registered together with the values of possible explanatory
variables.

A central concept in survival analysis is the concept of censoring. The
so-called censored objects are objects that are included in the study but the
exact time when they got the event is not known. The censored data can
be divided into, left, right and interval censored data(Kleinbaum and Klein,
2020 p. 7-8). The most relevant for this report is the right censored data,
which means that the study of the object is ended before the event occurred.
Relating this concept to the data in this study the following explanation is
adequate: the mechanical objects in the study are run for a maximum pre-
set amount of time and if the object is functioning at that time the test is
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ended. Therefore the exact time that the objects would have failed if the
test was run to failure is not known, hence these objects are right censored.

The concept of censoring provides an advantage for survival analysis in
comparison to, for example, linear and logistic regression. To study the time
until the event, also objects that did not have the event can be included in
the model, which greatly increases the available data in some cases.

2.2 The survivor function and the hazard function

The survivor function, S(¢) and the hazard function, h(t) are two main
concepts considered in survival analysis. To give some context to the for-
mulas presented below, the random variable describing the survival time of
a certain object is denoted 7. The survivor function, S(t) describes the
probability of survival after a certain time, t, for a certain object. As an
example the probability that an object survives longer than 5 time units can
be written as:

S(5) = P(T >5) (2.1)
The survivor function also has some basic theoretical properties:

1. The survivor function is non-increasing as t increases.

2. 5(0) = 1, in effect the probability of surviving past time 0 is 1, since
no objects have failed at the beginning of the study.

3. S(o0) = 0, meaning that if one would wait sufficiently long all objects
would have failed(Kleinbaum and Klein, 2020, p. 9-10).

The hazard function, however, is a measure of the immediate rate of
failing at a certain time. It gives the failure rate at the start of a certain time
interval, given that the object has survived up to time t and can therefore
be called the conditional failure rate(Kleinbaum and Klein, 2020, p. 11-12).
The hazard function is defined mathematically as:

. Pt<T<t+At|T >t
h<t>:£r§o( Al o (2.2)

Noting that the time interval, At in equation (2.2) goes towards zero,
the interpretation as the immediate failure rate at the time t is justified.
The hazard function, h(t) has the following theoretical properties:

1. h(t) >0
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2. h(t) has no upper bound(Kleinbaum and Klein, 2020, p. 13).

The way the hazard function changes over time gives an indication of
the distribution of the failure process of the underlying object of study.
If the hazard function is constant over time we get an exponential surival
model. If it increases or decreases over time the process resembles an in-
creasing or decreasing Weibull distribution. Because of these properties the
hazard function can be used to identify a specific model form that fits the
data(Kleinbaum and Klein, 2020, p. 13-14).

Additionally, if one knows either the survivor function or the hazard
function one can derive the other. The relationship between the survivor
function and the hazard function looks like in equation (2.3) and equation
(2.4).

S(t) = exp [— /0 th(u) du} (2.3)

2.3 The Kaplan-Meier estimator

When estimating the survival curve of survival data without censored values
it is easy to calculate the estimated probability of functioning past different
time periods. An example of this can be seen in Table 2.1 where t is the
failure time, n; is the number of objects functioning at the start of each time
interval [t;,t;+1], m; is the number of objects failing at time t, and q is the
number of censored objects at each time t.

Table 2.1: Example table of how to estimate probability of functioning past
a certain time(Kleinbaum and Klein, 2020, p. 62).

it on omgoq S(t)

0O 0 20 O 0 1

1 1 20 1 0 19/20 =0.95
2 4 19 3 0 16/20 = 0.8
3 6 16 5 0 11/20 = 0.55
4 7 11 O 0
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The estimated probability of functioning past a certain time, S (t;) can
be obtained by looking at the number of objects functioning at the end of a
given time period and divide it by the total number of objects included in
the study according to equation (2.5).
~ n;
S(t;) = —+ (2.5)

no

When estimating the survival function at different time periods for data
that include censored objects an alternative method is needed. This method
is called the Kaplan-Meier(KM) method. The advantage of this method
in describing the data in relation to typical descriptive measures such as
average expected lifetime and median lifetime, is that the survival of groups
can be compared at different points in time(Kleinbaum and Klein, 2020, p.
61-63).

The Kaplan-Meier method for estimating the survival function is illus-
trated with Table 2.2, constructed similarly to Table 2.1 but including cen-
sored objects at each point in time.

Table 2.2: Example table of how to estimate probability of functioning past
a certain time using the Kaplan-Meier method.

it on mg oq S(t)

0 0 200 0 1

1 1 20 1 1 19/20=0.95

2 4 18 3 3 095 % = 0.79
3 6 12 2 2 0.79-13=0.66
4 7 8 1 4 066-%=058

To obtain the probability of functioning after a certain time, t;, the
following conditional probability and formula is used:

S(ts) = P(T > :|T > ) = §(ts 1) - (” ;m> (2.6)
Or the full formula including all the conditional probabilities from ¢; = 0:

S(t,) = ﬁP(T > t|T > ;). (2.7)

=1
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Since the estimated survival function at different points in time is em-
pirically based, the resulting function will often look like steps as one of the
curves in Figure 2.1.

[}

Figure 2.1: An example of two different KM-curves(Kleinbaum and Klein,
2020, p. 67). The y-axis shows the estimated survival probability and the
x-axis some given time unit.

2.4 The Log-Rank Test

When one wants to investigate the survival of several different groups the
KM-curve of each group can be calculated and plotted in the same figure
as in Figure 2.1. To be able to determine if the survival curves of the two
different groups are statistically different from each other the log-rank test
can be used.

To perform the log-rank test we assume the null hypothesis, Hy, that
there is no difference between the survival curves and calculate a test statis-
tic that is chi-square distributed. The log-rank test statistic is calculated
according to the following formula:

(012 — ]31/2)2
Var (01/2 - E1/2>

where O /5 is the sum of the observed counts of failures over the study period
for either the first or the second group. Fj/; is the sum of the expected
counts of failures over the study period for either one of the groups. It does
not matter if one uses the first or the second group in this case but one need
to use the same for O and E. The expected failures at time ¢; for group 1, are

Zlog—rank = (28)
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calculated according to equation (2.9) and summed up to get E. The first
term in the multiplication refers to the proportion of individuals that is still
in the risk set of group 1 at that time, and the second term refers to the sum
of the number of actual failures at that time for both groups(Kleinbaum and
Klein, 2020, p. 68-70).

nit,
= ). . . 2.9
€1, <n1t¢ n n%> (mae, + may,) (2.9)

Since the log-rank test statistic in equation (2.8) is chi-square distributed
with one degree of freedom the significance of the test is easily evaluated.

The log-rank test can also be applied to compare the survival curves of
more than two groups. In that case the null hypothesis states that all the
survival curves are the same.

2.5 Confidence intervals for the KM-curve

Confidence intervals for the estimated probabilities in the KM-curve can
be calculated according to equation (2.10) with the help of Greenwood s
formula for the variance according to equation (2.11) (Kleinbaum and Klein,
2020, p. 78).

SKM(tz) + )‘1704/2 VEZT(SKM(t)) (2.10)

VarGiu(®) = S0P ¥ () e

i —
it <t i(ni

2.6 Cox proportional hazards model

While the KM-curve is good for visualizing the failure process and com-
paring the overall failure of different groups, it does not provide a way of
investigating the effect of a certain factor on the survival probability or haz-
ard rate. To analyse the relationship between explaining factors and time
to failure the Cox proportional hazards(PH) model is useful.

2.6.1 Model formulation

The formula for the Cox PH model can be seen in equation (2.12) where
X = (Xi,..., X)) is the explanatory variables. hg(t) is the baseline hazard

15



that depends on time but not on the explanatory variables and eXi=1 PiXi ig
the part describing the time-independent effect of the explanatory variables.

h(t,X) = ho(t)eXi=1 FiXi (2.12)

If all the explanatory variables are equal to zero the model reduces to
the baseline hazard function, ho(t). The baseline hazard function is unspec-
ified making it a semiparametric model. It is a robust model in the sense
that the results of it will closely resemble the results of the true parametric
model(Kleinbaum and Klein, 2020, p. 108-110).

2.6.2 Estimating the parameters using the Cox likelihood

The method to estimate the parameters in the Cox PH model is called the
Cox likelihood since it is a variation of the maximum likelihood estimation
method. The formulation of the Cox likelihood is based on the order of the
failure times in the data set and not on the exact distribution of the data,
since the semi-parametric character of the model does not enable specifying
the exact distribution. The expression for the Cox likelihood with k failure
times can be formulated according to equation (2.13). L; is the contribution
of the i:th failure time to the Cox likelihood. This is the hazard for the
i:th object divided by the sum of the hazards of the objects still left in
the risk set at the time of failure(Kleinbaum and Klein, 2020, p. 127-131).
The hazards are calculated according to the hazard function from equation
(2.12) in Section 2.6.1. In the expressions for L; the baseline hazard will be
present in each term of the denominator and the numerator and therefore
it will cancel. This is fundamental for the estimation of the parameters.

k
L=1LixLyx..x Ly =[] L (2.13)
=1

After having formulated the Cox likelihood the parameters in the Cox
PH model are estimated as usual by maximizing the log Cox likelihood
function with respect to the S-parameters in the model. The solution to
the maximization problem is the solution that maximises the probability of
getting the order of failure times that was observed from the data.

16



2.6.3 Interpreting the model by calculating the Hazard Ra-
tio(HR)

Having fitted a Cox PH model the effect of each explanatory variable is
illustrated by the estimated S-coefficient related to that variable. The effect
of the coefficient on the outcome, the time until event, is often expressed as a
hazard ratio (HR). The hazard ratio relates the effect, on the risk of an event
occurring, of an object “s exposure variable to an object that does not have
the same exposure to that variable. If one has studied logistic regression the
interpretation of the hazard ratio is similar to that of the odds ratio. As an
example, a hazard ratio of 1 means that the effect of the variable is none. A
hazard ratio of 5 means that the effect of the variable is 5 times the hazard
of an unexposed object. And a hazard ratio of 1/5 means that the hazard
is 1/5 of the unexposed individual.

Given two objects with the set of predictor values X1 =z + 1, X5 = z,
the estimated hazard function h(t, X) and §-coefficient related to those pre-
dictors, the hazard ratio between the two objects can be calculated according
to equation (2.14).

. 7 »B(z+1) R
HR = M6X) Mol (2.14)
h(t, X2) hoebx

The result in equation (2.14) shows the effect of adding 1 unit to the
value of predictor x in relation to an object that did not experience this
increase. The point of this is to illustrate the effect of a unit increase in
the presented Cox PH model. As the number of predictors increase the
complexity in the interpretation of predictor changes increases. Since the
result in (2.14) is multiplied by the baseline hazard a one unit increase can
also be interpreted as increasing or decreasing the baseline hazard with a

multiplicative factor of €.

2.6.4 Adjusted survival curves

Another useful quantity that can be calculated after having fitted the Cox
PH model is the adjusted survival curve. When no specific model is fitted
to the survival data the survival curve is estimated using the KM-method
(Kleinbaum and Klein, 2020, p. 120). Using the estimated Cox PH model
it is possible to calculate survival curves that adjust for the explanatory
variables. To obtain the estimated survival curves the formula in equation
(2.15) with the baseline survival function denoted, Sp(t) is used.

17



p X
ezi:;[ Bi X4

S(t,X) = So(t) (2.15)

The parameters in equation (2.15) and Sy(¢) are estimated when the
Cox PH model is fitted. With this expression a survival probability can be
obtained for each value of t.

The adjusted hazard function could of course also be achieved in the
same way using the relationship between the two stated in Section 2.2.

2.7 Evaluating the proportional hazards assump-
tion

The proportional hazard assumption states that the difference in hazard be-
tween two objects is explained only by multiplying the underlying hazard
function with a certain scaling factor(Davidson-Pilon, 2022). This scaling
factor is assumed to not vary with time. Three ways of evaluating the pro-
portional hazards assumption are explained by Kleinbaum and Klein(2020,
p. 162). These are two graphical approaches, looking at the log-log plots of
the survival curves and comparing the observed versus the expected survival
curves. The third approach is by performing a goodness of fit test for the
relevant predictors. In evaluating the PH assumption the goodness of fit
test was used to since it gives a more objective result than the results of the
graphical approaches(Kleinbaum and Klein, 2020, p. 181).

2.7.1 Goodness of fit

The idea behind the test is to calculate the Schoenfeld residuals for each
predictor being tested. The Schoenfeld residuals can be calculated for each
predictor and object that have failed. It is calculated for each failure time
and object by taking the observed predictor value minus the weigthed aver-
age predictor value for all the other objects still at risk at the failure time
in question(Kleinbaum and Klein, 2020, p. 181). The correlation between
the Schoenfeld residuals and the order of the failure times is then evaluated.
They should be unrelated if the PH assumption is satisfied.

The null hypothesis is that the predictors satisfy the PH assumption and
the alternative hypothesis that they do not. When performing the test one
predictor at a time is tested given that the other predictors satisfy the PH
assumption. In the analysis part of the report the proportional_hazard_test
provided by the Lifelines Python library (Davidson-Pilon. 2022) was used
to evaluate the PH assumption.

18



2.8 The extended Cox model

If the proportional hazards assumption is not satisfied the Cox model could
be extended to include time-varying variables. Another reason to use the
extended Cox model is that the variables measured actually is varying with
time and the extended Cox model is able to handle this.

2.8.1 Time-varying variables

Three types of time-varying variables can be considered: defined time-
variables, internal variables and external variables(Kleinbaum and Klein,
2020, p. 247). Defined time-variables are pre-defined, for example the tem-
perature multiplied by time. ”Internal” variables change value because of
internal characteristics of the subject of study. This could for example be
the temperature measured in the engine, which is affected by internal pro-
cesses in the engine. ”External” variables change value because of external
characteristics in the environment. An example of this could be the temper-
ature in the testbed which changes because of many factors, the temperature
outside, or the energy emitted from the test object in the testbed.

2.8.2 The counting process format

When looking at time-varying variables the data used for fitting the model
will be in a different format than for the regular Cox PH model. This format
is called counting process(CP) format. For the regular Cox PH model the
data is listed with one observation per study object, containing the failure
time, object id and the values of the predictors. In the counting process
format there are numerous observations in time per study object, where the
value of the predictor can be different at different points in time. This is
coded by having each row in the data table represent a time interval for
a certain study object. The value of the different predictors at that time
is provided together with information on whether the object failed or not
during the time interval. An example of this can be seen in Table 2.3 below.
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Table 2.3: Example of the counting process data format.

object id start stop event temperature(°C) engine RPS

1 0 3 0 20 160
1 3 6 0 19 155
1 6 9 0 21 175
1 9 12 1 22 176
2 0 3 0 20 160

2.8.3 Constructing the extended Cox model

Even though there are different ways of defining the time-varying variables
the mathematical structure of the extended Cox model will be the same.
The type of time-varying variables focused on in this report will be ”inter-
nal” variables. The resulting extended Cox model will look like in equation
(2.16), which is pretty much the same as in the Cox PH model but now the
parameters are fitted to all of the data in the CP format.

h(t, X (t)) = ho(t)e=i=1 FiXi®) (2.16)

2.8.4 The extended Cox likelihood

The Cox likelihood for the extended model is in large parts the same as for
the Cox PH model. Now, however the hazard function for specific objects
change with time. This will lead to a time-varying contribution to the total
hazard for a certain object in the total hazard of the denominator of L; in
equation (2.13) Section 2.6.2.
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Chapter 3

Description of data source

The data used in the study comes from the internal Husqvarna Group
database where data from tests performed on products from 7 different prod-
uct categories is registered: chainsaws, clearing saws, power cutters, lawn
movers, batteries, accessories and various handheld and wheeled products.

3.1 Registering failures

A test object consists of several components, for which failures are regis-
tered. The failures are registered either automatically, or at the end of test
after manual examination. When manually registering failures the exact
failure time is not known and since the test managed to run until the end
time these are treated as right censored observations according to Section
2.1.1. Additionally, some tests are stopped early, even though no failures are
registered. These tests also become right censored. The practical reasons for
this could for example be the need of running a more important test in the
testbed when no other testbeds are available. Another reason could be that
sufficient information related to the performance of the object in question
have already been obtained. Therefore the test is stopped ahead of time in
order to save time.

3.2 Registering predictor data

Examples of registered predictor data during the tests are temperatures on
different parts of the test object, temperatures on surrounding equipment
and in the environment and revolutions per second(RPS) in the engine.
The measure point names are keyed in manually by the operator, which for
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example led to a temperature measure having 10 different names in one case,
even though it referred to the same predictor. These types of problems was
handled in the data gathering and preparation part.

The tests are run according to a pre-specified test method where the
purpose is either emulating real usage(denoted test method 1) or general
wear(denoted test method 2). The test time is divided into time periods.
For each time period, the test object have gone through a number of different
cycle steps. For test method 1 the steps vary between full throttle with
or without emulated load and for test method 2 between idling and full
throttle. Minimum, maximum and mean values from the measure points
are registered from each step in the time periods.

3.3 Data from SMHI

The weather data on relative air humidity, air pressure and air tempera-
ture was collected from the Swedish Meteorological and Hydrological Insti-
tute(SMHI) as hourly measurements from the data station Gothenburg A.
The relative air humidity is given in percentages, air temperature in hPa
and the temperature in degrees Celsius(SMHI, 2022).
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Chapter 4

Method

4.1 Information gathering about the test environ-
ment and methodology

Information about the test methodology, test environment and other test-
ing context have been gathered through regular visits and meetings with
people from different functions at Husqvarna. References to personal com-
munication relates to these events. The point of these meetings have been
to understand the source of the data, interpret the behaviour of it and help
with filtering of relevant data for the analysis.

Regular meetings, twice a week, have also been held with Lars Wal-
fridsson, supervisor for the thesis from Husqvarna. Through these meetings
support in navigating the database and getting in contact with with relevant
people have been provided.

4.2 Software programs

All Husqvarna data were extracted from the external Husqvarna database
using Microsoft SQL Server Managment Studio(SSMS) and SQL queries.
For the statistical analysis and data cleaning Python programming language
was used with the integrated development environment(IDE) Spyder which
has a suitable interface for scientific computing. The Python Pandas library
was used which enables statistical analysis of large amounts of data. The
Lifelines library(Davidson-Pilon, 2022) contains the implemented statistical
models needed for the analysis.
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4.3 Data gathering and preparation of the chain-

saw data

As mentioned at the end of Section 1.3 as many failures as possible together
with possible predictors was desirable. The data set also needed to contain
tests that were comparable with each other with respect to a number of
aspects. The following aspects were considered when filtering out a final
data set for the survival analysis:

1.

Product category: The performance of objects from different product
categories cannot be directly compared with each other because of
their differences. Data from the product category ’chainsaws’ was
chosen since it contained the largest amount of failure data.

. Test method: Tests run with different test methods expose the objects

to different loads and wear. Therefore, the data was filtered on the
type of test method. The test methods analysed were test method 1
and 2.

Test program: The test programs are run slightly different depending
on the intended use of the products. There were for example 3 different
test programs found in the data from test method 1. The difference
of the actual products from these tests are the strength of the engine
and the bar length on the chainsaw.

Product model: Husqvarna produces a large number of different chain-
saw models that are intended for different usage. This needs to be
taken into consideration when comparing the performance of models
in different tests.

Predictor names: When inspecting the raw data not all tests contained
measurements from all measure points. As described in Section 3.2
there were many different measure point names and to enable analysis
without losing too much data, the data set was filtered on test objects
that had measurements on certain predictors. This was done by keep-
ing data points of predictors that had more than 100 000 occurrences
in the initial raw data.

Other disqualified tests: Sometimes tests are run with very specific
purposes such as testing components in the testbed or single com-
ponents in a product. Such test are often very short, not complete
with respect to measure points and are part of multiple tests on the
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same test objects. Because of these reasons they were discarded in the
analysis.

7. Test cycle step: The available data for each test cycle step was in-
vestigated. Unfortunately not all test cycle steps contained the same
amount of data from the measure points. Therefore the data was fil-
tered on the cycle steps that had the most data points registered. This
was the load cycle step for the data with test method 1 and the full
throttle cycle step for the data with test method 2.

8. Measurement type: Of the three measurement types that are registered
during the tests not all of them contained the same amount of data
points, for the same predictors. This means, that if for example the
max values from the load cycle at every time period were analysed
with a certain set of predictors, the same set of predictors and tests
did not also have min values registered. Therefore a new data set was
needed to analyse min or mean values instead. Because of this, the
focus of the analysis had to be on the measurement type with the
largest amount of data points for the relevant chosen predictors, this
was the max values for both test methods.

4.3.1 Descriptive analysis of the data

After a first filtering of the data had been made, it was visualized in different
ways to get a better overview of the underlying process. The visualization
was also important to recognize problematic data such as single outlier values
or outlier tests in the analysis.

Plots of the data against time, histograms and KM-curves(see Section
2.3) were used for initial visualization of the data.

4.3.2 Preparation of data for the mean based Cox PH model

In some cases there were multiple failures registered for a test, since failed
components are sometimes changed for new ones to be able to finish the
test. For the analysis the first failure time was used to define the failure of
a test.

For the Cox PH model the data needed to be in the format of one
observation per test and therefore the mean values of the max measurements
from the cycle steps were calculated for the whole test time. Before this,
outlier predictor values were removed, which is discussed more in detail in
Section 5.1.4.
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4.3.3 Preparation of data for the extended Cox model

To apply the extended cox model with time-varying variables the data
needed to be transformed into the counting process format. The details
of this can be seen in Section 2.8.2, The counting process format.

4.4 Data gathering and preparation of the power
cutter component data

The data gathering on cracks in power cutter components was simple since
all non failed components in power cutters could be collected together with
all failures due to cracks. The date that the test was set up was collected
for each component to be able to match it with the right weather conditions
that month.

Hourly data from SMHI(2022) was collected from the weather station
closest to Jonsered outside Gothenburg. Mean values were then calculated
for each month for each predictor and resulted in one observation per failure
time. The data from SMHI was in high enough quality and therefore no
further preparation was needed.
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Chapter 5

Analysis and results

5.1 Tests run with test method 1

Having prepared the data according to the steps described in Section 4.3,
the data set for test method 1 on chainsaws is summarized as follows:

e 146 objects
e 59 failures

e Predictors:

RPS

temperature 1 (surrounding environment)
temperature 2 (on test object)
temperature 3 (surrounding equipment)
temperature 4 (surrounding equipment)
Standard deviation of the RPS

Standard deviation of temp. 1

® N o G WD

Standard deviation of temp. 2

Test cycle step: ’load’

e Measurement type: Max-values

5 main model groups: denoted 1-5

3 different test programs: denoted 1-3
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5.1.1 KM-estimator and descriptive measures

First of all, the survival function was estimated using the KM estimator as
in Figure 5.1 with the estimated median survival time of 90.7 time periods.
The median was obtained using the Kaplan-Meier estimator and is in effect
given by the relationship S(t) = 0.5.

KM-estimate, chainsaws tests with test method 1
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Figure 5.1: KM-curve for all chainsaw tests with test method 1.

Looking at the KM curve for all the tests it can be seen that about 46%
of the chainsaws are functioning at the end of the test.

5.1.2 Comparing the survival of different groups

As mentioned in Section 5.1 the chainsaws can be roughly divided into 5
different groups based on the model type. A few chainsaws did not fit in
into these groups and did not themselves create a group big enough to be
meaningful as a comparison. They were still judged to be similar enough to
the rest of the tests to be included in the study. Therefore they were only
included when looking at the category "All’.

One way of comparing the survival of the different groups is by looking
at the estimated median survival time. This however, does not give a way of
comparing the survival at different points in time. Another way of investi-
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gating if there are any differences between the groups is by comparing their
estimated survival functions. This was done by estimating the survival func-
tion separately for the different groups using the KM-estimator and testing
it against the survival function of the objects not included in that group.
For this the log-rank test was used.

There were 5 log-rank tests used to test the survival of each group against
the rest. A summary of some basic statistics from this analysis can be seen
in Table 5.1. A comparison of model group 3 against the rest and model
group 5 against the rest is shown in the plots below. These were the groups
where the difference in survival was the most evident.

KM-estimate, chainsaws tests with test method 1
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Figure 5.2: KM-curve for model group 3 against the rest.

From Figure 5.2 it seems like the survival of group 3 is better over time
than for the rest of the objects. This is also confirmed on a significance level
of 0.05 by the p-value of 0.02 when testing the significance between the two
groups.
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KM-estimate, chainsaws tests with test method 1
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Figure 5.3: KM-curve for model group 5 against the rest.

Looking at Figure 5.3, at first it seems like group 5 performs worse than
the rest of the objects since the curve is constantly lower. However, the
confidence intervals are overlapping all the time, and the p-value of 0.08
shows that it cannot be concluded that the curves are different from each
other.

Furthermore, the log-rank test for the other groups, 1, 2 and 4 did not
imply any significant difference in survival as can be seen from the p-values
in Table 5.1.
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Table 5.1: Summarizing statistics on the different groups and the total pop-
ulation.

Group n events Median survival p-value(log-rank test)
All 146 59 90.7 -

1 12 3 40.8 0.92

2 42 13 66.2 0.35

3 35 13 - 0.02

4 23 11 - 0.96

) 20 10 56.2 0.08

From Figure 5.1 it can be seen that the median is not stated for group
3 and 4. The reason for this is that there was no data point for S(¢) = 0.5,
when half of the risk set had failed. Therefore the median could not be
calculated.

5.1.3 Predictors against time

As a first step in inspecting the predictor data some of the data was plotted
against time. Since the data was in time series format and there were about
146 test objects with a total of over 144 000 data points in the data set
used for the analysis not all time series data is shown below. An excerpt
from the data set of 20 tests that failed are shown for the RPS(Figure 5.4),
temperature 1(Figure 5.6), 2(Figure 5.7), 3(Figure 5.8) and 4(Figure 5.9).
Each different colour represent the time series for a specific test and the
same 20 tests that failed are shown for all predictors.
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RPS against time for 20 chainsaw tests that failed
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Figure 5.4: An excerpt of the data visualizing the RPS against time for the
test from 20 different test objects that failed.

It can be seen that at least one test shows shows erratic behaviour when
approaching failure, this is the purple one in the first subplot. This type
of behaviour was rather an exception than a rule as can be seen from the
picture, but also when looking at other observations not present here. For
the most cases the RPS was close to constant over time with short dips
created by test stoppages causing the RPS to fall for short time periods.
Because of the stoppages the RPS fell to 0 in some sporadic cases.

32



RPS against time for 20 chainsaw tests that did not fail
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Figure 5.5: An excerpt of the data visualizing the RPS against time for the
test from 20 different test objects that did not fail. All but one are censored.

As a contrast to Figure 5.4, Figure 5.5 shows some time series for tests
performed that did not fail, most of which were censored. It can be seen
that just by inspecting the time series and comparing the figures there were
no obvious systematic pattern in the graphs that could tell if an object was
going to fail or not.

Furthermore, some plots are shown for time series data on temperature
1 and 2.
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temp 1 against time for 20 chainsaw tests that failed
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Figure 5.6: An excerpt of the data visualizing temperature 1 against time
for test from 20 different test objects that failed.

As can be seen in Figure 5.6 temperature 1 changes in a different way
than the RPS over time and there is more of a variation. The temperature 1
is largely affected by the temperature outside which explains varying values.
It is also affected by the heat the chainsaw emits to its environment when
running.
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temp 2 against time for 20 chainsaw tests that failed
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Figure 5.7: An excerpt of the data visualizing temperature 2 against time
for test from 20 different test objects that failed.

Temperature 2 seen in Figure 5.7 behaves similar to the RPS over time

but here the stoppages have a larger impact since the temperature changes
slower than the RPS.
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temp 3 against time for 20 chainsaw tests that failed
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Figure 5.8: An excerpt of the data visualizing temperature 3 against time
from 20 different tests that failed.

Temperature 3 can be seen having similar structure to temperature 2
in the way that it also have many short dips due to stoppages. Intuitively
it is not clear how this predictor should be related to failures since it is a
measurement that comes from surrounding equipment. However, the data
on this predictor was extensive and was therefore included in the analysis.

The same reasoning regarding relevance and availability of the data was
done for the temperature 4 data seen in Figure 5.9 below.
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temp 4 against time for 20 chainsaw tests that failed
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Figure 5.9: An excerpt of the data visualizing temperature 4 against time
for test from 20 different test objects that failed.

Just by visual examination of the curves, temperature 3 and 4 seem to
follow each other during the duration of the tests. This imply a positive
correlation between the predictors and would need to be taken into consid-
eration in the analysis.

5.1.4 Handling outliers

As shown in the figures above there are quite a lot of sporadic dips in all of
the predictor data because of the test stoppages. This would certainly affect
the value of the estimated parameters in the following model and it can be
discussed whether these should be included or not in the analysis.

What for sure should not be included in the analysis and would confound
the results are cases where whole series of measure points are wrong. Some
such cases were found where, for example, temperature 2 suddenly drops to
around 20-25 degrees Celsius and stays there for the rest of the test. The
reason for such an error could be due to the measuring equipment coming
loose and therefore leading to the temperature in the surrounding environ-
ment being registered instead. Such problems were handled in different ways
depending on the model used for analysis.

For the mean based Cox PH model single outlier values were not expected
to have that big of an impact on the mean of the whole series. Instead
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observations with unreasonable mean values were removed. Examples of
this are mean values of temperature 2 below 40 degrees, which means that
someone probably have mixed up this measure point with temperature 1
when entering the name of the measure point. Other outliers could be
unreasonably high values of any predictor value or mean values of zero.

For the extended Cox model there were no calculated mean values and
instead single data points were removed if unreasonably high or low indicat-
ing faulty measurements.

5.1.5 Pairplot of mean values

As a first approach to modeling the relationship between the predictors and
the failure times the mean values over the time series were calculated. This
was done for several reasons. First of all I wanted to start as simple as
possible in modeling the relationship, in order to not miss obvious relation-
ships. Secondly, by inspection of the plots in the previous section and the
rest of the tests many time series were relatively stable. They were just on
slightly different levels with small spikes or dips that did not seem obviously
related to the failures. The idea was that the mean values would capture
the differences over time for the predictor values of the whole test implying
a different strain on the object. If two objects have about the same values of
a certain predictor but one is stopped a lot more or have short spikes then
this would also affect the calculated mean and in that sense take this strain
on the object into consideration.

Before fitting the Cox PH model a visual inspection of the mean values
of the predictors and their relation to each other was appropriate. This was
done according to Figure 5.10 and 5.11 below. The main reasons for looking
at these plots was to discover any obvious correlation between the predictors
that would contribute to the analysis.
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Figure 5.10: Plotting all combinations for three of the predictors against
each other. The orange observations represent observations with failures
and the blue without.

From Figure 5.10 one could suspect a small correlation between temper-
ature 1 and the temperature 3, but there does not seem to be any strong
correlation between the three predictors shown.
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Figure 5.11: Plotting all combinations of the two other predictors together
with temperature 3. The orange observations represent observations with
failures and the the blue without.

Looking at Figure 5.11 there is a clear positive correlation between tem-
perature 3 and 4. This will be important to keep in mind when looking at
what coefficients should be included in the Cox PH model.

5.1.6 Simple mean based Cox PH model

As a start there were measurements for 5 different continuous variables as
stated in Section 5.1. The results of the group comparison suggested that
group 3 had a different survival from the others, which means that it would
be interesting to bring in a categorical variable also to adjust for this dif-
ference. Given the nature of the data shown in Section 5.1.3, there was of
special interest to incorporate the volatility of the time series in the model.
Especially the volatility of the RPS was thought to have an impact on the
failure time of a certain test. Therefore the standard deviation of the RPS,
temperature 1 and temperature 2 for the whole test were calculated and
tested for significance.

When comparing the goodness of fit between different models the main
tool used was the partial AIC produced from the Cox PH fitter in the Python
Lifelines library(Davidson-Pilon, 2022). The ’Partial’ AIC refers to the fact
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that some observations are censored and therefore the partial likelihood
is used in the AIC. The significance of the coefficients together with the
likelihood-ratio(LR) test were also used in the model selection process.

As a first step, a model was fitted with the 5 directly measured predictors.
The coefficients, exponentiated coefficients and their p-values can be seen in
Table 5.2. The partial AIC for this model was 510.56.

Table 5.2: Statistical information of the model fitted with the 5 measured
predictors, ordered by coefficient values.

Predictor S; ebi p-value
RPS 0.03 1.03 0.07
temp. 2 0.02 1.02 0.11
temp. 3 0.00 1.00 0.94
temp. 4 -0.00 1.0 0.15
temp. 1 -0.06 0.94 0.11
group 3 -0.94 0.39 0.03

To get a visual idea of the difference of the predictors Figure 5.12 shows
the 95% confidence interval for the estimated coefficients in the first Cox
PH model including all measured predictors together with the categorical
variable group 3. This figure is useful to look at when one wants to determine
the level of significance and the precision in the estimates of a coefficient.
However it does not intuitively give an interpretation of the coefficients effect
on the survival. For this, it is better to look at the exponentiated coefficients
in Table 5.2. There it can be seen that, after adjusting for the other factors,
if a test object belongs to group 3 then the hazard is about 61% lower than
if it does not.
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Confidence interval(95%) for the coefficients in the Cox PH model
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Figure 5.12: The estimated coefficients and their 95% confidence interval.

Figure 5.12 is shown to illustrate the significance of the different predic-
tors when adjusted for the others. The single most important coefficient to
determine the time to failure seems to be the categorical variable determin-
ing if an object belongs to group 3 or not. However the scale of the effect
has great uncertainty in relation to the others, since the interval is so wide.
It was of interest to investigate what effect the measured predictors have on
the failure times independently of the chainsaw model. Therefore the "group
3’-coefficients was excluded in further analysis of the data.

When removing the ’group 3’-coefficient the significance of temperature
3 increased and temperature 4 decreased. This together with the strong
correlation between those, led to the decision of excluding temperature 4
from the model. Also the RPS coefficient was far from significant and was
excluded.

Having a model with the coefficients seen in Table 5.3 with a partial
AIC of 506.82, the standard deviations as predictors were included to see if
this could improve the model. There was an idea that the volatility of, for
example, the RPS could have a wearing effect on the objects in the tests
since it puts a certain strain on the engine.
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Table 5.3: Statistical information of the model fitted with 3 measured pre-
dictors.

Predictor S; efi p-value
temp. 1 -0.07 0.93 0.09
temp. 2 0.03 1.03 0.02
temp. 3 -0.01 0.99 < 0.005

The only standard deviation that significantly improved the model was
the one related to the RPS with a partial AIC of 508.76. A LR-test was
also performed where a model that included also the standard deviation of
temperature 1 was included. This resulted in a test statistic of 1.759 with
one degree of freedom, which can be compared to the corresponding quantile
form the chi-square distribution. Since 1.759 < 3.841 it is not significant
and the model including the standard deviation of temperature 1 was not
preferred. The final model with its estimated coefficients and significance
levels can be seen in Figure 5.13 and Table 5.4.

Confidence interval(95%) for the coefficients in the Cox PH model
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Figure 5.13: The estimated coefficients and their 95% confidence interval
for the final model.
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Table 5.4: Statistical information of the final model for the data from test
method 1.

Predictor Bi efi CI(95%) of e p-value
std. dev. RPS 0.04 1.04 [1.01, 1.07] 0.02
temp. 2 0.02 1.03 [1.00, 1.05] 0.04
temp. 3 0.01 0.99 [0.99, 1.00] < 0.005
temp. 1 0.06 0.94 [0.87, 1.02] 0.12

As a final way of evaluating the models fit to the data and compare it
with others there was also a way of predicting the expected survival time in
the Python Lifelines library (Davidson-Pilon, 2022) given a set of predictors.
Predictions was made using the Cox PH model but on the data for which
the model was fitted. This was done only on the failure observations and
resulted in a RMSE of 37.4. The required time period for a test was 100
periods.

5.1.7 Testing the PH assumption

To determine if it was reasonable to assume proportional hazards for pre-
dictors in the Cox PH model a proportional hazard test was performed.
None of the predictors violated the proportional hazard assumption and the
results of the test can be seen in Table 5.5 below.

Table 5.5: Results from the proportional hazard test for each of the predic-
tors from the final Cox PH model.

Predictor p-value
std. dev. RPS 0.43
temp. 2 0.61
temp. 3 0.24
temp. 1 0.18

5.1.8 Adjusted survival curves

Having fitted a Cox PH model an adjusted survival curve can be calculated
based on the estimated coefficients in the model. To obtain the survival
curve the values for the predictors need to be provided. For the adjusted
survival curve in Figure 5.14 the mean values of the observed predictors were
given.
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Survival function estimated using the KM-estimator and the Cox PH model
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Figure 5.14: The survival curve estimated using the KM-estimator and the
Cox PH model.

As a comparison the initial parametric KM-estimate of the survival curve
is plotted together with the adjusted survival curve given by the Cox PH
model in Figure 5.14. The difference between the models are quite small
during the first half of the test time but becomes visible at the second half.
Even though a difference is visible it can be concluded that it is quite small
when looking at the wide confidence interval of the KM-estimate.

5.1.9 Implications for the survival function

To get a better understanding of the relative risk implied by the Cox PH
model one can keep all but one predictor constant and vary the values of
the other predictors to see what that implies for the survival over time of
an object. In Figure 5.15 and 5.16 the effect on the survival of varying
temperature 3 or temperature 2 is illustrated.

By lowering temperature 3 the risk of failure increases and by raising
temperature 2 the risk of failure increases. From the figures it seems like
the effect of higher temperature 2 or lower temperature 3 is greater at the
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end of the test. However, this conclusion should not be drawn too fast since
the uncertainty is also a lot higher at the end of the test when the amount
of observations are fewer. The higher uncertainty is also illustrated by the
confidence interval of the KM-estimator in Figure 5.14.
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Figure 5.15: The partial effect of varying temperature 3 given that the other
predictors do not change.
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Figure 5.16: The partial effect of varying temperature 2.

5.1.10 The extended Cox model

For the extended Cox model the time-varying character of all of the pre-
dictors was examined by putting the data into counting process format as
explained in Section 2.8.2. For this data set one observation was lost when
removing outlier values. This was a test object with no specifically strange
values except for a very early failure. It is judged that this would not make
an important difference in the comparison of the models.

The predictors that were included was in large the same as the above
with the exception that a rolling standard deviation could now be included.
This was done for the RPS, since it was deemed the most relevant.

The first fitted model contained the 5 directly measured predictors from
above plus the rolling standard deviation. Different lags for the rolling stan-
dard deviation was tested with the most significant based on the previous 5
time periods. The partial AIC was calculated to 475.64.
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Table 5.6: The predictor coefficients of the extended Cox model and their
significance.

Predictor Bi efi p-value
rolling std dev RPS 0.03 1.03 0.14
RPS 0.02 1.03 0.10
temp. 1 0.00 1.00 0.90
temp. 2 0.00 1.00 0.53
temp. 4 -0.00 1.00 0.90
temp. 3 -0.01 0.99 0.01

A visualization of the confidence intervals for the coefficients is once
again provided by Figure 5.17.

rolling std RPS T

temp 1 T

temp 2 =
temp 4 —a—
temp 3 ——
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.068 0.08
log(HR) (95% CI)

Figure 5.17: Confidence intervals for the coefficients in the extended Cox
model with 6 predictors.

Removing temperature 4 and temperature 1 since they were highly in-
significant yielded an improvement of the partial AIC to 471.9. However,
the coefficient of temperature 2 was still highly insignificant and was there-
fore also removed. This improved the AIC further to 470.41 and resulted in
the best model with only three coefficients as seen in Table 5.7 and Figure
5.18.
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Table 5.7: The predictor coefficients of the best extended Cox model and
their significance.

Predictor Bi efi CI(95%) of e p-value
RPS 0.03 1.03 [1.00, 1.06] 0.06
rolling std dev RPS  0.03 1.03 [1.01, 1.09] 0.01
temp. 3 -0.01  0.99 [0.99, 1.00] < 0.005
rolling std RPS i o
RPS 0
0.00 0.02 0.04 0.06 0.08
log(HR) (95% CI)

Figure 5.18: Confidence intervals for the coefficients in the best time-varying
model.

5.1.11 The partial hazard over time

As way to exploit the advantage of fitting the extended Cox model is that
the partial hazard can be calculated for every time step of a test. This could
be interpreted as a way of monitoring the strain on the object as an actual
value in the calculated hazards. This was performed for 12 tests that failed
at the end of the time period. To lower the fluctuations in the presented
plots the log partial hazard was plotted over time. This can be seen in
Figure 5.19 and 5.20.
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Figure 5.19: The log partial hazard plotted over time for 6 different tests.
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Figure 5.20: The log partial hazard plotted over time for 6 different tests.

5.1.12 Comparing the Cox PH and the extended Cox model

To remind the reader of the formula for the extended Cox model equation
(5.1) is provided below. The partial hazard is the parametric part of the
hazard function below, in effect the right hand side without the baseline
hazard, ho(t).

h(t, X) = ho(t)ezi=1 FiXi(®) (5.1)

The extended model uses the full time series to estimate the parame-
ters in the Cox model and therefore a partial hazard can be obtained for
every time period and object. Since the observations in the Cox PH model
was based on mean observations, the mean of the partial hazards from the
extended Cox model was calculated as a relevant comparison. The partial
hazards produced for the two models was then plotted next to each other
against the time in test for the objects that failed. For a model to be a good
fit and indication of failure the predicted partial hazards should be high for
the objects that failed early and low for the objects failing very late in the
tests. The results of plotting the hazards generated from the two different
models is visible in Figure 5.21.
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Figure 5.21: The partial hazards plotted for the two models.

From a brief visual inspection the difference in the two models is quite
small. It is visible from both of the models that a higher hazard indicates
shorter failure times though the relationship is not particularly strong. More
data and evaluation is needed to examine which model is a better fit. It is
reasonable to think that the model using all of the time series data is giving
more robust estimates however the amount of data points used in estimating
the parameters are a lot in comparison to the mean based Cox PH model.

5.2 Tests run with test method 2

5.2.1 Summary of the data set

As a summary, the data set for the tests run with test method 2 consisted
of:

e 146 observations
e 30 failures
e Possible predictors:

1. RPS
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temperature 1
temperature 3
temperature 4
standard deviation of RPS

standard deviation of temperature 1

AN e

5.2.2 Mean based Cox PH model

In the analysis of the most suitable model first the significance of all of the
predictors were evaluated individually. The reason for the different approach
in comparison to the last data set was the low amount of failure observations
in this data set. It was suspected that bringing in all the coefficients directly
would make everything insignificant.

Temperature 3, the RPS and temperature 4 were significant by them-
selves. However, temperature 4 and 3 was once again strongly correlated
and therefore only temperature 3 was included in further analysis.

The model including temperature 3 showed the strongest significance
and comparing the partial AIC it resulted in the lowest value. Any other
combination led to a higher value and to insignificant coefficients. Therefore
it was the best according to the analysis. To compare a model only including
the RPS or only including temperature 3 Table 5.8 is provided with relevant
information.

Table 5.8: Cox PH model including only a coefficient for the RPS or tem-
perature 3.

Model: efi CI(95%) of €% p-value partial AIC RMSE
only RPS 0.962 [0.927, 0.998]  0.04 267.64 65.7
only temp. 3 0.989 [0.980, 0.999] 0.02 266.31 64.7

5.2.3 The extended Cox model

For the extended Cox model measurements with the same amount of pre-
dictors were used, but now data with 115 999 observations were used. This
yielded similar results as for the PH model, with the coefficient for tem-
perature 3 being the most significant coefficient. Having only a model with
coefficients for this predictor yielded a partial AIC of 267.73. Adding coef-
ficients for the RPS or a rolling standard deviation of the 5 last values for
the RPS did not show any significance in the coefficients and worsened the
AIC. A coefficient for temperature 1 did improve the AIC slightly to 266.94,
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though the coefficient was not significant. The information on this model
can be seen in Table 5.9 below.

Table 5.9: The predictor coefficients of the extended Cox model for tests
with test method 2.

Predictor f3; efi CI(95%) of e p-value
temp. 3 -0.01  0.99 [0.99, 0.99] < 0.005
temp. 1 0.08 1.08 [0.98, 1.20] 0.10

5.2.4 The partial hazard

In the same way as in Section 5.1.12 the partial hazards of the two models
were compared for predictions made on the 30 failures in the data set. The
results can be seen in Figure 5.22 below.

Cox PH model

partial hazard
w

60 100 120
Extended Cox model

partial hazard
w

0 20 40 60 80 100 120
test time

Figure 5.22: The partial hazards plotted for the two models.
From the figure it seems like the Cox PH model implies a slightly better
fit because of the higher hazards for lower failure times. The amount of

failures in relation to total observations is however quite few. Therefore too
strong conclusions from this data set should not be drawn.
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5.3 Component failures due to cracks

For the last, a bit more delimited, problem of examining the surrounding
weather conditions influence on cracks in components from power cutters
the data can be summarized as follows:

e 224 component observations

e 112 failures(due to cracks)

e date of test

e monthly measurements from the SMHI station in Gothenburg;:

1. relative air humidity(%)
2. air temperature(°C)

3. air pressure(hPa)

For the model the mean temperature of the month of the test was taken.
A Cox PH model was fitted to the data to investigate if the measurements
could explain some of the risk related to cracks in the components.

5.3.1 Visualising the data

Starting off, all the predictor data was plotted against the test time and
against each other to get a comprehensive view of the data. The observed
failures are marked with orange dots as can also be seen in the Figure 5.23
legend. Inspecting the data there were no extreme data points with re-
spect to the different predictors and no extremly clear correlation in the
plots shown. A small negative correlation can be suspected between the
temperature and the humidity.
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Figure 5.23: The predictor values plotted against each other and against the
test time.

Also the KM-estimate was calculated for the dataset. This is seen in
Figure 5.24.
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Figure 5.24: Kaplan-Meier estimate for the component failures.

It can be seen that the probability of survival longer than 100 time
periods is about 30% when just looking at failures due to cracks in the
components.

5.3.2 Model selection

Initially fitting the three weather measurements resulted in confidence inter-
vals(95%) for the coefficients seen in Figure 5.25. From Figure 5.25 is seems
like humidity is the only factor to have a significant effect on the probabil-
ity of failure due to cracks in components. The interpretation here is that
higher humidity leads to a lower risk of failure.
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Figure 5.25: Confidence intervals(95%) of the coefficients in the Cox PH
model for component failures due to cracks.

A slightly better fit was yielded by removing pressure from the model
and the resulting coefficient estimates and their p-values can be seen in Table
5.10.

Table 5.10: The predictor coefficients for the model of the relationship be-
tween weather conditions and component failures.

Predictor Bi efi CI(95%) of e  p-value
air humidity -0.04 0.96 [0.93, 0.98] < 0.005
air temperature -0.04 0.96 [0.92, 1.00] 0.07
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Chapter 6

Discussion and conclusions

6.1 Test method 1

Summarizing the results from the analysis of the data with test method
1, both the mean based model and the extended model indicate that the
standard deviation of the RPS and temperature 3 have an effect on the
survival time.

Starting with the RPS, there is reason to believe that the volatility of
the RPS value during the test affect the survival. The reason for this is that
it was only the standard deviation of the RPS in the Cox PH model that
showed any significance and not the actual values of the RPS over the test
time. Similar results was seen in the extended Cox model where the rolling
standard deviation was significant. The interpretation of this could be that
a high volatility in the RPS implies instability in the engine and therefore
increases the risk of failure.

Moving on to the temperature 3 coefficient, it was significant in both
variations of the Cox model. It is not as intuitively clear why this is since
the temperature is measured in surrounding equipment. Worth noting is
that the value of the estimated coefficient is quite small in relation to the
other coefficients in the model. The confidence interval is also small which
indicates better precision in the estimate. Therefore it can be said that an
increasing temperature 3 lowers the risk of failure even if the effect is quite
small in relation to other explaining factors that might exist.

Another aspect to discuss is the effect of the chainsaw model type on
the survival time. Section 5.1.2 and Table 5.2 in Section 5.1.6 indicates that
the model type is important even though there are large variations within a
group that are better explained by the measured factors. It would be inter-
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esting to segment the analysis further by just looking at a certain chainsaw
model type one at a time. A deeper analysis into this was unfortunately not
done due to two reasons. The first being the sharp decrease in observations
when segmenting the data set by model type. The second was due to time
constraints. The time aspect is explained by the fact that it takes quite a
lot of time to extract large amounts of data from the database, clean it and
then analyse it. I also wanted to get a chance to look at some data from the
other test method.

The biggest reason I wanted to include the log partial hazard over time in
Section 5.1.11 was that it could potentially serve as a type of index indicating
the strain on the test object. My expectations was that the hazard would
increase as the test object approaches failure and therefore one could use
the absolute value of the hazard to predict a near failure. By inspection of
the plots generated, this did not turn out fruitful. The plots seen in Section
5.1.11 do not imply a more evident pattern towards failure than any of the
plots presented for the individual predictors presented in Section 5.1.3.

6.2 Test method 2

This data set was not investigated as thoroughly as the first data set. The
reason for this was the much sparser data with only half as many failures,
which led to very few failures when dividing the data into smaller groups.
Because of this I focused more of the analysis on the first data set and did
not dive as deep into this one.

Summarizing the results of the model fitted to the data it is interesting
to see that the temperature 3 coeflicient proved significant also in this data
set. Furthermore the estimated coefficients were almost exactly the same as
for test method 1. The difference became clear when fitting only a coefficient
with the RPS since the effect of this coefficient turned out to be negative.
This means that a higher RPS indicates lower risk of failure. The difference
when estimating this coefficient was that there were no adjustments for any
other coefficients. When looking at the RMSE of predictions on the 30
failures in the data set, the model with temperature 3 seems to be a slightly
better fit.

For the extended Cox model the only difference was an addition of an
insignificant coefficient related to temperature 1. As can be seen from the
plot in Figure 5.22 with the partial hazards, this difference seem to have
very weak practical consequences.
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6.3 Component cracks in power cutters

The results from the fitted model partly confirms the thesis of the laboratory
engineers working with power cutters. Here the thesis was that dry weather
together with cold temperatures would increase the risk of component cracks.
From the coefficients of the model including humidity and temperature it
can be seen that the lowest risk of failure is when the humidity is high and
the temperature is high. However the coefficient for the temperature is not
significant and therefore the conclusions regarding the temperature need
more investigation.

6.4 Other future methods to explore

Moving on to answer the question of the suitability of the Cox model in
describing the relationship between the measured factors and the time until
failure. I believe the model is quite suitable in describing the general rela-
tionship between the test times and the predictors. A weakness in the model
is however that it might not be the most suitable model in handling high
resolution time series data. As mentioned in the end of Section 6.1 the hope
when starting the thesis was to be able to fit the extended model with many
parameters and use it to calculate the partial hazards as a high resolution
time series that would resemble a relatively smooth curve. This would then
serve as some kind of index to determine how worn down a test object is.
Then, for example, a threshold could be set for which the test should be
stopped in order to avoid failure. This however did not really work very
well and I think one reason for this is that the predictor data available is
not very linked to failures. There is no obvious trend that when some of the
predictors change value the strain on the object increases significantly. I be-
lieve that this could change if other factors are measured in great amounts
and with high quality. What factors this should be the technical experts
working closely to the chainsaws need to answer.

Other reasons that the idea mentioned above did not work could be that
the data was not pre-processed enough and outlier data had to big of an
influence on the estimated coeflicients.

As a future work I still believe that it would be interesting to look at some
time-series model or neural network that weighs the observations differently
depending on time. Such a model would be better at capturing erratic
behavior close to failure. An example of this could be a Long Short-Term
Memory(LSTM) network.

61



6.5 Data collection challenges

There were some challenges related to the available data that were encoun-
tered during the course of the thesis which will be discussed in the following
paragraphs.

One problem was inconsistency in what is measured, and incomplete
data registration. The first relates mainly to the fact that the test objects
that were tested with the same method did not have the same predictors
registered. The reason for this can of course be many and one is probably
that the test method have changed as the years have passed, which have
lead to the data measured looking inconsistent. I also suppose that the test
method evolves over time, both in the materials used but also in what cycle
steps the chainsaws go through. Ultimately this problem resulted in having
to remove large portions of tests with and without failures which in the
end probably worsened the estimates of the survival and hazard functions.
The incomplete data registrations refers to the fact that not all cycle steps
that had max values registered had min and mean values registered. It was
the same case for the test cycle steps. As a consequence the combination
of cycle step and measurement types with the most registered data points
was chosen. It would of course have been interesting to look at the other
measurement types but my method and time did not permit me to do it in
this thesis.

Another challenge that resulted in loss of useful data was the fact that
quite a lot of component failures were registered with the same test time
as the required maximum test time, which was 100 time periods, after I
had standardized it. Since those failures were registered manually after
inspection at the end of test, the times were not reliable. Because the tests
were able to run the full time they were considered as having not failed(see
Section 3.1). More information that could contribute to the analysis would
be available if the real failure times of these were possible to capture.

Finally, another challenge was related to the manually entered predic-
tor names. This creates a headache for the person analysing the data and
some valuable information was probably also lost when renaming the pre-
dictors and only picking the most common predictor names. The biggest
challenge with this is that it is almost impossible to analyse the data before
the predictor names have been cleaned and standardized. To mitigate this
problem there should only by beforehand determined alternatives to choose
as predictor names when setting up the tests.
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