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Abstract 
The European spruce bark beetle is an insect that is often referred to as a pest. Responsible for 

the destruction of over 150 million m3
 of Norwegian spruce forest in Europe over the last 50 

years makes this insect one of the major disturbances to the forest industry. With global 

warming at large, changes of the distribution of the bark beetle have emerged with large 

outbreaks now regularly occurring in northern Europe due to warmer and prolonged summer 

seasons. Sweden has since 2018 been affected by mass outbreaks that have destroyed over 27 

million m3 of spruce forest.  In order to mitigate the disturbance of forest and limit the spread 

of further attacks, it is important to detect and cut down infested trees at an early stage. In 

recent time, many studies have focused on early-stage bark beetle detection using remote 

sensing methods. Efforts to detect early-stage infestation, i.e., “green attacks” using vegetation 

indices (VI) on a pixel level, have found varying levels of success but have shown the potential 

of using VIs sensitivity of changes to biochemical leaf properties to detect early-stage 

infestation. Hence, the aim of this thesis was to study if the variability between pixels for a 

vegetation index on a forest stand scale change during a spruce bark beetle outbreak and to test 

if the variability can be used as an early indicator for bark beetle infestation. This was done by 

calculating the coefficient of variation between 2017 and the outbreak year 2018 from Sentinel-

2 data for four different VIs (NDVI, NDWI, DRS, RDI) in 17 spruce forest stands where 10 

stands were infested and 7 were healthy. The coefficient of variation was used to classify the 

stands into healthy and infested by computing the cumulative sum of each VI in each stand. 

The classification performance for each VI was evaluated using receiver operating 

characteristics graphs which were used to find the optimal threshold for each classification. 

The classification was done using the cumulative sum for two different timeframes, early stage 

(1st of May-1st of July 2018) and the whole bark beetle season (30th of April-30th of September) 

The results of the thesis, indicated that the variability within a forest stand does change during 

a bark beetle outbreak with increased variability over time within stands that have been 

attacked. It also showed that changes in variability have the potential to be used as an early 

indicator for bark beetle infestation, and the variability can be used to detect and classify 

individual forest stands that were infested at an early stage, i.e., green attack stage. It was found 

that NDWI was the most suitable index during the period May-July to detect infested forest 

stands. However, for the whole season NDVI and RDI also displayed potential as both were 

able to detect high rates of infested forest stands while limiting the misclassification of healthy 

ones. An infested forest stand could be detected as early as ca. the 29th of May. Meaning that 

the infestation is still in the green attack stage, in which mitigation is still possible to eliminate 

the spread of further bark beetle attacks. 
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1. Introduction 
The European Spruce bark beetle is an insect that is often referred to as a pest for the forestry 

industry (Huo et al., 2021; Wulff & Roberge, 2021). Throughout Europe the bark beetle has 

been the culprit for large economic as well as ecological loss due to infestation and destruction 

of over 150 million m3 of Norway spruce forest stands over the last 50 years (Huo et al., 2021). 

The main region of infestation has historically been located around central Europe however 

with earlier seasonal warming and longer warm periods, large outbreaks have started to occur 

regularly in northern Europe as well (Abdullah, Skidmore, et al., 2019a; Huo et al., 2021). 

Sweden has become increasingly affected by mass infestation of Norwegian spruce forest due 

to Bark Beetles attacks with over 27 million m3 forest destroyed since 2018 (Huo et al., 2021; 

Martin Schroeder, 2020; Wulff & Roberge, 2021).  The year 2018 was a record year for spruce 

bark beetle infection in Sweden and was associated with the heatwaves that occurred during 

the summer (Martin Schroeder, 2020; Wilcke et al., 2020; Wulff & Roberge, 2021). The 

increased temperature led to heightened vulnerability within the forest stands mainly through 

drought (Bárta et al., 2021; Martin Schroeder, 2020; Netherer & Hammerbacher, 2022; Wulff 

& Roberge, 2021). The European spruce bark beetle feed and spawn beneath the bark of the 

spruce tree and are especially drawn to trees stressed by drought, storms or disease (Blennow, 

2004; Martin Schroeder, 2020). With the prolonged warm summer season increased 

reproduction opportunity the bark beetle population was able to spawn in two waves leading 

to at the time a record outbreak (Huo et al., 2021; Wulff & Roberge, 2021). Under normal 

circumstances the bark beetle has a positive effect on the ecosystem by disforesting weak trees 

(Bárta et al., 2021; Huo et al., 2021). However, during mass outbreaks as those seen since 2018 

in Sweden, the population of Bark beetles can grow to numbers high enough to attack healthy 

trees too, leading to damages to ecosystem values and large economic loss for the forestry 

industry (Bárta et al., 2021; Martin Schroeder, 2020). As climate change is projected to increase 

causing higher temperatures and extreme weather events, this too is projected to have an 

enhancing effect on Bark beetle swarming in Sweden (Abdullah, Skidmore, et al., 2019a; Huo 

et al., 2021). With the already alarming pattern over the last 4 years, it is highly important to 

detect and combat the issue at an early stage to limit economic and ecological loss.  

To counteract the swarming of Bark beetles it is important to detect infested trees early. By 

identifying affected trees at an early stage when the offspring beneath the bark are still larvae 

(Huo et al., 2021), it is possible to remove the attacked tree(s) from the forest and limit the 

spread to other trees (Huo et al., 2021). Detection of infested trees has previously mainly been 

done manually through forest inventory which is often ineffective, as it is cumbersome, and 

difficult to do on a larger scale (Abdullah, Darvishzadeh, et al., 2019). Instead, technical 

solutions have emerged with the use of remote sensing as a tool for detecting bark beetle 

infested trees. The detection is based on the changing spectral properties of an infested tree 

which typically goes through three stages (Green, Red & Gray attacks) that are spectrally 

different to each other (Abdullah, Darvishzadeh, et al., 2019). Green attack is the first phase 

where the needles are green, and the insects are still larvae (Abdullah, Darvishzadeh, et al., 

2019). Red attack is the second phase in which the tree´s needles changes colour from green 

towards red as an indication of stress (Abdullah, Darvishzadeh, et al., 2019). Gray-attack is the 

final phase in which the tree no longer can support its foliage and sheds all needle leaving only 

the bare grey trunk and branches (Abdullah, Darvishzadeh, et al., 2019). 
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Previous studies have investigated how the spectral properties change when a tree is infested 

and various vegetation index (VI) have been compared to identify which indices that are more 

suitable to detect different phases of infestation (Abdullah, Darvishzadeh, et al., 2019; 

Abdullah, Skidmore, et al., 2019a; Huo et al., 2021). Especially successful was the 

identification of red attacks and grey attacks due to the larger difference in reflectance 

compared to healthy trees (Huo et al., 2021). Green attacks on the other hand have been found 

to be more difficult to detect due to the smaller differences in reflectance between attacked and 

healthy trees, especially in the visual spectrum (Huo et al., 2021). As early detection is key to 

mitigate the bark beetle problem, several recent studies have focused on detection of green 

attacks. This has been done by linking leaf parameters (such as water content and chlorophyll) 

to foliage reflectance changes due to bark beetle infestation (Abdullah et al., 2018). Abdullah 

et al. (2018) and Abdullah, Darvishzadeh, et al. (2019) explored this link and showed a high 

potential to detect early-stage green attacks using VIs based on Red, Green, Blue (RGB), Near 

infrared (NIR) and shortwave infrared (SWIR) wavelength bands derived from the Landsat-8 

satellite. In a later study, Abdullah, Skidmore, et al. (2019) found Sentinel-2 satellite data to be 

more sensitive to changes in reflectance than Landsat resulting in higher accuracy for green 

attack detection. Further studies focusing on premeditated stressors as an indicator instead of 

direct green attack identification using sentinel-2 satellite data combined with VIs displayed a 

considerably higher accuracy (80-88%) when detecting early stage bark beetle attacks (Huo et 

al., 2021). 

Previous studies have presented methods for early detection by studying spectral alterations on 

a pixel level as an indicator. To enable detection, the change in reflectance must be sufficiently 

large within a pixel. What has not been investigated is if spectral variability between pixels 

within a homogenous forest stand could be used as an indicator for early detection. During an 

outbreak, bark beetles attack individual or smaller groups of trees within a stand. These 

attacked trees might result in an increased variability between pixels that is detectable even if 

the change is not sufficiently large for detection in single pixels. 

1.1 Aim of study 

The aim of the thesis is to study if the variability between pixels for a vegetation index on a 

forest stand scale change during a spruce bark beetle outbreak and to test if the variability can 

be used as an early indicator for bark beetle infestation. Which vegetation indices to study is 

decided by the literature review. The specific research questions are: 

Can variability in vegetation index values between pixels within a forest stand be used as an 

indicator for early-stage bark beetle infestation? 

Which vegetation index(es) is most suitable to detect early-stage bark beetle infestations? 

How early can infested trees be detected? 
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2. Background 

2.1 European Spruce bark beetle  

The European spruce bark beetle (Ips typographus L.) is one of the main forest disturbances in 

Sweden (Jönsson et al., 2007; Netherer et al., 2021). The insect is from the Curculionidae 

family which contain over 6000 different species of bark beetles (Jönsson et al., 2011). The 

specie is widespread around central Europe and Scandinavia, and its distribution is often 

connected with the occurrence of Norway spruce trees (Jakoby et al., 2019). Within the diverse 

family of bark beetles, not all pose a threat like the spruce bark beetle as many are specialized 

in targeting other tree species and less critical parts of the tree (Bentz & Jönsson, 2015; 

Krokene, 2015). The spruce bark beetle however targets the stem of the tree by feeding on and 

reproducing under the tree bark (Bentz & Jönsson, 2015; Hlásny et al., 2021). The infestation 

of a tree begins by a male locating a pheromone signal emitted from the tree indicating distress 

(Fettig & Hilszczański, 2015; Wermelinger, 2004). As the male works its way through the tree 

bark the tree tries to defend itself by drowning the bark beetle(s) with resin (Fettig & 

Hilszczański, 2015; Krokene, 2015; Wermelinger, 2004). The beetle is able use the resin to 

send out a chemically altered pheromone signal that other individuals pick up and gather to 

overpower the defence mechanisms of the tree through mass attacks (Fettig & Hilszczański, 

2015; Krokene, 2015; Vega & Hofstetter, 2014). Tunnels are built beneath the bark and female 

beetles arrive to reproduce and lay their eggs within the tunnels (Cognato, 2015). As the eggs 

hatch larvae expand the tunnels to then incubate themselves in cocoons (Raffa et al., 2008). It 

takes around 7 weeks for the offspring to hatch and reach maturity and after 10 weeks the new 

generation is ready to leave the infested tree in search for a new host (SKOGSSTYRELSEN, 

2019). During this time the tree dies as it is consumed by the beetles, hindering nutrient and 

water transportation within the tree and weakening its defence mechanisms (Abdullah et al., 

2018). The preferred target is  forest around 60 years old which have more available substrate, 

maximising reproduction potential (Hlásny et al., 2021). The period of bark beetle swarming 

is thermally dependent, meaning that for the specie to swarm the temperature must be at least 

16 °C with + degrees for a longer time period (Abdullah, Skidmore, et al., 2019b; Jönsson et 

al., 2007; Jönsson et al., 2011). Usually, the bark beetle season occur around April-May and 

May-June and hibernate during winter periods in the ground or beneath the bark (Netherer & 

Hammerbacher, 2022).  

The European spruce bark beetle is under normal circumstances ecologically valuable to the 

forest ecosystem (Hlásny et al., 2021). The infestation of weak trees contributes to enhanced 

biodiversity by breaking up homogenous tree stands as well as nutrient cycling (Hlásny et al., 

2021). However, under certain conditions, like the warm summer in Sweden 2018 the 

population can grow into numbers high enough to be regarded an epidemic and hence become 

destructive to the forest system (Hlásny et al., 2021; SKOGSSTYRELSEN, 2019). The 

conditions that favour epidemic growth are warm, dry and long summer seasons with large 

amount of substrate to take advantage off (water deficient trees and/or wind fell trees) 

(Blennow, 2004; Martin Schroeder, 2020). Normally, the bark beetle is dependent on 

seasonality and can be somewhat predictive, however during years with favourable conditions 

can lead to a second generation of beetles within the same season (Blennow, 2004). In which 

case the population density allows for powerful aggregated attacks not only on weak old trees 

but also younger and healthy ones (Bárta et al., 2021; Hlásny et al., 2021; Kirkendall et al., 

2015). When the population breach the epidemic threshold in this fashion as it has done on 
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multiple occasions in Europe and Sweden it leads to mass tree mortality events and heavily 

damage economic and ecological values of the forest (Grégoire et al., 2015; Hlásny et al., 

2021). Sweden has over the years 2010-2021 experienced a pattern of increasingly larger and 

more frequent mass infestation events of Norwegian spruce forest triggered by the hot drought 

in 2018 (SKOGSSTYRELSEN, 2019; Wulff & Roberge, 2021). Recorded since the outbreak 

was triggered in 2018 is an alarming trend with 3-4 million m3 of forest killed in 2018, 7 million 

m3 in 2019, 7.7 million m3 in 2020 and 8.2 million m3 in 2021 (Huo et al., 2021; Martin 

Schroeder, 2020; Wulff & Roberge, 2021). 

2.1.2 Effect on the Spruce trees from a bark beetle infestation  

A successful bark beetle attack will eventually lead to the death of the attacked spruce tree. A 

single tree can host on average 2 generations of beetles until it is depleted of sustenance that 

nourish the population. During this time the tree slowly dies as an effect of hosting the insects 

due to the cut-off of water and nutrient circulations from the roots as well as chloroplast 

degradation (Abdullah, Skidmore, et al., 2019a). The beetles effectively act as a disease from 

the point of entry until leaving for the search of a new host. Like any deadly disease, the tree 

slowly gets worse over time emphasised by different stages of sickness. The stress that spruce 

trees experience from bark beetle infestation is typically broken down into 3 different stages 

emphasised by biochemical alteration and spectral changes (Abdullah et al., 2018; Huo et al., 

2021). These stages may vary depending on the specie of bark beetle; however, the European 

Spruce bark beetle has 3 pronounced phases (Abdullah et al., 2018). These phases are 

correlated with the phenology and life cycle of the beetles and is hence as indicative to the bark 

beetle life cycle as it is forest stress. The first phase of stress is denoted green-attack and 

emphasises that the foliage on the affected tree is still green on this stage (Abdullah, Skidmore, 

et al., 2019a; Bárta et al., 2021). This stage is apparent early in the infestation process, the bark 

beetle has been established within the host, but the newly hatched generations are still larvae 

and is yet to grow an exoskeleton and leave the tree (Abdullah, Darvishzadeh, et al., 2019; 

Abdullah, Skidmore, et al., 2019a). During this time the tree is overwhelmed and stressed but 

show no sign of stress in its foliage (Abdullah, Darvishzadeh, et al., 2019; Abdullah, Skidmore, 

et al., 2019a). The second phase is known as the red attack; here the stress is more pronounced 

as the needles have lost pigment turning reddish from lack of water and nutrient availability 

(Abdullah, Darvishzadeh, et al., 2019). During this phase the new generation of bark beetles 

have already gained maturity and left the tree (Abdullah, Darvishzadeh, et al., 2019). The third 

and final stage is the grey phase, in which the stressed spruce tree is diseased and can no longer 

support its foliage and in turn is left with only its bare grey stem (Abdullah, Darvishzadeh, et 

al., 2019; Bárta et al., 2021). In order to effectively reduce the impact of bark beetle disturbance 

and preventing mass outbreak, it is crucial to identify and remove a tree whilst in green stage 

when the larvae are still contained. Hence, methods for large scale early detection are required 

to counteract present and future problems. 
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2.2 Remote sensing  

2.2.1 Remote sensing of terrestrial vegetation  

Remote sensing is a technology to observe objects from a distance that has provided an efficient 

tool for monitoring of the earth´s surface on a scale not previously obtainable through the eyes 

of man. The utilization of remotely sensed information such as imagery from satellite, airplane, 

UAV, and ground mounted cameras provide a more efficient, detailed and cheaper alternative 

to traditional in situ monitoring.  

Satellite based sensors like Landsat-8 and Sentinel-2 have contributed immensely to how 

vegetation can be studied and what can be learned from observing the terrestrial landscape 

(Liang & Wang, 2019; Roberts, 2014). Vegetation is perceived through the human eye by the 

absorption and reflection of solar radiation (Jones & Vaughan, 2010). Different types of 

vegetation reflect more or less of different wavelength of the electromagnetic spectrum which 

make it possible to distinguish between different species (Jones & Vaughan, 2010). The human 

eye is sensible to light within the visual spectrum (Red, Green & Blue) and hence can display 

colours (Jones & Vaughan, 2010). For example, forests are perceived as green since it reflects 

strongly within the green wavelength band of the electromagnetic spectrum while absorbing 

red and blue light (Jones & Vaughan, 2010). While the human eye is limited to the visual 

spectrum, multispectral and hyperspectral sensors such as those used on satellites can pick up 

reflectance from wavelengths outside of the visual  (Jones & Vaughan, 2010). Vegetation types 

differ from each other as they all have unique spectral characteristics i.e., a spectral signature 

which can be used to identify and monitor specific species (Jones & Vaughan, 2010). 

Furthermore, spectral signatures create the prospect of observing changes over time ex. a 

vegetative season to study changes and response patterns (Jones & Vaughan, 2010). Remote 

sensing technology has hence been applied to identify stress and diseases which is made 

possible by the changes of spectral properties resulting in deviation from the spectral signatures 

of healthy vegetation (Roberts, 2014). The use of multispectral and hyperspectral sensors takes 

advantage of wavelength bands that are sensitive to biophysical/chemical properties of 

vegetation which are strongly affected by change and stress (Hanes, 2013; Jones & Vaughan, 

2010). Different bands are sensitive to different biochemical properties, for example near 

infrared (NIR) is sensitive to leaf cell structure whilst shortwave infrared (SWIR) is sensitive 

to leaf water content (Hanes, 2013; Jones & Vaughan, 2010). It is therefore possible to extract 

and study internal leaf properties and alterations which then can be used as proxy for early-

stage disease detection (Roberts, 2014). Furthermore, when working with vegetation 

biophysical properties the reflectance of individual bands is not always sufficient to detect 

changes due to background noise from due to e.g., the ground, atmosphere, or topography. 

Instead, vegetation indices are often computed from a combination of multiple bands (Hanes, 

2013; Huete, 2014; Jones & Vaughan, 2010). A vegetation index is normally calculated using 

two contrasting bands of which one is highly absorbed (often red or blue band) by the target 

and the other highly reflected (NIR or SWIR) to be able to clearly extract the desired property 

(Hanes, 2013). Like individual bands different indexes are more sensitive to different leaf traits 

for example a combination of NIR and red is sensitive to greenness related properties while a 

combination with SWIR is sensitive to water related traits (Hanes, 2013).   
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2.2.2 Remote sensing of bark beetle attacks 

The implementation of remote sensing to monitor bark beetle attacks has been a growing topic 

over the last decade. As global temperature has risen, and more pronounced and regular mass 

outbreaks of bark beetles has occurred, researchers has worked more intensely to find methods 

to detect early-stage infestation. 

Abdullah et al. (2018), highlighted the impact and spectral alteration that occur on spruce 

needles during a successful attack. In a lab experiment, needles were made to experience the 

same biochemical changes that would occur naturally from bark beetle attacks. Abdullah et al. 

(2018) measured the spectral responses of different biochemical parameters at multiple 

wavelengths of the electromagnetic spectrum to differentiate between needles from healthy and 

infested “trees”. Furthermore, they studied which wavelength band(s) that could be deemed 

significant and most clearly displayed reflection, based on the biochemical parameters and 

conducted a band separation analysis based on the results presenting suggestions for what 

bands most efficiently highlight bark beetle activity. Abdullah et al. (2018) found that there 

was a significant difference in reflectance between infested and healthy samples especially in 

the NIR and SWIR. The findings showcased the potential use of multi/hyperspectral remote 

sensing techniques for early detection of bark beetle infestation. 

In a later study, Abdullah et al. (2019) attempted to identify early stages green attacks of bark 

beetles in the Bavarian Forest National Park (Germany) using spectral vegetation indices and 

canopy surface temperature obtained from Landsat-8 satellite images. The study included 

multiple vegetation indices using the visual spectrum as well as NIR and SWIR bands. The 

bands where chosen based on their sensitivity to biochemical alteration such as chlorophyll and 

leaf water content. The study produced stress maps of healthy and infested trees and concluded 

that the leaf traits measured from the VIs where all significantly different when comparing 

healthy and infested trees, suggesting that early detection can be facilitated using NIR and 

SWIR wavelength bands and vegetation indexes sensitive to leaf water content (ex. NDWI & 

RDI). Moreover, the study highlighted the role of temperature as in indicator for biochemical 

alteration from changes in leaf water content, chlorophyll and stomatal conductance due to bark 

beetle activity. 

Furthermore, (Abdullah, Skidmore, et al., 2019a) compared Landsat-8 and Sentinel-2 satellite 

data for early detection and found that while Landsat-8 was able to distinguish infested pixels 

using vegetation indexes sensitive to leaf water content (such as NDWI, RDI and DSWI) 

Sentinel-2 was able to classify stress using vegetation indices sensitive to both water content 

as well as with indices sensitive to chlorophyll. Moreover, the study showed that Sentinel-2 

imagery proved to be more accurate than Landsat-8 where Sentinel-2 reached 67% accuracy 

and Landsat-8 36% when classifying data into healthy and attacked pixels. The study 

showcased the prospective use of Sentinel-2 data for early bark beetle detection as well the 

potential of the red-edge wavelength bands.  

Huo et al. (2021) conducted a study in Sweden trying to detect bark beetle green-attack stage 

using Sentinel-1 and Sentinel-2 data. The study analysed how the spectral properties of stressed 

spruce trees changed over the vegetation season. It was found that characteristic anomalies 

could be identified already prior to the actual infestation of bark beetles while spectral 

differences during a green-attack stage was more difficult to separate. Hence, the study used 

spectral alteration from stress prior to infestation as an indicator for bark beetle activity later in 
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the vegetative season. (Huo et al., 2021) also suggested a new vegetation index the Normalized 

Distance Red & SWIR (NDRS) index which instead of utilizing the NIR has a combination of 

the red and SWIR bands. The use of NIR has since (Abdullah et al., 2018) found contradicting 

for detection on a larger scale which is highlighted by (Huo et al., 2021; Ortiz et al., 2013) who 

found the reflectance in the Red and Red-edge to be better suited for early detection compared 

to NIR. The study resulted in higher accuracies than recorded in previous studies with 80-82% 

in early stage (May-July) and 81-91% in mid to late stage (August – October). The study 

emphasized the use of SWIR which was found to display considerably high separability 

compared to other bands when measuring classification accuracy (Figure 1). Furthermore, the 

study suggest that the Red band should be used instead of NIR when working with VIs (Figure 

2) and (Huo et al., 2021) highlight the potential of utilizing stress indication and vulnerability 

to trace potential infestation later in the season. 

 

Figure 1: Graph from (Huo et al., 2021)(open access license CC BY) displaying separability of individual bands based on 

classification accuracy. The graph show that the SWIR bands (11 & 12) have the highest classification accuracy though the 

red band (4) and Red edge (5) separates themselves with high accuracy.  

 

Figure 2: Graph from (Huo et al., 2021)(open access license CC BY) displaying separability of individual vegetation indices 

based on classification accuracy. Highest accuracy is seen from NDRS (combination of Red and SWIR) followed by indices 

with some utilization of the SWIR bands (NDWI, DSWI & RDI). 
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3. Materials and Methods  
The method consisted of four main parts: Detection of areas of interest i.e., spruce forest 

stands (AOI), extraction of VI coefficient of variation from all AOIs, classification of AOIs 

into healthy and infested based on the variability from VI values and finding the optimal 

classification threshold for each VI (Figure 3). Additionally, Bark beetle swarming data was 

used to get an indication of when the bark beetles swarmed (Figure 3). 

 

Figure 3: Flowchart of the workflow of the thesis with Data sets used, methodology and what the resulting output of the 

method. 

  



9 
 

3.1 Study area 

The study area is in Östergötland county and located between Jönköping and Norrköping east 

of the lake Vättern (Figure 4). Östergötland county is located on the east coast of Sweden and 

is bordered by Baltic Sea in the east and Vättern in the west. The area has a temperate climate 

with an annual mean temperature of ca. 6 °C and regular snow cover in the winter, though 

along the coast the climate is more maritime with milder autumn/winter season (SMHI, 2012). 

Östergötland has a large forest industry with approximately 10 000 private owners and 60% of 

the land is covered by forest (Thomas Heldmark, 2020). The region has since 2018 experienced 

mass outbreaks of Spruce bark beetles. 

 

Figure 4: Location of the study area (upper-right) and the AOIs location within the study areas (upper-left) together with 

examples of different AOI extents and are represented by the sample plots in the upper left map (Shown are AOI 1 – 5) (bottom). 

(Source Sveaskog; Bark beetle damage data) 
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3.2 Data  

The main datasets used in this study were Sentinel-2 data and bark beetle damage data (Table 

1). Additional data sets used were imagery from Google (RGB) and satellite images from 

Planet (RGB, NIR) to identify areas of interest (AOI) and bark beetle swarming data to get an 

indication of when the bark beetles were swarming (Table 1).  

Sentinel-2 data 

Sentinel-2 data was used to compute the VIs that were applied in the study and to calculate the 

variability between pixels used in the time-series analysis for detecting bark beetle infestation. 

The Sentinel-2 data was in level 2 and was accessed through the Google Earth Engine 

Copernicus cloud storage collection which contained data from 31st of March 2017 and 

onwards. The study utilized four wavelength bands, Red (665 nm), NIR (865 nm), SWIR (1610 

nm) and SWIR (2190 nm). Spatial resolution ranges from 10 m (Red) to 20 m (NIR and SWIR) 

(Table 1). Data was extracted for the period 31st of March 2017 – 31st of December 2018. 

Bark beetle damage data 

The bark beetle damage data was used to locate areas with large occurrence of bark beetle 

disturbance. The data set is point data distributed by Sveaskog, where each point represents 

trees that have been cut down due to bark beetle infestation as well as when it was felled (Table 

1). The data was collected by Sveaskog since 2019 by tagging the location and time at which 

trees within their forests are cut down due to bark beetle infestation. The data used from the 

dataset was limited to trees cut down between April and May in 2019 as these would be the 

trees attacked at an early stage in 2018. 

Google imagery/Planet to identify areas of interest (AOI) 

Ten areas of interest (AOIs) to study the variability between pixels were selected within the 

study area. The areas were chosen based on certain preferences in order to be of use for the 

study. The area had to be homogenous spruce forest and must have had a bark beetle outbreak. 

Bark beetle infestation data from Sveaskog was used to identify forest stands with large 

occurrence of infestation. The areas of high occurrence were then observed using satellite 

imagery (Google earth and Planetscope) in ArcMap to determine whether the stand was 

homogenous spruce. The imagery from google earth was the latest updated web map service 

from Google satellite that was connected to ArcMap with tiles containing temporal coverage 

varying between 2017-2022. The Planetscope data cover was from April-May 2018 prior to 

when infested stands were cut down. When identifying areas with bark beetle infestation the 

search was limited to the year of 2018 because it was the first year with mass outbreak in recent 

time in Sweden and hence it can be certain that the forest was still intact i.e., not cut down at 

this point (due to bark beetle infestation). Additionally, seven areas without any recorded bark 

beetle activity were chosen to compare the variance response pattern between infested and non-

infested forest stands and to be able to create a classification model (Table 1). The areas without 

recorded outbreaks were chosen the same way as stands that had been infested, by utilizing the 

bark beetle damage data from Sveaskog locating homogenous spruce stands without any 

record. These were chosen within the same study area with varying proximity to infested 

stands. 
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Bark beetle swarming data 

Skogsstyrelsen (Swedish forest agency) use pheromone traps to perform weekly counts of the 

bark beetle population. In 2018, two stations were in active use in southern Sweden, one in 

Nässjö which was in the south-west of the study area, and another located in Lagan 

approximately 100 kilometres south of the study area. At both stations there were recorded 

high swarming activity predominantly in the end of April to mid-May as well as a smaller peak 

between mid-June to mid-July (Figure 5; Table 1).      

   Table 1: Data used in the study including source, type and spatial/spectral resolution. 

 

 

 

 

Figure 5: The number of beetles per trap for the two stations Nässjö and Lagan on a weekly basis 2018. (Skogsstyrelsen) 

 

3.3 Vegetation indices  

The VIs used in the time-series analysis were selected based on the literature review and 

resulted in the use of four VIs (NDVI, NDWI, DRS & RDI) with two of the indices sensitive 

to chlorophyll and two sensitive to water.  
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The Normalized Difference Vegetation Index (NDVI) was chosen as it has been one of the 

most used indices for vegetation monitoring to date (Gao, 1996). Though in recent empiric 

studies the classification of early-stage bark beetle infestation using NDVI has been found to 

be of moderate accuracy (60-70%) (Huo et al., 2021) it was chosen as it is a good baseline VI 

to utilize for the study as well as having a high spatial resolution of 10 m. NDVI was computed 

from the NIR (865 nm) and Red (665 nm) wavelength bands (Eq. 1).  NDVI being a 

combination of NIR, and Red is sensitive to chlorophyll and cell structure related leaf alteration 

which makes it susceptible to detection of forest disturbances.  

                                                            𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                   (Eq. 1) 

 

The Normalized Difference Water Index (NDWI) was chosen as it has been found to reach 

high classification accuracy when mapping early-stage bark beetle infestation (Huo et al., 

2021) as well as being a widely used index for monitoring of vegetation health (Gao, 1996). 

NDWI is computed using the NIR and SWIR bands and is sensitive to water related leaf 

alteration instead of chlorophyll and cell structure sensitivity (Gao, 1996). It was incorporated 

to the study partly based on previous results but also due to the combination of NIR and SWIR 

which have been heavily suggested in recent studies (Abdullah et al., 2018; Huo et al., 2021). 

Additionally, the sensitivity to water related changes makes the VI suitable for this study as 

both cause and effect of a bark beetle attack can be related to water content in leaf/tree as well 

as an instigating factor through periods of drought. NDWI was computed using SWIR (1610 

nm) and NIR (865 nm) with a spatial resolution of 20 m, a combination which have been found 

highly effective when studying effects of bark beetle attacks (Eq. 2).  

 

                                                  𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
                                             (Eq. 2) 

 

The Distance Red SWIR (DRS) index was chosen based on the results from (Huo et al., 2021) 

in which a new VI, NDRS, was computed with the intention of detecting early stage bark beetle 

attacks. NDRS is a normalized version of DRS and was in that study normalized using the 

minimum and maximum pixel value from pixels covering only homogenous spruce forest to 

make the VI sensitive to changes only related to spruce cover. NDRS was found to have the 

highest classification accuracy for both early and late-stage bark beetle attacks. Moreover, DRS 

was included in the study due to the combination of Red and SWIR which has been suggested 

due to its sensitivity of water content.  As this study was done by studying individual 

homogenous spruce forest stands not including other surrounding land cover types, a 

normalization of DRS was not deemed beneficial. Hence, the study utilized solely DRS which 

was computed by a combination of the Red (665 nm) and SWIR (2190 nm) bands (Eq. 3).  

 

                                         𝐷𝑅𝑆 = √(𝑅𝑒𝑑)2 + (𝑆𝑊𝐼𝑅)2                                                  (Eq. 3) 
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The Ratio Drought Index (RDI) was included in the study based on similar grounds as NDWI. 

RDI displayed high and stable classification accuracy for both early and late-stage bark beetle 

attacked trees and utilize a combination of NIR and SWIR which has been fruitful from 

previous recorded studies (Huo et al., 2021). Also, RDI is water content sensitive which has 

been found to generally be more sensitive to detecting bark beetle induced disturbance (Huo et 

al., 2021). RDI is computed by the combination of NIR (865 nm) and SWIR (2190 nm) with a 

spatial resolution of 20 m (Eq. 4). 

 

                                                     𝑅𝐷𝐼 =
𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
                                                                  (Eq. 4) 

 

3.3.1 Vegetation indices variability within areas of interest  

The analysis of VI variability within the AOIs was done using Google Earth Engine (GEE). 

GEE is a cloud based geospatial computational platform which allows for interactive user 

activity connecting GIS and remote sensing processing to public access databases from a vast 

amount of sources (Gorelick et al., 2017). GEE was chosen for the analysis of this study 

because it allows for easy access and extraction of Sentinel-2 satellite data from the Copernicus 

database with coverage since 2017. Furthermore, the application is widely used for remote 

sensing processing and analysis with effective computation of indices, cloud filtering and pre-

processing of imagery.  

GEE was used to calculate the coefficient of variation of pixel values from different VIs 

computed from Sentinel-2 images in a time-series. The coefficient of variation was the chosen 

metric ahead of variance to minimize the effect of seasonal variation and was calculated 

according to Eq. 5: 

 

                                              𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝜎

𝜇
                                         (Eq. 5) 

Where σ is the spatial standard deviation and µ is the spatial mean. 

 

The script used, computes VI time-series from Sentinel-2 imagery using polygon inputs. The 

script was created using a python package called eemont which extends the application of 

python in GEE for pre-processing and VI computation of Sentinel-2 image collections 

(Montero, 2021). The script was divided into 3 parts: the first part did cloud masking on each 

image of the time-series, the second part calculated VIs from the Sentinel-2 image collection, 

and the third part extracted the time-series with zonal statistical computations from the VIs in 

the image collection. 

The cloud masking was done using the s2Cloudless dataset which calculated cloud probability 

and using a cloud filter. Cloud shadows masking was done by identifying dark pixels in the 

NIR surface reflectance. Firstly, the mask parameters were set, allowance of 50% cloud cover 

per image was set, cloud probability of 30% or higher was set to be defined as clouds, a dark 

pixel threshold where a digital number of 0.15 or less was counted as potential cloud shadows 

and then a maximum search distance of 2 km for shadows from the edge of an identified cloud 
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feature. The mask parameters were then transformed into band components and used as a filter 

which was applied on each Sentinel-2 image in the time-series eliminating images with more 

than 50% cloud cover, masking pixels with larger than 30% cloud probability and masking 

dark pixels identified as shadows. 

VIs were computed from the eemont-package library (github.com/davemlz/awesome-ee-

spectral-indices) as well as using a function to compute user defined VIs. NDVI, NDWI, RDI 

and DRS were computed and transformed into band components which information could be 

extracted from in the next stage. 

Extraction of time-series was done with zonal statistics using the polygon of the AOIs as input 

features to get results from the different bands. Here the Coefficient of variation was calculated 

and extracted from the different VIs for the time-series (31st March 2017 – 31st December 

2018). The results were then plotted in resulting in graphs displaying the coefficient of variation 

(%) for NDVI, NDWI, DRS and RDI over the time-series for each AOI. 

The time-series were cleaned up by eliminating values during the winter and snow season from 

October to April when anomalies where present due to snow cover and low solar angles. 

3.4 Classifying AOIs into attacked and healthy  

To answer whether it is possible to identify bark beetle outbreaks using variability (Coefficient 

of Variation) from the extracted VIs, the results had to be classified into attacked and healthy 

and then validated in order to evaluate the performance of each VI. The classification was based 

on cumulative sums of the spatial variability of the time-series and Receiver Operating 

Characteristics (ROC) graphs were used to find the optimal threshold for the classification. 

3.4.1 Detecting AOIs with bark beetle infestation 

To use the coefficient of variation to detect AOIs with bark beetle outbreak, the values in the 

time-series was standardized for each VI at every AOI. This was done to eliminate local 

variation of the different AOIs and to be able to compare the results consistently. The 

standardization was done using the mean and standard deviation from a stable period i.e., when 

it is assumed to not display spectral alteration due to bark beetles (Eq. 6). The stable period 

chosen was between 31st of March 2017 (prior to the mass outbreak in 2018) and 30th April 

2018 (prior to first recorded swarming activity in 2018 (Figure 6)). The choice of using a single 

year (2017 until the first recorded swarming activity in 2018) was done as the earliest Sentinel-

2 data available through Google earth engines archive was in March 2017.   

 

   𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑐𝑜𝑒𝑓𝑓 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛−𝑚𝑒𝑎𝑛(𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑)
    (Eq. 6) 

 

The standardized value at each point in the time-series had either a negative or positive value 

where the positive values were assumed to be increase of spatial variation within the AOI due 

to bark beetle infestation. To classify the AOIs into attacked or healthy the cumulative sum 

was calculated according to Eq. 7: 

                                 𝐶𝑢𝑠𝑢𝑚(𝑡) = 𝐶𝑢𝑠𝑢𝑚(𝑡 − 1) + max(𝐶𝑉𝑠𝑡𝑎𝑛𝑑(𝑡), 0)                          (Eq. 7) 

𝐶(0) = 0  
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Where Cusum is the cumulative sum, CVstand is the standardized coefficient of variation and t 

is the time step i.e., all negative values were turned to a value of 0 and all positive values from 

the point of the first recorded bark beetle activity was summed up. This was done for each VI 

at every AOI and the AOIs were then classified into attacked or healthy based on the threshold 

of the cumulative sum.  

This method was applied for two time periods, first using the cumulative sum and threshold 

values representing the whole time period (30th April – September) and second for the early 

stage of the time-series (30th April – 1st July) in order to see if the use of threshold from early 

or whole period result in better output.  

3.4.2 Finding the optimal threshold for classification 

The evaluation to find the optimal threshold for the classification was done using receiver 

operating characteristics graphs (ROC) which is a method that evaluates the performance of a 

binary classification and visualises it with a curve (Fawcett, 2006). ROC was the chosen 

method as it is useful when classifying and evaluation of binary classifiers (Fawcett, 2006). 

Additionally, it has shown promise in a previous study where the cumulative sum and ROC 

was used to detect birch forest defoliation from insect outbreaks in northern Sweden with the 

use of MODIS derived NDVI (Olsson et al., 2016). 

 The ROC graph and curve is computed from a classification model with a set of training data 

that are to be given a class membership and a set of evaluation data that are used to validate 

the classification. The classification model is then evaluated on the same basis as a confusion 

matrix where each value can either be evaluated as a True positive (positive classified as 

positive), False negative (positive classified as negative), True negative (negative classified as 

negative) and False positive (negative classified as positive). The ROC graph then plots the 

True positive rate (Tpr; Eq. 8) on the y-axis against the False positive rate (Fpr; Eq. 9) on the 

x-axis which display the trade-off between positives classified correctly and negatives 

classified as positive between 0 - 1.0 for each threshold used in the classification (Fawcett, 

2006). The ROC-curve hence displays the classification model performance at each threshold 

which allow the user to find the optimal threshold to use as well as comparing different models 

against each other where a perfect classification is (Fpr=0, Tpr=1) i.e. finding all true positives 

without misclassifying any negatives as positive (Figure 6) (Fawcett, 2006). The thresholds 

which were tested were derived from the predicted dataset using a decision function which 

tests all possible thresholds against FPR and TPR in which it drops suboptimal thresholds i.e. 

thresholds that result no instances being classified (Pedregosa et al., 2011).    

 

                                       𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                         (Eq. 8) 

 

                                      𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                      (Eq. 9) 
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Figure 6: Illustration of ROC graph with true positive rate on the y-axis, false positive rat on the x-axis, ROC-curve 

displaying the TPR & FPR for each classification threshold and a red line displaying a random classification. ROC-curve 

above red line is better than random and below is worse than random. 

ROC-graphs were created to evaluate the performance of each VI using the cumulative sum of 

the standardized coefficient of variation as training data and Sveaskogs infestation data as 

evaluation data. Both training and evaluation data were derived from the 17 AOIs where 10 

had recorded bark beetle outbreaks and 7 had no recorded outbreak. Finally, the AOIs were 

classified into infested and healthy based on the threshold. The evaluation of performance can 

be done through multiple methods i.e., ROC-curve distance from perfect classification (0,1) or 

distance to random classification (y=x) however in this study the performance was evaluated 

by the trade-off between Tpr and Fpr  e.g., largest difference between Tpr and Fpr (Figure 6) 

(Fawcett, 2006).  

In order to see how early in the season each VI can identify bark beetle attacks, the optimal 

threshold was chosen based on the trade-off between true positive rate and false positive rate. 

The optimal threshold was then used to compare to when the cumulative sum of the 

standardized positive coefficient of variation for each index reach this threshold. Where the 

cumulative sum reached the optimal threshold is the earliest detection. 
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4. Results 

4.1 Coefficient of variation 

The result from the GEE computations of the coefficient of variation (%) for each of the 10 

AOIs with recorded bark beetle infestation (AOI 1-10; Section 4.1.1) and the 7 AOIs without 

bark beetle infestation (Section 4.1.2) are presented separately.  

4.1.1 Coefficient of Variation for AOIs with Bark Beetle Infestation 

The coefficient of variation for the AOIs are in the results section presented by four graphs that 

are representable for the response in variation for all AOIs to make the results more easily 

readable. All graphs of coefficients of variation are found in the appendix (A1, A2 & A3). 

The coefficient of variation for AOIs with bark beetle infestation in general display a well-

defined peak in April-May 2018 for all VIs around the same time as the first recorded swarming 

activity the same year (Figure 7, AOI 2 & AOI 8). The coefficient of variation seemingly 

increases during 2018 and have a defined peak/increase in July around the timing of the second 

swarming event in the same period in 2018 (Figure 7, AOI 2, AOI 8 & AOI 7). DRS and RDI 

display larger coefficient values between 10-15% as in AOI 2 but instances of higher values 

are found in some AOIs also (Figure 7, AOI 8) (A1, A2, A3). NDVI and NDWI display a less 

fluctuating coefficient with a clearer coefficient increase and defined peak, especially in the 

later part of the season with a coefficient ranging between 4-6% (Figure 7, AOI 2, AOI 7). 

Additionally, it can be seen for many AOIs that the coefficient values are generally higher in 

2018 than in 2018 as seen in AOI 7 (Figure 7). In some cases, however, the peak found early 

2018 (April-May) is not present or not as well defined like in AOI 7 (Figure 7). Also, instances 

of highly fluctuating DRS and RDI is found where they seemingly display no pattern and are 

highly variable over the whole period (AOI 1) (Figure 7).    
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Figure 7: Coefficient of variation (%) for AOIs 2, 8, 7 & 1 between 2017-2018, where green curve is DRS, red is RDI, blue is 

NDVI and yellow is NDWI. Black arrows are the timing of bark beetle swarming activity in 2018 where the first arrow is on 

23rd of April and the second on the 18th of June. (Skogsstyrelsen 2021) 
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4.1.2 Coefficient of Variation for areas without Bark Beetle Infestation 

The coefficient of variation for AOIs without recorded bark beetle outbreaks (1-7) are 

presented in the results section by four graphs that are representable for the response in 

variation for all AOIs to make the results more easily readable. All graphs of coefficients of 

variation are found in the appendix (A4, A5). 

The coefficient of variation for AOIs without any recorded bark beetle outbreak display low 

coefficient values for al VIs (Figure 8). NDVI and NDWI are generally more stable over the 

whole period with a coefficient around (+-) 2% while DRS and RDI are more variable ranging 

between 4-10%. For most AOIs there are not found any peak over the period or in the timing 

of the swarming activity in 2018 (AOI 6 & AOI 7) (Figure 8). The coefficient is seemingly not 

higher in 2018 than in 2017 with lower values in AOI 6 and no visible difference in AOI 7 

(Figure 8). Slight increase in coefficient can be seen in the AOIs during 2018 which can be 

seen for NDVI and NDWI in AOI 7, AOI 2 and AOI 5 (Figure 8). Not applicable for all AOIs 

without bark beetle infestation as can be seen in AOI 2 which display a clear increase around 

the first swarming event and with generally higher values in 2018 than in 2017 (Figure 8). 

Similar can be found in AOI 5 which display a somewhat defined early peak for NDVI and 

NDWI while having a clear increase after the second swarming event in 2018 for DRS and 

RDI (Figure 8). 

 

 

Figure 8: Coefficient of variation (%) for AOIs 6, 7, 2 & 5 without bark beetle infestation between 2017-2018, where green 

curve is DRS, red is RDI, blue is NDVI and yellow is NDWI. Black arrows are the timing of bark beetle swarming activity in 

2018 where the first arrow is on 23rd of April and the second on the 18th of June. (Skogsstyrelsen 2021) 
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4.2 Finding the optimal thresholds for classification 

The analysis to find the optimal threshold for the classification into attacked and healthy areas 

with ROC-curves resulted in one ROC-graph for each VI for both the whole Bark beetle season 

(from April 30th to September 30th, 2018) and for the early stage of the bark beetle season (1st 

May-1st July 2018) 

4.2.1 ROC-curve for the whole period 

The ROC-curves for the whole season show that the classification model of DRS had a poor 

performance with a low rate of true positives and high rate of false positives. The best 

performance was found for a threshold value of 6.68 where the classification had a Tpr of 0.9 

and an Fpr of 0.71 (Figure 9). The ROC-curve for NDWI obtained a similar performance as 

DRS with an optimal threshold of 5.75 with a Tpr of 0.9 and an Fpr of 0.71 (Figure 9). The 

performance of NDVI was better with a Tpr of 0.8 and an Fpr of 0.14 with the optimal threshold 

14.91 (Figure 9). RDI also performed better than DRS and NDWI with a Tpr of 0.8 and an Fpr 

0.28 with a threshold of 10.38 (Figure 9) 

 

 

 

Figure 9: ROC-Curves for DRS, NDWI, NDVI and RDI for the whole bark beetle season (April 30th – September 30th). The curve displays the 

performance of each threshold measured in the trade-off between Tpr and Fpr. Red dashed line represents a random classification. 



21 
 

When applying the optimal threshold for each VI to perform the classification the earliest 

detection of bark beetle infestation for NDVI was 13th of July (AOI 4), the latest detected area 

was AOI 1 at 8th of August with an average detection date around 30th July (Table 2). NDWI 

detected the earliest outbreak on the 19th of May (AOI 6), latest 10th August (AOI 3) with and 

average detection date around the 19th of June (Table 2). The earliest detection date for DRS 

was on the 23rd of June (AOI 1), the latest on 16th of September (AOI 6) and average was 23rd 

of July (Table 2). RDI detected the first outbreak on the 16th of July (AOI 2), latest on the 19th 

of September (AOI 10) with an average around 2nd of August (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The dates on which the optimal threshold detected an outbreak in every AOI for 

each VI over the whole period (April 30th – September 30th). Additional information: Tpr, 

Fpr, earliest detection, latest detection and average date of detection. 
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4.2.2 ROC-Curve for the period May-July 

The ROC-curve of the for early season (1st May-1st July) show that the classification model of 

DRS performed poorly with a trade-off of 0.6 Tpr and 0.42 Fpr at an optimal threshold of 3.66 

(Figure 10). NDWI had a better performance with an optimal threshold of 4.8 where the model 

was able to correctly identify all true positives while having an Fpr of 0.71 (Figure 10). The 

performance of NDVI was similar to DRS, obtaining a Tpr of 0.6 and an Fpr of 0.71 with an 

optimal threshold of 3.28 (Figure 10). The ROC-Curve of RDI obtained slightly better 

performance than NDVI and DRS with a Tpr of 0.7 and an Fpr 0.42 with optimal threshold 

being 4.36 (Figure 10). 

 

 

 

 

 

 

 

Figure 10: ROC-Curves for DRS, NDWI, NDVI and RDI for the early-stage bark beetle season (1st May-1st July). The curve displays the 

performance of each threshold measured in the trade-off between Tpr and Fpr. Red dashed line represents a random classification. 
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When performing the classification for each VI by applying the optimal threshold it was found 

that for NDVI the earliest detected bark beetle infestation was on the 7th of May (AOI 1), the 

latest on the 28th of June (AOI 6) and with an average detection date around the 1st of June 

(Table 3). NDWI detected the infestation earliest on the 14th of May (AOI 6), the latest on the 

28th of June (AOI 8) with an average around the 1st of June (Table 3). DRS detected the first 

outbreak on the 9th of May (AOI 8), latest on the 23rd of June (AOI 4) with an average around 

the 1st of June (Table 3). Earliest RDI was detected on the 9th of May (AOI 8), latest on the 28th 

of June (AOI 7) with an average around the 3rd of June (Table 3). 

Table 3: The dates on which the optimal threshold detected an outbreak in every AOI for each VI (1st May-1st July). 

Additional information: Tpr, Fpr, earliest detection, latest detection and average date of detection. 
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5. Discussion 

5.1 Coefficient of variation 

The results indicate that there is a change in variability between pixels within a stand (AOI) 

that was attacked by bark beetles during the outbreak year 2018 (Section 4.1.1). For most of 

the AOIs there seems to be a difference between 2017, the year prior to the outbreak and 2018 

in the time-series of coefficient of variation, with an increase in variability, with two peaks in 

April-May and around late-June-August in 2018, for most AOIs, where the first peak generally 

is larger. Important to note is that there is a gap in the time-series between October 2017 and 

April 2018 due to noise (clouds, snow, short days) which could influence the observed increase 

between 2017 and 2018. However, despite this, the peaks found in 2018 are not present to the 

same extent in 2017 and the coefficient of variation is generally larger from June-September 

in 2018 than in 2017. The first peak found around April-May in 2018 is a positive indicator 

that the variation displayed by the coefficient of variation could be bark beetle induced as the 

swarming data tells us that the first large swarming outbreaks predominantly occurred between 

the start of April to mid-May (Section 3.2, Figure 5). Similarly, the peak/increase later in the 

season from late-June-August could be connected to the peak found in the Swarming data 

during the same time (Section 3.2, Figure 5). However, it is difficult to conclude that the change 

in variability is due to bark beetle infestation. The increasing variability might also be caused 

by the drought in 2018, but since the results indicate that there is a larger increase in variability 

for bark beetle infested AOIs it is likely that the actual infestation contributes to the higher 

coefficient of variation. Additionally, if the change in variability was due to other factors like 

the drought of 2018, the results would still valuable and interesting as when comparing with 

another study by (Huo et al., 2021) where the intention was to detect stress symptoms prior to 

an outbreak. Here it was discovered that using stress symptoms as early warning systems to 

classify potential outbreak areas reached rather high accuracy for detecting later bark beetle 

outbreaks. 

The results indicate that the coefficient of variation is generally lower for the areas without 

recorded bark beetle outbreak compared to AOIs with bark beetle activity (Section 4.1.2). The 

difference is more pronounced for NDVI and NDWI which have less fluctuation in the 

coefficient of variation. Also notable, is that for the areas without recorded bark beetle outbreak 

the coefficient of variation is more stable in the time-series and does not show a large a 

difference between 2017 and 2018 as was generally found for the AOIs with bark beetle activity 

(with some exceptions; area 2, 3 & 5) (Figure 8, A4). Though the general trend implies that the 

coefficient of variation increased during 2018, there are no well-defined peaks at the early and 

late stage of 2018 (for most areas) as was found in AOIs with bark beetle activity. Hence, this 

could instead be an indication that the increase is not bark beetle induced as when comparing 

infested AOIs with the timing of swarming, a large signal for both variability and swarming 

was found within the same timeframe. The same response was not found for healthy AOIs. 

More plausible is that the more stable increase in the coefficient of variation for areas with no 

infestation record could be due to the major drought and temperature that the area experienced 

during 2018 (Wilcke et al., 2020). Comparing the coefficient of variation response in areas 

with and without recorded bark beetle infestations, it could be said that though there are some 

examples of inconclusive results where areas with supposedly no infestation display some 

similar trends as areas with bark beetle occurrence, the consensus is that the response is 

different and that the variation between pixel VI values change and have the potential to 
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indicate bark beetle infestations. Due to the short length of the time-series no statistical tests 

were done to test if the change in variability were significant or not. The comparison of 

variability was made purely through visual analysis. Instead, the indication that the variability 

did change during the bark beetle infestation in 2018 comes from the classification, since it 

was possible classify the AOIs into attacked and healthy forest stands. 

5.2 Finding optimal thresholds with ROC-Curves 

The results from the different VI classification models displayed varying performance (Section 

4.2.1; Figure 12). Looking at the performance for the whole period, NDVI and RDI performed 

better than DRS and NDWI, with NDVI as the best performing classifier. DRS and NDWI 

were able to correctly classify AOIs infested by bark beetles at a rate of 0.9 while 

misclassifying areas with no recorded outbreak by 0.71. This is a trade-off which is just slightly 

better than random and does not sufficiently detect bark beetle affected forest stands without 

misclassifying a large number of healthy areas. NDVI and RDI were able to correctly classify 

infested forest stands with a rate of 0.8 while misclassifying areas without outbreaks as infested 

by 0.14 (NDVI) and 0.28 (RDI). The trade-off for both NDVI and RDI could be said to be 

acceptable as the goal is to detect forest stands that have been infested, hence the 

misclassification of some stands that have not experienced an outbreak is less of a problem if 

the result of the method is to mitigate bark beetle disturbance. The performance of NDVI 

compared to the other Vis could potentially be due to that the variation would increase over a 

longer period as the bark beetle attack persists, in which case the higher spatial resolution of 

10 m might be beneficial compared to the 20 m of DRS, RDI and NDWI. 

For the early-stage period (1st May – 1st July), NDWI performed best i.e., the best trade-off 

between Tpr and Fpr, correctly detecting and classifying all forest stands affected by bark 

beetles while misclassifying healthy stands at a rate of 0.71 (Section 4.2.2). The classification 

models for NDVI, DRS and RDI performed worse than NDWI for the early period with a 

generally poor classification accuracy and are hence not reliable classifiers in this case. The 

performance of NDWI show great potential as it correctly classified all infested stands and 

could be deemed acceptable even if having an Fpr of 0.71 as the importance of detecting 

infested stands overweight the risk of misclassifying healthy stands. By detecting all areas with 

bark beetle infestation, it heavily insinuated that the response in NDWI is due to bark beetle 

outbreaks. Though not possible to say for certain as the signal could also be due to the drought, 

however, more likely by comparing to swarming data is that the signal is bark beetle induced. 

Why NDWI performed the best for the early period could potentially be due its high sensitivity 

to water content, at the early stage of an infestation water content plays a major factor. Bark 

beetles are both drawn to water stressed hosts as well as cutting off water supplies within the 

tree when attacking it (Abdullah, Skidmore, et al., 2019a; Huo et al., 2021). Especially when 

in the early stage where the foliage is still spectrally unaffected, the sensitivity to water of 

NDWI could play a key part. RDI and DRS performed poorly potentially due to the very large 

fluctuation in the variation coefficient (Section 4.1.1, Section 4.1.2) which in a shorter 

timeframe negatively affect the separability of areas with and without bark beetle outbreaks. 

5.3 Timing of detection 

Using the optimal threshold from NDVI and RDI for the model over the whole season show 

that the earliest detection date for an outbreak was 13th July for NDVI (AOI 4) and 16th July 

for RDI (AOI 2) (Section 4.2.1). The average detection date for NDVI was the 30th of July 

which is a 2-week difference from the earliest date. The earliest date of detection with NDVI 
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(AOI 4) stands out compared to the detection dates for the other AOIs (NDVI) which were 

detected at dates closer to the average (30th of July), hence, it is possible that the detection date 

of AOI 4 is a bit overestimated due to anomalies. More reasonable is that the earliest detection 

with NDVI occurred around the 20th of July. This is plausible as the green attack stage which 

extends to July would have a stronger response signal around this time which would be possible 

for NDVI to detect (Huo et al., 2021). RDI had an average detection date around the 2nd of 

August with most AOIs detected closer to the average than the 16th of July. Hence it is in this 

case also likely that this date have been overestimated and in reality would be closer to the end 

of July while the bark beetle attack is transitioning into red stage (Huo et al., 2021). 

The earliest detection date for NDWI in the early stage of the season was on the 14th of May, 

which is possibly also somewhat overestimated as the other AOIs (NDWI) were detected closer 

to the average detection date 1st of June. Hence it is more likely that the earliest detection date 

for NDWI is closer to the 29th of May. This result is important as the date coincides in the 

middle of the green attack-stage, which would point to that the bark beetles have yet to leave 

their hosts, increasing the probability of successful mitigation for the forestry industries 

stakeholders (Abdullah, Darvishzadeh, et al., 2019).  

5.4 Sources of error 

During the analysis of this thesis there are sources of error to consider when interpreting the 

results. Firstly, the lengths of the time-series in this study are rather short due to Sentinel-2 data 

only being available from the 30th of March 2017 when using the Copernicus database via 

Google earth engine. Additionally, images during late autumn and winter were dismissed due 

to noise from snow cover and low solar angle which created gaps in the time-series. This 

influenced the study as there was not a full season of Sentinel-2 data prior to the outbreaks in 

2018 to compare with, which made it more difficult to evaluate how an outbreak affects the 

vegetation season. With a longer time-series it would be possible to compare how the 

coefficient of variation act during a bark beetle outbreak in relation to how the coefficient of 

variation behaved during a growing season without bark beetle outbreak. It would then be 

possible to analyse how the coefficient of variation differed during an outbreak compared to 

earlier years for the same forest stand. That would enable a comparison between healthy and 

infested condition for a stand rather than comparing different stands. 

Secondly, as images with cloud cover were eliminated with the cloud filter, the different AOIs 

and areas had unequal number of images from which VI values were extracted. This led to 

some difficulties when classifying and searching for optimal thresholds of the forest stands 

since this was done with the cumulative sum i.e., in some cases stands had a higher cumulative 

sum due to a larger number of images included in the sum. This could potentially have affected 

the performance of the VI models as some stands could have over-or-underestimated the 

response signal for one stand compared to the other.  

Thirdly, the bark beetle damage data which was used when identifying forest stands with and 

without recorded berk beetle infestation tells where the has been an outbreak. However, it is 

possible that there are areas in the data that have been missed or not recorded perhaps due to 

different forest owners. As the study area is not that big it could be possible that areas with no 

recorded infestation could have been affected without being detected/recorded. 
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6. Conclusion 
The aim of this thesis was to study if the variability between pixels for a vegetation index on a 

forest stand scale change during a spruce bark beetle outbreak and to test if the variability can 

be used as an early indicator for bark beetle infestation.  

The results indicate that the variability within a forest stand does change during a bark beetle 

outbreak with increased variability over time within stands that have been attacked by bark 

beetles.  

It was found that NDWI was the most suitable index during the period May-July as it was able 

to detect all infested forest stands. However, for the whole season NDVI and RDI also display 

potential as both were able to detect high rates of infested forest stands while limiting the 

misclassification of healthy ones.  

An infested forest stand could be detected as early as ca. the 29th of May. Meaning that the 

infestation is still in the green attack stage, in which mitigation is still possible to eliminate the 

spread of further bark beetle attacks. 

The results show that changes in variability have the potential to be used as an early indicator 

for bark beetle infestation, and the variability can be used to detect and classify individual forest 

stands that were infested at an early stage i.e., green attack stage. 
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Appendix 
 

Following appendix section display the coefficient of variation in each AOI where figure A1, 

A2 and A3 are AOIs with recorded bark beetle infestation. A4 and A5 are AOIs without 

recorded bark beetle infestation. 

 

A1: Coefficient of variation (%) for AOI 1-4 between 2017-2018, where green curve is DRS, red is RDI, blue is NDVI and 

yellow is NDWI. 
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A2: Coefficient of variation (%) for AOI 5-8 between 2017-2018, where green curve is DRS, red is RDI, blue is NDVI and 

yellow is NDWI. 

 

 

A3: Coefficient of variation (%) for AOI 9 and AOI 10 between 2017-2018, where green curve is DRS, red is RDI, blue is 

NDVI and yellow is NDWI. 
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A4: Coefficient of variation (%) between 2017-2018 for area 1-4 where no bark beetle infestation has been recorded, where 

green curve is DRS, red is RDI, blue is NDVI and yellow is NDWI. 
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A5: Coefficient of variation (%) between 2017-2018 for area 5-7 where no bark beetle infestation has been recorded, where green curve is DRS, 

red is RDI, blue is NDVI and yellow is NDWI. 


