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Abstract

The problem of pricing American stock options is far more complex than pricing European options
due to the possibility of early execution. This feature means that the decision to either hold on to
the option or exercising it early must be continually evaluated, leading to closed form solutions such
as the Black-Scholes Formula to not be applicable on American options written on dividend paying
assets. In 2001, F. Longstaff and E. Schwartz developed a Monte Carlo-based pricing algorithm
to handle this. The algorithm simulates a large number of stock price trajectories, evaluates the
value of early exercise versus the expected value of holding on to the option using polynomial
regression of the continuation value function at each time step and then values the option based
on the optimal exercise times. However, this method does not utilize some known characteristics
of the expected continuation value function such as convexity, non-negativity, an absolute value of
its derivative not greater than 1, and decreasing or increasing depending on the option type. The
aim of this thesis is to utilize these characteristics in the regression of the expected continuation
value. Four different stock dynamic models are used to simulate the stock price trajectories -
Black-Scholes, Merton Jump Diffusion, Finite Moment Log Stable and Heston dynamics. The
model parameters are fitted to the market using non-linear least squares optimization. The pricing
algorithm resulted in somewhat improved results, with estimates placed within the bid-ask spreads
39.2% of the time using the constraints compared to 35.8% without. The Finite Moment Log Stable
stock dynamics performed best with an overall pricing accuracy of 54.9%. Finally, put options were
overall more accurately priced than calls, possibly due to constant deterministic interest rates and
computational complexities.
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1 Introduction

Financial derivatives are financial contracts where the value is derived from that of an underlying
asset. While the value of the underlying asset may be observed, its relation to the derivative
value might not be obvious. Determining a fair price for such a derivative may therefore involve
estimation. Many kinds of derivatives exist on the financial market, with options being a common
example. An option is a type of derivative that allows holders to either buy or sell an underlying
asset to a given strike price at a certain maturity date. A contract that gives the holder the option
to sell the underlying asset at the strike price is referred to as a put option, while a contract that
allows the holder to buy the underlying asset is called a call option. If the contract can only be
exercised on the maturity date, it is called a European option, whereas a contract that allows the
holder to exercise it any time between the start and maturity date is referred to as an American
option. There are also other types of options, such as Bermudan options, which allow the holder
to exercise the contract at specific time points during the period before maturity. Options are
financial instruments that allow for exposure to asset classes without owning the underlying asset,
hedging against risk, and speculation. Common underlying assets which options are issued for
include stocks, indexes, futures and currencies. In this report the focus will be on stocks, but much
of the theory relates to options written on other assets as well.

While there exist models with closed form solutions for valuing European options, these can
only find approximate solutions to American options. American options can instead be valued using
numerical methods. This is because while a European option is only evaluated at its maturity date,
an American option must be evaluated at all times in between the start and maturity date. The
European option is a ”point in time” instrument while the American option is a ”continuous-time”
instrument. Furthermore, as the value of owning an American option depends on when it would
be exercised, the pricing of such an asset is complex and involves comparing the value of exercising
versus the value of continuing to hold the contract, i.e. the expected continuation value, at an
infinite number of points in time during the contract’s validity. This expected continuation value,
as a function of stock price, has some known characteristics such as convexity, non-negativity,
increasing or decreasing for calls or puts respectively as well as having the absolute value of its
derivative not greater than one.

In this thesis, the problem of valuing American options issued on stocks as the underlying
asset is handled using Monte Carlo methods, which implies simulating a large number of stock
trajectories over a certain time period and finding the arbitrage free option price based on these
trajectories. There are many models describing the dynamics of a stock which can be used for
these simulations, with Fischer Black and Myron Scholes’ model from 1973 being the most famous
example. Four models will be used in this report. These are the Black-Scholes, Merton Jump
Diffusion, Finite Moment Log Stable and Heston model.

1.1 Problem Definition

The aim of this report is to price American stock options using a numerical Monte Carlo based
approach while taking advantage of known characteristics of the expected continuation value func-
tion. This means simulating many different trajectories of future stock movements, determining
optimal exercise time for each trajectory by comparing exercise value and estimated expected con-
tinuation value at each time step, and finally valuing the option’s price using the optimal cash
flows.

1.2 Previous Research

In 2001 Francis A. Longstaff and Eduardo S. Schwartz published the paper Valuing American
Options by Simulation: A Simple Least-Squares Approach which describes a numerical method for
pricing American options. The method discretizes the time period of the American option into
a time grid, onto which multiple trajectories of the underlying asset are simulated. The value of
the American option is then derived by stepping backwards through the time grid, at each step
evaluating whether it is best to exercise or hold the contract, and keeping track of the optimal time
for exercising. This results in a value for each trajectory representing its optimal exercise strategy.
The value of the American option may then be estimated by taking an average of all trajectories’
optimum values. In order to estimate the expected continuation value of holding on to the contract
at a certain time step, a regression is performed, assuming a polynomial relationship between the
price of the underlying asset and the value of continuation.
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In order to estimate option prices, the stochastic dynamics of the underlying asset need to be
modeled. There are many examples of previous research on these dynamics, with Black and Scholes’
1973 findings in collaboration with Robert C. Merton in the article The Pricing of Options and
Corporate Liabilities pioneering the field of option pricing. Examples of other important research
built on this theory that is used in this paper is Robert C. Merton’s 1976 paper Option pricing
when underlying stock returns are discontinuous, Steven L. Heston’s 1993 paper A Closed-Form
Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options
and finally Peter Carr’s and Liuren Wu’s 2003 paper The Finite Moment Log Stable Process and
Option Pricing.

1.3 Research Aim

The report aims to continue on the work of Longstaff and Schwartz by exploring a new approach
to the estimation of the expected continuation value evaluated at each time step. Instead of simply
assuming a polynomial relationship when performing the regression, the known characteristics of
the relationship between expected continuation value and underlying stock price will be imposed.
With hopes of improving the estimation of expected continuation value, this aims to give a more
fair evaluation between exercising versus holding at all time steps, thereby giving a more accurate
estimate of optimal exercise strategy and thus a more correct valuation of the option price.

Another aim of the report is to evaluate how the choice of model for simulating the underlying
stock movement impacts the pricing of options. The four previously mentioned models will be
analyzed, where their estimates and accuracy will be compared. By fitting the model parameters
to the market, the models can be compared to find the one best suitable for mimicking real stock
price movements.

1.4 Limitations

This report aims to evaluate techniques for pricing American options. The testing will be limited
to options written on the Apple Inc. stock (AAPL) as the underlying asset. This also implies
that the number of options to price is limited to the existing Apple options of different times to
maturity and strike prices. Furthermore, data to evaluate is gathered from a single day in April
(2022-04-08), thus observed stock and option prices are limited to those available on that day.

Furthermore, multiple assumptions have been made to facilitate computations. Fixed interest
rate have been assumed in order for the stochastic processes to be time-invariant, thus significantly
reducing computational time for pricing options of different maturities. Time of dividend as well
as dividend amount as a percentage of share price are also modeled as deterministic constants in
the approximation of dividends that may occur during the option’s time to maturity.

4



2 Theory

2.1 Introduction to Option Theory

Suppose an option with a strike price of K and time of maturity T is written on a stock as an
underlying asset. Further, let St denote the price at time t for this underlying stock. In the
case of European options, the payoff may then be expressed as max(ST −K, 0) for a call option
and max(K − ST , 0) for a put option. That is, the payoff of a European option only depends
on strike price and the stock price at maturity, when exercising is possible. This payoff may be
denoted Φ(S(T )). For American and Bermudan options however, there exist many possible payoff
expressions dependent on when the holder chooses to exercise the option. Like the European
option, if τ denotes time of exercise, then the associated payoffs of a call or put option would be
max(Sτ −K, 0) or max(K−Sτ , 0). For the Bermudan option, τ is limited to the potential exercise
times defined by the contract, whereas for the American option, τ may be any time t between the
start of the contract, t0, and the time of maturity, T. A special case exists which is that of a call
option written on non-dividend paying underlying stock, where theory states that early exercise
is never optimal, implying that the payoff, and thereby also value, of European, Bermudan and
American options should be equal.

2.2 Geometric Brownian Motion

A geometric Brownian motion (GBM) is a continuous-time stochastic process commonly used to
model movements in the financial market, for example that of a stock price trajectory [1]. The
logarithm of a geometric Brownian motion follows a Wiener process with drift. It can be expressed
as a stochastic differential equation (SDE) defined as:

dXt = αXtdt+ σXtdWt (1)

X0 = x0 (2)

where Wt is the Wiener process. A Wiener process is defined by the following properties:

1. W0 = 0

2. For t > 0, every increment Wt+u −Wt, u ≥ 0 is independent of past values of Wt

3. Increments are normally distributed with mean 0 and standard deviation
√
u:

Wt+u −Wt ∼ N (0,
√
u)

4. Wt is continuous in t

The GBM displayed in Equations 1 and 2 has two terms - a locally deterministic drift αXtdt
and an additive Gaussian noise term σXtdWt, where α is known as the drift term and σ is known
as the diffusion term. In general, stochastic differential equations are extremely complicated to
solve. The geometric brownian motion is a special case where, using the Itô formula, a closed form
solution can be found.

When defining the Itô formula, a process X is defined with a stochastic differential given by
dXt = µtdt + σtdWt where µt and σt are adapted processes. Another process Zt is then defined
as Zt = f(t,Xt) where f is a C1,2-function. The Itô formula then states that Zt has a stochastic
differential given by

df(t,Xt) = (
∂f

∂t
+ µt

∂f

x
+

1

2
σ2
t

∂2f

∂x2
)dt+ σt

∂f

∂x
dWt (3)

To find a solution to the geometric Brownian motion Xt formulated in Equation 1, the process
Zt = ln(Xt) is first defined. Applying the Itô formula on this process and utilizing the fact that
[dWt]

2 = dt as ∆t tends to 0, its stochastic differential can be expressed as

dZt =
1

Xt
dXt +

1

2
(− 1

X2
t

)[dXt]
2

=
1

Xt
(αXtdt+ σXtdWt) +

1

2
(− 1

X2
t

)σ2X2
t dt

= (αdt+ σdWt)−
1

2
σ2dt
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which results in Zt having the stochastic differential

dZt = (α− 1

2
σ2)dt+ σdWt (4)

Z0 = ln(x0) (5)

As there is no Zt in the right-hand side of Equation 4, it can be integrated into

Zt = ln(x0) + (α− 1

2
σ2)t+ σWt

which also gives the solution to the geometric Brownian motion as

Xt = x0e
(α− 1

2σ
2)t+σWt (6)

2.3 Black-Scholes

The Black Scholes model [2] is well known and describes the simplified price dynamics of an asset
in the financial market. It is modelled using a geometric Brownian motion and is given by:

dBt = rBtdt (7)

dSt = αStdt+ σStdW̄t (8)

with St representing the stock price process and Bt the risk free price process (the bank account),
where α, r and σ are deterministic constants and W̄t is a Wiener process [1]. The bar denotes that
the dynamics are defined under the real world probability measure P. Equations 7 and 8 represent
the dynamics of a market with two instruments that are sufficient to price an option with the stock
as an underlying asset. Now, an alternative probability measure Q is introduced with a market
dynamic described by the following SDE:

dBt = rBtdt (9)

dSt = rStdt+ σStdWt (10)

The Q-measure is also referred to as the Martingale measure, as under it the stock price today
equals the discounted expectation of the stock price tomorrow. This definition is also used to state
a condition for an arbitrage free market, where a market model is said to be arbitrage free if and
only if there exists a Martingale measure Q. The market dynamics under the Q-measure differs
from those under the P-measure only in the expression of the stock price dynamics. Comparing
Equation 8 and 10 one can see that the constant α is interchanged with the short rate r, and that
the Wiener process W̄t is interchanged with a Wiener process under the Q-measure, Wt. For the
stock price process, it can be seen that it has r as its drift term and σ as its diffusion term.

Under the Q-measure, there exists a simple expression for the value of a European option. Let
Π(t; Φ) be the price of a European call or put option, where Φ is the previously introduced payoff
of the option. Furthermore, it is assumed that the price process Π only depends on the time t and
the underlying stock process S(t), i.e. that it may be expressed in terms of F (t, S(t)) where F is
a smooth function. Then, the value of the European option at time t is

Π(t; Φ) = F (t, S(t)) = e−r(T−t)EQ
t,s [Φ(S(T ))] (11)

which corresponds to calculating the expected value of the options payoff under the Q-measure,
and discounting to time t with the discount factor e−r(T−t). This formula holds due to assumption
of an arbitrage free market and thus the validity of the Q-measure.

For American or Bermudan options, the value is more complex, as the stopping time τ is not
known at t. Instead, the value may be expressed as

max
τ

EQ
t,s

[
e−r(τ−t)Φ(S(τ))

]
(12)

where τ is the optimal exercise time for the contract. This implies that the valuation algorithm
must not only determine the expected payoff, but also the optimal exercise time of the contract.
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2.4 Other Models for Stock Dynamics

2.4.1 Merton Jump Diffusion Dynamics

The stock dynamics of the Merton Jump Diffusion model [9] is very similar to the dynamics of the
standard Black-Scholes model. The difference is the addition of a stochastic jump variable on top
of the stochastic diffusion. The idea is to take sudden asset price movements, both up and down,
into account. The number of stochastic jumps per year follows a Poisson distribution, while the
size of each jump is normally distributed. This results in the model’s dynamics being represented
in the following stochastic differential equation:

dSt = rStdt+ σStdWt + dHt (13)

where Ht|Nt ∼ N (µJNt, σJ

√
Nt) with Nt ∼ Po(λt) being the Poisson distributed number of

jumps per year with λ as the expected number of jumps per year. The solution of the SDE is
found using the solution of the geometric Brownian motion given in Equation 6. This results in,
when letting z represent a standard Gaussian variable, the solution:

St = S0e
(r−σ2

2 −cH)t+σWt+Njµj+
√

Njσjz, z ∼ N (14)

Here, a notation cH has also been introduced, representing a correction term used to keep the
Martingale property of Black-Scholes despite the addition of the stochastic jump variable. Defining

cH = lnE
[
eH1

]
= λ

(
eµj+σ2

j/2 − 1
)

implies that E
[
eHt−cHt

]
= 1 for all t. Thus, the Merton

model, like the Black-Scholes model, fulfill the Martingale property.

2.4.2 Finite Moment Log Stable Dynamics

The finite moment log stable (FMLS) model [3] was developed in 2003 with the aim of creating a
model where the volatility smirk better mimics that which is observed in the financial markets. All
three models previously discussed in this paper have their log-returns modeled using a Brownian
motion. As the central limit theorem applies for these models, the volatility smirk flattens out very
quickly as maturity increases. This is in contrast to what is commonly observed in the financial
markets, where the existence of a volatility smirk implies a negative skewness with fat tails in the
distribution of risk-neutral stock returns. To prevent such flattening, the FMLS model was created.
The model’s returns only has finite moments of the first degree and infinite moments for any order
of two or greater, which means that the central limit theorem does not apply. The model can
thereby fulfill the volatility smirk, and its associated negatively skewed and fat tailed risk-neutral
return distribution, that is commonly observed in the financial markets. These negatively skewed
and fat tails allow the FMLS model to be informally called a ”crash model”, as it efficiently handles
the tendency for the market to develop relatively steadily as it grows in value and more drastically
in financial declines.

This is implemented through the use of an α-stable Lévy process with maximum negative
skewness. The process can divert from the Brownian motion used in the three previously used
models through the parameter α, referred to as the tail index, which governs how negative the
slope of the implied volatility smirk will be. With α = 2, the choice of skewness will have no effect,
there will be a flat volatility smirk, and the process will in fact be a Brownian motion. In this
exception, the FMLS model in fact equals the Black-Scholes model. The tail index, α, is however
allowed to take any values in (1, 2], and a lower α corresponds to a steeper volatility smirk. This
is illustrated in Figure 1, where implied volatility is plotted against moneyness, with moneyness
being defined in [3] as d = ln(K/F )/

(
σ
√
τ
)
where K is strike price, σ represents volatility of the

underlying stock instrument, τ option term length, and F the corresponding futures price. As can
be seen, as α decreases from 2 to 1.8, 1.5 and 1.2, the negative slope of the implied volatility smirk
steepens. In addition to the tail index α, there is also the scale parameter σ which governs the
width of the risk neutral distribution, in turn controlling the height of the volatility smirk. Despite
the infinite return moments, the choice of maximum negative skewness gives finite price moments
enabling option pricing.
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Figure 1: An illustrative plot of implied volatility against moneyness for a one month option, as
the tail index α of the FMLS model varies from 1.2 (solid) to 1.5 (dashed), 1.8 (dashed-dotted)
and 2 (dotted). Figure taken from [3] (CC-BY).

Summarized, the FMLS-dynamics models the stock movement as:

St = S0e
(r+c)t+σLα,−1

t (15)

where c is a correction term which ensures the Martingale property, and Lα,−1
t is the α-stable

Lévy process with maximum negative skewness. The correction term c is defined by setting

E
[
ect+σLα,−1

t

]
= 1 similar to in the Merton model, which gives c = σα sec(πα/2).

Adding to this model, this report will use an implementation of FMLS where a Brownian
motion is added to better represent the dynamics of real stock movements. This means that the
stock movement is given by:

St = S0e
(r−σ2

BM
2 +c)t+σBMWt+σLα,−1

t (16)

2.4.3 Heston Dynamics

The Heston model [6], published in 1993, introduces stochastic volatility to the dynamics of the
underlying asset. This is done to more realistically simulate the stock trajectories. The stock
dynamics are consequently expressed by two stochastic differentials - one for the stock and one for
its variance, where the stock’s stochastic differential is as always dependent on its volatility, in this
case expressed through the stochastic variance process Vt. These differentials are given by

dSt = rStdt+
√
VtSt(ρdW1t +

√
1− ρ2dW2t) (17)

dVt = κ(θ − Vt)dt+ β
√
VtdW1t (18)

where the two Wiener processes W1t and W2t have a correlation of ρ. Introducing these two
differentials in the stock’s stochastic differential allows the two processes dSt and dVt to have an
arbitrary correlation of ρ. The variance will drift towards a long-run mean of θ, with its mean-
reversion speed determined by another free parameter κ. The initial variance V0 is set to σ2 where
σ is a parameter to the model.

2.5 Statistical Principles of Monte Carlo Estimation in Option Pricing

To price American options, numerical methods must be used. One such group of numerical meth-
ods are Monte Carlo methods, which is a group of numerical methods based on simulation and
statistical analysis. By sampling many outcomes from an assumed probability distribution and uti-
lizing statistical properties, one can mimic complex models and solve analytically difficult problems
through estimation.

Let X1, ..., Xn be n identical and independently distributed simulations from the assumed
distribution f , h(X) the value to be estimated which depends on the random variable X, and
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µ = E [h(X)] be its expected value. Then, the expected value may be estimated through averaging
as n → ∞:

µ̂MC =
1

n

n∑
i=1

h(Xi) →
∫

h(X)f(x)dx = µ (19)

This can be motivated by the strong law of large numbers, which states that the average of the
i.i.d. random numbers Xi will almost surely converge to its expected value given that |E| [Xi] ≤ ∞.
Furthermore, the central limit theorem gives insight into the variance of this estimate. Once again,
let X1, ..., Xn be i.i.d. random variables with expected value µ and finite variance σ2, with X̄

denoting their average. Then, the random variable Tn =
√
n
X̄ − µ

σ
follows a standard normal

distribution. Thus, the estimate obtained from the Monte Carlo method will approximately be
normally distributed for large n [5].

2.6 Characteristics of the Expected Continuation Value

The expected continuation value function f , dependent on the underlying stock price, has the
following known characteristics:

1. Non-negativity: f(St) ≥ 0

2. (a) Call options
Increasing: St2 > St1 ⇒ f(St2) ≥ f(St1)

(b) Put options
Decreasing: St2 > St1 ⇒ f(St2) ≤ f(St1)

3. Absolute value of derivative is not greater than one: | df
dSt

| ≤ 1

4. Convexity: For all 0 ≥ λ ≥ 1 and St1 ̸= St2 , f(λSt1 + (1− λ)St2) ≤ λf(St1) + (1− λ)f(St2)

Figure 2 illustrates how an American call option’s expected continuation value (in blue), i.e.
the expected value of holding on to the option, and its exercise value (in red) is expected to vary
with the underlying stock price. It illustrates how the expected continuation value is higher than
the immediate exercise value for lower strike prices, and how the exercise value will surpass the
expected continuation value at a certain point as the price of the underlying stock increases. The
known characteristics of the function can also be seen in the figure.

The non-negativity of the expected continuation function can simply be explained by how an
option can never have a negative value, as the cash flow it creates is either zero or greater than zero.
For a call option, the expected continuation value is increasing with the underlying share price, as
the immediate exercise value increases. The opposite holds true for put options. The function’s
absolute value of its derivative is never greater than one for a call option as it approaches the
gradient of the exercise value line, but will never surpass 1, as a rise in share price can never imply
a larger increase in expected continuation value than the increase in immediate payoff. Finally,
the function is convex as the derivative continually increases without reaching 1 for call options
and decreases without reaching 0 for put options.

Figure 2: A example of an American call option’s expected continuation value (blue) and exercise
value (red) as functions of stock price

9



3 Method

This section will describe the various techniques used to simulate the trajectories of the underlying
stock movements and how they are used to price the American options by stepping backwards in
time from maturity to find the optimal exercise time. A simple method for incorporating dividend
schemes into the pricing algorithm is discussed, as well as computational tricks for optimizing the
algorithm’s computational speed and how the various model parameters are fitted to mimic the
dynamics of the real world financial market. Finally, the implementation of assumptions on the
expected continuation value function is described.

3.1 Models for Stock Dynamics

Before running the pricing algorithm, trajectories for the underlying asset’s price, and for one
model also their volatilities, are simulated. Four different models for stock dynamics are used in
this report. Below, their respective parameters and simulation formulas are detailed.

3.1.1 Black-Scholes

The Black-Scholes model for stock dynamics is a naive approach to an asset’s price trajectory and
has already been discussed in this paper. The main characteristics of the model are the constant
and deterministic rate and volatility. The stock price’s stochastic differential is given by Equation
10.

The numerical interpretation of the solution of the Black-Scholes stochastic differential equation
is derived from the solution of the geometric Brownian motion formulated in Equation 6. α in this
equation is exchanged for a risk-free r under the probability measure Q and σBS is an assumed
constant volatility of the asset. The full stock price trajectory can then be simulated using a
normally distributed variable to implement the noise related to the diffusion term. The trajectories
are simulated using a numerical interpretation of Equation 6:

Sk+1 = Ske
(r−σ2

BS
2 )∆t+σ

√
∆tz (20)

where

Sk = stock price

r = risk-free rate

σBS = volatility of underlying stock

∆t = step size

z ∼ N (0, 1)

3.1.2 Merton Jump Diffusion

The solution of the Merton dynamics SDE, given in Equation 14, has a numerical interpretation
which is very similar to that of the Black-Scholes dynamics in Equation 20. With three additional
terms representing the distribution of the stochastic jump process, and the previously discussed

correction term cH = λjM

(
eµjM

+σ2
jM

/2 − 1
)
, it is given by:

Sk+1 = Ske

(
r−σ2

M
2 −λjM

(
e
µjM

+σ2
jM

/2−1

))
∆t+σM

√
∆tz1+Njk

µjM
+
√

Njk
σjM

z2
(21)

where

Sk = stock price

r = risk-free rate

σM = volatility of the Brownian motion

µjM = mean jump size

σjM = standard deviation of jump size

λjM = jump intensity

∆t = step size

Njk ∼ Po(λjM∆t)

z1, z2 ∼ N (0, 1)
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3.1.3 Finite Moment Log Stable

The FMLS dynamics given in Equation 16, including an α-stable Lévy process, is implemented
using standard Gaussian and standard uniform variables, and trigonometric functions. The corre-
sponding numerical implementation is given by:

Sk+1 =Ske

(
r−

σ2
bF
2 +σα

F F sec(παF /2)

)
∆t+σbF

√
∆tz1

× e
(∆tσF )1/αF (1+tan(παF /2)2) sinαF (V+B)

(
cosV −αF (V +B)

W

)1/αF −1
/ cosV 1/αF

(22)

where

B = arctan(− tan(παF /2))/αF

V = π(2z2 − 1)/2

W = − ln z3

Sk = stock price

r = risk-free rate

σbF = volatility of the added Brownian motion

σF = scale parameter for the volatility of the α-stable Lévy process

αF = tail index of the α-stable Lévy process

∆t = step size

z1 ∼ N (0, 1)

z2, z3 ∼ U(0, 1)

3.1.4 Heston Model

The stock trajectories following the Heston dynamics are simulated using the following numerical
solutions of Equations 17 and 18:

Vk = C × χ2(d, Vk−1λ) (23)

Sk = Sk−1 × e
∆t((r−

ρHκHθH
βH

)+
Vk+Vk−1

2 (
κHρH

βH
− 1

2 ))+
ρH
βH

(Vk−Vk−1)+

√
∆t

Vk+Vk−1
2 (1−ρ2

H)×z
(24)

where

d =
4θκH

β2
H

λ =
4κHe−hκH

β2
H(1− e−hκH )

C =
β2
H(1− e−hκH )

4κH

Sk = stock price

Vk = variance

V0 = σ2
H

r = risk-free rate

σH = initial volatility of underlying stock

βH = volatility of variance

θH = mean reversion level of the variance

κH = mean reversion speed of the variance

ρH = correlation between stock price and variance

∆t = step size

z ∼ N (0, 1)

This simulation is not on an exact form, unlike previous models. To compensate for this, the
number of steps per time unit is increased by a factor of 10 to reduce the simulation the error.
However, after completing the simulation, only a tenth of the time steps are kept in order for the
simulated path to be of the same form as the simulations of the other stock dynamic models.
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3.2 Pricing the Option

The idea behind pricing an American stock option using Monte Carlo methods will here be illus-
trated through an example. The procedure is inspired by the works of Longstaff-Schwartz in their
2001 paper Valuing American Options by Simulation: A Simple Least- Squares Approach [8]. The
main idea is to take backwards steps through the simulated stock trajectories starting at maturity,
and at each time point comparing if the payoff is greater than the expected value of holding on to
the option.

Suppose that there exists an American call option on an underlying stock, with price s0 at time
t0, with strike price K and time to maturity T . Further, suppose n trajectories for the underlying
stock between time t0 to T has been generated through a stock dynamics model described in the
previous section. Note however that when using Heston for modelling stock dynamics, some added
complications follow which are described in Section 3.2.2. Then, let St,i denote the stock price of
the i:th trajectory at time t. Define time steps t0, t1, ..., tm of length ∆t between time t0 = 0 and
tm = T . These m = T/∆t points of time form a discretization of the time line of the American
option, allowing one to approximate the value of the option by evaluating whether exercising or
continuing to hold the option is the optimal strategy at all possible steps of time.

The algorithm starts at the option’s maturity. The exercise value of the call option at maturity
for each trajectory is calculated through Φ(ST,i) = max(ST,i−K, 0). A variable for optimal exercise
time, τi is initiated as T together with a variable Φopt

i which represents the payoff of the option
given an optimal execution at τi, which is initiated as Φ(ST,i). Then, one step is taken backwards
in time. The exercise value at tm−1, Φ(Stm−1,i), is calculated similarly and is now compared with
the expected continuation value, i.e. the expected value of holding on to the option. The expected
continuation value is estimated through a regression among the trajectories at tm−1, where a
relationship between the simulated continuation value, y, and current stock prices, x, of form
y = f(x) is assumed. Here, only in-the-money (ITM) trajectories are evaluated to save computing
time, as the trajectories who are at-the-money or out-of-the-money (OTM) would not be exercised
anyway. Data points are obtained for trajectory i by setting yi to the value of Φopt

i discounted to
the current time step tm−1, and xi = Stm−1,i. The process of performing the regression is detailed
in Section 3.2.1. Completing the regression allows one to calculate the expected continuation
value for each trajectory through f(xi), which is then compared to the current exercise value.
Trajectories for which the exercise value exceeds the expected continuation value are updated so
that τi = tm−1 and Φopt

i = Φ(Stm−1,i).
Then the process is repeated until t0 is reached. That is, for a given time step tq the algorithm:

1. Calculates Φ(Stq,i) = max(Stq,i −K, 0) for all trajectories

2. Filters for in-the-money trajectories fulfilling Φ(Stq,i) > 0. Defines yi as Φopt
i discounted

from τi to tq with xi = Stq,i, and regresses xi onto yi via yi = f(xi) for these trajectories

3. Compares expected continuation value f(xi) with current exercise value Φ(Stq,i) and filters
for trajectories where Φ(Stq,i) > f(xi)

4. Updates τi = tq and Φopt
i = Φ(Stq,i) for trajectories where exercise value exceeded expected

continuation value to reflect that a new optimal exercise time has been found at tq

When reaching t0, the optimal exercise time and corresponding payoff value for each trajectory
has been obtained. With the determined cash flows of the n trajectories, the value of the option
is estimated through a final regression where all trajectories, both ITM and OTM, are used. This
estimated continuation value is also compared to the exercise value at t0 to check if payoff of instant
exercise is greater than the approximated value. If so, the value of the option is instead given by
the instant exercise payoff value.

3.2.1 Regression of the Continuation Value Function

In each step of the pricing algorithm, the expected continuation value as a function of current stock
price is estimated through regression. This regression is performed through the Shape Language
Modelling (SLM) toolbox in MATLAB, which is a toolbox that performs regression while imposing
a set of specified characteristics onto the resulting curve [4]. These characteristics are chosen
based on assumptions of how the expected continuation value should behave as a function of the
underlying stock price, as detailed in Section 2.6. With the SLM toolbox, the criteria are imposed
on a function of three degrees. The grid of stock prices are divided into different intervals, separated
by 12 breakpoints referred to as knots, each with their own function being fitted. In Section 3.6,
the choice of degree and number of knots will be investigated.
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3.2.2 The Heston Case: Regression Over the Stock Price-Volatility Surface

The procedure for pricing an option described under 3.2 applies for when the underlying stock dy-
namics are modeled through Black-Scholes, Merton Jump Diffusion or Finite Moment Log Stable
dynamics. However, in the case of Heston dynamics, the expected continuation value not only de-
pends on a stochastic St, but also a stochastic Vt. Thus, the regression performed must be based on
both features. This is approximated through bundling of the volatilities. At each time step, trajec-
tories are grouped into ng different clusters based on their current volatilities Vt. This corresponds
to a simple grid bundling technique inspired by the 2015 report The Stochastic Grid Bundling
Method: Efficient pricing of Bermudan options and their Greeks by Shashi Jaina and Cornelis
W. Oosterleea [7]. While the grid bundling could be optimized through e.g. a k-means clustering
algorithm, a simpler approach is here used. As the grid being bundled is only one-dimensional,
the volatilities are simply grouped into equally large clusters of increasing size. Then, ng different
regressions are performed. For each of the ng regressions, a representative Vt is chosen, chosen as
the median value of the corresponding volatility cluster. Then, every trajectory is valued based on
its two closest clusters. That is, a weighted combination of the evaluation from two most relevant
regressed curves, where weights are determined based on distance to the representative middle
element of the two clusters. In the most simple example, if one trajectory is exactly in between
the two middle elements of two neighbouring clusters, the trajectory’s expected continuation value
would be estimated through evaluation in the two regressed curves and averaging.

3.3 Incorporating Dividends

To consider situations when the underlying stock issues a dividend during the contract timeline
of an option, a simple feature is implemented in the pricing algorithm. First, all trajectories of
St are simulated from t0 to T . Also, let d% be the dividend percent, i.e. the dividend payments
size as a percentage of the stock price. Then, if a dividend takes place at time td ∈ [t0, T ], the
dividend amount d = d%Std is removed from all trajectories from td and onwards. That is, the
update St = St − d is performed for all t ∈ [td, T ].

3.4 Computational Optimization

Multiple techniques and tricks have been adopted to simplify testing and speed up evaluation. In
this section, the adaptations made to enable the pricing of multiple strikes and maturities at once
will be detailed.

3.4.1 Evaluating Multiple Strikes

To begin with, a linear property of the options value function has been utilized to allow for
evaluation of many different strike prices at once. Let f(t, St, T,K) be the value function of an
american put or call option with underlying stock process St, maturity T and strike price K with
initial value s0. Let St+u = Ste

Xt+u−Xt be the development of the stock process between time t
and t+ u for u > 0, where X represents a stochastic process such as those presented in 3.1. When
Xt+u−Xt is independent of St, which holds for all four models presented in 3.1, then the following
property holds: f(t, St, T,K) = Kf(t, St/K, T, 1), i.e. the option’s value function is linear in K.
The process of valuing for multiple K at once is then implemented through initiating an ŝ0i for
the i = 1, 2, ..., n trajectories. Here, n different Ki are defined through evenly spaced placement
in the interval of interest defined by the borders Kmin and Kmax. Then ŝ0i = s0/Ki is formed.
These initial values are then used as input in the stock dynamics modelling described in 3.1 and the
pricing algorithm described in 3.2. When the pricing algorithm reaches its final iteration, at t0, the
n different ŝ0i values are used for the final regression. Then, the pricing of an option with a certain
K∗ can be estimated by evaluating the final regressed curve at ŝ0

∗ = s0/K
∗ and multiplying the

result with K∗.

3.4.2 Evaluating Multiple Maturities

Another computational technique used to increase the efficiency of the pricing algorithm is to value
options with several different maturities at once. This is possible due to the assumed fixed interest
rate, implying that the stochastic processes used are time-invariant. To facilitate this computation,
the pricing of the different option’s all start at the end of the simulated time period. Then, starting
from t0 suppose there are two time to maturities to be evaluated, T and T1/3, where the latter
time to maturity is a third of that of the first. Then, the pricing algorithm would as usual start
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in the final time step corresponding to T and step backwards in time. Then, one third through
the algorithm, as the time step corresponding to time T − T1/3 is reached, the price of the option
with maturity T1/3 may be estimated. Then, the algorithm continues to step backwards until
t0 is reached, where the option with time to maturity T can be priced. Thus, a set of multiple
maturities may be priced with no additional computational cost to that of the cost of pricing the
option in the set with the longest maturity.

3.5 Empirical Evaluation

To evaluate the algorithm, outstanding options with observable markets prices will be used. Op-
tions with the Apple Inc. stock, with ticker AAPL, as underlying asset will be used, as these are
some of the most traded options in the market. Defining t=0 as 2022-04-08, an initial stock value
of s0 = 172.26 (USD) is obtained [19]. From the Chicago Board Options Exchange, both put and
call options with maturity at 2022-05-06, 2022-07-15, 2022-10-01, 2023-01-20 and 2023-03-17 are
obtained [18]. 26 strike prices are selected, 100, 105, . . . , 200, 210, . . . , 250 (USD). These data points
are divided into a train and test data set. The train data set, used for finding suitable parameter
values, uses 9 of the strike prices and maturities 2022-05-06, 2022-10-01 and 2023-03-17. The test
set, used to evaluate the algorithm, uses 17 of the strike prices and the maturities 2022-07-15,
2022-10-01 and 2023-01-20. All strike prices and maturities of the two data sets are illustrated in
Table 1.

K

Train
2022-05-06 100 115 130 145 160 175 190 210 250
2022-10-21 100 115 130 145 160 175 190 210 250
2023-03-17 100 115 130 145 160 175 190 210 250

Test
2022-07-15 105 110 120 125 135 140 150 155 165 170 180 185 195 200 220 230 240
2022-10-21 105 110 120 125 135 140 150 155 165 170 180 185 195 200 220 230 240
2023-01-20 105 110 120 125 135 140 150 155 165 170 180 185 195 200 220 230 240

Table 1: Maturity date and strike prices, K, (USD) for the selected AAPL call and put options,
divided into train and test data sets.

Translating the five maturity dates into times to maturity is done by counting the number of
open market days between 2022-04-08 and the maturity dates [21]. Here, 252 market days per year
is assumed. Thus, the maturity of 2022-05-06 translates to a time to maturity of T1 = 20/252,
2022-07-15 translates to T2 = 67/252, 2022-10-21 translates to T3 = 136/252, 2023-01-20 translates
to T4 = 198/252 and 2023-03-17 gives T5 = 237/252. For simulating the stock trajectories, 252
time steps per year is used, implying that the underlying stock trajectory is to be simulated 237
steps forward to enable the pricing of all maturities. For 100000 trajectories, the initial values
ŝ0i = s0/Ki are formed after linearly spacing Ki between Kmin = 90 and Kmax = 275 for
trajectory i = 1, 2, ..., 100000.

To incorporate dividends that may occur during the times to maturity, Apple’s dividend history
is used. During the last 12 months, dividends were paid on 2021-05-13, 2021-08-12, 2021-11-11,
2022-02-07. These dividends all amounted to 0.22 USD per share [17]. Using s0 = 172.26, a
dividend percent of d% = 0.22/172.26 = 0.13% is defined. Assuming the same dividend dates
for the next 12 months, the time to the dividends may be defined by counting the number of
market days till the four calendar days. This gives four values for time to dividend, td1 = 22/252,
td2 = 84/252, td3 = 151/252, and td4 = 210/252. At the corresponding time steps, the dividend
amount d will be removed from the underlying stock price as detailed in Section 3.3.

3.6 Parameter Fitting

3.6.1 Stock Dynamics Parameters

The four different stock dynamic models all have a set of parameters whose values must be de-
cided. The risk-free rate, r, present in all four models, is set to 0.0067 based on the 3-month US
Treasury Bill rate observed before market opening on 2022-04-08 [16]. The remaining parameters
are determined by solving a constrained optimization problem.

The optimization problem consists of pricing a set of put and call options with the four stock
dynamic models, and comparing the obtained estimates with observed mid market prices with the
aim of minimizing the absolute difference between the two. Here, the train data set with three
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different maturities and 9 strike prices is used. The contracts and their market prices are shown
in Table 2 and Table 3.

K \ T 2022-05-06 2022-10-21 2023-03-17
100 72.075 73.6 75.6
115 57.325 59.8 62.55
130 42.4 46.05 49.375
145 27.975 33.525 38.575
160 14.55 23.15 28.15
175 4.275 14.05 20.05
190 0.635 8.025 13.925
210 0.09 3.225 7.325
250 0.015 0.56 2.23

Table 2: Observed mid market prices for the set of call options used for parameter fitting (USD).

K \ T 2022-05-06 2022-10-21 2023-03-17
100 0.03 0.95 1.985
115 0.085 1.97 3.4
130 0.215 3.225 5.8
145 0.615 5.7 9.05
160 2.14 9.65 13.85
175 6.625 16.2 20.625
190 18.3 24.7 29.15
210 37.6 40.075 43.275
250 77.55 77.675 77.95

Table 3: Observed mid market prices for the set of put options used for parameter fitting (USD).

Running the pricing algorithm generates two 9x3 matrices with price estimates for the call
and put options which are dependent on the parameter values used. Thus, denoting the vector
of parameter values associated with a stock dynamics model as x, the obtained price estimate
matrices may be denoted C(x) and P (x). Further, let the observed market prices in Table 2 and 3
be stored in two 9x3 matrices denoted Cobs and Pobs. Then, a loss value for the estimated prices is
calculated by summing the absolute distance between each estimate and corresponding observed
market price. This corresponds to the loss function:

L(x) =

9∑
i=1

3∑
j=1

|C(x)i,j − Cobsi,j |+ |P (x)i,j − Pobsi,j |

For a given stock dynamics model, the choice of parameter values is given by the solution to the
optimization problem min

x
L(x). Solving the problem is done with help of the MATLAB function

lsqnonlin, which is a solver to nonlinear least-squares problems. To prevent the lsqnonlin-function
to only find local solutions, the MultiStart-function is used to try several initiated values within
the constraints in lsqnonlin [10]. This allows the optimization algorithm to explore a much larger
area of the feasible region. 50 multistarts are used for all stock dynamic models except for the
Heston model, where 30 were used, due to the large computational power needed for the Heston
model.

This optimization is done for all four stock dynamic models, resulting in four sets of parameter
values. Before solving the optimization problem, constraints and an initial value for each parameter
is set. The four models parameters, with their constraints and initial values are shown in Table 4.
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Black-Scholes Merton FMLS Heston
Parameter
[Low. bound, upp. bound]
(Initial value)

Parameter
[Low. bound, upp. bound]
(Initial value)

Parameter
[Low. bound, upp. bound]
(Initial value)

Parameter
[Low. bound, upp. bound]
(Initial value)

σBS

[0.05, 0.4]
(0.25)

σM

[0.05, 0.5]
(0.25)

σbF

[0, 0.8]
(0.1)

σH

[0.05, 0.4]
(0.2)

µjM

[-0.5, 0.5]
(0.3)

σF

[0, 1]
(0.2)

κH

[0.5, 30]
(10)

σjM

[0.01, 0.9]
(0.2)

αF

[1, 2]
(1.8)

βH

[0.0025, 0.49]
(0.04)

λjM

[0.2, 5]
(1.5)

θH
[0.0025, 0.16]
(0.04)
ρH
[-1, 0]
(-0.6)

Table 4: Stock dynamics model parameters to be determined through parameter fitting, with
constraints and initial values used.

3.6.2 Shape Language Modeling Parameters

For the regression performed via the Shape Language Modeling toolbox, there are two parameters
to be fitted. The first is number of knots, which is the number of breakpoints used to separate
the Ŝt grid into intervals where separate regressions are performed. The second is degree, which is
the degree of the curve being regressed on each interval. The SLM toolbox allows three different
choices of degree, 0,1 and 3, which corresponds to the resulting curve being piecewise constant,
linear or cubic. Here, the choice of degree 1 and 3 is evaluated, together with the choice of number
of knots being 6, 12, 18, 24 or 30. The evaluation will use the optimal stock dynamics model
parameters obtained in Section 3.6.1, which were produced using a degree of 3 with 12 knots.

With the optimal model parameters, price estimates for the call and put options displayed in
Table 2 and 3 may be obtained for different choices of degree and number of knots. Let the choice
of values be represented by the parameter vector xSLM . Furthermore, let k = 1, 2, 3, 4 represent
the choice of underlying stock dynamics model, with k = 1 being Black-Scholes, k = 2 being
Merton, k = 3 being FMLS, and k = 4 being Heston. Then the obtained 9x3 price estimates from
using a model k may be represented by the matrices Ck(xSLM ) and Pk(xSLM ). Using the observed
market prices Cobs and Pobs, a loss function for the obtained estimates from the different stock
dynamic models is constructed as:

L(xSLM ) =

9∑
i=1

3∑
j=1

4∑
k=1

|Ck(xSLM )i,j − Cobs|+ |Pk(xSLM )i,j − Pobs|

The optimal parameters are found by minimizing said loss function with respect to xSLM .
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4 Results

To evaluate the results of the attempted pricing of American stock options using Monte Carlo
methods with assumptions on the expected continuation value function, the number of estimated
option prices that are within the observed bid-ask spread is evaluated. The estimates are produced
using parameters fitted to the market. Accuracy for the four models used will be presented and
compared. The effect of the assumptions on the continuation value function made using the Shape
Language Modeling toolbox is then evaluated by comparing the previous results to those obtained
without making these assumptions.

4.1 Parameter Values Fitted to Market

The optimization problem detailed in Section 3.6.1 is run for all four stock dynamic models using
constraints and initiated parameter values shown in Table 4. Solving the optimization problem
results in the parameter values shown in Table 5. Interesting to note is the negative µjM value in
combination with the small σjM value for the Merton model, implying that it may be classified as a
crash model similar to the FMLS model. The obtained parameter values are used when producing
the final pricing estimates presented in Section 4.2 and 4.3.

Black-Scholes Merton FMLS Heston
Parameter
Value

Parameter
Value

Parameter
Value

Parameter
Value

σBS

0.2594
σM

0.1417
σbF

4.7150e-04
σH

0.1959
µjM

-0.3758
σF

0.1916
κH

4.2583
σjM

0.0107
αF

1.6733
βH

0.2901
λjM

0.6368
θH
0.1060
ρH
-0.8852

Table 5: stock dynamics model parameters to be determined through parameter fitting, with
constraints and initial values used.

With the obtained stock dynamics model parameter values, the optimal parameter values for
the SLM regression is evaluated using the loss function described in 3.6.2. The loss values for
the different combinations of parameter values are shown in Table 6. It can be seen that there
are five parameter combinations that perform best, all at a similar level. Overall, increasing the
number of knots improves the loss value up until a certain point. However, for a degree of 3, more
knots than 24 does not seem necessary. Similarly, for a degree of 1, more knots than 18 does not
seem necessary. Limiting the number of knots is coveted as it reduces the number of regressions
performed, resulting in a computationally less expensive algorithm. Furthermore, while increasing
the number of knots could lower the bias of the estimates, it also risks increasing the variance of
the estimates. Thus, either a degree of 1 with 18 knots or a degree of 3 with 24 knots seems best.

Choosing a degree of 1 over 3 is tempting as it reduces the computational cost per regression.
However, upon evaluation of the pricing algorithm using a degree of 1, an unwanted linear behaviour
was discovered among the prices of the options with shortest maturity that are close to being at the
money, which can be seen in Figure 10. Thereby, a degree of 3 together with 24 knots is deemed
to be the optimal parameter choice for the SLM regression. These are the parameters used when
running the pricing algorithm in future sections.

Degree \Knots 6 12 18 24 30
1 782.67 305.08 233.96 231.73 237.25
3 926.29 375.01 268.21 229.54 235.00

Table 6: Loss function values for different degree and knots used in SLM regression.
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4.2 Accuracy of Pricing

The four stock dynamic models used are evaluated by counting the number of estimated option
prices that are within the observed bid-ask spread collected before market opening on 2022-04-08.
Each model’s accuracy is presented in Table 7. The estimated option prices used for these accuracy
values are found in Tables 9 to 16 in the Appendix.

2022-07-15 2022-10-21 2023-01-20 Total
BS 23.5%
Call 23.5% 5.9% 0.0% 9.8%
Put 41.2% 35.3% 35.3% 37.3%
Merton 46.1%
Call 47.1% 58.8% 35.3% 47.1%
Put 35.3% 41.2% 58.8% 45.1%
FMLS 54.9%
Call 41.2% 52.9% 11.8% 35.3%
Put 64.7% 76.5% 82.4% 74.5%
Heston 32.4%
Call 35.3% 52.9% 0.0% 29.4%
Put 41.2% 41.2% 23.5% 35.3%

Table 7: Share of options priced within ask-bid spread for four stock dynamic models, per maturity
and option type.

The results vary greatly, from a 0% accuracy of the 9-month call option using Black-Scholes dy-
namics to an 88.4% accuracy of the 9-month put option using Finite Moment Log Stable dynamics.
Overall, these two models are also the worst and best performing models respectively. In general,
the crash models designed to take the possibility of a market crash into account, i.e. Merton Jump
Diffusion and FMLS, perform significantly better than the other two. This is especially noticeable
for the put options with longer maturities.

The pricing algorithm systematically undervalues certain options. Both the Black-Scholes and
Heston model undervalues OTM put options as well as call options with longer maturities. Merton
Jump Diffusion and FMLS instead undervalues OTM call options. This can be seen in Tables 9 to
16. A visual example can be seen in Figures 12 and 18 displaying the estimated call option prices
found using Black-Scholes and Heston dynamics compared to the bid-ask spreads observed on the
market. The estimated prices follow the curve of the bid and ask prices for longer maturities, but
are all lower valued in comparison. This systematic error is greater the longer the maturity of the
option. It is also greater for Black-Scholes than for Heston. The same behavior of the estimated
prices can be seen for the put options. See Figures 20 and 17 in the Appendix.
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Figure 3: Estimated American call option prices using Black-Scholes stock dynamics compared to
bid and ask prices observed on the market.

Figure 4: Estimated American call option prices using Heston stock dynamics compared to bid
and ask prices observed on the market.

4.2.1 Model Specific Findings

The Black-Scholes dynamics provides a fairly good pricing accuracy of 37.3% for the put options,
but performed significantly worse when pricing call options with an accuracy of 9.8%. Longer
maturity call options had very low accuracies.

The Merton Jump Diffusion’s simple addition of a Poisson-distributed number of jumps with
normally distributed sizes greatly improved the accuracy compared to Black-Scholes with an overall
pricing accuracy of 46.1%. This is mainly due to the model handling longer maturities better than
Black-Scholes.

The Finite Moment Log Stable stock dynamics achieves the best results out of the four used in
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this paper. It has an impressive 74.5% accuracy for the put options priced and is improved with
longer maturities. Its pricing of call options are also good, with the exception of the longest call
option maturity where only 11.8% of the options are priced within the observed bid-ask spreads.

Despite the stochastic volatility implemented in the Heston dynamics, its pricing accuracy of put
options is very similar to that of the Black-Scholes dynamics. However, it is greatly improved for
the call options, especially for the middle option maturity of 6 months from the date of observation.
There is an abrupt drop in accuracy for the longest call option maturity.

4.3 Effect of Assumptions on Expected Continuation Value Function

The results in Section 4.2 were obtained using the assumptions on the expected continuation value
function described in Section 3.2.1. The effect of imposing these assumptions will be evaluated
here. The same pricing algorithm is run except for no assumptions being made when regressing
the expected continuation value function. Table 8 shows the accuracy of the obtained estimates
without using assumptions next to the estimates obtained in 4.2.

Bid-ask accuracy Mean squared error
Without
assumptions

With
assumptions

Without
assumptions

With
assumptions

Black-Scholes 24.5% 23.5% 7.782 7.897
Merton 45.1% 46.1% 3.429 3.483
FMLS 50.0% 54.9% 3.785 3.589
Heston 23.5% 32.4% 4.548 4.343
Total 35.8% 39.2% 4.886 4.828

Table 8: Share of options priced within the bid-ask spreads and the mean square error from the mid-
price for four stock dynamic models, with and without assumptions on the expected continuation
value function as part of the pricing algorithm.

In general, imposing assumptions on the expected continuation value function has a varied effect
on the accuracy of the obtained option prices. The difference is most noticeable for the Heston
stock dynamics, where an additional 9% of the options are priced within the bid-ask spread when
the assumptions are enforced. The mean square error is also reduced from 4.548 to 4.343. For
FMLS, the bid-ask accuracy is improved by about 5 percentage units and the mean square error
is reduced from 3.785 to 3.589. For the Black-Scholes and Merton stock dynamics however, not
using any assumptions yielded results with similar accuracy as when assumptions are used.

Although the estimates produced using assumptions are overall more accurate, plotting the
two alternative estimates together illustrates how both produce a similar behavior for the option
prices. As an example, Figure 5 illustrates the obtained prices for put options under the FMLS
stock dynamics, both for the case of imposing assumptions and not doing so. Here, both estimates
follow the shape formed by the bid-ask curves.
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Figure 5: Estimated American put option prices using FMLS stock dynamics compared to bid and
ask prices observed before market opening on 2022-04-08. Estimate achieved using assumptions
on the expected continuation value function shown in black, estimates obtained without any as-
sumptions are in green.
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5 Discussion

5.1 Simulation of Stock Trajectories

5.1.1 Choice of Stock Dynamic Models

The four models used to simulate the stock trajectories in the Monte Carlo-based approach to
option pricing provided varying results. The choice of these models is naturally of great importance
when it comes to accurately pricing the American options, as they have different approaches to
mimicking the movement of the AAPL stock. In the process of choosing appropriate models, they
were considered with the aim of having competing models with different characteristics to be able
to evaluate which are more suitable for the real options market.

The Black-Scholes model is of course the most simple of the four and was picked as a simple
benchmark for the other models to be compared with. It was also used as a control for the pricing
algorithm giving reasonable results when the more complex models were implemented in MATLAB.
It is therefore not surprising that this performed the worst in its option pricing. The Merton Jump
Diffusion model was chosen to explore the importance of the possibility of discontinuous jumps in
stock price to mimic the expectations of the market reflected in the option prices. For that reason,
it is interesting to note the large increase in accuracy for the Merton model compared to Black-
Scholes. Models with stochastic jumps were expected beforehand to generally perform better, which
is why the Finite Moment Log Stable model also was added as a more sophisticated option. The
main purpose of the model is to purposely violate the central limit theorem to stop the volatility
smirk from flattening out too quickly as maturity increases, which was a characteristic seen in the
previously existing stock dynamic models but not in the options market. This important trait
of the FMLS model provided excellent pricing accuracies for put options with longer maturities.
Finally, all three of these models utilize a constant and deterministic volatility. The Heston model
was therefore implemented to evaluate a model with stochastic volatility. This provided somewhat
disappointing results, with only the call options with a time to maturity of 6 months being more
accurately priced than when using Black-Scholes. Later in this section, it is discussed whether this
might stem from non-optimal parameters being used for the Heston model.

5.1.2 Accuracy of Stock Trajectory Simulation

The four stock dynamic models all have the aim of simulating stock trajectories that mimic that
of the AAPL stock. As has been previously mentioned in the report, various simplifications have
been made to lower the computational cost of the pricing algorithm. This means that even after
fitting the model parameters to fit real market data, the stock dynamics might still not be efficient
enough to be used to price the options.

The constant and deterministic interest rate is likely the most important of these simplifications.
Around the time the data was collected, there were wide expectations of the US Federal Reserve
increasing the interest rates quickly within the coming year [15]. These expectations of the market
will certainly have an effect on the option prices. In fact, increasing interest rates lead to increasing
call option prices and decreasing put option prices [14]. This is because purchasing call options
has the same potential for profit as purchasing shares of a stock, while an option purchase also
frees up capital to be invested in the risk-free interest rate. A higher interest rate then implies a
higher call option value. A similar comparison can be made between purchasing put options and
short-selling, where short-selling enables the trader to invest the received capital in a risk-free rate
while the purchase of a put options implies tying up capital in the amount of the put option price.
The value of the put option will then decrease with an interest rate increase. These dynamics have
not at all been accounted for in the pricing method.

Another simplification made which likely has a more minor effect on the pricing accuracy is
the way the future dividend amount is decided in the algorithm. The dividends are paid out as
a percentage of the current stock price, which means that small changes in stock price during the
time period will also directly change the dividend payment. In reality, companies are pressured to
provide a certain dividend amount to their shareholders. They are therefore not likely to decrease
their dividend payment unless there are significant financial trouble in order to keep their dividend
track record [13]. This error is however very small and not likely to be of major effect on the
accuracy.

Finally, the discretization of time into one time step per day has varying effects for the dif-
ferent stock dynamic models. As mentioned in Section 3, Black-Scholes, Merton Jump Diffusion
and FMLS are all implemented computationally to give exact solutions despite the discretization.
However, the Heston dynamics are not. This was handled by simulating stock trajectories ten
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times per day but only saving one of them, resulting in a slightly higher resolution in stock price
simulation, reducing the simulation error somewhat. The error is however not removed completely.

5.2 Pricing Algorithm

While the pricing algorithm was developed based on the algorithm detailed by Longstaff-Schwartz
in 2001, a number of considerations had to be made during the implementation which all impact
the estimates produced by the algorithm.

5.2.1 Regression Using Only ITM Trajectories

Inspired by the Longstaff-Schwartz algorithm, only ITM trajectories were used in the pricing
algorithm as the expected continuation value was regressed at all time steps to determine whether
exercising or holding is optimal. The reason for this is that the trajectories that are not ITM would
not be exercised, regardless of their current expected continuation value. Thus, the comparison
would be unnecessary, and computing time could be saved by not regressing these trajectories.
An exception to this rule is for time steps where final option prices are calculated. As detailed
in Section 3.2, for the final evaluation of an option, the expected continuation value is regressed
using all trajectories, as prices for both ITM and OTM options are to be evaluated. Illustrated in
Figure 6 are two regressions, one made at t1 and one at t0. Here, the former only considers ITM
trajectories while the latter includes all trajectories. As can be seen, restricting to ITM trajectories
omits a large share of the available data points. Including all of these could impact the shape of
the curve, and as a consequence also the estimations of the expected continuation value. In turn,
this could have an effect on the judgement of optimal exercise time and the final price of the option
being valued.

(a) The regressed curve at t1. Only ITM trajec-
tories are included in the regression. Data points
in green and fitted curve in black. X represents
Ŝt1 values and f(X) the expected continuation
value.

(b) The regressed curve at t0. All trajectories,
including those being ITM, ATM or OTM, are
used in the regression. Data points in green and
fitted curve in black. X represents Ŝt0 values
and f(X) the expected continuation value.

Figure 6: Two regressions from the pricing algorithm, illustrating the difference between regressing
ITM trajectories versus all trajectories.

5.2.2 Placement of Regression Knots

When regressing the expected continuation value function, the grid is divided into sub-intervals
where separate regressions are performed. By default, the SLM toolbox separates the intervals
by equally spaced knots. A second option offered by the toolbox is to let a nonlinear optimizer
find the optimal placement of the knots. This would prevent the cases where the existence of
outliers would lead to intervals that only contain a few data points, resulting in a poor regression
on these subsections of the Ŝt grid. However, introducing this optimization yielded a serious
increase in computational time, large enough to be considered not implementable given the available
computational power in the fabrication of this report.

5.2.3 Regression for the Heston Model

For the special case of the Heston stock dynamics model, which has two stochastic processes St and
Vt, the pricing algorithm had to be adjusted to take both into consideration. As detailed in Section
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3.2.2, this was simplified by grouping the volatilities into sorted clusters, performing one regression
per volatility cluster and evaluating the option prices based on a weighted combination of the two
regression curves corresponding to volatility clusters closest the volatility of interest. Here, ten
volatility clusters were defined, a number which could have been increased to allow for a more
detailed bundling of the Vt grid space. Furthermore, a more complex approach to assigning the
volatilities into clusters could have been implemented to minimize the effect of the simplification
being made, as was mentioned briefly in Section 3.2.2. Instead of producing one regression per
cluster and only using two of the regressions as part of the final valuation, a regression using the
volatilities as an input to a function of expected continuation value given a fixed St could also have
been made. In total, these measures could allow for an option valuation which more accurately
represents the volatility of interest.

An interesting finding with the Heston parameters obtained in 4.1 is that they produce in-
creasing volatilities due to the high value of the mean reverting parameter θH in relation to the
initial variance of σ2

H . In fact, upon producing the prices in the Results section, already 20 steps
forward in time, there exists no variance trajectory whose value, V20, is less than or equal to the
initial volatility of σ2

H . As a consequence, all prices evaluated inside the algorithm, i.e. the options
with maturities 2022-07-15 and 2022-10-21, have been priced using the regression produced by the
lowest volatility cluster, which does not properly represent the volatility of interest which is σH ,
as it is not present in this cluster. This implies that the produced prices are not quite reflecting
the volatility which the options were to be valued in light of. While these parameter values were
deemed as optimal based on the parameter fitting described in 3.6, it is possible that a stricter
boundary on the parameter θH could have prevented this behaviour. It is also possible that the
obtained parameter values were not optimal as is detailed in Section 5.3.5.

5.3 Parameter Fitting

While not being the main object of the study, the parameter values obtained in the parameter
fitting of the stock dynamic models fill an important part of the work, as the obtained values
greatly influence the obtained price estimates. In this section, the obtained values will be discussed
in light of previous expectations and the outcomes reasonableness in relation to the actual financial
markets which the study aim to reflect.

5.3.1 Black-Scholes

The only parameter fitted for the Black-Scholes model is the volatility σBS , where a value of
25.94% was obtained. The reasonableness of this parameter value may be judged in light of the
VIX measure. The VIX is a volatility index measures by the CBOE and tracks the implied
volatility of SP500 options [11]. On April 8th 2022, the index closed on 21.16 [20]. Given this
implied volatility for the SP500 index, the obtained σBS , representing the implied volatility of the
AAPL stock, seems reasonable.

5.3.2 Merton Jump Diffusion

For the Merton Jump Diffusion model, a σM value of 0.1417 was obtained. In addition to this, for
the stochastic jump process, the parameter values µjM = −0.3758, σjM = 0.0107 and λjM = 0.6368

were obtained. This implies that in average once every
1

λjM

= 1.57 years a jump will occur

leading to an expected 37.56% decline of stock price. It is therefore declared a crash model.
Observing the history of the AAPL stock, drops of around 30% has happened recently, although
not in an instantaneous drop, rather between February and March 2020 as well as November and
December 2021 [19]. Nevertheless, it is concluded that the obtained µjM and λjM are are not to
be deemed completely misrepresenting of the real financial markets. The small σjM does however
seem unrealistic. Given the normally distributed jump sizes, this implies that more than 95% of
all jumps that may occur would change the stock value between -35.5% and -40%. Furthermore,
the likelihood for a positive jump to occur is practically non-existent. It seems unlikely that such
a specific recurring jump size would exist for the AAPL stock. The fact that a positive jump is
extremely unlikely to occur does also not seem representative of the real financial markets.

5.3.3 Finite Moment Log Stable

In the FMLS model, the parameter values obtained were αF = 1.6733, σF = 0.1916, and σbF =
4.7150e-04. Given the obtained αF value, the stochastic α-stable Lévy process differs from a
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Brownian motion, which has an α value of 2. It can then be viewed as a confirmation of Wu and
Carr’s hypothesis in the article introducing the FMLS model, which is that a Brownian motion is
not sufficient in modelling the behaviour of an underlying stock price. Another interesting finding
is the low σbF value, representing the volatility of the separate Brownian motion which was added
in addition to the α-stable Lévy process used in the original FMLS model. The low parameter
value signals that adding an additional Brownian motion does not make up a vital part of the
stochastic movement in the FMLS model in the scenario of this report. A reason might be that
while the FMLS model may be considered as a jump process, most of its jumps are so small that
it to an extent already resembles the movement of a Brownian motion.

5.3.4 Heston

Lastly, for the Heston model, the parameter values σH = 0.1959, κH = 4.2483, βH = 0.2901,
θH = 0.1060, and ρH = −0.8852 were obtained. To begin with, the θH value indicates that
the variance process will revert to a mean of 0.1060, corresponding to a volatility level of 0.326.
Given the initial volatility value of σH = 0.1959, this implies that the volatility process will overall
be increasing, as it drifts upwards towards the level of

√
0.1060 = 0.326. This leads to a faulty

volatility being used when estimating the option price for the two options with shorter maturities,
as is discussed in Section 5.2.3. Also, it is interesting to note the ρ value which indicates a
high negative correlation between the underlying stock price and volatility. The parameter was
constrained to negative values in the interval −1 < ρ < 0 as there is a tendency for a stock’s
volatility to increase as its price declines, but a value of rho = −0.8852 indicates a very high
negative correlation.

5.3.5 Validity of the Obtained Optimas

There is uncertainty whether the obtained parameters are optimal. To begin with, it is not certain
whether the obtained optimal values truly are global optimums to the parameter fitting loss func-
tion, or only local. The MultiStart-function played an important role as it allowed for many initial
values and thereby many local solutions to be evaluated. In general, more parameters being fitted
implies a larger feasible region to be explored. While one can be quite confident in the obtained
value of the single fitted parameter in the Black-Scholes model, the more complex models are less
certain. This is especially true for the five fitted parameters of the Heston model, as this was not
only the most complex model, but also the only model where 30 instead of 50 multistarts were
used. With more computational time available, another optimal solution might have been found
which could have resulted in a better pricing accuracy.

Additionally, a different choice of loss function could have produced a different set of optimal
parameters. Instead of measuring the absolute difference from the mid price of the options in the
train set, divergence from the bid-ask spread could have been measured. Another alternative could
be measuring the distance from the mid price, but with less punishment for distance within the
bid-ask spread. As the accuracy of the final pricing was judged based on how many estimates were
inside the bid-ask spread, favouring predictions inside the spread might have been beneficial in
training. Specifically, it might have prevented estimates that lie just outside the bid-ask spread.

5.4 Limitations of Accuracy Measure

The accuracy measure chosen for comparing the different models’ pricing performances is binary,
as an estimate can only be considered correct or incorrect depending on if it is placed within or
outside of the bid-ask spread. This could potentially lead to unfair comparisons between models.
An example is the accuracy value of 35.3% that is shared between both the call option priced using
Merton Jump Diffusion and the put option priced using Black-Scholes, both options maturing on
2023-01-20. Despite the same accuracy, the estimations behave very differently, as can be seen in
Figures 20 and 22. The Black-Scholes put options are systematically undervalued and are far from
the observed option price for low strike prices, i.e. options far out-of-the-money. The Merton call
option price estimations are however consistently closer to the observed prices with no apparent
systematic error. An alternative accuracy measure is to instead consider the distance between
estimate and mid-price. This was done using the mean square error in Section 4.3. This measure
would possibly find the Merton call option more accurate than the Black-Scholes put. This measure
would also match that of the measure used in the training phase during the parameter fitting. Akin
to the reasoning in Section 5.3.5, matching the measure between the train and test phase could
increase the obtained accuracy scores.
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Another potential issue with the accuracy results is that the option price data was collected
before market opening on 2022-04-08, which could lead to the bid and ask prices not being fully
calibrated yet. The bid-ask spreads could then potentially be larger than what they would be when
the market is open. This would then lead to higher pricing accuracies.

5.5 Possible Explanations for Systematic Undervaluation

5.5.1 The Effect of Constant Volatilities

The most prominent systematic undervaluation is that of the American call options priced using
Black-Scholes stock dynamics, as was shown in Section 4.2. The most likely explanation for this is
the tendency for options with longer maturities to have higher implied volatilities, as a consequence
of a lengthier time leading to the stock price having a longer time period to move to a favorable
price level [12]. Since the Black-Scholes model simulates the stock trajectories using a constant
volatility, this will not be accounted for. The effect is then a systematic undervaluation of long-
dated call options. A simple way to handle this would be to fit the parameters differently to each
maturity, which would likely provide a higher volatility for the call options with longer maturities.

In Section 4.2 it can also be seen that the Heston model has less of a systematic undervaluation
for these types of options than Black-Scholes. This is because the square root of the θH -parameter
in the stochastic volatility process, signifying the mean-reversion level of the volatility, has a value
of

√
0.1060 = 0.326 which is greater than the volatility of the stock price process St of σH = 0.1959.

This means that the volatility will increase over time. The fact that the Heston process still slightly
undervalues longer call options means that this explanation does not fully resolve the error.

5.5.2 Impact of Crash Dynamics on Out-of-the-Money Put Options

Another notable systematic undervaluation is that of the out-of-the-money put options priced
using Black-Scholes and Heston stock dynamics. The two main reasons for purchasing OTM put
options is for hedging against a fall in stock price when one has a long position elsewhere as well
as speculating in a coming bear market. This is because the value of the put option will of course
increase as the stock price falls. The likelihood and sequent speculation of a sudden crash in stock
prices will then lead to an increase of OTM put option prices. This is the dynamic that the two
crash models used, i.e. the FMLS and Merton stock dynamics, handles more efficiently, as the more
extreme falls in stock price will be accounted for in the pricing of put options far out-of-the-money.
As a consequence, there is no systematic undervaluation for put options priced using FMLS and
Merton dynamics.

5.5.3 American Options Simplified Into High-Frequency Bermudan Options

A simplification that will have a slight undervaluation effect on the option pricing of all four models
is the discretization of time. Its effect on the stock trajectory simulation of the Heston dynamics
has already been discussed, but it also has an impact on the pricing algorithm. American options
will never be lower valued than European options as the holder in addition has the right to exercise
the option at any point before maturity. Since time has been divided into one time step per day
in this report, the holder is in effect only able to exercise the options at one specific point per day.
This means that the exercise value in theory could have been higher at another point during the
day. The evaluated options could be said to be of the Bermudan type.

This will always be a consequence of a numerical approach to option pricing, but could be
minimized by increasing the number of time steps per day. This would also significantly increase
the computational cost of the algorithm and require a very large RAM of the machine running it,
which is why this was not done in this paper.

5.6 Put Option Prices More Accurate Than Calls

5.6.1 Computational issues

There are three difficulties with calculating the price of an American call option which may help
explain the lower accuracy for calls compared to puts. To begin with, American call options with
discrete dividends are, given a positive risk-free rate, theoretically only optimal to exercise just
before a time of dividend or at the final time to maturity [1]. As a consequence, any options that
were exercised early should have been exercised just prior to either td1 = 22/252, td2 = 84/252, or
td3 = 151/252, corresponding to an optimal exercise time step of 21, 83, or 150. In Figure 7, the
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obtained optimal exercise times for the 100000 trajectories used when pricing a call option with
maturity 2023-01-20 using Black-Scholes dynamics are illustrated. As can be seen, while there are
clusters of trajectories around the time steps leading up to 83 and 150, these are not the only times
where the trajectories have been exercised. It is then concluded that the algorithm does not follow
this theory, which may partly explain the relatively poor accuracy for calls.

Figure 7: Histogram over deemed optimal exercise time for 100000 trajectories when pricing a call
option using Black-Scholes stock dynamics.

Moreover, an error in the algorithm relating to the dividends may amplify this effect. In the
implementation detailed in Section 3.4.2, allowing multiple maturities to be evaluated in a single
run, time invariance was assumed. However, the discrete dividends are not time invariant and as
such will occur at different times for the different maturities. By earlier reasoning, pricing the call
option is more sensitive to the timing of the dividends and as such, this may also help explain
the lesser accuracy of the call options compared to the put options. The small relative size of the
dividends may limit this effect though.

Lastly, the interval for regression differ between put and call options. For puts, when filtering
for ITM trajectories, the input to the regression, Ŝt, is bounded by 0 and 1. For calls however,
the input is only bounded from below by 1. This means that the regression used in the pricing
algorithm is always done over a compact area for puts, whereas for the calls the regression is done
over a area with no upper limit. This means that outliers may have a bigger impact on the pricing
of call options. This could also explain some of the difference between the accuracy of call prices
compared to put prices.

5.6.2 Market reasons

An interesting pattern that can be seen in the accuracy values of Table 7 is that estimated put
option prices are more accurate than call option prices for the longest maturity option in all four
models. One important explanation for this is the fact that constant risk-free interest rates were
used in the simulation of the stock trajectories. This decision was made to enable time-invariant
stock dynamics, allowing for the simulation of options with different maturities at once. Sadly, the
timing of this simplification could hardly have been worse with the previously mentioned market
expectations of rapid interest rate increases by the US Federal Reserve in April 2022. This would
lead to increased call option prices and decreased put option prices as a result of market speculation.
Since these effects have not been accounted for, all models used in the pricing algorithm will
have undervalued the call options and overvalued the put options. Now, in combination with the
systematic undervaluation as a result of the constant volatilities for all models except Heston, the
pricing of Bermudan options and not American options as well as the lack of crash dynamics for
Black-Scholes and Heston, the put option price estimations will be pushed back into the correct
bid-ask spreads, while the call option estimations will instead be pushed further away.
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The difference in put and call option estimate accuracy is even greater for the two crash models,
Merton and FMLS, than for the other two. One possible explanation for this is that in the cases
of a sudden crash in stock price, the put option greatly increases in value while the call option
greatly decreases in value. For the Merton Jump Diffusion model, this type of crash will happen in
average once every 1.57 years and lead to a 37.56% decline of stock price in average. This is a fairly
unlikely event that will have large impacts on both put and call prices. For longer maturities, the
probability of such an event increases, leading once again to increased put option estimates and
decreased call option estimates. Similarly as for the constant interest rate, the estimates will be
pushed towards or further away from the bid-ask spreads respectively.

5.7 Varied Effect of Assumptions in Regression

While the estimates obtained with assumptions are more accurate, where 39.2% instead of 35.8%
of the options are priced in the bid-ask spread, the behavior of the estimated prices is similar
and resembles that of the bid-ask prices for both alternatives. A reason for this may be that the
nature of the pricing formula may alone often already capture the desired behaviour of the expected
continuation value function which the assumptions enforce. As an example, Figure 8 shows the
expected continuation value regression performed at time step 150 for a put option, both with
and without enforcement of assumptions. As can be seen, both curves demonstrate the desired
behaviour, as they are non-negative, decreasing, convex and have a maximum derivative whose
absolute value is not greater than 1. Rather, it seems to be mainly for early time steps, where the
existence of outliers among the simulated stock trajectories is more frequent, that the assumptions
may come into play. Figure 9 shows the same regression but at time step 4. It illustrates how
the resulting curve of the regression performed without assumptions does not follow the wanted
behavior for the stock trajectories whose values are outliers. As can be seen, the curve produced
without assumptions behaves strangely in its leftmost part. There are even a few parts of the
curve where moving further to the right yields an increase in value. This implies that an increase
in the underlying stock value would increase the put option price, which is a behaviour that one
would not expect in the financial markets. In these cases, the curve where the assumptions were
enforced is clearly preferable. This may explain the slight effect that imposing assumptions has
on the resulting accuracy of the price estimates. It is worth noting that placing the knots using
an optimizer, as detailed in Section 5.2.2, could prevent the unwanted unstable behavior of the
regressed expected continuation value, which could limit the role of the enforced assumptions.

(a) Regressed curve at time step 150 for a put
option when assumptions are enforced.

(b) Regressed curve at time step 150 for a put
option when no assumptions are enforced.

Figure 8: Regressions from the pricing algorithm, at time step 150, illustrating how the fitted
curves demonstrate a desirable behavior, regardless of whether has been enforced.
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(a) Regressed expected continuation value for a
put option at time step 4 when assumptions are
enforced.

(b) Regressed expected continuation value for a
put option at time step 4 when no assumptions
are enforced.

Figure 9: Regressions from the pricing algorithm, at time step 4, illustrating how forcing assump-
tions onto the expected continuation value function impacts the shape of the regressed curve. The
effect is mainly limited to the part of the Ŝt grid made up of outliers.
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6 Conclusion

The hypothesis of an improved accuracy in the Monte Carlo based pricing algorithm developed by
Longstaff-Schwartz in 2001 using assumptions on the expected continuation value function was a
success. The developed algorithm using assumptions on the expected continuation value function
acheived an overall pricing accuracy of 39.2%, compared to 35.8% when no assumptions were used.
While the regression on the expected continuation value generally followed its known characteristics
without imposing assumptions, some cases were observed were enforcing these assumptions fixed
clear violations.

As expected, the Black-Scholes model resulted in the lowest total pricing accuracy of 23.5%.
Surprisingly, the Heston dynamics followed thereafter with a pricing accuracy of 32.4% despite its
stochastic volatility. The Merton Jump Diffusion and FMLS stock dynamics were the most efficient
models in the pricing of American options with accuracies of 46.2% and 54.9% respectively thanks
to the possibility of sudden crashes in stock price. This shows the importance of the crash dynamic
in modelling stock price trajectories.

There was a fairly dramatic systematic undervaluation of option prices using the developed
Monte Carlo-based algorithm. There are many possible explanations for this, where an important
one is that the volatilities fitted to the market were adjusted for all three maturities at once, despite
that the Implied Volatility has a tendency to increase for longer maturities. The crash dynamics
of Merton Jump Diffusion and FMLS was also found to create an undervaluation effect among
OTM put options. However, the fixed interest rate that was assumed despite market expectations
of increased rates in the near future by the US Federal Reserve pushed the long-dated put options
back up into the bid-ask spreads, resulting in these options being more accurately priced than the
long-dated call options for all models.
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7 Future Research

There are a number of ways the option pricing algorithm developed in this paper could be improved.
To improve the regression of the expected continuation value, placement of knots could be explored.
This could be done by either using an optimizer or by placing the knots in a fixed but not linear
manner. To more accurately model the underlying stock movements, stochastic interest rates
could be implemented as the fixed rates used in this report does not accurately represent the
real financial markets. A simpler and perhaps equally efficient approach could be to implement
a variable but deterministic interest rate that is said to e.g. increase by 0.25% every 6 months.
Another improvement could be to find separate optimal model parameter values for different lengths
of maturity, as some fixed parameters are bound to change over time.

Including crash dynamics and stochastic volatilities into the stock dynamics proved efficient for
the pricing accuracies. Exploring models with both of these characteristics could therefore provide
a greater pricing accuracy. Finally, it would be interesting to explore how a different underlying
asset as well as a different time period, without the turbulence seen in spring 2022, could impact
the results.
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8 Appendix

Figure 10: Estimated American option prices using Black-Scholes stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08. Estimate achieved using a degree of
1 as a parameter for the SLM regression, resulting in an unwanted linear behaviour for the prices
of the options with shortest maturity.
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K \T 2022-07-15 2022-10-21 2023-01-20

P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask
105 0.00 0.00 0.36 0.40 0.03 0.03 1.12 1.21 0.17 0.18 1.86 1.99
110 0.00 0.01 0.46 0.67 0.08 0.08 1.40 1.48 0.25 0.25 2.05 2.49
120 0.01 0.02 0.67 0.96 0.28 0.28 2.12 2.24 0.82 0.84 2.90 3.40
125 0.04 0.03 0.96 1.19 0.48 0.47 2.26 3.15 1.23 1.24 3.80 4.25
135 0.28 0.27 1.50 1.71 1.44 1.45 3.75 4.00 2.58 2.64 5.50 5.70
140 0.57 0.57 1.98 2.17 2.12 2.13 4.30 4.85 3.57 3.60 6.35 6.65
150 1.63 1.64 3.50 3.60 4.07 4.09 6.35 7.10 6.24 6.19 8.95 9.30
155 2.55 2.58 4.40 4.65 5.54 5.58 7.10 8.40 8.11 8.01 10.35 10.90
165 5.66 5.69 7.15 7.50 9.45 9.51 11.15 12.55 11.99 12.04 14.00 14.65
170 7.94 7.98 9.05 9.35 11.86 11.90 13.55 13.90 14.21 13.65 15.90 17.30
180 13.79 13.84 13.50 14.60 17.53 17.54 17.95 19.95 20.38 21.29 21.25 22.80
185 17.27 17.32 16.60 17.80 20.75 20.79 20.00 24.00 23.73 24.27 23.50 25.45
195 25.16 25.23 23.75 25.40 27.90 28.08 27.35 29.35 30.46 30.23 30.00 31.70
200 29.48 29.56 29.15 29.85 31.81 32.05 30.90 32.60 34.04 34.02 32.45 34.75
220 48.18 48.32 46.65 49.75 49.28 49.54 47.35 50.75 50.77 51.10 48.55 51.35
230 57.95 58.13 56.65 59.50 58.75 58.99 57.20 59.45 59.78 60.26 57.80 60.80
240 67.81 68.04 65.70 69.60 68.48 68.77 66.00 69.80 69.36 69.81 67.10 70.10

Table 9: Estimated put option values using stock trajectories simulated from Black-Scholes stock
dynamics compared with observed bid and ask prices. P̂ represents the estimates obtained with
assumptions on the regressed curves. P̂zero represents the estimates obtained when no assumptions
are imposed.

K \T 2022-07-15 2022-10-21 2023-01-20

Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask
105 67.34 67.44 66.00 69.00 67.59 67.92 67.10 70.50 67.77 68.11 68.70 71.70
110 62.36 62.53 61.20 64.00 62.64 62.90 63.40 65.70 62.96 63.12 64.20 67.30
120 52.38 52.49 51.85 54.40 52.79 52.70 53.30 56.95 53.43 53.42 55.70 58.50
125 47.39 47.52 47.70 49.70 47.90 48.25 49.05 52.00 48.80 49.15 51.35 53.95
135 37.45 37.54 38.10 40.55 38.43 38.22 40.90 43.05 39.55 39.63 42.85 45.15
140 32.66 32.71 34.20 36.05 34.27 34.09 36.10 38.85 35.23 35.28 38.70 42.50
150 23.96 23.97 25.65 27.35 26.89 27.25 28.55 30.75 28.34 28.70 31.40 33.60
155 20.13 20.14 21.55 23.25 23.33 23.55 24.90 27.00 25.26 25.41 28.40 30.35
165 13.51 13.54 14.60 15.10 16.89 16.71 18.50 20.90 19.82 19.74 22.25 23.90
170 10.72 10.74 11.55 11.85 14.19 14.05 15.90 17.50 17.22 17.96 19.60 21.15
180 6.23 6.22 6.60 6.85 9.85 9.99 11.55 12.25 12.30 11.70 15.35 15.95
185 4.53 4.52 4.75 5.00 8.20 8.38 9.40 10.35 10.33 9.92 13.00 13.75
195 2.23 2.22 2.44 2.51 5.71 5.75 6.30 6.60 7.68 7.93 9.45 10.70
200 1.53 1.54 1.63 1.78 4.75 4.70 4.85 5.75 6.78 6.92 8.10 8.65
220 0.41 0.46 0.34 0.42 1.96 1.91 2.03 2.19 3.55 3.50 4.05 4.35
230 0.26 0.29 0.20 0.24 1.10 1.14 1.26 1.38 2.36 2.33 2.81 3.05
240 0.17 0.14 0.12 0.15 0.57 0.64 0.80 0.90 1.65 1.72 1.96 2.16

Table 10: Estimated call option values using stock trajectories simulated from Black-Scholes stock
dynamics compared with observed bid and ask prices. Ĉ represents the estimates obtained with
assumptions on the regressed curves. Ĉzero represents the estimates obtained when no assumptions
are imposed.
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Figure 11: Estimated American put option prices using Black-Scholes stock dynamics compared
to bid and ask prices observed before market opening on 2022-04-08.

Figure 12: Estimated American call option prices using Black-Scholes stock dynamics compared
to bid and ask prices observed before market opening on 2022-04-08.
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K \T 2022-07-15 2022-10-21 2023-01-20

P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask
105 0.26 0.28 0.36 0.40 0.93 0.93 1.12 1.21 1.60 1.65 1.86 1.99
110 0.34 0.32 0.46 0.67 1.15 1.19 1.40 1.48 1.99 2.02 2.05 2.49
120 0.77 0.79 0.67 0.96 1.84 1.82 2.12 2.24 3.10 3.19 2.90 3.40
125 1.16 1.17 0.96 1.19 2.50 2.54 2.26 3.15 3.74 3.67 3.80 4.25
135 2.32 2.29 1.50 1.71 4.14 4.15 3.75 4.00 5.50 5.23 5.50 5.70
140 3.03 3.00 1.98 2.17 5.11 5.08 4.30 4.85 6.80 7.02 6.35 6.65
150 4.48 4.50 3.50 3.60 7.56 7.61 6.35 7.10 9.69 9.53 8.95 9.30
155 5.21 5.27 4.40 4.65 8.97 9.00 7.10 8.40 11.50 11.81 10.35 10.90
165 6.82 6.96 7.15 7.50 12.16 12.13 11.15 12.55 15.30 15.28 14.00 14.65
170 8.11 8.25 9.05 9.35 13.96 13.97 13.55 13.90 17.29 17.53 15.90 17.30
180 12.64 12.63 13.50 14.60 18.16 18.24 17.95 19.95 22.00 21.88 21.25 22.80
185 15.97 15.82 16.60 17.80 20.62 20.70 20.00 24.00 24.82 24.73 23.50 25.45
195 24.04 23.70 23.75 25.40 26.63 26.68 27.35 29.35 31.02 31.25 30.00 31.70
200 28.53 28.19 29.15 29.85 30.30 30.35 30.90 32.60 34.26 34.54 32.45 34.75
220 47.74 48.15 46.65 49.75 48.30 48.50 47.35 50.75 49.28 49.77 48.55 51.35
230 57.74 58.46 56.65 59.50 58.09 58.39 57.20 59.45 58.76 59.20 57.80 60.80
240 67.74 68.55 65.70 69.60 67.99 68.37 66.00 69.80 68.39 68.13 67.10 70.10

Table 11: Estimated put option values using stock trajectories simulated from Merton stock dy-
namics compared with observed bid and ask prices. P̂ represents the estimates obtained with
assumptions on the regressed curves. P̂zero represents the estimates obtained when no assump-
tions are imposed.

K \T 2022-07-15 2022-10-21 2023-01-20

Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask
105 67.35 67.36 66.00 69.00 67.99 68.08 67.10 70.50 68.61 69.38 68.70 71.70
110 62.45 62.66 61.20 64.00 63.40 63.43 63.40 65.70 64.07 64.16 64.20 67.30
120 53.00 53.05 51.85 54.40 54.54 54.37 53.30 56.95 55.31 55.84 55.70 58.50
125 48.36 48.33 47.70 49.70 50.11 49.93 49.05 52.00 50.96 50.43 51.35 53.95
135 39.54 39.40 38.10 40.55 41.32 41.33 40.90 43.05 42.99 43.77 42.85 45.15
140 35.33 35.19 34.20 36.05 37.21 37.19 36.10 38.85 39.11 38.69 38.70 42.50
150 26.97 27.06 25.65 27.35 29.94 30.08 28.55 30.75 32.44 32.82 31.40 33.60
155 22.79 23.00 21.55 23.25 26.55 26.64 24.90 27.00 29.28 29.09 28.40 30.35
165 14.58 14.77 14.60 15.10 19.96 19.87 18.50 20.90 23.03 23.22 22.25 23.90
170 10.92 11.01 11.55 11.85 16.73 16.66 15.90 17.50 20.09 20.13 19.60 21.15
180 5.44 5.28 6.60 6.85 10.96 10.97 11.55 12.25 15.03 14.93 15.35 15.95
185 3.69 3.42 4.75 5.00 8.59 8.62 9.40 10.35 12.80 12.81 13.00 13.75
195 1.58 1.18 2.44 2.51 4.91 4.92 6.30 6.60 8.54 8.54 9.45 10.70
200 0.99 0.58 1.63 1.78 3.56 3.56 4.85 5.75 6.65 6.55 8.10 8.65
220 0.06 0.00 0.34 0.42 0.71 0.67 2.03 2.19 2.33 2.36 4.05 4.35
230 0.00 0.04 0.20 0.24 0.22 0.21 1.26 1.38 1.24 1.21 2.81 3.05
240 0.00 0.10 0.12 0.15 0.04 0.07 0.80 0.90 0.58 0.59 1.96 2.16

Table 12: Estimated call option values using stock trajectories simulated from Merton stock dy-
namics compared with observed bid and ask prices. Ĉ represents the estimates obtained with
assumptions on the regressed curves. Ĉzero represents the estimates obtained when no assump-
tions are imposed.
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Figure 13: Estimated American put option prices using Merton Jump Diffusion stock dynamics
compared to bid and ask prices observed before market opening on 2022-04-08.

Figure 14: Estimated American put option prices using Merton Jump Diffusion stock dynamics
compared to bid and ask prices observed before market opening on 2022-04-08.
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K \T 2022-07-15 2022-10-21 2023-01-20

P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask
105 0.26 0.28 0.36 0.40 0.93 0.93 1.12 1.21 1.60 1.65 1.86 1.99
110 0.34 0.32 0.46 0.67 1.15 1.19 1.40 1.48 1.99 2.02 2.05 2.49
120 0.77 0.79 0.67 0.96 1.84 1.82 2.12 2.24 3.10 3.19 2.90 3.40
125 1.16 1.17 0.96 1.19 2.50 2.54 2.26 3.15 3.74 3.67 3.80 4.25
135 2.32 2.29 1.50 1.71 4.14 4.15 3.75 4.00 5.50 5.23 5.50 5.70
140 3.03 3.00 1.98 2.17 5.11 5.08 4.30 4.85 6.80 7.02 6.35 6.65
150 4.48 4.50 3.50 3.60 7.56 7.61 6.35 7.10 9.69 9.53 8.95 9.30
155 5.21 5.27 4.40 4.65 8.97 9.00 7.10 8.40 11.50 11.81 10.35 10.90
165 6.82 6.96 7.15 7.50 12.16 12.13 11.15 12.55 15.30 15.28 14.00 14.65
170 8.11 8.25 9.05 9.35 13.96 13.97 13.55 13.90 17.29 17.53 15.90 17.30
180 12.64 12.63 13.50 14.60 18.16 18.24 17.95 19.95 22.00 21.88 21.25 22.80
185 15.97 15.82 16.60 17.80 20.62 20.70 20.00 24.00 24.82 24.73 23.50 25.45
195 24.04 23.70 23.75 25.40 26.63 26.68 27.35 29.35 31.02 31.25 30.00 31.70
200 28.53 28.19 29.15 29.85 30.30 30.35 30.90 32.60 34.26 34.54 32.45 34.75
220 47.74 48.15 46.65 49.75 48.30 48.50 47.35 50.75 49.28 49.77 48.55 51.35
230 57.74 58.46 56.65 59.50 58.09 58.39 57.20 59.45 58.76 59.20 57.80 60.80
240 67.74 68.55 65.70 69.60 67.99 68.37 66.00 69.80 68.39 68.13 67.10 70.10

Table 13: Estimated put option values using stock trajectories simulated from FMLS stock dy-
namics compared with observed bid and ask prices. P̂ represents the estimates obtained with
assumptions on the regressed curves. P̂zero represents the estimates obtained when no assump-
tions are imposed.

K \T 2022-07-15 2022-10-21 2023-01-20

Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask
105 67.93 67.64 66.00 69.00 68.54 68.35 67.10 70.50 69.31 69.88 68.70 71.70
110 63.08 62.96 61.20 64.00 63.86 64.61 63.40 65.70 64.66 64.40 64.20 67.30
120 53.41 53.58 51.85 54.40 54.59 54.01 53.30 56.95 55.57 54.94 55.70 58.50
125 48.57 48.58 47.70 49.70 50.04 49.86 49.05 52.00 51.22 50.64 51.35 53.95
135 38.97 38.89 38.10 40.55 41.03 41.38 40.90 43.05 42.75 42.14 42.85 45.15
140 34.33 34.29 34.20 36.05 36.65 36.56 36.10 38.85 38.55 37.98 38.70 42.50
150 25.62 25.59 25.65 27.35 28.66 28.38 28.55 30.75 31.27 31.32 31.40 33.60
155 21.57 21.54 21.55 23.25 25.05 25.03 24.90 27.00 27.88 27.38 28.40 30.35
165 14.18 14.21 14.60 15.10 18.52 18.72 18.50 20.90 21.57 21.93 22.25 23.90
170 10.98 11.04 11.55 11.85 15.62 15.73 15.90 17.50 18.66 18.16 19.60 21.15
180 5.96 6.04 6.60 6.85 10.68 10.58 11.55 12.25 14.04 14.52 15.35 15.95
185 4.24 4.28 4.75 5.00 8.67 8.55 9.40 10.35 11.96 12.11 13.00 13.75
195 2.06 1.98 2.44 2.51 5.50 5.46 6.30 6.60 8.55 8.38 9.45 10.70
200 1.42 1.28 1.63 1.78 4.29 4.30 4.85 5.75 7.20 7.38 8.10 8.65
220 0.28 0.08 0.34 0.42 1.44 1.49 2.03 2.19 3.11 3.00 4.05 4.35
230 0.09 0.00 0.20 0.24 0.80 0.81 1.26 1.38 2.19 2.29 2.81 3.05
240 0.02 0.00 0.12 0.15 0.43 0.40 0.80 0.90 1.43 1.40 1.96 2.16

Table 14: Estimated call option values using stock trajectories simulated from FMLS stock dy-
namics compared with observed bid and ask prices. Ĉ represents the estimates obtained with
assumptions on the regressed curves. Ĉzero represents the estimates obtained when no assump-
tions are imposed.
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Figure 15: Estimated American put option prices using FMLS stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08.

Figure 16: Estimated American call option prices using FMLS stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08.
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K \T 2022-07-15 2022-10-21 2023-01-20

P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask P̂ P̂zero Bid Ask
105 0.01 0.00 0.36 0.40 0.18 0.13 1.12 1.21 0.71 0.67 1.86 1.99
110 0.02 0.01 0.46 0.67 0.38 0.44 1.40 1.48 0.99 1.05 2.05 2.49
120 0.08 0.10 0.67 0.96 0.97 0.82 2.12 2.24 1.99 2.05 2.90 3.40
125 0.16 0.16 0.96 1.19 1.36 1.73 2.26 3.15 2.68 2.57 3.80 4.25
135 0.65 0.65 1.50 1.71 2.32 2.17 3.75 4.00 4.27 4.20 5.50 5.70
140 0.98 0.98 1.98 2.17 3.10 3.06 4.30 4.85 5.41 5.55 6.35 6.65
150 2.05 2.03 3.50 3.60 5.72 5.54 6.35 7.10 8.26 8.33 8.95 9.30
155 3.09 3.06 4.40 4.65 7.32 7.21 7.10 8.40 10.05 10.23 10.35 10.90
165 6.44 6.49 7.15 7.50 10.94 11.46 11.15 12.55 13.80 14.12 14.00 14.65
170 8.71 8.86 9.05 9.35 13.23 13.64 13.55 13.90 15.97 16.25 15.90 17.30
180 14.38 14.80 13.50 14.60 18.77 18.85 17.95 19.95 22.01 22.32 21.25 22.80
185 17.72 18.28 16.60 17.80 21.93 22.21 20.00 24.00 25.30 25.55 23.50 25.45
195 25.36 26.06 23.75 25.40 29.07 29.92 27.35 29.35 31.91 32.36 30.00 31.70
200 29.59 30.30 29.15 29.85 33.05 34.02 30.90 32.60 35.45 36.08 32.45 34.75
220 48.16 49.17 46.65 49.75 50.18 50.68 47.35 50.75 52.24 53.86 48.55 51.35
230 57.92 59.51 56.65 59.50 59.02 59.89 57.20 59.45 60.91 63.03 57.80 60.80
240 67.81 70.26 65.70 69.60 68.22 71.63 66.00 69.80 69.68 70.89 67.10 70.10

Table 15: Estimated put option values using stock trajectories simulated from Heston stock dy-
namics compared with observed bid and ask prices. P̂ represents the estimates obtained with
assumptions on the regressed curves. P̂zero represents the estimates obtained when no assump-
tions are imposed.

K \T 2022-07-15 2022-10-21 2023-01-20

Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask Ĉ Ĉzero Bid Ask
105 67.48 68.68 66.00 69.00 68.42 69.52 67.10 70.50 68.69 70.65 68.70 71.70
110 62.57 63.32 61.20 64.00 63.57 63.96 63.40 65.70 63.78 64.17 64.20 67.30
120 52.76 53.15 51.85 54.40 53.87 53.90 53.30 56.95 54.27 54.82 55.70 58.50
125 47.86 48.37 47.70 49.70 49.14 49.14 49.05 52.00 49.75 51.40 51.35 53.95
135 38.16 37.80 38.10 40.55 40.82 40.78 40.90 43.05 41.54 42.79 42.85 45.15
140 33.56 32.87 34.20 36.05 36.82 36.57 36.10 38.85 37.72 38.68 38.70 42.50
150 25.09 24.70 25.65 27.35 28.82 28.76 28.55 30.75 30.27 30.56 31.40 33.60
155 21.15 20.97 21.55 23.25 24.82 24.86 24.90 27.00 26.98 27.05 28.40 30.35
165 14.02 14.00 14.60 15.10 17.72 17.69 18.50 20.90 21.44 21.70 22.25 23.90
170 11.01 10.99 11.55 11.85 15.19 15.37 15.90 17.50 19.07 19.22 19.60 21.15
180 6.34 6.28 6.60 6.85 11.31 11.68 11.55 12.25 14.61 14.66 15.35 15.95
185 4.63 4.55 4.75 5.00 9.52 9.59 9.40 10.35 12.46 12.43 13.00 13.75
195 2.28 2.22 2.44 2.51 6.32 5.82 6.30 6.60 8.99 8.95 9.45 10.70
200 1.58 1.55 1.63 1.78 5.03 4.57 4.85 5.75 7.67 7.71 8.10 8.65
220 0.43 0.45 0.34 0.42 1.74 1.84 2.03 2.19 3.54 3.56 4.05 4.35
230 0.24 0.14 0.20 0.24 0.92 0.83 1.26 1.38 2.44 2.34 2.81 3.05
240 0.14 0.00 0.12 0.15 0.43 0.26 0.80 0.90 1.76 1.83 1.96 2.16

Table 16: Estimated call option values using stock trajectories simulated from Heston stock dy-
namics compared with observed bid and ask prices. Ĉ represents the estimates obtained with
assumptions on the regressed curves. Ĉzero represents the estimates obtained when no assump-
tions are imposed.
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Figure 17: Estimated American put option prices using Heston stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08.

Figure 18: Estimated American call option prices using Heston stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08.
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Figure 19: Estimated American put option prices using Black-Scholes stock dynamics compared to
bid and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.

Figure 20: Estimated American put option prices using Black-Scholes stock dynamics compared to
bid and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.
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Figure 21: Estimated American put option prices using Merton Jump Diffusion stock dynamics
compared to bid and ask prices observed before market opening on 2022-04-08. The green points
represent option price estimations found without using assumptions in the regression of the ex-
pected continuation function.

Figure 22: Estimated American call option prices using Merton Jump Diffusion stock dynamics
compared to bid and ask prices observed before market opening on 2022-04-08. The green points
represent option price estimations found without using assumptions in the regression of the ex-
pected continuation function.
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Figure 23: Estimated American put option prices using FMLS stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.

Figure 24: Estimated American call option prices using FMLS stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.
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Figure 25: Estimated American put option prices using Heston stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.

Figure 26: Estimated American call option prices using Heston stock dynamics compared to bid
and ask prices observed before market opening on 2022-04-08. The green points represent option
price estimations found without using assumptions in the regression of the expected continuation
function.
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