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Abstract 

This thesis presents the first attempt to estimate Dissolved Organic Carbon (DOC) in inland 

waters over a large-scale area using satellite data and machine learning (ML) methods. Four 

ML approaches, namely Random Forest Regression (RFR), Support Vector Regression (SVR), 

Gaussian Process Regression (GPR), and a Multilayer Backpropagation Neural Network 

(MBPNN) were tested to retrieve DOC using a filtered version of the recently published open 

source AquaSat dataset with more than 16 thousand samples across the continental US matched 

with satellite data from Landsat 5, 7 and 8 missions. In this work, the AquaSat dataset was 

extended with environmental data from the ERA5-Land product.  

Including environmental data considerably improved the prediction of DOC for all algorithms, 

with GPR showing the best and most robust performance results with moderate estimation 

errors (RMSE: 4.08 mg/L). Permutation feature importance analysis showed that from the 

Landsat bands, the wavelength in the visible green and for the ERA5-Land product, the 

monthly average air temperature were the most important variables for the machine learning 

approaches. The results demonstrate the predictive strength of advanced ML approaches faced 

with a complex learning task, such as GPR and MBPNN, and highlight the important role of 

considering environmental processes to explain DOC variations over large scales.  

While performance evaluation showed that DOC concentrations can be retrieved with adequate 

accuracy, algorithm development was challenged by the heterogenous nature of large-scale 

open source in situ data, issues related to atmospheric correction, and the low spatial and 

temporal resolution of the environmental predictors. Although locally tuned models are likely 

to outperform the developed model in terms of accuracy, the model can address key issues of 

inland water remote sensing as a promising approach to overcome the lack of in-situ 

measurements and to map large scale trends of inland DOC dynamically over long time periods 

and seasons.  

This research demonstrates how open source, large scale datasets like AquaSat in combination 

with ML and remote sensing can make research toward large scale estimations of inland water 

DOC more realistic while highlighting its remaining limitations and challenges. 

 

Keywords: dissolved organic carbon, machine learning, remote sensing, inland waters, water 

quality, open source data  
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1 Introduction  

Inland waters are aquatic ecosystems that are usually confined within land boundaries. They 

represent ecosystem types such as lakes, reservoirs, rivers, ponds, swamps, wetlands, and 

coastal areas (Ogashawara et al., 2017). Inland surface waters contain the world's main 

freshwater resources. They provide a broad range of ecosystem services to humankind 

(Millennium Ecosystem Assessment, 2005). Inland waters only occupy a small fraction of the 

surface of the Earth (3%), but recently it has been recognized that they play an important role 

in the global carbon cycle (Lauerwald et al., 2015; Raymond et al., 2013; Regnier et al., 2013).  

Carbon enters a water body as carbon dioxide from the air and is fixed by photosynthesizing 

organisms (autochthonous carbon), from the degradation of dead terrestrial organisms 

(allochthonous carbon), or through ground and surface water from the catchment area 

(bicarbonate). This carbon is bound to living or dead organisms or is dissolved in water 

(dissolved organic matter, DOC) (Brönmark & Hansson, 2017). Part of the carbon that enters 

inland waters is emitted into the atmosphere, and another part sinks into the water column and 

becomes buried in the sediment. DOC has been a largely unaccounted form of carbon (Kutser 

et al., 2017) although its amount is typically very large in inland waters (Wetzel, 2001). To 

predict and better understand the dramatically changing climate on Earth in which the global 

carbon cycle is a major component, it is therefore highly desirable to estimate and map DOC 

content in inland waters. The estimation of DOC in inland waters is important not only from 

the global carbon cycle perspective, but also has effects on public health. DOC promotes the 

fouling of water and hampers the disinfection of water by chlorination. Water rich in DOC in 

connection with chlorination has been shown to have an increased risk of bladder and rectal 

cancer (Koivusalo et al., 1997) and higher frequencies of birth defects (Magnus et al., 1999). 

In many boreal regions (including Sweden), increased levels of DOC have led to browning of 

lakes that are often important sources of drinking water (Williamson et al., 2015). Therefore, 

routine monitoring of DOC is needed to ensure safe provide drinking water and to be able to 

adjust treatment processes when needed. However, in-situ measuring, and sampling of DOC 

concentrations is time-consuming and labor-intense.  

DOC contains an optically active part, known as colored dissolved organic matter (CDOM), 

which can be detected by remote sensing instruments. In recent years, satellite-based 

techniques have evolved as an important supplement or alternative to in-situ measurements of 

CDOM, as they are capable of capturing the spatio-temporal dynamics of CDOM from large-
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scale and historical perspectives (Brezonik et al., 2015; Zhang et al., 2021). Many studies have 

shown that CDOM and DOC concentrations correlate significantly, indicating that CDOM can 

be a reliable regional proxy for DOC (e.g. Chen et al., 2020; Erlandsson et al., 2012; Kutser et 

al., 2016). However, the CDOM/DOC relationship can be weak in some waterbodies or underly 

seasonal variations (Brezonik et al., 2015; Zhang et al., 2021). The prediction of DOC from 

CDOM levels is thus associated with considerable uncertainty (Brezonik et al., 2015) and thus, 

modelling the complex relationship of the received remote sensing signal and DOC 

concentration remains a big challenge. 

Before reaching the sensor, the sun's light passes twice through the Earth's atmosphere, from 

the sun to the surface of the Earth and from the surface to the sensor. As a result, the absorption 

and scattering by gas molecules and particles in the environment always affects the light 

received at the sensor (Moses et al., 2017). Therefore, the development and research of 

atmospheric correction algorithms in remote sensing is a research field on its own. For open 

ocean water, robust atmospheric correction techniques have been developed, but those 

algorithms cannot simply be applied to inland waters as they violate some of the basic 

assumptions made for open oceans (e.g., adjacency effects from neighbouring land pixels, 

proximity to terrestrial sources of atmospheric pollution) (Moses et al., 2017). In the history of 

water quality remote sensing, inland water remote sensing has made slow progress compared 

to ocean remote sensing, which benefits from robust, open, and large data sets aimed at 

combining both in situ and radiometric observations with satellite data. Therefore, there is still 

a lack of universal algorithms and unified approaches to quantifying water quality parameters 

in inland waters (Palmer et al., 2015).  

Hence, it is not surprising that machine learning (ML) has gained considerable attention in the 

inland water remote sensing community. ML, together with remote sensing, big data 

technologies, and high-performance computing, has emerged as a powerful and promising 

combination to quantify water quality parameters from remote sensing data (Hassan & Woo, 

2021; Wagle et al., 2020). These methods have the potential to overcome the nonlinear, 

multicollinear, and heteroscedastic relationship of the received remote sensing signal and water 

quality parameters in inland water environments (Giri, 2021). Some findings even indicated 

that ML can achieve better predictions without atmospheric correction, as common correction 

algorithms are not developed for inland waters and can introduce errors (Medina-Lopez, 2020; 

Toming, Kutser, Laas, et al., 2016).  
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Given the uncertainties associated with quantifying DOC directly from remote sensing signals, 

DOC as a nonoptical parameter has received much less attention than other water quality 

parameters (e.g., chlorophyll-a or CDOM) in the inland aquatic remote sensing community. 

For an ML approach to successfully learn the hidden and complex patterns between DOC 

concentrations and the remote sensing signal a large number of DOC in-situ samples are 

required, which are often not available or very costly to get. Many studies only have access to 

in situ data from a small number of inland waters. Thus, validation studies are often biased 

toward certain optical water types (Palmer et al., 2015). Therefore, to date, very little is known 

about the potential of ML algorithms to predict DOC from remote sensing data in larger scale 

areas that include a diverse collection of complex optical water types.  

Therefore, the first objective of this thesis is the following. 

(1) Evaluate the performance of several ML algorithms that predict the concentration of DOC 

in inland waters from satellite data using a large-scale data set of DOC samples covering 

different inland water bodies. 

Studies have shown that environmental variables (such as air temperature, wind speed, and 

precipitation) contribute to explaining the variability of in situ DOC concentrations in inland 

waters (Baines & Pace, 1991; Correll et al., 2001; Zhou et al., 2016). Therefore, including 

environmental variables has the potential to considerably improve the DOC prediction models. 

For the retrieval of DOC concentrations of large areas, environmental variables can play a 

fundamental role (Toming et al., 2020). However, only few studies assimilate in situ data 

within ecological and hydrodynamic models, and only little is known about the combinatorial 

effects of earth observation data with existing monitoring frameworks (Palmer et al., 2015). 

Thus, the second objective of this thesis is the following: 

(2) Evaluate the effect of using several environmental variables in addition to Landsat surface 

reflectance to predict DOC concentration for inland waters. 

To better understand the characteristics, traceability, and dynamics of DOC, it is important to 

map the spatio-temporal variations of the DOC content in a water body. In the last part of this 

work, we want to demonstrate the best-performing model in a remote sensing application by: 

(3) Upscale point-based measurements to an entire waterbody using the best-performing 

model (based on objective 1 and objective 2) and analyze the spatiotemporal characteristics 
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of DOC content by mapping the DOC concentrations of a waterbody for each month of a 

selected year. 

2 Background 

2.1 Inland water remote sensing 

The Earth Resources Technology Satellite (ERTS-1, later renamed Landsat-1), launched by 

NASA in August 1972, was the first satellite to monitor the earth surface from orbit. 

Researchers of the ocean remote sensing community were soon aware that chlorophyll-a and 

temperature could be monitored remotely. They understood that bio-optical algorithms would 

be needed to derive chlorophyll-a concentrations from satellite data of the ocean (Bukata, 

2013). Almost at the same time, remote sensing was recognized as a possible complement to 

traditional lake monitoring methods. However, their application to monitor inland waters has 

been far less successful compared to open oceans (Ogashawara et al., 2017; Palmer et al., 

2015). This is due to numerous additional challenges that remote sensing of inland waters faced 

and still faces when retrieving water constituents from remote sensing data. These challenges 

include:  

(1) Challenges Related to Atmospheric Correction 

Unlike open oceans, inland waters are most often located in diverse and heterogeneous 

environments that affect the constituents of the atmosphere. For example, they are often close 

to human settlements, which usually affects the atmosphere through pollution. Thereby, the 

atmosphere becomes optically more heterogeneous and thus more difficult to model. Inland 

waters are also usually confined within land boundaries, and thus scattering in the atmosphere 

contaminates water pixels with radiation from the surrounding land. The atmospheric 

correction algorithms applied by the data providers are commonly developed for terrestrial 

surfaces and are not suitable for inland waters, which introduces additional uncertainties for 

modelling atmospheric effects over inland waters (Gege, 2017). Another effect mostly unique 

to inland waters is an often-increased reflectance of water in the near-infrared region due to 

high sediment concentrations. The high sediment concentrations occur, for example, by wind-

driven sediment resuspension, surface and subsurface runoff, agricultural and industrial 

discharge from terrestrial sources, or sediment influx from landslides and coastline erosion 

(Moses et al., 2017). The resulting increased reflectance of water in the near-infrared region 

then makes it difficult to determine and eliminate the influence of atmospheric aerosol 
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contribution on the signal received by the satellite sensor. In addition, inland waters can occur 

at very different altitudes in relation to the mean sea level. This can result in uncertainties in 

the estimates of aerosol content in the atmospheric column above water (Moses et al., 2017). 

(2) Optical Influence of Suspended Minerals and Dissolved Organic Matter 

Unlike the open ocean, where optical properties are reasonably defined by the impacts of 

phytoplankton and its by-products, algorithms for inland waters must account for the added 

optical influence of inorganic and organic suspended sediment, algae, dissolved organic matter, 

and other constituents (IOCCG, 2018). 

(3) Lack of suitable sensors. 

Satellite remote sensing for inland waters has been hampered by a lack of suitable sensors for 

a long time. Ocean color sensors such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) or the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) have a coarse spatial 

resolution that is not suitable for most inland waters. The rather recent launches of Landsat 8 

and Sentinel 2 offer new possibilities with higher temporal, spatial, and spectral resolutions, 

but are still designed for terrestrial remote sensing and have only been available since a few 

years, making historical analysis of inland water quality difficult. 

(4) Lack of funding, infrastructure, and coordination of research efforts. 

Apart from the challenges arising from the optically complex properties of inland waters, 

Palmer et al. (2015) point out that inland water remote sensing has suffered by a lack of 

funding, infrastructure, and the mechanisms needed to coordinate research efforts (Palmer et 

al., 2015). According to Bukata (2013), oceanographers and limnologists have done their 

research in historical dual solitude. Although now both oceanographers and limnologist share 

an interest in optical complex waters, this lack of communication may have led to the loss of 

valuable scientific history (Bukata, 2013). 

(5) Lack of in situ measurements 

The lack of funding, infrastructure, and coordination of research efforts has also made it more 

difficult to facilitate the shared use of in situ measurements for inland waters. Consequently, 

there are large in situ data gaps that prevent direct calibration and validation of products derived 

from sensors which lead to validation studies being biased toward certain optical water types 

or lack standardized measurement methods (Palmer et al., 2015; Warren et al., 2021). 
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2.2 Retrieval algorithms for inland water constituents from satellite data 

Despite the numerous challenges, many researchers have devoted their efforts to develop 

algorithms to retrieve water constituents in inland waters. These algorithms have been 

developed to translate the optical signal recorded by the remote sensor to the bio-optical and 

biogeochemical variables of interest and are commonly known as bio-optical algorithms or 

bio-optical models (IOCCG, 2018). Although there is a lack of consistency in terminology and 

classification of types of bio-optical algorithms, they can broadly be classified into five 

categories: empirical, semi-empirical, semi-analytical, quasi-analytical, and analytical 

(Ogashawara, 2015).  

In empirical and semi-empirical algorithms, the statistical relationship between in situ 

measurements of water constituents and the optical signal recorded by the remote sensor is 

used. While semi-empirical algorithms partly rely on assumptions (e.g., reflectance signal peak 

near 700 nm to estimate chlorophyll-a concentration in inland and coastal waters), empirical 

algorithms focus only on statistical estimators (Ogashawara et al., 2017). Statistical techniques 

such as stepwise regression or least squares are used to find the optimal relationship between 

the water constituents and the radiometric data. Empirical algorithms can be implemented 

without the need for a priori assumptions. In contrast to this, analytical, semi-analytical, and 

quasi-analytical algorithms use knowledge of the underlying physics of light transfer in waters 

(radiative transfer theory) and analytical inversions to simultaneously estimate the variables of 

interest. Analytical algorithms are purely physics-based, while semi-analytical and quasi-

analytical algorithms also include empirical steps. 

Since empirical algorithms do not require prior knowledge of the underlying physics of light 

transfer in waters, they have been a popular choice for inland water constituent retrieval. 

However, the presence of non-linear relationships among the inland water constituents makes 

the application of linear regression less reliable to identify the precise relationships between 

the remote sensing signal and the water constituents. Another problem is that empirical 

relationships that are often optimized for a specific water body may not be fully transferable to 

other waterbodies, as they are based on the unique characteristics of the original target area 

(Sagan et al., 2020). Here, algorithms based on radiative transfer theory in waters may be more 

suitable because they are better at generalizing the relationship characteristics over different 

regions. However, detailed spectral information about the optically active water components 

in the research area is required and often cannot be obtained. Another challenge of the physics-
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based approach is to select and specify the necessary parameters for modelling and solving 

radiation transmission equations (Sagan et al., 2020). 

2.3 Machine Learning for retrieving water constituents in inland waters from satellite 

data 

As in many other fields of research, the recent advances of ML together with big data 

technologies and high-performance computing have had a huge impact in the aquatic remote 

sensing community. As a more complex subset of empirical approaches, the application of ML 

to retrieve water constituents does not require prior knowledge. At the same time, ML 

approaches have been shown to be capable of capturing the nonuniform and complex 

relationships of the water constituents and the remote sensing signal (Hassan & Woo, 2021; 

Wagle et al., 2020) and outperform analytical approaches (Sagan et al., 2020). Recently, ML 

has also been shown to be able to quantify water quality parameters over large regions 

(Pahlevan et al., 2022; Smith et al., 2021). 

Machine learning is a set of statistical algorithms that, without being explicitly programmed, 

can learn from data and construct a detection, estimation, or classification model that can make 

a prediction from data that has been previously unknown to the trained algorithm (Murphy, 

2012). In the aquatic remote sensing research field this usually means that the computer learns 

the relationship between in-situ measurements of water constituents and spatiotemporally 

matched satellite data, although ML algorithms can also be used to optimize radiative transfer 

equations to estimate water constituents (e.g., Doerffer & Schiller, 2007). The learned 

relationship is then applied to previously unknown data and various evaluation metrics are used 

to estimate the model prediction error.  

Today, there are many ML methods available and several review papers on the application of 

ML to retrieve inland water constituents have been published (Hassan & Woo, 2021; Sagan et 

al., 2020; Wagle et al., 2020). The ML algorithms used to retrieve the constituents of inland 

water can be categorized into several families. Due to resource and time limitations, not all ML 

families and algorithms can be covered in this thesis. However, from the review papers 

published, three common ML families can be identified: tree-based algorithms, neural 

networks, and kernel methods.  
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2.3.1 Tree-based algorithms 

Tree-based machine learning algorithms use decision trees to learn from observations of a 

feature to predict the features target. A decision tree is a tree-like model of decisions where 

every question asked in the decision process is a test on one feature. Each test then results in 

completion or an additional test based on the current answer. The objective is to produce a tree 

that can generalize to predict unknown samples (Zhou, 2021a). Decision trees in which the 

target variable can take continuous numbers are called regression trees. Instead of the mode, 

the feature testing is based on the mean response of the observations falling into a certain 

category. A key issue of decision trees is that they are very sensitive to small variations in the 

training data and often do not generalize well on new data. To overcome these problems, 

ensemble methods are used that train and combine multiple learners to achieve more accurate 

and balanced models (e.g., Bagging, Boosting). The most prominent ensemble method that is 

based on decisions trees is called Random Forest (Breiman, 2001) (more details in Section 

4.2.1). 

2.3.2 Artificial neural networks 

Research on artificial neural networks (ANN) already started decades ago and has become a 

broad and interdisciplinary research field today. ANN is a subset of ML that includes traditional 

and deep neural networks. Inspired by the biological nervous systems of humans and animals, 

ANNs consists of large interconnected hierarchical networks of simple elements (also called 

neurons) that combined together can solve complex learning tasks (Zhou, 2021b). In its 

simplest form, originally proposed by McCulloh and Pitts (1943), each neuron receives an input 

signal from n other neurons via weighted connections. The weighted sum of the received 

signals is compared to a threshold, and an output signal is generated by an activation function 

(Zhou, 2021b). The activation function defines the output of a neuron that has received an input 

or a set of inputs. If the output exceeds a threshold, the neuron is activated. To transform a 

large interval of possible values into an open unit interval between 0 and 1, a sigmoid function 

has been commonly used as the activation function. Today, many more types of activation 

functions exist, with the Rectified Linear Unit function (ReLU) being a common choice (Zhou, 

2021b). 

All parts of a neural network combined form a complex mathematical model with a large 

number of parameters that can be learned by feeding it with training and test data. At the end 

of the training process, the ‘knowledge’ of the neural network lies in the connection weights 
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and thresholds that can be used to generalize on new data (Zhou, 2021b). To learn these 

parameters efficiently, most neural networks use error backpropagation (Rumelhart et al., 

1985). By two passes through the network (one forward, one backward), the backpropagation 

computes the gradients of the networks error regarding every model parameter, and thus finds 

out how the weighted connections and thresholds need to be tuned to reduce the error. Today, 

deep learning methods that contain many levels of processing layers are one of the fastest 

growing trends in research fields related to remote sensing and water quality monitoring (Sagan 

et al., 2020). In this thesis, a Multilayer Backpropagation Neural Network (MBPNN) is used 

to predict DOC (more details in Section 4.2.4). 

2.3.3 Kernel methods 

In machine learning, kernels can take care of non-linearity transformation when the feature 

space is high dimensional. Kernel methods avoid mapping the actual coordinates of the data in 

that high-dimensional feature space by computing the inner products between the images (i.e., 

the set of all output values a function from set x to set y may produce) of all pairs of data in the 

feature space. This is known as the ‘kernel trick‘. For example, fitting input data (in this case 

the spectral data matched to the DOC samples) to the output variable (DOC), the predicted 

DOC value (ŷ) for new input vector (𝑥∗) (the new spectral data) can be obtained by Equation 

1: 

 ŷ = 𝑓(𝑥) = ∑ 𝑎𝑖𝐾𝜃(𝑥𝑖, 𝑥∗) +  𝑎𝑜 ,

𝑁

𝑖=1

 (1) 

In this equation, {𝑥𝑖}
𝑁

𝑖=1
 are the spectral data used during training, 𝑎𝑖 is the weight assigned to 

each one of them, 𝑎𝑜 is the bias in the regression function, and 𝐾𝜃 is the kernel function that 

measures the similarity between the new input spectrum 𝑥∗  and all training spectra 𝑛 in the 

high dimensional space (Ruescas et al., 2018). The kernel function is parametrized by a set of 

hyper-parameters . Different kernel functions exist that result in different values to the weights 

𝑎𝑖. The most common kernel functions are linear, polynomial and radial basis functions (Malo 

& Camps-Valls, 2011). The ML algorithms that are based on kernel methods and used in this 

thesis are Support Vector Regression (SVR) (more details in 4.2.2) and Gaussian Process 

Regression (GPR) (Section 4.2.3). 
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2.4 Retrieval of the water constituent dissolved organic carbon in inland waters with 

remote sensing data 

The retrieval of DOC from remote sensing data is mostly done by using the optically active 

part of DOC, CDOM, as a regional proxy (Chen et al., 2020; Erlandsson et al., 2012; Jiang et 

al., 2012; Kutser et al., 2016; G. Liu et al., 2021). Although CDOM is more challenging to 

retrieve from satellite data than other optically active substances (e.g., chlorophyll a), 

researchers have been able to establish empirical, semi-empirical, and semi-analytical 

algorithms to estimate CDOM from remote sensing signals and improve the estimation 

accuracy for inland waters (Zhang et al., 2021). Important wavelength regions for CDOM are 

in the visible range (400-700 nm). There are no wavelength bands in the visible spectrum 

uniquely associated with CDOM, but wavelengths in the green and red bands are generally 

important for estimating CDOM (Brezonik et al., 2015; Zhang et al., 2021). However, 

depending on the levels of spectral interference by large quantities of particulate matter in the 

water column, the most effective wavelength region for determining CDOM may vary (Zhu et 

al., 2014). In addition, previous findings from CDOM estimation that use ML indicate that a 

larger number of wavelength bands can further improve CDOM estimations (Ruescas et al., 

2018; Sun et al., 2021).  

While CDOM often correlates well to DOC, there are several processes in inland waters that 

can change the relationship between the optical and chemical properties of DOC (e.g. dilution, 

photodegradation, and flocculation) (Chen et al., 2004; Loiselle et al., 2010). Subsequently, 

studies have shown that in some inland waterbodies, the CDOM/DOC correlations can be weak 

or underly seasonal variations (Hestir et al., 2015; Massicotte et al., 2017; Toming, Kutser, 

Tuvikene, et al., 2016). Hence, assumptions made for CDOM retrieval may not always apply 

for DOC and is associated with high uncertainty (Brezonik et al., 2015; Griffin et al., 2018).  

The advancement of ML algorithms offers new possibilities as the algorithms are able to learn 

the hidden and complex patterns between DOC and remote sensing derived reflectance. 

Therefore, researchers have begun to use ML to directly retrieve DOC from remote sensing 

signals without relying on the relationship of CDOM/DOC. For instance, Liu et al. (2021) used 

a Multilayer Backpropagation Neural Network (MBPNN) model to estimate DOC 

concentrations in the eutrophic Lake Taihu, China. They matched MODIS/Aqua data, 

temperature and wind speed with in-situ measurements from the lake and yielded a mean 

estimation error of 15.14% for the test dataset (D. Liu et al., 2021). Codden et al. (2021) applied 
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ML to predict DOC concentration in a dynamic salt marsh creek. They used ML coupled with 

low- to zero-cost predictors (e.g. local rainfall, point in year) to surmount the problem of having 

to use linear modelling and optical data predictors collected from high-cost, high-maintenance 

in situ spectrophotometer, which is often used as an alternative to expensive discrete sample 

collections of DOC. The ML algorithms were able to modestly improve the accuracy of linear 

methods while at the same time reducing the instrumentation cost by approximately 90%. They 

concluded that although their models were developed for a single site only, ML together with 

low- to zero-cost predictors is a methodology that bears high potential for others trying to 

model DOC dynamics and other analytes in any complex aquatic system (Codden et al., 2021). 

Toming et al. (2020) predicted lake DOC concentration and total lake DOC at global scale 

using only environmental variables and a boosted regression tree algorithm. Their analysis of 

variable importance showed that catchment properties and meteorological and hydrological 

features explained most of the variability of the lake DOC concentration (Toming et al., 2020).  

These studies highlight the potential of ML-based estimations of DOC using satellite data and 

environmental predictors. However, while Liu et al. (2021) and Codden et. al (2021) used ML 

with satellite data and environmental predictors for one specific waterbody only, the model 

developed by Toming et al. (2020) shows global DOC estimates but cannot map spatial 

variability and seasonal variations within lakes. Recently, efforts have been made to use ML 

to retrieve water quality parameters from satellite data on a global scale (Pahlevan et al., 2022; 

Smith et al., 2021). However, to the best of the authors’ knowledge, there is no study that tested 

whether ML algorithms can use satellite and environmental data to predict DOC concentration 

directly and dynamically for larger scale areas that include different inland water bodies, which 

motivated us to address this research gap. For this purpose, a newly developed data set AquaSat 

is used which will be described in more detail in the following chapter. 

3 Data  

3.1 AquaSat 

For in situ DOC measurements coupled with satellite data the dataset AquaSat (Ross et al., 

2019) is taken. AquaSat is a combination of existing public datasets covering the continental 

United States, including the Water Quality Portal (WQP) (Read et al., 2017), LAGOS NE 

(Soranno et al., 2017) and the Landsat archive (Wulder et al., 2016).  
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The samples of the dataset are matched with satellite images from the three most recent Landsat 

missions: Landsat 5 (Thematic Mapper, 1984–2012), Landsat 7 (Enhanced Thematic Mapper+, 

1999–present), and Landsat 8 (Operational Land Imager, 2013–present). The Landsat satellites 

have a 16-day orbit repetition period though overlapping images at high latitudes result in 

shorter revisit periods. Landsat 5 and 7 onboard sensors capture imagery in seven bands, three 

visible wavelengths (blue, green, and red) and four infrared wavelengths (near infrared (NIR), 

short-wave infrared 1 (SWIR1), shortwave infrared 2 (SWIR2), and thermal band). Landsat 8 

includes bands in the same spectral regions as previous sensors with enhanced signal-to-noise 

ratios, and an added ultrablue band. All six bands used in this study (blue, green, red, NIR, 

SWIR1, SWIR2) have a spatial resolution of 30m. 

AquaSat includes more than 600,000 Landsat match-ups of dissolved organic carbon, 

chlorophyll-a, ground-based total suspended sediment, and SDD Secchi disk depth 

measurements matched with atmospherically corrected surface reflectance from the Landsat 

missions within ±1 day of each other, covering the years 1984–2019. For atmospheric 

correction, the United States Geological Survey (USGS) developed a surface reflectance 

product based on the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

for Landsat 5 and 7 (Ju et al., 2012) and the Landsat 8 Surface Reflectance Code (LaSRC) for 

Landsat 8 (Vermote et al., 2016). Each water quality sample in the Aquasat dataset has matched 

reflectance values of Landsat 5,7 or 8 from the blue, green, red, NIR, SWIR1, and SWIR2 

band. According to Ross et al. (2019), AquaSat is the largest set of matchup data ever 

assembled and was developed to specifically meet the lack of a public remote sensing data set 

paired with in situ measurements of water constituents. The data set has already been used in 

previous studies (e.g., Pahlevan et al., 2022; Topp et al., 2021). To the best of the authors’ 

knowledge, it has not yet been used for DOC predictions with ML. 

3.2 ERA5-Land 

To combine satellite data with environmental predictors, data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) Land product was used 

(Muñoz-Sabater et al., 2021). ERA5 is the fifth generation ECMWF atmospheric reanalysis of 

the global climate covering the period from January 1950 to present. ERA5 is produced by the 

Copernicus Climate Change Service (C3S) at the European Centre for Medium-Range Weather 

Forecasts (ECMWF). The ERA5-Land product is a higher resolution version (0.1° x 0.1°, 

native resolution about 9km) of the ECMWF ERA5 climate reanalysis dataset. It has been 
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available since mid-2019 and is therefore one of the most recent products available. The data 

set offers a wide variety of climatic variables. Reanalysis data combine observational inputs 

and models to produce consistent products based on physical principles. (Copernicus Climate 

Change Service, 2019). Starting with a weather prediction model, ERA5 employs the 

Integrated Forecast System cycle 41r2 (Cy41r2), which is coupled with a large number of 

observations (for example, temperature observations, aircraft measurements, and satellite data) 

using data assimilation techniques (Hersbach et al., 2020). To achieve the final analysis as close 

as possible to observations and forecasts, a cost function is minimized. ERA5 has been shown 

to outperform gauge or satellite-based products in terms of reliability and accuracy (Zandler et 

al., 2020). For this thesis, the ERA5-Land monthly averaged data product from 1981 to present 

is used (Muñoz-Sabater, 2019).  

The environmental predictors tested were selected based on a literature review and include the 

average monthly temperature, wind speed, leaf area index (LAI) (high vegetation), average 

LAI (low vegetation), evaporation over inland waters, surface net solar radiation and the 

monthly total precipitation. The following section shortly describes the reasoning behind 

choosing these variables. 

• Solar radiation - surface net solar radiation has been found an important variable for global 

DOC estimations (Toming et al., 2020) 

• Evaporation over inland waters – Anderson & Stedmon (2007) found evaporative 

concentration to be the first-order control on DOC concentration in lakes tested in 

southwest Greenland (Anderson & Stedmon, 2007). 

• LAI – low vegetation, high vegetation – Yang et al (2017) studied riverine systems in the 

US and found that forests and shrubland are positively correlated with DOC concentration 

(Yang et al., 2017) which can be represented by LAI. 

• Total precipitation – although the subsequent effect of rain on DOC can vary considerably 

its relation to DOC variation have been shown in many studies (Jennings et al., 2012; 

Reche & Pace, 2002; Zhou et al., 2016). 

• Wind speed – wind speed has been shown to promote sediment DOC release and DOC 

redistribution (Zhou et al., 2016) and found to contribute to explaining DOC variations in 

a ML model (D. Liu et al., 2021). 

• Temperature – many studies have shown temperature to be one of the main drivers of DOC 

variations (Freeman et al., 2001; Kellerman et al., 2014; D. Liu et al., 2021; Strock et al., 

2016). 
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4 Methodology 

The methodology in this study can be divided into three major parts: data preprocessing, model 

development and model evaluation (Figure 1). 

 

Fig. 1. Schematic workflow. After data preprocessing, the dataset is divided into training and 

test data sets. 10-fold cross-validation is used on the training data set for performance 

evaluation of the model parameters. The model development includes analysing the feature 

importance with Random Forest and finding the best performing ML algorithms with optimized 

hyperparameters. After development, each model predicts the concentration of DOC from the 

independent test data set and permutation feature importance and error metrics are computed 

for the final evaluation (RFR = Random Forest Regression, SVR = Support Vector Regression, 

GPR = Gaussian Process Regression, MPBNN = Multilayer Backpropagation Neural 

Network). 

4.1 Data Preprocessing 

Although AquaSat contains an extensive number of samples, it is a dataset that is compiled 

from multiple sources. In such ‘secondary use’ data, many issues can arise through different 

methods used to report the same common metadata elements (Sprague et al., 2017).  

Ross et al. (2019) have applied several data quality assurance procedures for data integration 

(Ross et al., 2019, Chapter 2.3.1) and joining Landsat data to in-situ match-ups (Ross et al., 
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2019, Chapter 2.3.2). An overview of all quality assurance steps described in Ross et al. (2019) 

is given in the appendix (Table A2). Ross et al (2019) included as much data as possible to 

give future users the opportunity to set their own criteria, resulting in a dataset of purposefully 

lower quality (Ross et al., 2019). Although not all issues can be resolved, we intended to set a 

high-quality standard for the samples, and thus considerable reduction in the amount of in situ 

data was necessary. After extracting all DOC samples (N=42,316), they were matched with 

environmental predictors from the ERA5-Land monthly average data product. The year and 

month in which each sample was taken was matched with the nearest pixel value of the spatially 

and temporally corresponding year and the monthly average of the ERA 5 Land product. DOC 

concentrations lower than zero were removed. Samples with a water type classified as ‘Facility’ 

were removed from the data set as they indicate wastewater treatment facilities, which is not 

part of the purpose of the study. To ensure more robust band reflectance estimates, we only 

kept Landsat matchups, where at least nine water pixels were used to calculate a spatial median 

of reflectance in each band. Any outliers in the spectral response matched with the in situ 

location were investigated. We removed all samples that had saturated pixels from the bands 

(Morfitt et al., 2015). Such outliers in the remote sensing signal can occur e.g., by  waves, sun 

glint, or clouds. We then converted the pixel values to surface reflectance using the Landsat-

specific scale factor. The SWIR2 band was subtracted from the surface reflectance in the blue, 

green, red, NIR, and SWIR1 bands to remove the partial aerosol signal from the surface 

reflectance (Feng et al., 2018). We then joined the metadata provided to the dataset. We 

checked the metadata given for the analytical method and removed those where information 

about the analytical method used was not available or unreliable (e.g. “Historic procedure”). 

For DOC matchups, a ± 3 h time window for estuaries, a same-day overpass for streams, and 

due to the known stability of the optical active component of DOC in lakes, a ± 3 h time window 

for lakes was allowed (Brezonik et al., 2015; Pahlevan et al., 2022). After preprocessing, the 

dataset contains 16,029 samples across the continental United States (Figure 2). Previous 

findings from modelling CDOM with ML suggest that ML approaches can generally make use 

of information in a wide wavelength range (Olmanson et al., 2016; Ruescas et al., 2018). 

Hence, for model development, all six available Landsat bands from the AquaSat dataset were 

used together with the seven environmental predictors retrieved from ERA5 Land. The 

importance of each predictor is then assessed by permutation feature importance (Section 5.2). 
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Fig. 2. Spatial distribution of DOC samples (N=16,029) in the continental United States after 

data filtering. 

The samples were then randomly divided into training (70%) and test datasets (30%). All input 

features were standardized by removing the mean and scaling to unit variance (Codden et al., 

2021). The output variable (i.e., DOC) was logarithmically transformed (base 10) to ensure 

homogeneity of variance (Figure 3) (Campbell, 1995). Transformation to logarithmic space is 

a common technique for data sets containing multiple inland water bodies and a wide range of 

water constituent’s concentrations (Brezonik et al., 2015; Maier et al., 2021; Pahlevan et al., 

2022). The test data was then scaled using the same function that was used to standardize the 

training data, resulting in input consistent with the trained algorithm's expectations.  
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Fig. 3. Frequency distribution of DOC concentration (log10 transformed) of the samples 

(N=16,029). 

4.2 Model development 

Based on the literature review, four popular ML algorithms were selected to include at least 

one algorithm from each ML family described in Section 2.3. The machine learning models 

were implemented in the well-known Python package scikit-learn (Pedregosa et al., 2011). An 

exception is the ANN which core functionality was implemented in Tensorflow (Abadi et al., 

2016). Data processing was done on a workstation with 64GB of RAM. 

4.2.1 Cross-Validation 

The samples are unevenly distributed in terms of time, location, and Landsat sensors (see 

Appendix, Figures A1, A2 and A3). To detect issues with overfitting, 10-fold cross-validation 

was implemented to test if differences in dataset partitioning influence the model performance. 

In 10-fold cross-validation, the training dataset, which has been extracted from the original 

dataset, is split into 10 groups. Each unique group is once used as a test data set, while the 

remaining groups are used for training the model. The trained model will then be evaluated 

against the test dataset and the evaluation scores are recorded. The model is then discarded, 

trained, and evaluated with the next train-test partition. For 10-fold cross-validation the process 

will therefore repeat ten times. In this thesis, the model performance is summarized by taking 

the average and standard deviation of the 10 evaluation score samples. A high standard 
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deviation indicates if the models performance depends on the training partitioning. As 

evaluation score, the commonly used root mean squared error (RMSE) is used (Section 4.3). 

The RMSE from cross-validation of the training set can then also be compared to the RMSE 

retrieved from the test dataset to test the robustness of the models. 

4.2.2 Hyperparameter tuning 

In machine learning models, two types of parameters exist: model parameters, which can be 

initialized and updated through the data learning process, and hyperparameters, which cannot 

be estimated directly from data learning and must be set before training an ML model as they 

define the model architecture. The process of exploring the range of possibilities and finding 

the optimal hyperparameter configuration is called hyperparameter tuning (Yang & Shami, 

2020). A commonly used method is Grid Search, which searches the optimal configuration of 

hyperparameters in a fixed domain of hyperparameters (Bergstra et al., 2011). In this thesis, 

hyperparameter tuning was done via random search (Bergstra & Bengio, 2012). This method 

is similar to grid search, but instead of searching all possible parameters specified in the fixed 

domain, it randomly selects hyperparameter combinations and outputs the best configuration 

based on k-fold cross-validation. Compared to grid search, random search can find better 

models by effectively searching a larger, less promising configuration space (Bergstra & 

Bengio, 2012). This is especially useful in this thesis, as different hyperparameters may be 

important for the two dataset configurations (one without and one with environmental 

variables). In this thesis, 5-fold cross-validation was adopted with 60 trials. Around 60 trials 

have been shown to find better models than grid search in a larger less promising space 

(Bergstra & Bengio, 2012). 5-fold cross-validation was used as a compromise between robust 

estimates and processing time. The hyperparameter values found by random search for each of 

the ML algorithms are listed in the appendix (Table A1). 

4.2.3 Random Forest Regression 

Random Forest Regression (RFR) is an ensemble learning method that constructs many 

independent decision trees. Decision trees are independent because they work with random 

subsets of features. Many of these random trees together form a ‘Random Forest’. The average 

of all outputs of the independent decision trees is then taken as the model prediction result 

(Breiman, 2001). In this way, overfitting is avoided and the output is less sensitive to outliers 

and noise, which increases the generalization ability of Random Forest when applied to new 

data. Compared to other ML methods, RFR is easy to understand but still strong in its 
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performance and therefore commonly applied in water quality research (e.g., Hafeez et al., 

2019; Ruescas et al., 2018; Sun et al., 2021). RFR can be tuned by many hyperparameters. 

Common parameters tuned are the number of decision trees in the ‘forest’, the maximum depth 

of the decision trees and the numbers of features to consider when looking for the best split. 

Note that when hyperparameters do not appear in Table A2 in the appendix, the default value 

of the Python package scikit-learn implementation is used. 

4.2.4 Support Vector Regression 

In traditional regression models, the loss is calculated from the difference between the model 

output 𝑓(𝑥) and the ground-truth 𝑦. In Support Vector Regression (SVR), however, a loss only 

incurs if the difference between 𝑓(𝑥) and 𝑦 exceeds a set error margin. This error margin creates 

something similar to a buffer region that surrounds 𝑓(𝑥). Training samples that may fall into 

this region are considered correctly predicted (Zhou, 2021c). In SVR, these minor inaccuracies 

are mostly accepted, as the main goal is to find a hyperplane in multidimensional feature space 

that separates the data with a maximum margin. The maximum-margin hyperplane may not 

always perform best on the training dataset but has the strongest generalization ability when 

applied to new data (Zhou, 2021c). To map samples from the original feature space to a higher 

dimensional space, SVR requires a kernel function that takes vectors as inputs in the original 

space and returns the dot product of the vectors in the feature space (2.3.3). Commonly used 

kernel methods include polynomial, linear, and radial basis functions. SVR has many 

hyperparameters to be tuned. Important hyperparameters include the C regularization 

parameter, which controls overfitting, the e-insensitive zone, which sets the error margin where 

no loss incurs, and the kernel, which defines the kernel type used in the algorithm. Compared 

to other ML algorithms, the performance of SVR is very dependent on the selection of these 

parameters (Mountrakis et al., 2011). Besides RFR, SVR can be considered a standard 

approach in ML algorithms and is often among the best performing algorithms in water quality 

applications (Guan et al., 2020; Kim et al., 2014; Tenjo et al., 2021). 

4.2.5 Gaussian Process Regression 

The basic idea in Gaussian Process Regression (GPR) is to give a prior probability to all 

functions that could explain the relationship between the input variables and the target variable, 

where higher probabilities are given to functions that are more likely to explain the relationship 

of the input variables and the target variable, for instance because they are smoother than other 

functions (Rasmussen & Williams, 2006). Because it is impossible to compute an infinite set 
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of possible functions for the relationship of 𝑥 and 𝑦, a Gaussian process is used. A Gaussian 

process is a generalization of the Gaussian probability distribution, and instead of describing 

the probability distribution for random variables, it governs the properties of functions with a 

stochastic process. It can loosely be thought of as a very long vector where each entry in the 

vector specifies the function value 𝑓(𝑥) at a particular input 𝑥 (Rasmussen & Williams, 2006). 

GPR is an iterative process in which the probability of a function is estimated under the 

condition that a new point is observed. Therefore, the function defined by the Gaussian process 

is constantly adjusting as new observed points are added. Similarly to SVR, GPR uses the 

kernel trick to allow this process to work in a multidimensional space (2.3.3). As suggested by 

the findings of Zare Farjoudi & Alizadeh (2021), we used the rational quadratic kernel function 

for the GPR implementation (Zare Farjoudi & Alizadeh, 2021) including a white kernel for 

noise level estimation. Hyperparameter tuning through random search is not required for GPR 

as its hyperparameter are optimized by maximizing the log-marginal-likelihood in the training 

set (see Rasmussen & Williams, 2006). GPR has become a common ML algorithm used in 

water quality parameter predictions due to its excellent performance (Blix et al., 2018; Ruescas 

et al., 2018; Sun et al., 2021). 

4.2.6 Multilayer Backpropagation Neural Network 

The MBPNN used in this thesis comprises an input layer, multiple hidden layers, and an output 

layer. The input layer receives the external input, the hidden layers process the signals, and the 

output layer outputs the processed signals (Zhou, 2021b). The hidden layers consist of a large 

number of neurons which were optimized with the Adam optimizer (Kingma & Ba, 2014). 

Each neuron in each layer is connected to all neurons in the preceding and subsequent layers. 

Training a neural network requires selecting a structure (number of hidden layers and nodes 

per layer), properly initialization of the weights, shape of the nonlinearity, learning rate, and 

regularization parameters to prevent overfitting. To find these hyperparameters for the 

MBPNN, a wrapper is used to allow randomized search for hyperparameter tuning in the same 

way as it is done for the other ML algorithms. The implementation of the MBPNN in this thesis 

mainly follows the example by Géron (2019) in Chapter 10 (Géron, 2019). To prevent 

overfitting and reduce the amount of training time, early stopping is implemented, which 

interrupt training early when there is no more progress. Early stopping is defined by the 

patience argument and set to 10 (Géron, 2019). MPNN have shown promising results in water 

quality research (Chen & Hu, 2017; Sun et al., 2011) and have recently been applied for the 

retrieval of DOC (D. Liu et al., 2021). 
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4.3 Model evaluation 

Guidance on commonly used error metrics (Seegers et al., 2018) and new error metrics have 

been proposed (Morley et al., 2018). In this thesis, a straightforward but robust combination of 

metrics has been chosen. The root mean squared error (RMSE, Eq. 2) is the square root of the 

average of the squared difference between the target value and the value predicted by the 

regression model. It can be thought of as the standard deviation of the residuals, which indicates 

how concentrated the data is around the line of best fit. The mean absolute error (MAE, Eq. 3) 

is simply the average difference between the measured and the estimated value. The system 

error (Bias, Eq. 4) is a description of the systematic direction of the error, as either 

overestimating or underestimating the prediction on average. The coefficient of determination 

(R2, Eq. 5) indicates how much of the variation in the estimated values is explained by the 

measured values in the regression models. 
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In equations 2-5, n is the number of data pairs, the subscript i denotes individual data points, 

and x and y represent the measured and estimated values.  

4.4 Permutation feature importance 

For estimating the feature importance of the models, the inspection technique permutation 

feature importance was used. It is defined to be the decrease in a model score when a single 

feature value is randomly shuffled (Breiman, 2001). The drop in the model score then indicates 

how much the model depends on each of the features. Compared to Random Forest feature 
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importance, permutation feature importance can be used on any machine learning model. 

Another advantage is that it can be applied to the held-out test dataset and therefore highlight 

which features contribute the most to the generalization power of the model. It does, however, 

not reflect the intrinsic predictive value of a feature by itself, but how important this feature is 

for a particular model (Pedregosa et al., 2011). In this thesis, the feature importance score was 

based on the average increase in mean squared error (log10 transformed) when a single feature 

has been randomly shuffled 30 times. Multiple tests in our study and experience from other 

studies show that more than 30 realizations do not reduce much of the variance of the estimates 

(Ruescas et al., 2018). 

5 Results 

5.1 ML algorithm performance 

Table 1 provides an overview of the metrics for all four ML methods trained by the six Landsat 

bands only and trained with the six Landsat bands together with the seven environmental 

variables. For better interpretability, predicted and measured values were transformed back 

from the logarithmic scale before calculating the evaluation metrics RMSE, MAE and bias. 

The unit for these metrics is therefore DOC [mg/L]. The cross-validation score (CV-score) is 

based on the training set and shows the log10 transformed RMSE with standard deviation after 

10 folds (Table 2). 

Overall, the ML algorithms predicted DOC with moderate to high uncertainties. Including the 

environmental predictors led to substantial performance improvements for all ML algorithms, 

with GPR and MBPNN showing the highest improvements and best overall scores. MBPNN 

has a slightly lower RMSE (4.02 mg/L) and Bias (-0.45) than GPR (RMSE 4.08 mg/L, Bias -

0.69), but a higher MAE (MBPNN: 2.03 mg/L, GPR: 1.9 mg/L) and a lower R2 score (MBPNN: 

0.57, GPR: 0.61). Although the metric scores between both algorithms are without considerable 

differences, the CV-score of MBPNN (0.25 ± 0.008) is much higher than that of GPR (0.19 ± 

0.008). 
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Table 1: Performance evaluation. For better interpretability, predicted and measured values 

were transformed back from the logarithmic scale before calculating RMSE, MAE and Bias. 

RMSE, MAE and Bias can be interpreted as DOC [mg/L]. (RFR = Random Forest Regression, 

SVR = Support Vector Regression, GPR = Gaussian Process Regression, MPBNN = 

Multilayer Backpropagation Neural Network).  

 Landsat Bands + Environmental variables 

 RMSE MAE Bias R2 RMSE MAE Bias R2 

RFR 5.154 2.556 -1.1 0.366 4.271 1.984 -0.877 0.592 

GPR 5.169 2.539 -1.092 0.364 4.078 1.902 -0.686 0.611 

MPBNN 5.355 2.72 -1.508 0.273 4.048 2.029 -0.297 0.542 

SVR 5.319 2.701 -1.177 0.258 4.708 2.280 -0.737 0.505 
 

Table 2: RMSE of the test data set and 10-fold cross validation scores (average RMSE with 

standard deviation) of the training data set for each algorithm. Note that scores are based on 

logarithmic 10 transformed DOC values (RFR = Random Forest Regression, SVR = Support 

Vector Regression, GPR = Gaussian Process Regression, MPBNN = Multilayer 

Backpropagation Neural Network). 

 Test RMSE Train RMSE (CV-score) 

RFR 0.196 0.195 ± 0.01 

GPR 0.191 0.192 ± 0.008 

MBPNN 0.207 0.248 ± 0.01 

SVR 0.215 0.215 ± 0.007 

 

The performance of the ML algorithms is further illustrated in scatterplots plots (Figure 4). The 

reported slopes are generally closer to unity when environmental variables are included. 

Although a negative bias in all algorithms indicates an overall underestimation of DOC, the 

slopes compared to unity suggest a degraded performance of all ML algorithms at the two tails 

of data distribution, overestimating small DOC concentrations and underestimating larger 

DOC concentrations. Of all ML algorithms, the slopes of GPR and MBPNN with included 

environmental variables are closest to the unity line.  
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Figure 4: Scatter plots showing the performance of the four ML algorithms used in this study. 

The x axis shows the measured DOC from the independent test dataset (N=4809) and the y 

axis contains the predicted values for each of the measurements with the different ML models. 

Contour lines are included to better illustrate the data distributions (RFR = Random Forest 

Regression, SVR = Support Vector Regression, GPR = Gaussian Process Regression, 

MBPNN= Multilayer Backpropagation Neural Network). 

The distribution of residuals further illustrates model improvements when using environmental 

variables (Figure 5). The interquartile range and whiskers are reduced considerably for all 

algorithms, most notably in MBPNN, RFR, and GPR. However, the range of outliers seems 

largely unchanged, indicating that including environmental predictors did not have a 

substantial impact when predicting extreme DOC values.  
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Figure 5: Log10 transformed residual distribution for each algorithm using only Landsat 

bands (blue) and using Landsat bands with environmental variables (green) as predictors 

(RFR = Random Forest Regression, SVR = Support Vector Regression, GPR = Gaussian 

Process Regression, MPBNN = Multilayer Backpropagation Neural Network). 

5.2 Variable importance 

The analysis of feature importance is shown in Figure 6. Overall, removing the green band and 

air temperature leads to the highest MSE increase on average, suggesting that the two variables 

are most important for the models, followed by the red band and LAI - high vegetation. The 

general increase in MSE in RFR is low compared to SVR and MBPNN. RFR is the only ML 

approach where the increase in MSE for air temperature is higher than in the green band and 

the MSE increase for LAI - high vegetation - is higher than the red band. This indicates that 

the performance of RFR tends to rely more on environmental predictors compared to the other 

algorithms, although according to Table 1, it is not improving more than the other algorithms 

when environmental predictors are added. MBPNN and SVR strongly depend on the green 

band as large increases in MSE are observed when it is removed. Although GPR has a similar 

distribution of variable importance compared to SVR and MBPNN, the average MSE increase 

appears more balanced.  
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Figure 6: Permutation feature importance for each ML approach. Feature importance is 

quantified by the average increase in mean squared error (log10 transformed) when a single 

feature has been randomly shuffled 30 times. Note that the scores do not reflect the intrinsic 

predictive value of a feature by itself, but how important this feature is for a particular model 

(RFR = Random Forest Regression, SVR = Support Vector Regression, GPR = Gaussian 

Process Regression, MPBNN = Multilayer back-propagation neural network). 

5.3 Visual assessments 

Based on the model evaluation, the GPR approach with environmental predictors included was 

the best model for predicting DOC. For estimating DOC to an entire waterbody Lake 

Okeechobee in Florida (US) was chosen (Figure ?). Lake Okeechobee is the eights largest 

freshwater lake in the US and has been subject to many studies as it plays an important role for 

the everglades agricultural area and has experienced many cyanobacteria outbreaks in the past.  
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Fig. 7: Lake Okeeochobee and its main inflows and outflows (simplified). The smaller red 

arrows represent canals. Adopted from Havens et. al (1996) and Siders et. al (2020) (Havens 

et al., 1996; Siders & Havens, 2020). 

The GPR model was applied to map the DOC concentration for Lake Okeechobee for each 

month of the year 2019 (Figure 8). DOC concentrations were mapped using Landsat 8 or 

Landsat 7 images. The images were visually checked for cloud cover and downloaded using 

the USGS earth explorer. Landsat 8 images with no or few clouds were generally preferred 

over Landsat 7 images which contain white stripes due to a failure of the Scan Line Corrector 

after 31 May 2003. As the ERA-5 Land product is provided in a reduced Gaussian grid with a 

quasi-uniform spacing over the globe, the layers containing the environmental information 

were resampled to universal transfer Mercator (UTM) and spatial resolution (30m) of the 

Landsat products using bilinear interpolation. 

The satellite derived monthly DOC concentration in Lake Okeechobee in 2019 reveals distinct 

spatial and temporal patterns. High concentrations of DOC appear in the north-eastern part of 

the lake during the month from June to September. A high DOC concentration event was 

observed in June. Lower concentrations of DOC are observed from October to March. An 
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exception is the month of December, where higher concentrations of DOC were predicted in 

the south-eastern part of the lake. 

 

Fig. 8. DOC prediction for every month in 2019 on Lake Okeechobee, Florida based on 

Landsat 8 or Landsat 7 imagery using GPR with all environmental predictors. White spaces 

are cloud interferences. The white stripes are from failure of the Scan Line Corrector from 

Landsat 7 after 31 May 2003. Not all of the water body shown in Figure 7 is mapped due to 

low water occurrence. 
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6 Discussion 

6.1 ML algorithm performance 

The results imply the strongest performance of GPR, including environmental variables. This 

result is in line with several water quality studies in which GPR was found to outperform other 

ML approaches (Blix et al., 2018; Ruescas et al., 2018; Sun et al., 2021). Based on the model 

evaluation, the developed MBPNN predicted DOC concentration on the test dataset with nearly 

the same precision as GPR. However, cross-validation analysis showed that MBPNN was more 

unstable, suggesting its generalization performance varies more, according to the composition 

of the data it is applied to. These observations highlight the importance of cross-validation 

analysis in ML algorithm development and evaluation of ML algorithms.  

The RFR scores showed slightly less accurate predictions on the test data set compared to GPR 

and MBPNN which might indicate a limitation of the traditional RFR method compared to the 

more advanced ML approaches when the prediction task is very difficult. Applying the 

developed RFR model to Lake Okeechobee showed that the model predicts DOC 

concentrations with a narrow range of values compared to the other approaches (Figure 9). 

Overall, RFR may only have moderate prediction errors, but the satellite-derived DOC 

concentrations suggest that it merely predicts the mean. Furthermore, the RFR prediction 

shows unnatural looking boundaries in the mapped DOC concentrations across the lake. This 

can be attributed to the influence of environmental predictors, which have a very coarse spatial 

resolution compared to the Landsat bands. As indicated by the permutation feature importance 

analysis, environmental predictors seem more important in RFR than in the other three models. 

Because of the coarse spatial resolution of the environmental predictors, their per-pixel 

variability is much lower, resulting in broad-scale structures and patterns with distinct 

boundaries.  
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Fig 9. DOC prediction of the four ML algorithms tested for Lake Okeechobee on June 25th, 

2019. (RFR = Random Forest Regression, SVR = Support Vector Regression, GPR = Gaussian 

Process Regression, MBPNN= Multilayer back-propagation neural network). 

Among the four ML approaches tested, SVR had the poorest performance. One limitation of 

SVR is that it requires many hyperparameters to be tuned and its performance is very dependent 

on the selection of these parameters (4.2.3). In addition, the processing time SVR requires 

increases rapidly with large amounts of training data. Therefore, a randomized search for SVR 

resulted in long processing times that posed some limitations on searching the hyperparameter 

space. More advanced hyperparameter search methods based on Bayesian optimization could 

reduce such problems (Bergstra et al., 2013), but overall it highlights the limitations of SVR 

for such application types. 

All four ML approaches tested predict very low or very high DOC values with larger errors. 

This is a common issue in water quality research, as there are usually fewer samples available 

for more extreme values. Here, further sampling efforts are necessary that focus specifically 

on waterbodies with very low or very high DOC concentrations, which may alleviate the 

degraded performance of the ML methods at tails of DOC concentration distributions. On the 

other hand, the Landsat data and environmental predictors might simply not be sensitive 

enough to capture the extreme DOC values, which could be investigated in further studies. 

While cross validation analysis indicates that a robust overall performance of the ML 

algorithms, systematic bias might still exist on a regional level or for sites with specific 

characteristics. Figure 10 shows the logarithmic error of the GPR estimates compared to the 

measurements in the held-out test dataset based on the three different water types in which 

samples were taken. The plot shows that the interquartile error range of lakes expands further 

than estuary and streams. It suggests that the algorithm estimated DOC concentrations with 

larger error for lakes than for the other two water types. One reason could be the difference in 

the dynamics between the inland water types. While water flows in streams and estuaries are 
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constantly changing water constituents, water parameters in lakes have shown to be much more 

stable, which is also why a larger overpass time window was allowed for lakes (see section 

4.1). The ML algorithm might not be able to capture these differences in dynamics, especially 

since there is an overrepresentation of samples for streams in the dataset (see appendix, Figure 

A1). 

After plotting the spatial distribution of errors from the GPR model for the measurements in 

the held-out test dataset, no distinct spatial pattern could be observed (see appendix, Figure 

A4). It should however be considered that the range of samples spans over many years. It is 

therefore unlikely to find spatial patterns as the conditions might be considerably different even 

though the location of samples is in close proximity. On the other hand, if a specific time 

window (e.g. summer month in one year) is considered, the number of samples is too low to 

analyse if spatial patterns exist.  

While we argue that the focus of this study is on large scale estimations of DOC, the 

heterogenous nature of the sample dataset limits the possibilities of more in depth analysis and 

consequently a better picture of how the model performs under specific conditions. It is yet 

another limitation that underlines the need of systematic and standardized sample efforts for 

inland waters. 

 

Fig. 10. Logarithmic error of the GPR estimates compared to the measurements in the hold out 

test dataset (N=4809) based on the three different water types. 
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An important aspect of ML algorithms in a practical sense is the processing times taken for 

training and applying the models (Table 3). The four ML algorithms differ considerably in 

terms of training and prediction time. The GPR model is very fast to train compared to the 

other methods, as hyperparameter tuning through random search is not required for GPR 

(4.2.5). With 60 iterations and 5-fold cross-validation, random search takes by far the most 

time in the other ML approaches, especially for the MBPNN. On the other hand, the GPR 

method takes longer to predict DOC values from satellite imagery. As with SVR, the 

computation complexity of GPR is O(n3), where n is the number of datapoints in the training 

set. However, unlike SVR that is a sparse solution, GPR is a dense solution that always uses 

all training points for prediction. As the Landsat image of Lake Okeechobee consist of nearly 

1.5 Million pixels, it is likely that the difference of the dense and sparse solution reflects in the 

prediction time. With the trained GPR model, a workstation with 64GB RAM was close to its 

limits when values were predicted for the entire image of Lake Okeechobee. Hence, there may 

be practical issues when GPR is applied using machines with lower computational power, 

especially considering that predictions are usually done many times whereas the algorithm 

training only needs to be done once. 

Table 3: Measured time (minutes) for training the algorithm with the US wide training dataset 

and measured time for predicting DOC concentration for the satellite image of Lake 

Okeechobee captured on June 25, 2019 (RFR = Random Forest Regression, SVR = Support 

Vector Regression, GPR = Gaussian Process Regression, MPBNN = Multilayer 

Backpropagation Neural Network). 

 Training (min) Prediction for Lake Okeechobee in June, 25th (min) 

RFR 245.2 2.77 

GPR 4.57 23.2 

MBPNN 558.72 0.57 

SVR 308.75 9.95 

 

Today, many different ML algorithms exist. In this thesis, we tested four popular ML 

approaches identified through several review papers, but other ML methods could have been 

of interest and possibly outperform GPR. Other advanced ML approaches such as 

Convolutional Neural Networks (Pu et al., 2019) or Mixture Density Networks (Pahlevan et 

al., 2022) have shown promising potential to retrieve water quality parameters from satellite 

imagery of inland waters. In addition, there usually also exist a large number of algorithmic 

modifications for each algorithm that make them suitable for specific settings. A time-

consuming in-depth modification process for each of the ML approaches was not possible. We 

argue that the random search approach that is implemented here is likely to find a close to 
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optimal solution. However, the modification possibilities that each ML approach provides may 

not have been fully exploited and gaps in the optimization process of hyperparameters can 

exist. 

6.2 Variable importance 

Permutation feature importance analysis showed that the green band is the most important 

predictor of the six Landsat bands, followed by the red band and the blue band. This result is 

expected to a certain degree as wavelengths in the visible range and especially the green and 

red bands are commonly used to explain variations in water quality parameters, including the 

DOC related CDOM (Brezonik et al., 2015).  

As indicated by permutation feature importance analysis, environmental predictors were not 

equally important for the models. Of all environmental predictors, the monthly average air 

temperature led to the highest increase in MSE for all models, indicating that it is the most 

important environmental predictor. This result is consistent with other studies that identified 

temperature as one of the main drivers of DOC concentrations in inland waters (Freeman et al., 

2001; Kellerman et al., 2014; D. Liu et al., 2021; Strock et al., 2016). Higher average increases 

in MSE were also observed for LAI – high vegetation, which is an indicator of vegetation cover 

in the surrounding catchment. This result is in agreement with a previous US wide study, that 

found that forests and shrubland are positively correlated with DOC concentration in riverine 

systems (Yang et al., 2017). However, it should be considered that the way the information on 

LAI is provided for the ML approaches in this thesis does not represent the real-world 

conditions accurately, as it is based on a coarse resolution grid. Integrating the individual 

catchment of each waterbody could substantially change the importance evaluation of LAI (and 

related environmental predictors), but individual catchment properties are difficult to consider 

when the dataset consists of hundreds of waterbodies. This challenge could be addressed in a 

future study. 

Surprisingly, total precipitation and average wind speed do not have large impacts on the model 

performance, which contradicts earlier findings (Jennings et al., 2012; Reche & Pace, 2002; 

Zhou et al., 2016). One reason might be that the low temporal and spatial resolution of 

environmental predictors used in this study is not capable of capturing the highly dynamic 

processes of precipitation and wind speed. For example, the time periods between a rainfall 

event and its subsequent effect on DOC concentrations in inland waters can vary considerably 

and depend on many factors, such as soil organic carbon of the soil, vegetation, and 
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hydrological conditions in the basin (Blaen et al., 2017; Wang et al., 2019). Changes in wind 

speed  are are also highly dynamic. Thus, making use of information on wind speed and rainfall 

may require higher resolution monitoring (Jennings et al., 2012), implying that the ERA5 Land 

product based on daily averages could be more suitable for these variables. In addition, wind 

induced circulation and sediment distribution might be so important for streams as those are 

usually shielded from the wind. 

LAI – low vegetation, surface net solar radiation and evaporation over inland water were not 

shown to have a large impact on the performance of the model. However, running the models 

without these three predictors still results in noticeable drops in RMSE (Table 4). Despite their 

seemingly marginal role in predicting DOC, the ML models seem to still gain knowledge from 

them. DOC variations have been related to many environmental drivers that may produce a 

variety of effects on DOC release that can even work in opposition to each other (Pagano et 

al., 2014) and vary significantly according to geographic region (Cool et al., 2014). For 

modelling such complex interactions in different environments, the ML approaches still seem 

to require as much information as possible, making use of the enhanced information due to 

interaction of multiple variables. This implies that using more information could still improve 

the model’s performance. The ERA5-Land product offers many more environmental variables 

than those that were selected in this thesis. To reduce the complexity of the models, we selected 

environmental predictors which were found to be linked to DOC variations in previous studies 

(see section 3.2). However, other variables from the ERA5-Land product might still have 

improved the models even though they might not be directly associated to DOC variations.  

Considering the low spatial and temporal resolution of environmental predictors in addition 

makes it difficult to draw final conclusions. There is still much that remains unknown about 

the relationships of external drivers and DOC concentration in inland waters at different 

spatiotemporal scales. However, the considerable improvements observed when including 

environmental predictors in the models underline the important role of environmental processes 

in modelling DOC variations in inland waters over larger scales.  
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Table 4: RMSE scores for ML algorithms using Landsat bands with air temperature and LAI- 

high vegetation as predictors and Landsat Bands with all available environmental predictors 

included (RFR = Random Forest Regression, SVR = Support Vector Regression, GPR = 

Gaussian Process Regression, MPBNN = Multilayer Backpropagation Neural Network). 

  
RMSE of the Landsat bands + air 

temperature and LAI - high vegetation 

RMSE of Landsat bands + all 

environmental predictors 

RFR  4.614 4.271 

GPR  4.642 4.078 

SVR  4.981 4.708 

MBPNN  4.865 4.048 

 

6.3 Visual assessment 

Mapping the monthly DOC concentrations in Lake Okeechobee showed some distinct spatial 

patterns. For example, the monthly images show higher DOC in the north-eastern part of the 

lake from June to September. This pattern could potentially be linked to the increased 

cyanobacteria blooms that Lake Okeechobee has experienced lately from early May to 

September (Metcalf et al., 2018) as the findings of earlier studies suggest that increased DOC 

concentrations are linked to and partially explained by chlorophyll-a concentration (D. Liu et 

al., 2021; Ye et al., 2011). Furthermore, the high concentrations of DOC observed in June was 

in agreement with Pahlevan et al. (2020) who captured cyanobacteria blooms in Lake 

Okeechobee on the 5th of June 2019 using a mixture density model (Pahlevan et al., 2020, Fig. 

8). The spatial pattern of DOC concentrations from June and August also suggests large input 

of DOC from the Kissime River where water with high levels of DOC enter the lake from a 

south-east direction which then distributes in the north and east part of the lake.  

These observations indicate that spatial patterns of DOC concentration mapped by the GPR 

model in Lake Okeechobee are generally reasonable. However, since there are only very few 

studies that have mapped DOC concentrations for inland waters, a direct comparison of DOC 

estimates was not possible and thus uncertainties regarding the accuracy of mapped DOC 

remain. In addition, only a few images per month where available as Landsat sensors only have 

a revisit time of 16 days. The more recently launched Sentinel 2 satellites do not only have 

higher spatial and spectral resolution than Landsat 7 or 8 - one of their main advantages lies in 

the short revisiting times of only 5 days due to two sensors (Sentinel 2A, Sentinel 2B) in the 

orbit. Because of higher spatial, temporal, and spectral resolution, Sentinel 2 offers great 

potential in inland water remote sensing (Toming, Kutser, Laas, et al., 2016). However, images 

are only available from 2017 which would make the vast majority of the AquaSat dataset 
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unusable (AquaSat covers the period 1985 to 2019). If regular updates for the AquaSat dataset 

are foreseen in the future, the combination of Sentinel 2 and Landsat 8 will allow water quality 

mapping in a much finer spatio-temporal scale and give more robust monthly estimates (e.g., 

Chen et al., 2020). 

A unique feature of GPR is that associated confidence intervals can be derived along with the 

estimations. Confidence intervals are expressed as standard deviation that accompany the mean 

estimation. They can be interpreted as reliability estimates and mapped for all mean predictions 

of the model (Verrelst et al., 2012). Figure 11 shows the standard deviations for each pixel of 

Lake Okeechobee on June 25th, 2019. The standard deviations clearly increase towards the 

shoreline of the lake. The increased uncertainties are most likely due to land adjacency effects, 

where scattering in the atmosphere contaminates water pixels close to the shoreline with 

radiation from the surrounding land (Section 2.1). Since Lake Okeechobee is a large lake with 

a large area of pure open water, the reduced reliability of DOC estimates is limited to the 

shoreline area. The proportion of uncertainties would, however, increase when inland waters 

are narrowly confined within land boundaries. More inland water bodies with varying 

morphometric characteristics could be tested in a future study to gain more insight into how 

land adjacency effects influence the uncertainty in DOC predictions. In the central part of the 

lake a random pattern can be observed which is likely an effect of atmospheric interference. 
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Fig. 11. GPR standard deviations of the DOC concentration estimates (left) and the mean DOC 

concentration prediction (right) for Lake Okeechobee on June 25th, 2019. 

This problem is further illustrated in Figure 12. It shows estimated standard deviations from 

the GPR model in an area with cloud interference from the image taken on September 29th, 

2019. GPR uncertainty estimates are generally higher around the outlines of clouds indicating 

that, although clouds are masked, the area surrounding the clouds is still affected by 

atmospheric effects and thus more difficult to model. Additionally, cloud shadows seem to 

influence the predictions, as their shapes are distinguishable in the predictions. Uncertainties 

related to atmospheric correction are one of the key challenges of water quality mapping 

(Section 2.1). Atmospheric correction for reflectance values in the AquaSat dataset is based on 

the standardized surface reflectance product developed by USGS. Although recent work found 

that the LaSRC model used for atmospheric correction for Landsat 8 products performs well 

over the Amazon River (Kuhn et al., 2019), the correction algorithms are still developed for 

terrestrial remote sensing. There is still big potential in optimizing atmospheric correction for 

inland waters. It was recently shown that different atmospheric processors can have 

considerable influence on the prediction outcome of water quality mapping (Pahlevan et al., 

2021) or even that ML approaches can achieve better predictions without atmospheric 

correction, as information may be lost during the atmospheric correction progress (Medina-
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Lopez, 2020). Evaluating further possibilities and estimating uncertainties in atmospheric 

correction processes could give important insights into how they affect satellite-derived DOC 

estimates.  

 

Fig. 12. GPR standard deviations of DOC concentration estimates (left) and the mean DOC 

concentration prediction (right) with cloud interference in the north-eastern part of Lake 

Okeechobee on 29th September, 2019. 

6.4 Sampling 

An important limitation in this project comes from the in-situ data. As described in Section 3.1, 

AquaSat is a combination of existing public datasets and thus the techniques, methods, and 

interpretations of DOC measurements may vary considerably. We have implemented several 

additional quality assurance steps in which the dataset was reduced notably with the intention 

of maintaining a high-quality standard for the remaining data (Section 4.1). Despite this, 

inconsistencies in the sampling technique, the instrumentation, and their corresponding 

calibration were not preventable. The extent to which such differences are reflected in the 

algorithm development and validation remains unclear. We argue that due to the large number 

of samples used in this thesis and the additional quality assurance steps deployed, minor 
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differences in some of the sampling methods will not have a significant effect on the overall 

model development and evaluation. However, the limitation underlines the potential value 

coordinated and standardized in situ data collection methods could have.  

Another problem with heterogeneous datasets is the uneven distribution of features, which also 

exist in this dataset (see Appendix, Figure A1, A2 and A3). When the dataset is split randomly, 

there is an increased risk of introducing a bias in the training or test dataset. We argue that 

because the 10-fold cross-validation score does not differ substantially from the test score in 

all algorithms, except the MBPNN (Table 2), the data partitioning does not have a significant 

influence on the models' performance and a random split is reasonable. 

Another limitation regards the temporal matching of in situ data and satellite imagery. The 

optimal threshold for temporal filtering is a trade-off between the accuracy of the model and 

its generalization capability. The high number of samples allowed us to set conservative 

temporal match-up limits (Section 3.1), yet any time that passes between the time of when the 

sample was taken and the satellite image was captured is a source of uncertainty. Also here, 

coordination and standardization efforts, where samples are for instance taken with 

consideration of satellite overpass times and clear weather conditions, bear great potential 

towards more robust satellite-derived water quality products. Lastly, although the dataset is not 

limited to a certain type of water body, all samples are located in the continental US. The 

models may estimate DOC reasonably well for areas in similar settings but may struggle in 

places that are totally different in terms of their environmental conditions. Such issues could 

be addressed with a larger international sample dataset. 

6.5 Broader implications 

This thesis presents the first attempt to predict DOC in inland waters over a large-scale area 

with remote sensing data. The results point towards promising potentials as well as important 

limitations for large-scale retrieval of DOC from inland waters. They demonstrate the 

predictive strength of advanced ML approaches faced with a complex learning task, such as 

GPR and MBPNN while at the same time highlighting limitations of the traditional RFR and 

SVR faced with high-dimensional data. A limitation that applied to all ML algorithms was the 

high prediction errors for very low and very high DOC values. Here, further sampling and 

research efforts are necessary that focus specifically on waterbodies with very low or very high 

DOC concentrations. Lastly, resource and time limitations made it impossible to cover all 

promising ML approaches and algorithm modifications that exist today within the scope of this 
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thesis. Other ML methods could have been of interest and possibly outperform the ML 

approaches tested.  

Although there were limitations in terms of spatial and temporal resolutions, including 

environmental variables from the newly published ERA5 Land product resulted in considerable 

improvements in all ML approaches. This further highlights the potential of water quality 

estimations when data is assimilated within ecological and hydrodynamic models. This applies 

especially to DOC, which is driven by complex interactions between multiple environmental 

processes. Integrating more recently launched sensors like Sentinel 2 as well as environmental 

predictors at higher temporal and spatial resolution, such as the ERA5-Land daily average 

product, could further enhance the robustness of DOC inland water products on larger scales. 

As confirmed in previous findings, atmospheric correction presents a major challenge in inland 

water remote sensing. The results of the GPR uncertainty estimates in this thesis underline the 

issues of land adjacency effects and cloud interference. Promising approaches for correction of 

atmosphere and land adjacency effects exist (e.g., Kiselev et al., 2015; Sterckx et al., 2015), 

and comprehensive assessments of existing atmospheric correction processors have recently 

been carried out with uncertainty estimates for other water quality parameters (Pahlevan et al., 

2021). Further investigations could apply and test different atmospheric correction processors 

for DOC. 

Open-source projects can accelerate scientific discovery immensely, as data is accessible to all 

researchers without any further restrictions (Bukata, 2013). Without funding that would allow 

a field sampling campaign or access to commercial data, this thesis relied entirely on open 

access products, most importantly, the AquaSat dataset. Thereby, this thesis demonstrates how 

openly available data of in situ water quality measurements can be turned into scientific 

knowledge. At the same time, it highlights limitations that often occur in such data. Due to the 

heterogeneous nature of combined data sets from many different sources, robust algorithm 

development was challenged by a lack of standardized collection and measurement methods, 

unevenly distributed features, synchronization with satellite overpass times, and limitation to a 

specific geographic area.  

These challenges result in notable uncertainties that remain in the estimation of DOC in our 

model. Locally tuned ML models should usually be able to outperform our large-scale model 

as the prediction task is less complex due to less variations across smaller spatial scales. On 

the other hand, our model can estimate DOC concentrations with adequate accuracy for a much 
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larger variety of water bodies over much larger spatial scales. This addresses a key issue in 

inland water quality investigations as in-situ measurements for single waterbodies are often not 

available or insufficient. Furthermore, the developed model could estimate large scale trends 

of inland DOC dynamically over long time periods and seasons which in future could provide 

critical information, for example for monitoring of the global carbon cycle. 

7 Conclusions 

In this thesis we tested four ML approaches (RFR, GPR, MBPNN, SVR) to predict inland 

water DOC in the US using the novel open-source dataset AquaSat. Evaluation on the test 

dataset and 10-fold cross-validation scores showed that GPR using additional environmental 

predictors was the best performing ML algorithm with moderate prediction errors (RMSE: 4.08 

mg/L). Due to fewer samples available, all models struggle to predict DOC values toward the 

lower and upper tails of the DOC distribution in the test dataset. Despite low spatial and 

temporal resolutions, environmental predictors notably improved the prediction of DOC in all 

algorithms highlighting the important role of environmental processes when explaining DOC 

variations. Permutation feature importance analysis showed that the green band, followed by 

the red and the blue bands were the most important predictors of the Landsat bands and that 

the monthly average air temperature followed by LAI -high vegetation- were the most 

important predictors of the environmental variables. Excluding less important environmental 

predictors still led to substantial drops in evaluation performance, suggesting that the ML 

approaches still gain knowledge due to the interaction of multiple variables. 

Mapping the DOC concentrations for each month of Lake Okeechobee in 2019 showed spatial 

patterns with higher DOC values during the months June to September. These patterns, 

including an event with very high DOC concentrations captured in June, could be linked to 

previous findings, and indicate that DOC estimates by the GPR model are reasonable. 

However, the mapped DOC concentrations could not be further validated due to a lack of other 

mapped DOC products for inland waters. Further analysis using GPR standard deviation 

estimates showed high uncertainties in the predictions toward the lakes shorelines and the 

surrounding area of masked clouds, highlighting atmospheric correction issues for inland 

waters in the USGS Land surface reflectance products used in the AquaSat dataset. 

Uncertainties in DOC predictions related to atmospheric correction should be further 

investigated in the future by applying and comparing multiple atmospheric correction 
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processers and testing the performance with measured Landsat reflectance without atmospheric 

correction.  

Although we note that locally tuned models are likely to outperform the developed model in 

terms of accuracy, it can address key issues of inland water remote sensing regarding the lack 

of in-situ measurements and has the potential to show large scale trends of inland DOC 

dynamically over long time periods and seasons. This thesis demonstrates how open source, 

large scale datasets like AquaSat in combination ML and remote sensing can make research 

toward large scale estimations of inland water DOC more realistic. 
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9 Appendix 

The appendix consists of two tables and three figures. The first table (Table A1) shows quality 

assurance steps when Ross et. al joined Landsat and the in-situ datasets during the development 

of the AquaSat dataset. The second table (Table A2) shows the tuned hyperparameter values 

after random search was done. The first Figure (Fig. A1) shows the number of samples per 

inland water type in the preprocessed dataset. The second Figure (Fig. A2) shows the number 

of samples per Landsat sensor type and the third Figure (Fig. A3) shows the temporal 

distribution of the time the samples were taken by Year, Month and Hour. The fourth Figure 

(Fig. A4) shows the spatial distribution of the estimation error by the GPR model for the held-

out test dataset. 

Table A1. Quality assurance steps when Ross et. al joined Landsat and the in-situ datasets 

(Ross et al., 2019). 

Water Quality Data Download and Quality Control 

1 
All observations were verified to have analytical methods related to parameter name; 

when this was not the case, samples were dropped. 

2 Data across exchangeable units were harmonized (e.g. DOC in milligrams per liter) 

3 

Were depth information was given, all observations deeper than 100 m were removed 

(<1% of data). For the samples with recorded depth, more than 88% of data were sampled 

within 2 m of the surface of the waterbody, suggesting most samples are near surface. 

Given this high proportion of surface samples in the WQP data, the decision was made 

to keep all data with no depth information, assuming the vast majority of it was collected 

near the surface. 

4 

LAGOS-NE and WQP data were verified to have only one observation per site at a 

particular date and/or time. Some observations include date without timestamp; samples 

with one observation per date if only date information was available and one per datetime 

if timestamps were recorded were kept. Where the date, time, and observation value were 

the same for multiple observations, duplicates were converted to a single value. When 

the site and date or datetime were the same, but the parameter values were different, 

multiple observations were averaged to a single observation if the coefficient of variation 

(standard deviation/mean) was less than 10% and removed observations with too many 

simultaneous observations (five per date time combination) or too much variation with 

no metadata explaining the repeat observations. 

5 

In situ data was filtered to include only data with environmentally possible values by 

exploring the large data set itself and looking into the literature for reasonable values (for 

DOC thresholds are > 0.01 and <500 mg/L). All such sites were kept in the data set and 

were spatially joined to an inventory of Landsat WRS-2 paths and rows. Each site was 

related to its corresponding Landsat tile with sizes of about 5,000 × 5,000 pixels 

Joining Landsat and In Situ Data Sets 
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1 

WQP and LAGOS-NE sites were preserved if they were within 200 m of at least 1 pixel 

with water occurrence of 80% in the Surface Water Occurrence dataset (Pekel et al., 

2016) 

2 
Within a 200-m buffered zone any pixel not classified as water at least 80% of the time 

in the Landsat archive were removed 

3 

Landsat quality assessment bands were used to remove all pixels classified as cloud and 

cloud shadows, but all data classified as land, snow/ice, or water were kept, since high 

sediment concentrations can lead to classification as land or ice 

4 

Because many of the samples in the WQP are taken from or near bridges narrower than 

30 m, 30-m buffer around the TIGER road data set from the U.S. Census office was 

created to exclude mixed water/road pixels 

5 

A spatial median of reflectance in each band from all remaining pixels in the 200-m buffer 

zone was calculated. The total pixel count and the standard deviation of reflectance values 

was gathered to assess uncertainty and variance. Spatial medians include a median of the 

quality assessment band and standard deviation of the bands. 

 

Table A2. Tuned Hyperparameter values after random search. Note that if hyperparameters 

are not included the default setting in the Pyhton scikit learn package has been used. 

 Hyperparameter Value (Landsat bands) 

Value (Landsat bands + 

Environmental predictors) 

RFR  Number of trees 1354 2612 

 Maximum features 2 9 

 Maximum tree 

depth 

89 538 

GPR Kernel Rational Quadratic + White 

Kernel 

Rational Quadratic + White 

Kernel 

 alpha 0.00751 0.0225 

 length scale 0.031 1.99 

 noise level 0.00121 0.00165 

MBPNN Neurons 564 609 

 Hidden Layers 3 6 

 Learning rate 1.78e-5 6.22e-4 

SVR Kernel Radial basis function Radial basis function 

 C 6 6 

 epsilon 0.1 0.1 

 gamma 1 / (n features * X.var()) 1 / (n features * X.var()) 
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Fig. A1. Number of samples per inland water type in the preprocessed dataset. 

 

Fig. A2. Number of samples per Landsat sensor type in the preprocessed dataset. 
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Fig. A3. Temporal distribution of the time the samples were taken by Year, Month and Hour in 

the preprocessed dataset. 
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Fig. A4. Spatial distribution of the estimation error by the GPR model for the held out test 

dataset (N=4809). 
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