Test Case Selection based on code changes and risk of regression

Problem

When changes in code are made there is always a risk of error
and regression. Manual system testing is done before a new
launch but since there is a limited amount of time the test
cases must be prioritized. The QA team at Axis uses an
algorithm that analyzes code changes and evaluates the risk
of errors being introduced by the change. But the test lead has
to manually analyze the results and pick relevant test cases. To
save time and resources, the QA team at Axis
Communications want to develop a new algorithm that
automatically selects the test cases that match the high risk

Method

The work process was split into four different phases.The initial
phase was gathering information. This was done by conducting
a literature study on previous work related to the topic. The next
method used to gather information was by having interviews
with employees at Axis, including an interview with a test leader.
The final method of information gathering was by manually
testing one of the products. The second phase was spent on
developing, testing and evaluating a prototype to the first
solution, the TestTracker-Jira connection. The third phase was
spent on developing, testing and evaluating a prototype to the
second solution, the text analysis and keyword extraction.
Finally the fourth phase was spent on merging the two
prototypes developed into a finished product, also testing and
evaluating it.

TestTracker/Jira - Connection

TestRun 1

Test case 1 - Reported issue 1
Test case 2 - Reported issue 2

v

{ Jira Issues ‘
Issue 1
Issue 2

GitLab J Gerrit }

Commit 1 - Solves Issue 1 Commit 2 - Solves Issue 2
L

v
Generated Test Run

Test case 1 - Run again

Test case 2 - Run again

Solution

We developed an algorithm that uses two methods for
selecting test cases. The first draws a connection between
reported issues, the commits that fixed them, and the test
cases used to validate that the affected feature works.

If a commit fixes an issue, connected test cases should be
included in the test run.

The second method makes use of text analysis and keyword
extraction. It extracts keywords from the commit messages
and matches the relevance of the keywords to the test cases.

The algorithm combines the two methods and produces a list
of suggested test cases for the upcoming test run.

Result

The algorithm developed in this project collects commits from
multiple version control software, such as Gitlab and Gerrit,
then matches them with Trace test cases from any chosen
project. The algorithm then generates a list of suggested and
prioritized test cases. The suggested test cases are shown in
a browser where test leaders can look at data for every commit
and see why each test case was chosen, helping them create
their own test run.

Keyword Extraction - Text Analysis

GitLab Gerrit

Commit X Commit Y

Commit X Message /*\ Commit Y Message
/ RAKE \

[Keyword

k\ilramm/“
Extracted Keywords

| SequenceMatcher \ TestTracker
| Match Keywords to
)

\\ist Cases /
A

Test Run

v

Suggested Test Cases

Conclusion

The result of this thesis is an algorithm that automatically
suggests test cases based on recent code changes and the
risk of introduced errors or regression. The algorithm contains
two methods for suggesting test cases. The first method, the
TestTracker-Jira connection, draws a direct connection
between the test-case that reported an issue or bug and the
commit that solved it. This method yields the most accurate
suggestions but demands that developers and testers always
references Jira tickets.

The second method makes use of text analysis and keyword
extraction and suggests test cases based on the keywords
extracted from commit messages. This method yields less
accurate suggestions compared to the first method, but it does
not require developers to always include references to Jira
tickets. In order for this method to work correctly and
accurately, the commit mesages have to be descriptive
enough to extract accurate keywords.

The algorithm opens a graphical user interface in a web

browser where the QA test leader can view rankings of the test
cases as well as suggestions for individual commits.

Overview of the combined solutions

‘ Gerrit l ‘ GitLab } ‘ Jira J

[T]
b o

TestTracker

TestTracker/Jiral l?: fenalyosrlg
Connection YW
extraction
{* > DASH - J
1 v
‘ TestTracker/Jira matches ‘ Commit-Test Case Ranking ‘ ‘ Total Ranking

‘ Commit-ID Jlra-lssue‘Tesl-Case‘ Ranking ‘Tesl»case‘ Value‘ ‘Rankmngesl-Casel Value

Alexander Olofsson
Christoffer Larsson

