

Department of Automatic Control

Data-driven forecasting

of electric vehicle charging

for frequency regulation

Fredrik Sidh

Gustaf Sundell

MSc Thesis

TFRT-6169

ISSN 0280-5316

Department of Automatic Control

Lund University

Box 118

SE-221 00 LUND

Sweden

© 2022 by Fredrik Sidh & Gustaf Sundell. All rights reserved.

Printed in Sweden by Tryckeriet i E-huset

Lund 2022

Abstract

Electric vehicle (EV) charging may be used in aggregation as virtual batteries to
provide a frequency regulating service to the power grid. The service is sold on the
Frequency Containment Reserve (FCR) markets, and is traded one and two days
ahead. Forecasts of charging patterns are essential to reliably provide this ancillary
service. The thesis aims to build a generalized model for forecasting EV charging
behavior of 47 EVs in Sweden. The charging behavior is characterized by the state
of charge and whether the EV is plugged in to the home charging station or not.
Recurrent Neural Networks (RNNs) and XGBoost are applied to produce forecasts
that fit the two FCR market settings. Performance of the models is evaluated and
compared to a naive baseline in terms of RMSE, MAE, accuracy and F1-score.
The naive baseline assumes the same charging behavior as the previous week. The
results show both classes of models to consistently beat the naive baseline on both
markets, and XGBoost proved to be the best forecaster.

3

Acknowledgements

We would like to thank our academic supervisor Richard Pates at the Department
of Automatic Control at Lund University for his thoughtful guidance and encour-
agement, and our industry supervisor Daria Madjidian at Emulate Energy AB for
his enthusiasm and helpful insights into the problem. We would also like to thank
the Swedish National Institute of Computing (SNIC) for providing computational
resources, and especially their helpful and patient support team. Finally, we would
like to thank all of the EV users who participated in the pilot study and made the
project possible.

5

Contents

Acronyms 9
1. Introduction 12

1.1 Aim and Scope . 12
1.2 Background . 12
1.3 Previous research . 15
1.4 Scientific contributions . 15
1.5 Outline of the Thesis . 16
1.6 Code . 16

2. Data 17
2.1 Data description . 17
2.2 Preprocessing of Data . 19
2.3 Final attributes for modeling 22

3. Theory 24
3.1 Learning task . 24
3.2 Neural Networks . 26
3.3 Gradient Boosting Decision Tree 31

4. Methods 34
4.1 Forecasting in the FCR market setting 34
4.2 Forecasting Models . 35
4.3 Data formatting for learning . 37
4.4 Model training . 42
4.5 Hyperparameter tuning . 43
4.6 Setup for model training . 46
4.7 Performance evaluation . 48

5. Results 50
5.1 General performance . 50
5.2 Example forecasts . 54
5.3 Performance on individual EVs 54

7

Contents

6. Discussion 58
6.1 Performance of models . 58
6.2 Limitations and improvements 60

7. Conclusion 64
7.1 Future Research . 64

Bibliography 66
A. Data attributes 70

A.1 EV time series attributes . 70
A.2 EV metadata attributes . 70

B. Model parameters 72
B.1 RNN hyperparameters . 72
B.2 XGBoost hyperparameters . 73

8

Contents

9

Glossary

BCE Binary Cross-Entropy.

CART Classification And Regression Tree.

EV Electric Vehicle.

FCR Frequency Containment Reserve.

FCR-D Frequency Containment Reserve Disturbance.

FCR-N Frequency Containment Reserve Normal.

FFNN Feedforward Neural Network.

GBDT Gradient Boosting Decision Tree.

LSTM Long Short-Term Memory.

MAE Mean Absolute Error.

ML Machine Learning.

MSE Mean Squared Error.

NN Neural Network.

ReLU Rectified Linear Unit.

RMSE Root Mean Squared Error.

RNN Recurrent Neural Network.

10

Glossary

SOC State of Charge.

SVK Svenska Kraftnät.

TCL Thermostatically Controlled Load.

11

1
Introduction

1.1 Aim and Scope

The goal of the thesis is to forecast the charging patterns of Electric Vehicles (EVs).
Collections of EV charging may be used in aggregate as virtual batteries to provide
frequency regulation to the power grid [Madjidian et al., 2018]. In this setting, the
charging patterns are characterized by the two time series of an EV’s State of Charge
(SOC) and whether it is plugged into the charging station or not.

Individual EV charging patters of the users are modeled through offline training
and validation. The forecasts should be able to give reliable predictions per hour of
how much frequency regulation can be provided in aggregate, and be generated in
time to be traded on the frequency regulating markets. A generalized model of EV
charging behavior is built from a set of 47 EVs in Sweden and used to forecast the
charging patterns one or two days ahead.

Two classes of Machine Learning (ML) methods are applied: Recurrent Neural
Networks (RNNs) and XGBoost; both of which have proven to be promising time
series forecasters in literature. The ML methods are deemed to be a suitable ap-
proach for several reasons. There is a large number of individual users, where the
corresponding time series data is heterogenous in length and contain long periods of
missing data. In these settings, conventional statistical methods such as the ARIMA
framework become impractical to work with. Leveraging ML methods also allows
for learning a generalized model across all multivariate time series of the EVs.

1.2 Background

As the world transitions to more renewable energy sources in the light of climate
change, new demand is placed on the control of the electrical grid. With an increased
use of renewable energy in the power mix, the supply of energy is becoming more
unpredictable due to the inherent dependence on weather conditions for wind and
solar photovoltaic power. This creates new challenges of controlling the balance be-
tween supply and demand for energy, and thus keeping the frequency of the power

12

1.2. BACKGROUND

grid stable[IEA, 2022]. In Sweden, this means a frequency of 50 Hz which is regu-
lated through a handful of ancillary services[SVK, 2022c], of which the FCR is the
focus of this report.

Virtual batteries
To combat the new control challenges, batteries can be used to instantly dispatch
or absorb electricity in order to regulate the frequency of the grid. Instead of us-
ing physical batteries, Thermostatically Controlled Loads (TCLs), e.g. heat pumps
and air conditioners, and deferrable loads, e.g. charging of EVs, can be used in ag-
gregation to emulate virtual batteries to regulate the power grid[Madjidian et al.,
2018]. The flexibility in the virtual battery can then be traded on the FCR market
for frequency regulation.

Emulate Energy AB (the solution provider going forward) is a company with
proprietary automatic control software for aggregating TCLs and EV charging sta-
tions in households as virtual batteries and thus provide a regulating service to the
power grid operators through the FCR markets. The solution provider operates in
Swedish households by contracts with power providers and appliance manufactur-
ers, to control TCLs and EV charging stations, and uses their proprietary control
algorithms to provide this service. In return for lending their devices to the solution
provider’s control algorithms, the households get an optimized schedule for their
electricity consumption[Emulate Energy, 2022].

Out of the possible components of a virtual battery, the focus of the thesis is the
use of EV charging. The forecasting aims to model the charging patterns at all time
points of the forecasted period. The full forecasted time series may be translated
into a measure of flexibility characterized by the time of plug in and the time of
plug out from the charging station along with the SOC at the time of plug in. How
the three quantities translate to this measure of flexibility is shown in Figure 1.1,
although, the details are not pursued in the thesis.

The FCR 1-D and 2-D markets
The FCR market is divided into FCR-N and FCR-D for operations during normal
and disturbance respectively depending on how much frequency regulation is re-
quired (50.0±0.1 Hz for FCR-N, else 50.0±0.5 Hz for FCR-D)[SVK, 2022c]. The
FCR disturbance market is further segmented into up and down regulation. Since
January 2022, the Swedish power grid operator, Svenska Kraftnät (SVK), has in-
troduced trade of the frequency down-regulating service (FCR-D down) along with
the previously traded ancillary services for FCR-D up and FCR-N[SVK, 2022d].

The quantities for each of the three services are traded on the one day ahead
market (1-D) and the two day ahead market (2-D), where the majority of the flex-
ibility is purchased on the 2-D market for FCR-N[SVK, 2022b]. The bids for the
1-D and 2-D markets close at 18:00 and 15:00 respectively[SVK, 2022a]*.

*The Swedish Energy Market Inspectorate (Ei) have at the time of publication accepted the "En-

13

CHAPTER 1. INTRODUCTION

Figure 1.1 Depiction of how time of plug in, time of plug out, and the SOC at time of plug
in relate to a flexibility measure. The amount of charging required is shown as the height of
the figure. Charging may be schedules earlier or later relative some nominal charging rate.
Adapted from [Madjidian et al., 2018].

The bid gate closing time of each of the markets sets the final time point of when
a forecast would be needed. For the user of the forecasting model to have time to
place a bid on the market, the forecast creation time is set to one hour prior to the
closing of bids for each market (i.e. 17:00 for 1-D and 14:00 for 2-D).

Hence, a prediction of the expected aggregate EV charging needs to be produced
for each hour of the next day (1-D market) and the day after that (2-D market). Since
the charging of an EV can be scheduled earlier or later compared to the forecasted
unregulated charging schedule, the charging of an EV can be used for both up and
down frequency regulation (as is also shown in Figure 1.1). Hence, the specific
FCR market (FCR-N, FCR-D up, FCR-D down) is not differentiated throughout the
report.

erginet and Svenska kraftnät proposal for common and harmonised rules and processes for the exchange
and procurement of FCR balancing capacity in accordance with Article 33(1) of Commission Regula-
tion (EU) 2017/2195 of 23 November 2017 establishing a guideline on electricity balancing". If further
accepted by the EU, the proposal would set the gate closure of bids to 00:30 and 15:00 of one day ahead
for what is currently referred to as the 2-D and 1-D FCR markets respectively. The new bid gate clo-
sure of the 2-D FCR market would allow for more accurate forecasts, but the main task of forecasting
withstands.

14

1.3. PREVIOUS RESEARCH

1.3 Previous research

EV charging behavior
A large study of 180 000 EVs in Great Britain showed some clear characteristics of
the charging behavior of individual users. Charging is typically performed in four
different settings: at home, at work, and at slow or fast public charging stations.
Naturally, there is also a clear weekly periodicity in the charging behavior where
the peak for residential charging is about 19:00-20:00 when people arrive home
after work, as well as around 9:00-10:00 when people arrive to work.[Dodson and
Slater, 2019]

Forecasting
In the last decade, there has been a massive increase in the application of ML models
in countless areas. Various ML methods have been applied to the area of forecasting
in relation to EVs. [Hecht et al., 2021] successfully applied Gradient Boosting Deci-
sion Trees (GBDTs) and Random Forest Classifiers to forecast EV charging station
availability. [Ullah et al., 2021b] applied an ensemble of ML methods (Decision
Trees, Random Forests, and K-Nearest Neighbors) to predict the energy consump-
tion efficiency of EVs during use. [Ullah et al., 2021a] also successfully applied
GBDTs and Feedforward Neural Networks (FFNNs) to forecast electric consump-
tion of EVs. XGBoost is chosen as one of the applied models due to its successful
performance in related fields, even though it does not explicitly encode temporal
dependencies.

In contrast, RNNs are capable of explicitly encoding temporal dependencies and
are well-suited for a wide variety of time series forecasting problems [Hewamalage
et al., 2021]. RNNs have for example been applied to load forecasting of EVs in
[Yang et al., 2021].

Out of the wide range of ML models, XGBoost and RNNs represent two meth-
ods with fundamentally different assumptions and structures. This thesis aims to
evaluate the applicability of these models on forecasting EV charging behavior. To
the best of our knowledge, this is the first paper examining the charging behavior of
EVs with the goal of frequency regulation through virtual batteries.

1.4 Scientific contributions

This project will help understand how recent developments in ML techniques can be
applied to forecasting of EV charging behavior in individual households in Sweden.
Specifically, XGBoost and RNN models are used to learn behavior across multiple
EVs with the goal of producing reliable forecasts for individual users. Architec-
tures and hyperparameters of the models are optimized for the problem at hand and
the results may help researchers and practitioners in related areas discover which
models could prove to be important in these problem settings.

15

CHAPTER 1. INTRODUCTION

1.5 Outline of the Thesis

In Chapter 2 the data is presented in terms of structure, attributes, collection and
how it was engineered for the problem. Then in Chapter 3 the forecasting problem is
framed mathematically and the theoretical foundations of the models are presented.
The approach to applying the statistical methods to the time series problem is then
presented in Chapter 4. The results are given in Chapter 5 and then discussed and
concluded in the final parts, Chapter 6 and Chapter 7.

1.6 Code

All code relating to the project is publicly available at https://github.com/
sidhson/FCR-forecasting-thesis. The data used has been removed to respect
the privacy of the users.

16

https://github.com/sidhson/FCR-forecasting-thesis
https://github.com/sidhson/FCR-forecasting-thesis

2
Data

In order to present the data used in the project, we remind ourselves of the goal:
to produce reliable forecasts of the deliverable flexibility for the 1-D and 2-D FCR
markets. Predicting flexibility on an aggregate level can be derived from the indi-
vidual flexibility of each EV, and thus the aim of this project is to create forecasts
for individual EVs. In order to forecast the flexibility that can be provided by con-
trolling the charging schedule of an EV, knowledge about the charging pattern of
the EV is required.

The setting in which the automatic control software can dictate the charge sched-
ule is when the EV is plugged in at the charging station of the owner’s home. Thus,
the forecast must account for the time of plug in and the time of plug out for the EV,
and also differentiate between the home charging station and some other charging
station.

In agreement with the service provider, the choice was made to model whether
or not the EV is at the home location. Even though there is no strict causal relation-
ship between being at home and plugging in the EV, it is still considered a sufficient
design choice. Furthermore, with a reliable forecast of when the EV arrives at the
home location, additional modeling could be made of when the EV is likely to be
plugged in to the charging station.

Apart from forecasting when the EV is at the home location or not, predicting
the EV’s SOC at the time of plug in is important in order to know how much the
EV needs to be charged and thus the amount of flexibility that can be delivered. An
example of the two forecasted time series is shown in Figure 2.1

2.1 Data description

The data gathering process for the project consists in an API provided by the solu-
tion provider. The API gathers information on seven attributes from each EV along
with time stamps and a minute count at 30 minute intervals*. Tied to each EV is

*This was not always the case. The data had to be resampled to this equidistant sampling frequency
to be useful for modeling. The resampling approach is described in detail in Section 2.2

17

CHAPTER 2. DATA

Figure 2.1 An example of the multivariate time series with the two forecasted variables
depicted over seven days. A recurring daily pattern of battery depletion and charging occurs
when the user leaves and returns home respectively. The depicted time series contains no
missing values.

a multivariate time series, which contains the attributes summarized in Table 2.1.
Additional attributes were derived from these in order to facilitate modeling; the
final attributed used for modeling are summarized in Section 2.3. A more in depth
explanation of all the attributes is provided in Appendix A.1. In addition to the time
series, each EV also has a unique identification number and some metadata which
is further explained in Appendix A.2. Of the metadata available, the home location
of the respective EVs was the only variable of interest for modeling purposes.

Attribute Description
time Date-time point in UTC
period Minute tracking
odometer Accumulated driving distance
latitude Position north-south direction
longitude Position east-west direction
soc Battery level of EV
charge_status Charging, not charging or fully charged
isPluggedIn Plugged in to charging station or not
range Possible driving distance with current battery level

Table 2.1 Attributes of the multivariate time series of each EV with a short description. A
more detailed description of the data is given in Appendix A.1.

The data collection ran continuously throughout the project, meaning that the
available dataset grew as the project progressed. The data was collected starting

18

2.2. PREPROCESSING OF DATA

2022-01-04, and the last recorded data used for modeling was retrieved at 2022-05-
16. As the data collection progressed, more customers joined the pilot study and
some also left, resulting in different first and last records of different time series.
Dealing with the heterogeneity of the time series is further elaborated on in Sec-
tion 2.2.

In order to make use of the available data, it needed to be preprocessed, feature
engineered and formatted in such a way that the models used could make sense of
it. The rest of the chapter explains the preprocessing and feature extraction steps
in more detail while the formatting is described in relation to the modeling in Sec-
tion 4.3.

2.2 Preprocessing of Data

The entire data collection was performed on 53 EVs. Out of these, 5 EVs were
not recording their location. The location of the car could potentially be a strong
explanatory variable, but more importantly, it is absolutely necessary to determine
whether the EV is at home or not. Modeling if the EV is located at home or not is
a fundamental goal, and thus these 5 EVs are omitted going forward. In addition,
there was one EV which had such few records that it could not be used for modeling,
and had to be omitted as well. The data used in the project is thus focused on the
time series of the remaining 47 EVs.

The attribute period was considered superfluous for the useable data. As the
attribute is a minute counter from when the data collection began it does not encode
any new information that is not present in the time measurement, hence it was
deemed unnecessary to store at this point of the preprocessing.

Thus far, the steps up until removing period in the preprocessing of the data
have been explained. Algorithm 1 outlines all the steps in preprocessing algorithm,
the rest of the steps are described in more detail in the remainder of the section on
preprocessing.

Interpolation limitations
Missing data is always going to be a factor to face when dealing with real-world
data. In the multivariate time series for each EV, an observation must be complete
(i.e. each attribute recorded at that time point) for it to be usable. Thus, any observa-
tion containing at least one missing value is problematic and needs to be addressed.

When modeling sequences, it is important to have consecutive observations. For
small gaps along the time-axis of a univariate time series, some basic interpolation
methods can increase the amount of data significantly, without distorting the qual-
ities of the data. As the attributes of the dataset is a mixture of continuous and
categorical variables, the appropriate interpolation methods selected were linear in-
terpolation for the continuous attributes, and using the nearest available value for
the categorical attributes.

19

CHAPTER 2. DATA

Algorithm 1 High-level algorithm for preprocessing

for every EV do
Retrieve EV data
if EV is recording location then

Remove attribute period
Create piecewise linearly/nearest interpolated series where gaps ≤ 5
Infer missing categoricals where possible from continuous measurements
Create new time axis with equidistant 30 min sampling time
Add distance-column
Use distance-column to create is_home-column
Save as processed EV data

else
Ignore EV

end if
end for

A gap of five consecutive missing values was considered small enough to bridge
using said interpolation methods. The sampling intervals differed somewhat and the
maximum interpolated period was a bit over three hours. This maximum period of
interpolation was deemed a reasonable trade-off between increasing the amount of
usable data and the data still being representative of the generative process. The
trade-off for different number of interpolated steps is shown in Figure 2.2.

Figure 2.2 Fraction of the total aggregated data which contain measured values (per at-
tribute) with different steps of interpolation. The interpolation steps range from 0 to 49, i.e.
up to one full day. The interpolation limit was set to five and is marked in red in the figure.

20

2.2. PREPROCESSING OF DATA

Interpolation of categorical variables
For the categorical attributes, the same interpolation limit of five consecutive miss-
ing values rule was applied and interpolated with the method of nearest available
value (selecting the earlier value if two records had equal distance). However, for
many EVs, a pattern was observed where the categorical attributes (isPluggedIn
and charge_status) were the only missing measurements for many records.
Solely relying on the interpolation approach presented in Section 2.2 means that
many rows of data remain without the two categorical variables, which decreases
the amount of usable data. However, some causal inference could be made from
the continuous variables on the categorical ones. If the EV’s SOC had increased
between time points, then the EV must have been plugged in at some point between
the previous and the next recording. Furthermore, this means that the charge status
at that time must have been CHARGING. With this approach some extra information
could be gained from the original data.

One would think that the vice versa causal inference would be true as well,
that if the SOC decreased between two time points, then the EV cannot have been
plugged in or charging. Data exploration does however show instances where an EV
is plugged in while the SOC decreases (this is also clearly seen in Figure 2.1). This
is in line with manufacturers who expect some battery depletion when the car is
not in use†. As a consequence for the preprocessing, the attribute indicating plug in
cannot be derived solely from the decreasing SOC. The charging status could have
been computed, but the recording would still be unusable since the plug in status is
missing.

As stated earlier, the categorical variables for charging status and whether the
EV is plugged in or not are missing more often than the other numerical variables.
Since neither of these are target variables, they could have been removed altogether
in order to have a larger number of complete records. The difference is however
small (as seen in Figure 2.2) and thus it was decided to keep said categorical at-
tributes for their potential explanatory power. Furthermore, more data can also be
gathered easily which supports the decision.

Equidistant resampling
In the raw data on the EVs, some variations in sampling intervals were found. This
is problematic for models that require equidistant sampling times. The use case of
this thesis is to produce forecasts for the charging behavior on an hourly basis, hence
30 minute sampling time was chosen as this gives hour by hour forecasts, but with
higher resolution. A new time axis was created with equidistant sampling times of
30 minutes, occurring at whole and half hours (i.e. 12:00, 12:30,...). The data was
then projected onto this new time axis following the interpolation scheme outlined

†See https://www.tesla.com/support/range for more insight into how SOC decreases for an
EV not in use.

21

https://www.tesla.com/support/range

CHAPTER 2. DATA

in Section 2.2. The result is that all data for the usable EVs is at regular sampling
intervals of 30 minutes.

Along with these interpolated intervals, some extrapolation was also performed
when projecting the original time series onto an equidistant 30 minute sampled time
series. If a time point on the new time axis was within 15 minutes from an original
record, the extrapolated value was used for that time point.

Feature engineering
At this point the time series have been resampled to equidistant time steps and
interpolated in a not too lenient manner. The goal of the forecasting is to predict
the EV’s SOC along with when it is at home. In order to compute the latter from
the data, an attribute called distance is added. This attribute is derived from the
longitude and latitude attributes and the metadata containing the home location
of the EV. The distance attribute is calculated in meters and is necessary as the
curvature of the Earth does not allow one to derive the distance to the home solely
in the domain of coordinates.

From the new attribute of distance to the home location, the target variable
is_home can finally be derived. Data exploration examining all time points where
an EV is truly plugged in to the charging station at home shows that a distance less
than 150 meters to be a good radius.

2.3 Final attributes for modeling

As a concluding remark of the chapter, the time series which have been preprocessed
are summarized. Interpolation and resampling of the time series was performed and
the attributes distance and is_home were introduced.

In addition to these new attributes, some final feature extraction was performed.
The date-time were encoded as sine and cosine waves with one sine-cosine pair
indicating the day of week with a periodicity of a week, and another sine-cosine
pair indicating the time of day with a periodicity of a day. The choice of encoding
date-time in such a way was to ensure that times close by each other (e.g. before
and after midnight) are also close by numerically, as opposed to using a linear scale
(e.g. [0,1]). The selected date-time encoding also allowed for far fewer features than
if dummy variables would have been used.

Furthermore, the odometer measurements were deemed a poor fit for the prob-
lem at hand. Firstly, the odometer may differ wildly between individual EVs de-
pending on age of the EV and typical driving distances. Secondly, the odometer
is strictly non-decreasing over time. As the dataset is split temporally into periods
used for learning the model and validation of it, problems arises when a model is fit-
ted to data with a certain distribution which do not generalize to new data. Thirdly,
it is hard to motivate why the value of the odometer in and of itself could give
any information about soc and is_home. However, the odometer could work as a

22

2.3. FINAL ATTRIBUTES FOR MODELING

Attribute Description
day_sin Time of day encoding
day_cos Time of day encoding
week_sin Day of week encoding
week_cos Day of week encoding
odometer_diff Difference of subsequent odometer measurements
latitude Position north-south direction
longitude Position east-west direction
soc Battery level of EV
charging Binary indicator for charging
not_charging Binary indicator for not charging
fully_charged Binary indicator for fully charged
isPluggedIn Plugged in to charging station or not
range Possible driving distance with current battery level
distance The distance in meter to the home location
is_home Located at the home location or not

Table 2.2 Attributes of the final preprocessed multivariate time series of each EV with a
short description. A more detailed description of the data is given in Appendix A.1.

measurement of speed, if the difference is taken between observations, which may
say something about the soc. Thus, a new feature odometer_diff was created as
the difference between subsequent measurements.

The categorical variable for charging status was also transformed into three
dummy variables indicating each of the three states charging, not charging or fully
charged. The final attributes used in modeling are summarized in Table 2.2.

23

3
Theory

This chapter formulates the forecasting problem mathematically and how it fits in to
the vast terminology of machine learning. Furthermore, the main classes of models
applied in this thesis are introduced, as well as the theory behind them.

3.1 Learning task

Machine learning is used to solve a great variety of problems. However, no solution
can be provided without an adequate problem formulation. This section aims to
first introduce the forecasting problem in a clear mathematical way. Subsequently,
the problem will be tied more closely to practical implementation and to how the
learning task of this thesis fits into ML terminology.

Mathematical formulation of the learning task
The learning task is focused on time series forecasting of two measured quantities
(target variables going forward, and depicted in Figure 2.1), which may be denoted
as y(k)(τ) = (y(k)1 (τ),y(k)2 (τ)), where y(k)1 (τ) = soc of EV k at some time τ and
y(k)2 (τ) = is_home of EV k at some time τ . The forecast made by the model is
generated at some forecast creation time t and is offset by some integer D ≥ 0
number of time steps. In the problem setting of this thesis, the forecast should be
made in close connection to the bidding time for the FCR market, and apply to the
period during which the solution provider will provide frequency regulation, which
starts some time after the bid is made, as explained in Section 1.2. A visualization
is provided in Figure 4.1. The choice was made that forecasts should be generated
one hour prior to the bid gate closure time, meaning that the forecast creation times
are set to 17:00 for the 1-D market and 14:00 for the 2-D market. For the forecasted
period to begin at midnight, D = 14 for the 1-D market and D = 68 for the 2-
D market, as the time points are evenly spaced by 30 minutes. Furthermore, the
forecast consists of predictions at an integer H > 0 number of time points. As the
forecasted period covers 24 hours for both the 1-D and the 2-D markets, H = 49, as

24

3.1. LEARNING TASK

this covers the entire 24 hours as well as the endpoints. Thus, the forecast made at
time t will include 2H values: y(k)(t +D+ 1),y(k)(t +D+ 2), . . . ,y(k)(t +D+H),
which is simplified to y(k)(H(t)) going forward. The forecast has 2H values as each
y(k) contains both target variables.

In order to make forecasts, the model will have access to all the informa-
tion known at the forecast creation time t, which in this setting means all mea-
sured values of the EV up to time t. The inputs to a model are commonly de-
noted as features in ML. With a total of F features, the inputs may be denoted
as x(k)(τ) = (x(k)1 (τ),x(k)2 (τ), . . . ,x(k)F (τ)), where x(k)l (τ) is feature l measured from
EV k at time τ . As the target variables are also measured through time, they them-
selves are included in the input to the forecasting models and two of the features are
thus the observed values of the target variables.

The input to the models are, like with the forecasted period, taken from fixed
time intervals occurring before the forecast creation time. Which prior time points
to include in the input may be chosen with great freedom, and the choices made
in this thesis are explained in Chapter 4. For now, the input will be denoted as
x(k)(T (t)).

The models generate forecasts according to their individual algorithms as

x(k)(T (t)) model−−−→ ŷ(k)(H(t))

where the distinction is made between values predicted by the model, ŷ(k), and
true values, y(k).

Supervised learning formulation
The forecasting problem may be formulated as a supervised learning task, as a
time series can be reformatted into corresponding input and output sequences, from
which a model can learn a functional relationship. Given some previous input se-
quence, the model should make some forecast ŷ(k)(H(t)) the functional relationship
may then be learned by comparing against the true values y(k)(H(t)).

A common way to represent a supervised learning problem is that it is trained
on labeled pairs of observations (Xi,Yi), where i ∈ {1, . . . ,N} and N is the number
of observations that the model is trained on. The natural notation then becomes

Xi←−x(k)(T (t))

Yi←−y(k)(H(t))

Since a generalized model is constructed, the formatted data will not carry in-
formation on which EV k and which time point t it was generated from as this is
unnecessary. The new unique identifier thus becomes i.

25

CHAPTER 3. THEORY

Training ML models in a time series setting is different from many other tasks.
There are ML models which are capable of explicitly modeling the temporal struc-
ture of the data, such as RNNs. Data which explicitly encodes the temporal struc-
ture is referred to as having a sequential structure as opposed to a so called cross-
sectional structure. A cross-sectional structure assumes all (Xi,Yi) pairs are inde-
pendent from (X j,Yj) if i ̸= j. Naturally, this assumption cannot be made for time
series, where temporal dependencies make this assumption void. However, some
models, such as XGBoost, cannot recognize this temporal dependence and require
a cross-sectional encoding of the input and output sequences to (Xi,Yi) pairs. Still
these models have been shown to perform well in time series forecasting. Exactly
how the time series are encoded to data structures which are interpretable to the ML
models is described in detail in Section 4.3.

There are two target variables to forecast in the supervised learning task. The
soc is a continuous real value that exists on the interval [0,1]. The is_home variable
is a binary categorical variable and takes values in {True,False}. Thus, the learning
task is a hybrid of regression and classification.

To encode the categorical values, it is noted that the classification is binary (as
opposed to multi-class classification). It is natural to encode the states as True −→
1,False−→ 0. This binary variable may be interpreted as success (the EV is at home)
or failure (the EV is not at home).

The rest of the chapter outlines the specific ML models used to solve the time
series forecasting problem.

3.2 Neural Networks

A neural network is a learning algorithm which takes some input vector X and builds
a nonlinear function f (X) to predict the response Y [James et al., 2021].

Feedforward neural networks
A Neural Network (NN) in it simplest form is a FFNN and consists on an input
layer, a hidden layer and an output layer as shown in Figure 3.1. The input layer
simply maps each input Xi of the input vector X = (X1, ...,Xi, ...,Xp) to the next
layer. The hidden layer is made up of a set of nodes (the width of the layer) and
for each node, it takes some weighted linear combination of the output from the
previous layer along with a bias term. The sum

h(X) = β0 +
p

∑
i

βiXi

is then run through a nonlinear activation function

A = g(h(X)) = g(β0 +
p

∑
i

βiXi)

26

3.2. NEURAL NETWORKS

Figure 3.1 Simple Feedforward Neural Network (FFNN) with one hidden layer. [James
et al., 2021].

where the activation function can be e.g. a sigmoid function, hyperbolic tangent
function (tanh) or Rectified Linear Unit (ReLU). The sigmoid is defined as σ(x) =

1
1+e−x and takes values in the interval (0,1) and the hyperbolic tangent as tanh(x) =
ex−e−x

ex+e−x and takes values in (−1,1). The ReLU is defined as ReLU(x) = max(0,x)
and is the most widely applied activation function for hidden layers [Sharma et
al., 2020]. The output layer takes the output from the previous layer and potentially
applies some function before passing the output of the neural network. The function
chosen in the output layer depends on the application and the domain of the response
variable, e.g. for binary responses the output from the previous layer can be passed
through a sigmoid to map it to (0,1) as it then may be interpreted as an estimated
probability.

A FFNN may be extended to consist of more than one hidden layer. Each of the
hidden layers then take the output of the previous one and passes the output to the
next one. For each node in hidden layer k the output is

Ak
(
hk,i(X)

)
= Ak

(
βk,0 +

p

∑
i

βk,ihk−1,i

)
In the case of many hidden layers, the NN is said to be deep and many nonlinear
mappings between the layers means that the learning algorithm can be trained to
capture intricate relationships.

Selecting the weights of a NN is a high-dimensional non-convex optimization
problem. Training is performed using backpropagation where at each pass over the
training data, a loss is calculated according to the current set of weights and then

27

CHAPTER 3. THEORY

the weights are adjusted according to the gradient of the loss with respect to each
specific weight. The loss function used is dependent on the domain of the response
variable, and could be e.g. Mean Squared Error (MSE) for regression and Binary
Cross-Entropy (BCE) for binary classification. One way to speed up computations
is by calculating the gradient on random batches of observations from the training
dataset. The algorithm then adjust the weights by taking a step in the negative direc-
tion of the calculated gradient, and then resamples. Once the algorithm has sampled
through the entire dataset, it is said to have completed one epoch. The number of
samples taken from the training dataset is called the batch size.

In addition to configuring the number of epochs and the batch size, the size
of the weight adjustment after calculating each batch gradient, can be set with the
learning rate. The rate at which the weights are updated may also be set in an adap-
tive manner, using momentum or different schedules for updating the learning rate.
After training the network, the architecture and the weights constitutes the func-
tional mapping from input vector to the response variable.

Recurrent Neural Networks
RNNs are an extension of FFNNs adapted for sequential data, and particularly
exploits the temporal structure of the data. The RNNs consist of an input layer
which now takes in the input vector at different time-lagged time points, i.e.
(Xt−ℓ, ...,Xt−1,Xt), where ℓ is the number of lags. The next layer is a recurrent layer
where each recurrent unit computes and passes on a hidden state which summarizes
the previous time-lags. For each recurrent unit the activation is calculated from the
input at the current time-lag and the activation at the previous time-lag as

Aℓ,k = g

(
wk,0 +

p

∑
j=1

wk, jXℓ, j +
K

∑
s=1

uk,sAℓ−1,s

)

and the output from the recurrent unit is

Oℓ = β0 +
K

∑
k=1

βkAℓk

Note that the weight matrices W , B and U are shared between all time-lags of the re-
current units in the network. The full RNN is depicted in Figure 3.2. In the example,
the output is only passed on from the last recurrent output node, but the flexibility
of the RNN allows for various architectures, one of which is Sequence-to-Sequence
where a full sequence is also the output of the model.

A variation of RNNs is bidirectional RNNs where the hidden states are passed
in both directions. As a consequence, information from both future and past time
points are available at all time steps, as opposed to the original RNN structure. A
as consequence, the number of units and outputs of the bidirectional RNN dou-
bles.[Schuster and Paliwal, 1997]

28

3.2. NEURAL NETWORKS

Figure 3.2 Simple Recurrent Neural Network depicted in a compact format on the left
and unrolled with the explicit recurrent units (Al) to the right. A hidden state representation
is passed between each recurrent unit in the right depiction. Note that each recurrent unit
consists of some width of nodes as in a hidden layer in a simple FFNN. Also note that the
weight matrices W , B and U are shared across all recurrent units. [James et al., 2021].

RNNs are trained using Backpropagation Through Time which is similar to
backpropagation for FFNNs, but since the weight matrices are shared across time,
the loss has to be calculated for each lag and then the accumulated loss is used to
update the weights. For long time sequences, many gradients needs to be calculated
and hence the training can suffer from vanishing or exploding gradients. To combat
this, more robust variations of the RNNs units have been developed.

Long-Short Term Memory Networks
A variation of a simple RNN is the Long Short-Term Memory (LSTM) network in-
troduced in [Hochreiter and Schmidhuber, 1997]. Instead of just passing on a repre-
sentation of the hidden state, each recurrent unit has a gated architecture consisting
of an input gate, output gate and a forget gate. The architecture of the LSTM unit
is shown in Figure 3.3 and this updated variation of the RNN is capable of learning
long term dependencies much more effectively than the original RNN.

The LSTM keeps track of two hidden states, Ct and ht , represented by the upper
and lower horizontal lines in Figure 3.3 respectively. Ct is only an internal hidden
state, while ht is the hidden state which is also used as output (simliarly to the
original RNN). When training the network, the LSTM unit uses the forget gate to
learn how much of the previous hidden state (ht−1) to throw away,

ft = σ
(
Wf · [ht−1,xt]+b f

)
the input gate to learn how much of the current input xt and the previous output ht−1
to add to the hidden internal state Ct ,

29

CHAPTER 3. THEORY

Figure 3.3 Long-Short Term Memory cell. [Olah, 2015].

it = σ (Wi · [ht−1,xt]+bi)

C̃t = tanh(WC · [ht−1,xt]+bC)

Ct = ft ∗Ct−1 + it ∗C̃t

where ∗ denotes the element-wise product. Finally, the output gate is used to control
how much of the hidden states should be returned as output from the LSTM unit as

ot = σ (Wo[ht−1,xt]+bo)

ht = ot ∗ tanh(Ct)

LSTM are chosen as the recurrent unit of the RNN in the thesis due to its com-
parable performance to other choices of recurrent units.[Bianchi et al., 2017; Joze-
fowicz et al., 2015]

Regularization and capacity of neural networks
The great flexibility of ML models makes them prone to overfitting and thus requires
regularization[Bandara et al., 2020; Lim and Zohren, 2021]. In order to create a re-
liable NN model, there are many hyperparameters to tweak, which mainly becomes
a trade-off between capacity and generalization. A summary of the parameters men-
tioned here can be found in Table B.1. Increasing capacity means giving the model
more freedom to fit the data, and to capture more complex behavior in the learning
task. This is accomplished by increasing the number of units in the different layers,
as well as the number of layers. The result is more weights and more non-linear
functions acting on the input-data, allowing for more closely fitting output.

As the network is trained on a training dataset, increasing the capacity also leads
to a higher risk of overfitting. The goal for any ML model is not to perfectly mimic
the behavior of the data that it has seen in training, but to do a good job explaining
the underlying process that the training data is generated from. Fitting the training
dataset too well means that the model might not be able to generalize well on new
data from the same data generating process.

30

3.3. GRADIENT BOOSTING DECISION TREE

To combat this issue, there are different regularization techniques, that aim to
make the network generalize better. Kernel regularization means adding a penalty
to the loss function proportional to network’s weights (e.g. the sum of the L1 or
L2 norms), which shrinks the size of the weights. Dropout is another common reg-
ularization method, where certain weights of the network are disabled at random
during the training process to force other nodes to learn independently. The moti-
vation for these methods are that large weights contribute to overfitting (for kernel
regularization) and that by disabling certain weights, other weights need to explain
the behavior independently (for dropout).

Furthermore, early stopping may be implemented, where the training process
can be terminated if no significant improvement has been made in a certain number
of epochs. A good practice is to monitor the loss on the validation dataset. Early
stopping can also shorten the training process, which can be practically advanta-
geous when dealing with large networks.

Implementation
Tensorflow 2.5 is a modern library for building NN models[Martín Abadi et al.,
2015]. The Keras API provided by Tensorflow is used in this thesis for building the
NN models outlined here[Chollet, 2017].

3.3 Gradient Boosting Decision Tree

A GBDT is an ensemble learning method which combines multiple predictors to
produce a single prediction. Each of the predictors is a decision tree which splits
the prediction space using high-dimensional rectangles as shown in Figure 3.4. The
decision tree used is a Classification And Regression Tree (CART) which may be
applied to either regression or classification tasks. The prediction of a single CART
is then a real valued score, which in the regression setting corresponds to the target
variable and in the classification setting may be put through a sigmoid function to
produce a class probability. To produce splits between regions, a measure of error
improvement from introducing the split is used, e.g. squared error for regression
and BCE for binary classification. A split which worsens performance is allowed if
later splits in the CART improves the overall result.

31

CHAPTER 3. THEORY

Figure 3.4 A simple decision tree with two features of the prediction space (X1 and X2).
The high-dimensional rectangles used for predicting the target variable Y (to the right) may
be displayed as a decision tree (to the left) [James et al., 2021]

.

The ensemble of CARTs are built by the GBDT algorithm in an additive fashion.
The first CART is created in with the approach just described, but subsequent trees
are built from the residual of the previous trees. For a GBDT, in addition to the
additive construction of the ensemble of CARTs, the prediction of each new tree is
optimized using the gradient of the overall loss function (thus, gradient boosting).
The prediction formed by the ensemble is then the sum of the predictions formed
by all of the model’s CARTs

ŷi =
K

∑
k=1

fk(xi)

where K trees are used, and each fk is a CART and xi is feature vector. [Friedman,
2001]

DART is an extension of GBDT where dropout is applied to the algorithm in
order to combat the issue of overfitting the training dataset. Similarly to how dropout
is used in training of deep neural networks, trees of the GBDT may be dropped with
some probability. [Rashmi and Gilad-Bachrach, 2015]

XGBoost (eXtreme Gradient Boosting) is a modern framework which imple-
ments GBDT and DART. The XGBoost implementation of the GBDT is somewhat
different in that each tree is additionally regularized with L2 regularization. The
splits and the adding of new trees is done in an efficient manner and trees’ impor-
tance are weighted by how much they improve the model’s performance. [Chen and
Guestrin, 2016]

Furthermore, XGBoost has been celebrated as the implementation provides a
flexible interface where tuning and training models is simple. XGBoost models are

32

3.3. GRADIENT BOOSTING DECISION TREE

also quickly trained, thanks in large part to its efficient algorithm for finding splits.

Multi-output multi-horizon adaption of XGBoost
In its initial formulation, XGBoost is a model that only outputs a single value. In the
binary classification setting, the model can either output a class prediction (for the
class with the highest probability) or the probability itself for the positive class. In
the regression setting, the output is just the continuous value predicted. This is still
true in the current implementation of XGBoost[XGBoost, 2022a], however efforts
have been made to extend the model to multiple outputs[Zhang and Jung, 2019]

The decision was made to use the current implementation with single output.
As a consequence, further architecture needed to be built for the XGBoost model
to perform the multi-horizon forecasting task. As the forecasting problem requires
models to output two separate target variables at several time steps, the solution was
to create a collection of XGBoost models for each target variable and time point in
the forecasting period. With a fixed length of the forecasting period, H, the result
was a collection of 2H models, half of which were regressors and half classifiers.

Regularization and capacity of XGBoost
Just as with NNs, XGBoost models can be tuned to increase capacity and avoid
overfitting. The number of trees the model builds, as well as to what maximum
depth (levels in the trees) are parameters that increase the capacity of the model and
thus also increase the risk of overfitting. What underlying booster is used may also
be altered, where the variant DART has the added drop-out behavior which works
to prevent overfitting.

Several other parameters exist to help regularize the model, all summarized
in Table B.2. The default XGBoost model actually already incorporates L2-
regularization, analogously to the one described for neural networks. Further regu-
larization is achieved with the gamma-parameter which sets the minimum improve-
ment that a tree must contribute to the loss function to be added to the model. The
learning rate (shrinkage factor) can also be used to adjust the speed at which new
trees reduce the residual error of the predictions.

The regularizing parameters more unique to XGBoost are perhaps the subsam-
ple and column sample ratios. If these ratios are set to less than one, the individual
trees are shown a random subset of observations and columns (features) respec-
tively. The aim to make the model generalize better since potentially dominating
features or observations are not show to all of the decision trees.

33

4
Methods

This chapter presents the models applied to the forecasting problem. The format-
ting of data for the models is described, and then how the models were configured,
optimized and trained. Lastly, the performance metrics for evaluation of the final
models is presented.

4.1 Forecasting in the FCR market setting

The forecasting task was discussed from a theoretical point of view in Chapter 3. In
terms of the application of the model, the forecasting is conducted in two settings:
on the 1-D and the 2-D FCR markets respectively. With the different bid gate closing
times of the two markets, one model is built for each market. This is in order to use
as much of the available data as possible.

It would be possible to model these markets with one larger model which out-
puts forecasts for both of the days, but this would mean that less information is used
in the predictions for the 1-D market since the forecast would have to be generated
in time for the closing of the 2-D FCR market bids. Still, the focus of the modeling,
in terms of architecture and hyperparameter tuning, is of the 1-D market to ensure
that reliable forecasts are possible at all. Then the successful models from the 1-D
market are re-trained and applied to forecast the 2-D market as well.

The common idea for the forecasting problem is that the forecasting model may
use all information available up to and including the time point t (when the forecast
is created), to make a forecast during the coming period of interest. In the use case
setting, forecasts need to cover the coming day (or the next), starting and ending
at midnight. Thus, the hours between forecast creation time (14:00 or 17:00) and
midnight of the forecasted day are not of interest. Given that the sampling frequency
is 30 minutes, an interval of 49 time points covers a 24 hour period, and includes
both endpoints (midnight to midnight). Figure 4.1 shows an example of a time series
with the forecast creation time and forecasted period highlighted, as well as the
input sequences, which are explained in detail in Section 4.3.

34

4.2. FORECASTING MODELS

Figure 4.1 An arbitrary time series of the two target variables with the periods of input
data (marked in blue) and the mapped output data (marked in red). The input and output
time points depict the FCR 1-D market setting where the patch of unseen data stretches from
17.00 until midnight. The forecast creation time is shown by the red vertical line. Note that
additional time series are used as input to the model.

4.2 Forecasting Models

The theoretical background of the statistical models applied to the problem were
introduced in the previous chapter. The specific models applied are now described,
first briefly and then in more detail.

Since the task was to create forecasts on individual EVs, one might imagine
that individual models are trained and evaluated for each of the unique EVs. No-
tably, this would mean fine tuning a great number of models, as well as training
each model on a small amount of data. To better suite the scope of this thesis, this
approach was ruled out.

Alternatively, one might imagine clustering the EVs into a small number of
groups that share important statistical qualities. This would reduce the number of
individual models in need of fine tuning, and increase the amount of data each model
is trained on. Preliminary data exploration showed that the time series of the target
variables did not differ enough to motivate modeling of clusters of EVs with similar
charging patterns. The motivation of this choice is however outside of the scope of
this report.*

The resulting conclusion and limitation was that the modeling would be con-
ducted on all EVs, aggregating their data as a single generalized EV. It should how-
ever be noted that at all times the input to the model was always from the same
EV as the corresponding output, and that the data was mixed in such a way that the

*For a thorough review on the concept of clustering multivariate time series, see [Shifaz et al., 2021]

35

CHAPTER 4. METHODS

original EV identification was retrievable.
The models built use a direct forecasting strategy of outputting the full multi-

step forecasting horizon at once, as opposed to a recursive approach of feeding back
each single new prediction. The choice was made as the direct approach has shown
to be superior[Wen et al., 2017; Taieb et al., 2011].

The models evaluated in this report for the forecasting task are:

• RNN
• XGBoost
• Naive baseline

The models are first briefly described before going more into depth on the RNN and
XGBoost models in terms of data formatting, training, optimization and so forth.

RNN
The RNN models applied to solve the forecasting task allow for joint forecasts to be
made for the two target variables soc and is_home. Performing joint forecasting
with a single model allows one to reduce the need for optimizing architecture and
hyperparameters from two models to one. The same input data was thus used for
the forecasts of each of the target variables. Individual modeling of the two target
variables was also examined, but this did not generate any improvement and the
advantage of a single optimized joint model was deemed more important.

XGBoost
The XGBoost models are inherently single output models, and as described in Sec-
tion 3.3, a collection of models was necessary, one for each target variable and for
each forecasted time step. With this in mind, it did not make sense to reason about
joint forecasting as in the case with RNNs.

Naive baseline
The last model is the baseline which all other models are compared against. The
naive baseline looks at the forecasted day one week prior and assumes the same be-
havior for each time step. By shifting the forecast one week, the different behaviors
during weekday and weekend are accounted for, but still a very simple baseline is
used.

A different reasonable baseline would be to expect the same behavior as the last
24 hours. There is however a fundamental problem with this hypothetical baseline
as the forecasting setting requires the forecast to be created a few hours prior to the
time of the actual forecast. Thus the last few hours of the day would not be available
at the forecast creation time, and the forecast would be impossible to provide. Ad-
ditionally, a baseline like this would not have accounted for the weekly periodicity
of charging behavior.

36

4.3. DATA FORMATTING FOR LEARNING

4.3 Data formatting for learning

In order to train the models for the forecasting task, the data presented in Chapter 2
had to be reformatted into a training dataset with input-output pairs (Xi,Yi) for the
supervised learning setting as described in Section 3.1. After formatting, the full
dataset consisting of aggregated (Xi,Yi) pairs is denoted (X,Y).

After the preprocessing stage, the time series data now had the same fundamen-
tal multivariate tabular format as before the preprocessing. However, each EV may
still have gaps in their time series which were deemed too large to bridge during
interpolation. Also, the EVs have varying length time series, as recording of data
started later and stopped for some vehicles.

The set of (Xi,Yi) observations is generated by sliding a fixed length window
which maps parts of the time series to each pair (Xi,Yi). The sliding window tries
to maximize the number of observations and thus allows for the observations to
overlap. It is when this sliding window is applied that data containing missing values
is ignored.

The forecasted period in relation to the forecast creation time was detailed in
Section 3.1, however the window creating input was not. As mentioned, the choice
of how to create this window is very free. The decision was made to create a two-
part window for the inputs to the models: the 24 hours leading up to the forecast
creation time ("yesterday") and the 24 hours from one week prior to the forecasted
period ("last week"). An example of the input sequences and forecasted period is
shown in Figure 4.1.

In relation to the forecast creation time t, these intervals can be described analo-
gously to how the forecasted period was described in Section 3.1. With L = 48, the
yesterday-window includes time points t−L, t−L+ 1, . . . , t. With B = 7 · 24 · 2 =
336 being the number of 30 minute time steps in a week’s time, the last week-
window includes time points t +D−B, t +D−B+ 1, . . . , t +D−B+H, where D
depends on whether the data is for the 1-D or 2-D market.

The choice of window was based on a consideration of three aspects, in or-
der of relevance: relevant information, data loss and model complexity. It was rea-
soned that very recent information should be valuable, as it pertains closely to the
imminent forecasted period, hence the yesterday-sequence. As for the last week-
sequence, the choice was made on the reasonable assumption that EV charging
behavior tends to repeat on a weekly basis, as supported by [Dodson and Slater,
2019]. As for the data loss, too large windows means losing more data as a conse-
quence of missing values occurring in the sequence (a full week of input data would
have resulted in a 22 percent data loss and was thus ruled out). Furthermore, large
input windows increases a model’s complexity and make it more difficult to train
if no additional measures are applied. The two input sequences were used for all
modelling, however variations of only using either last week or yesterday were also
tried.

As portions of all of the time series are traversed by the sliding window, the

37

CHAPTER 4. METHODS

resulting (Xi,Yi) pairs can be taken from any EV k and any forecast creation time
t and aggregated to the resulting dataset (X,Y). Another benefit of the approach is
the indifference to the heterogeneity of the lengths of the time series for different
EVs.

How the dimensions of features and time are formatted to trainable data depends
on the model applied and can be categorized in two main ways: sequential structure
or a cross-sectional structure. These two data formatting approaches are presented
in the two subsequent sections.

Sequential structure
The RNN models use sequentially structured data where the data is formatted as
input- and output-sequences with preserved time-dimension. This structure is con-
veniently represented as matrices:

X (last week)
i =


x(k)1 (t +D−B) x(k)2 (t +D−B) . . . x(k)F (t +D−B)

x(k)1 (t +D−B+1) x(k)2 (t +D−B+1) . . . x(k)F (t +D−B+1)
...

...
. . .

...
x(k)1 (t +D−B+H) x(k)2 (t +D−B+H) . . . x(k)F (t +D−B+H)



X (yesterday)
i =


x(k)1 (t−L) x(k)2 (t−L) · · · x(k)F (t−L)

x(k)1 (t−L+1) x(k)2 (t−L+1) · · · x(k)F (t−L+1)
...

...
. . .

...
x(k)1 (t) x(k)2 (t) · · · x(k)F (t)


In the setting where both input sequences are used, Xi refers to both X (last week)

i

and X (yesterday)
i . The two input sequences are fed separately to the model. The Yi are

constructed in a similar manner:

Yi =


y(k)1 (t +D+1) y(k)2 (t +D+1)
y(k)1 (t +D+2) y(k)2 (t +D+2)

...
...

y(k)1 (t +D+H) y(k)2 (t +D+H)


Now, the (Xi,Yi) pairs have been defined, the complete dataset when formatted

with a sequential structure is described by X and Y. One can think of these entities
as matrices stacked in a third dimension which is the observations.

Cross-sectional structure
In contrast to the sequential structure, the cross-sectional structure does not preserve
the temporal structure of the data. Instead, XGBoost models which utilize the cross-

38

4.3. DATA FORMATTING FOR LEARNING

sectional structure views each lagged feature as independent. The data is structured
as N observations in the same ways as previously, but the dimensions of time and
features have been coalesced into a single dimension. This is shown in

Xi =



x(k)1 (t +D−B)
x(k)2 (t +D−B)

...
x(k)F (t +D−B)

...
x(k)1 (t +D−B+1)

...
x(k)F (t +D−B+H)

x(k)1 (t−L)
x(k)2 (t−L)

...
x(k)F (t−L)

x(k)1 (t−L+1)
x(k)2 (t−L+1)

...
x(k)F (t−L+1)

...
x(k)1 (t)
x(k)2 (t)

...
x(k)F (t)



where each feature is lagged according to the yesterday and last week time points.
If one of the two sequences were to be excluded, this range of lags would be ex-
empt from the vector. All time points and features are viewed as independent and
placed on the same dimension, which is the important difference from the sequential
structure.

39

CHAPTER 4. METHODS

Paired with each input Xi is the corresponding target vector,

Yi =



y(k)1 (t +D+1)
y(k)1 (t +D+2)

...
y(k)1 (t +D+H)

y(k)2 (t +D+1)
y(k)2 (t +D+2)

...
y(k)2 (t +D+H)


with the two target variables shifted forward D+1 to D+H steps.

Importantly, for the cross-sectional structured data each input vector is matched
with an output vector. This mapping of single dimension input-output pairs allows
the whole dataset (X,Y) to be stored in a single two dimensional tabular format.

Data split for modelling
Throughout the thesis, the data used was split into the three datasets training, vali-
dation and testing, with a split of 0.6, 0.2 and 0.2 respectively. The training dataset
is used by the model to learn optimal parameter values through the learning algo-
rithm. The model’s performance is then evaluated on the validation dataset, yielding
a measurement on how well it generalizes, which gives information on potential im-
provements. The test dataset is left to the final results. The split is made along the
time axis, i.e. the test dataset comes from data gathered later than the validation
and training datasets. The split was made for each EV, after formatting and before
aggregation. The result was that all EVs are represented in all three datasets propor-
tional to the relative amount of data available for each EV and not based on some
specific time point. However, in general, most EV are synchronized in time.

With said split of the full dataset, the training set will generally contain data
from winter and early spring while the validation and testing sets contain data from
later during the spring. The distribution of the aggregated observations is shown in
Figure 4.2.

Feature-wise normalization of data
A common practice in ML is to normalize the data at feature-level. ML methods that
use gradient descent-based training algorithms can under-perform when being fed
data with very large values or with data where the different features generally come
in different orders of magnitude. This increases the risk of the learning algorithm
to take far bigger leaps than ideal and that larger magnitude features drown out the
influence of smaller ones[Chollet, 2017].

40

4.3. DATA FORMATTING FOR LEARNING

Figure 4.2 Distribution of the observations of each of the datasets for training, validation
and testing. The EV time series are heterogeneous both in terms of first and last records
and the distribution of missing values throughout the time series. Since each EV must be
modeled, the fraction of observations in each time series was set to be the split between
different datasets which resulted in the distribution of observations depicted here.

Thus, the goal is for the model to be trained on data where all features take
values in approximately the same range, and that range should be quite small, e.g.
[−1,1] or [0,1]. Because the statistical distribution of the data should be preserved,
simple affine transformations are usually applied to the data.

The choice was to use Min-Max-Scaling, where each feature is normalized to
the interval [0,1] by

X ′ =
X−Xmin

Xmax−Xmin

i.e. each feature is normalized by the observed minimum and maximum val-
ues. Although tree-based methods are not as sensitive to normalization as Neural
Networks, the scaling was done feature-wise for all the models.

In line with the data split described in Section 4.3, the validation and test sets
should not be "seen" prior to the models being trained. This applies to normalization
as well, thus the minimum and maximum values observed in the training set were
used to normalize the validation and test datasets as well. Note that the target vari-
ables were never normalized, as soc is bounded in [0,1] by definition and is_home
is a binary variable.

41

CHAPTER 4. METHODS

4.4 Model training

The overall goal of modeling the forecasting of a specific model is to find a model
which given some training data, should generalize well to unseen data in the form
of a validation dataset. Thus, the goal was to train the parameters of a model and
then determine how well it generalizes by computing a loss with respect to the
validation data. To train each model to solve both the classification and regression
tasks, suitable loss functions needed to be selected.

Loss function for RNN models
For the training of a neural network, a loss function is needed to calculate the gra-
dients during backpropagation. Each gradient is calculated as an approximation of
the true gradient by looking at a subset of the data, called a batch.

For the regression task of predicting the SOC of the EV, the Mean Squared Error
(MSE) was used during training to tune the weights of the model,

LMSE =
1

Nbatch

Nbatch

∑
i=1

(ŷi− yi)
2

where Nbatch is the total number of observations in the batch, ŷi is the estimated soc
and yi is the true soc.

For the binary classification task of predicting whether the EV is located at the
home or not, Binary Cross-Entropy (BCE) was used during training,

LBCE =− 1
Nbatch

Nbatch

∑
i=1

yi · log ŷi +(1− yi) · log(1− ŷi)

where yi is the true label and ŷi is the predicated probability of the positive label.
For a single neural network model forecasting multiple steps of two quantities

(i.e. two channels, one for regression and one for binary classification), the loss
functions must be summarized in a single loss quantity. For the two different loss
functions of each output channel (MSE and BCE), the loss was calculated for each
time step of the forecast and the summarized into a scalar value. The loss of each
channel was then combined by scaling the MSE loss, as after it was found that the
order of the MSE was about a tenth of the order of the BCE. The single measure of
the loss was calculated as

Ltotal = 10LMSE +LBCE

Loss function for XGBoost models
The XGBoost leverages the cross-sectional data structure to predict a single value.
During training, trees are added depending on how well they reduce the loss func-
tion. The loss functions used to train the XGBoost model was BCE for the classifi-
cation task and Squared Error (SE) for the regression. The Squared Error is defined

42

4.5. HYPERPARAMETER TUNING

in the same way as the MSE, with the simple distinction that the sum is not di-
vided by the number of observations. In an optimization setting, minimizing SE is
equivalent to minimizing MSE.

4.5 Hyperparameter tuning

The ML models explored in the thesis each require some tuning of hyperparameters
and architectures in order to generalize well to new data. The XGBoost models only
requires tuning of hyperparameters while the RNN models, in addition to hyperpa-
rameters, also requires tuning of the model architecture.†

The hyperparameter search used is a random search. For each hyperparameter,
a set or distribution of values are given from which a value is sampled at each run of
the model. After running a large number of models, a pattern should hopefully start
to emerge where some configurations perform better than others. Hence, the search
space of the hyperparameters can be reduced and further tuning can be performed
[Bergstra and Bengio, 2012].

RNN optimization procedure
Both architecture and hyperparameters were varied to try to find the best performing
model. The search procedure of model exploration consisted mainly of the follow-
ing steps. First, selecting an architecture and a large search space of hyperparam-
eters for the model. Second, training models until an indication of the importance
of each hyperparameter with respect to the loss on the validation dataset. Finally,
re-iterating the first and second step by decreasing the search space of hyperparam-
eters.

This procedure was repeated for a large number of architectures. The fundamen-
tal architectures tried and hyperparameter search space are outlined in the next two
sections.

RNN architecture
A great number of architectures were evaluated for the RNN models, all of which
used the LSTM unit as recurrent unit.

The simplest RNN architecture consists of a single LSTM layer which inputs
some feature vector at each time step and then outputs the predicted target variable
directly from each recurrent unit. Extensions of this model can be made by verti-
cally stacking multiple LSTM layers to accomplished higher level representations
of the data. The output of each recurrent unit in the LSTM layer is then the input of
the next layer. As for the output, it is useful to apply some learned affine function
to the output of the recurrent units at each time step. It is also possible to follow

†Literature may refer to the RNN model’s architecture as hyperparameters, but in this thesis the
architecture is separated.

43

CHAPTER 4. METHODS

the LSTM layer(s) by some larger fully connected layer which outputs the whole
forecast[Hewamalage et al., 2021].

Another class of RNN architectures are encoder-decoder architectures where
the first part of the network, the encoder, aims to encode all relevant information of
the data into a single vector. The second part of the network, the decoder, then aims
to decode said vector to form the forecast. These two parts of the network generally
consist of single or stacked LSTM layers[Hewamalage et al., 2021].

Out of all the RNN models, the best performing models in terms of architec-
ture were models leveraging LSTM units to encode the temporal dependence of the
input sequences, combined with some fully connected layers with high complex-
ity which could learn from the encoded input time series. Some slight variations of
these were the models RNN-oFF and RNN-oREC which used different neural net-
work structures to generate the forecasted sequence from the encoded time series.
The architecture of the models used are shown in Figure 4.3. The names of the two
models stem from where they differ: oFF signifies that the model has a standard
Feed Forward layer with the same number of nodes as the number of forecasted
time points as output for the target variables separately, whereas oREC signifies that
the output is generated by an recurrent LSTM layer that outputs sequences, with a
final standard activation node for each forecasted time point and target variable. For
the RNN-oREC model, the output from the previous layer is reshaped to resemble a
sequence, which the final LSTM layer can take as input. Hence the number of units
in the final FF layer in the RNN-oREC models needs to be a multiple of 49, the
number of time steps in the generated forecast.

RNN hyperparameters
When exploring the performance of varying neural network architectures, the hy-
perparameters were also varied. Initially, with a larger hyperparameter space, for
each run of a specific model, the number of epochs (i.e. the number of times the
training dataset was passed over) was set to 5 000. Along with this setting, early
stopping was used with a minimum improvement of 0.0001 and a patience of 10
epochs without any improvement of the loss on the validation data. A great num-
ber of hyperparameters were evaluated at this point, although, these are not of main
interest for the report. The main outcome from the initial search was that the two
architectures shown in Figure 4.3 were selected, and that the choice of activation
for the soc output was set to sigmoid. As the soc naturally takes values in [0,1],
the sigmoid was tried in comparison with a linear output activation function, and
chosen for the final hyperparameter search due to its superior performance on the
validation dataset. As the sigmoid outputs values in (0,1), this choice guarantees
that the model will not predict nonsense values of the soc. After these choices were
made, the hyperparameter searchspace was reduced and re-optimized for the two
model architectures. The reduced search space is displayed in Table 4.1. When fur-
ther optimizing the models, the number of epochs were increased to 20 000 and the

44

4.5. HYPERPARAMETER TUNING

(a) RNN-oFF (b) RNN-oREC

Figure 4.3 Optimal architectures of the class of RNN models explored. The RNN-oFF
model has 30 818 parameters and the RNN-oREC model has 8 378 parameters. The layers
marked as "Dense" symbolize standard FF layers. "Dense" is the internal name of an FF layer
in the Tensorflow Keras API implementation.

minimum improvement criterion for the early stopping algorithm was set to zero
along with a patience of 100 epochs.

The optimizer used for learning was the Adam optimizer which is expected to
perform well for the non-convex optimization task of fitting the parameters of the
neural network[Kingma and Ba, 2014]. This has also been shown when applied to
training RNN models[Hewamalage et al., 2021]. The final choices of hyperparam-
eters for RNN-oFF and RNN-oREC models are presented in Table 4.2.

XGBoost hyperparameters
The hyperparameters for the XGBoost model also required some tuning. This was
however a less cumbersome task as the architecture of the model was fixed. The ini-
tial random search for hyperparameters is shown in Section 4.5. The DART booster
showed to outperform the GBTree booster and a second iteration was performed
with only this boosting algorithm.

Further investigation into the importance of different hyperparameters showed

45

CHAPTER 4. METHODS

Hyperparameter search for RNN models
Parameter Value
Batch size 512, 1024, 2048

Learning rate 0.00001, 0.0001, 0.0005, 0.001
FF units 128, 256, 512

FF multiplier 4, 8, 16
LSTM units 4, 8, 16
Bidirectional True, False

Kernel regularization L1, L2, None
Regularization coefficient 10−6, 10−5

Dropout rate 0.0, 0.1, 0.2, 0.4

Table 4.1 Hyperparameters used in random search for RNN-oFF and RNN-oREC. Note
that FF multiplier refers to the multiple of 49 used for the FF layer in the RNN-oREC model,
whereas FF units refers to the number of nodes in the shared FF layer in the RNN-oFF model.

Final hyperparameters for RNN models
RNN-oFF RNN-oREC

Parameter Value Value
Batch size 512 1024

Learning rate 0.0001 0.0001
LSTM units 4 4

FF units 256 784
Bidirectional True False

Weight decay regularization None L2
Regularization coefficient 0 10−6

Dropout rate 0.1 0.1

Table 4.2 Final hyperparameters for the two RNN models. Note that each model is used
for both the regression task and classification task (i.e. performs joint forecasts).

a discrepancy between the ones contributing to the performance on the regression
task versus the classification task. Thus, it was decided to split the configurations
for the two tasks as single sets of models were already generated for each target
variable. The final hyperparameter configurations for the two tasks are displayed in
Table 4.4.

4.6 Setup for model training

The training and optimization of the RNN models and the XGBoost models required
both computational power and an extended performance tracking of configurations.

46

4.6. SETUP FOR MODEL TRAINING

Initial hyperparameter search for XGBoost
Parameter Value

Number of estimators 25, 50, 100, 200, 400
Learning rate 0.01, 0.1, 0.2, 0.3

Gamma (min improvement) 0, 10−6, 10−5

Max depth 2, 6, 10
Booster GBTree, DART

Column sample by tree 0.5, 0.75, 1
Subsample of data 0.5, 0.75, 1

Drop rate 0.1, 0.2, 0.3
Only day True, False

Table 4.3 Hyperparameters used in random search for XGBoost models.

Final hyperparameters for XGBoost
Regressors Classifiers

Parameter Value Value
Number of estimators 400 200

Learning rate 0.1 0.3
Gamma (min improvement) 0 0.0001

Max depth 6 6
Booster DART DART

Column sample by tree 0.75 0.75
Subsample of data 0.5 0.5

Drop rate 0.1 0.1
Only day True False

Table 4.4 Final hyperparameters for the XGBoost models for the two tasks. Note that this
is a single model as opposed to the RNN models.

Model performance tracking
Since a large number of models were required to be configured, trained and eval-
uated, it quickly became cumbersome to track the performance of each model in-
dividually. To structure the process of finding the best performing architecture and
hyperparameter configuration, the platform Weights & Biases was used to run the
hyperparameter optimization and track the performance of the models.‡

Cloud computing cluster for model training
The models described in the report (except for the naive baseline model) were
trained on a cloud computing cluster supplied by the Swedish National Institute
for Computing (SNIC). A resource called Alvis, dedicated towards Artificial Intel-
ligence research was utilized for this training. The Alvis cluster contains a large

‡More information about Weights & Biases can be found here: https://wandb.ai/site.

47

https://wandb.ai/site.

CHAPTER 4. METHODS

number of computing nodes with high performance Graphical Processing Units
(GPUs) capable of handling the heavy computations needed to train the models.
The compute nodes NVIDIA Tesla A40 with 48GB VRAM were used for model
training.§

Replicability of results
In all models trained, a random seed has been set in order to achieve better replica-
bility of the results. Although, since the models are trained on a cloud computing
cluster with GPUs performing parallel computations, there will be some random-
ness involved in how the computations are synchronized. This GPU-induced ran-
domness is difficult to remove without sacrificing the effectiveness of the parallel
processing[Keras, 2022]. However, when performing the training of the models, the
results proved to be almost fully replicable.

4.7 Performance evaluation

The metrics used for evaluating the forecasting models where different for the two
different tasks and evaluated over all of the horizons.

For the regression task of predicting the SOC of the EV, the Root Mean Squared
Error (RMSE) was used since it has the same unit as the original values (as opposed
to the MSE, which gives the unit squared).

RMSE =

√
1
N

N

∑
i=1

(ŷi− yi)
2

where the N is the number of observations in the dataset. Additionally, the Mean
Absolute Error (MAE) was used, which is defined as

MAE =
1
N

N

∑
i=1
|ŷi− yi|

As for the binary classification task of predicting when the EV was located at
home, the metrics accuracy and F1-score were used. The accuracy is defined as

Accuracy =
TP+TN

N
where TP is the number of true positives and TN is the number of true negative
classifications for the dataset. The accuracy is an easily interpretable metric, but
fails to capture overly optimistic model predictions in the case of class imbalances.
On the other hand, the F1-score considers both the ability to classify correctly and

§More information about the SNIC Alvis cloud computing service can be found here: https://
www.snic.se/resources/compute-resources/alvis/.

48

https://www.snic.se/resources/compute-resources/alvis/.
https://www.snic.se/resources/compute-resources/alvis/.

4.7. PERFORMANCE EVALUATION

the missclassifications as the harmonic mean of precision and recall. The F1-score
is defined as

F1-score = 2 · precision · recall
precision + recall

=
TP

TP+ 1
2 (FP+FN)

where TP and TN are the number of true positives and negatives, and FP and
FN are the number of false positives and negatives. The recall is a measure of the
sensitivity of the classifier, i.e. its ability to detect a positive class. The precision is
a measure of the missclassification of the classifier.

49

5
Results

This chapter presents the performance of four models: the naive baseline, XGBoost,
RNN-oFF and RNN-oREC. The two RNN models are fundamentally different in
how they output the forecasts, as shown in the architecture of the models in Fig-
ure 4.3. The chapter presents the performance of the four models in the two different
market settings: FCR 1-D and FCR 2-D. The performance is shown first in general
summarizing metrics and then as actual forecasts sampled from the test dataset.
Lastly, the performance on each of the EVs is presented.

5.1 General performance

FCR 1-D market performance
The resulting performance metrics from using the models to forecast the EV charg-
ing behavior in the 1-D FCR market setting are shown in Table 5.2 for the test data
and in Table 5.1 for the validation data. Figures displaying how the performance
differs for various forecasted horizons is shown in Figure 5.1 for RMSE and Fig-
ure 5.2 for accuracy. The performance for MAE and F1-score is in line with RMSE
and accuracy respectively and these graphs are thus omitted.

The performance metrics, both in terms of the mean over all forecasted time
steps and per forecasted time step, show the XGBoost model to outperform the
RNN models and the naive baseline. The performance of the RNN models is closer
to the XGBoost model for the regression task than for the classification task, which

Model RMSE MAE Accuracy F1-score
Naive baseline 0.2566 0.1927 0.6964 0.7326

RNN-oFF 0.1556 0.1180 0.7929 0.8273
RNN-oREC 0.1580 0.1201 0.7945 0.8273

XGBoost 0.1516 0.1131 0.8022 0.8333

Table 5.1 Performance metrics on the validation data of the FCR 1-D market. Performance
calculated as the mean over all forecasted time steps. Best performance is marked in bold.

50

5.1. GENERAL PERFORMANCE

Figure 5.1 Mean RMSE per horizon for each model on the test dataset for the FCR 1-D
market.

Figure 5.2 Mean accuracy per horizon for each model on the test dataset for the FCR 1-D
market. The actual output of the model is the predicted probability of the EV being at the
home location, and the classification is made on whether or not the predicted probability is
above some threshold. For all models and horizons, the simple threshold of 0.5 was used,
however this may be adjusted, yielding a trade-off between misclassification more for either
of the two classes.

51

CHAPTER 5. RESULTS

Model RMSE MAE Accuracy F1-score
Naive baseline 0.2239 0.1700 0.7698 0.8144

RNN-oFF 0.1488 0.1095 0.8158 0.8584
RNN-oREC 0.1501 0.1103 0.8132 0.8558

XGBoost 0.1458 0.1054 0.8311 0.8692

Table 5.2 Performance metrics on the test data of the FCR 1-D market. Performance cal-
culated as the mean over all forecasted time steps. Best performance is marked in bold.

is most clearly shown in Figure 5.2. It should also be noted that the RNN-oFF
model is superior to the RNN-oREC model on all evaluated general metrics, except
for accuracy as shown in Figure 5.2.

FCR 2-D market performance
The resulting performance metrics from the models in the 2-D FCR market setting
are shown in Table 5.4 for the test data and in Table 5.3 for the validation data.
Figures displaying performance on different forecasted horizons are shown in Fig-
ure 5.1 for RMSE and Figure 5.2 for accuracy.

Model RMSE MAE Accuracy F1-score
Naive baseline 0.2580 0.1943 0.6981 0.7350

RNN-oFF 0.1828 0.1454 0.7457 0.7908
RNN-oREC 0.1855 0.1485 0.7396 0.7868

XGBoost 0.1783 0.1418 0.7596 0.8017

Table 5.3 Performance metrics on the validation data of the FCR 2-D market. Performance
calculated as the mean over all forecasted time steps. Best performance is marked in bold.

Model RMSE MAE Accuracy F1-score
Naive baseline 0.2228 0.1689 0.7696 0.8146

RNN-oFF 0.1685 0.1320 0.7953 0.8451
RNN-oREC 0.1700 0.1347 0.7857 0.8390

XGBoost 0.1681 0.1317 0.8088 0.8536

Table 5.4 Performance metrics on the test data of the FCR 2-D market. Performance cal-
culated as the mean over all forecasted time steps. Best performance is marked in bold.

Examining the performance of the models on the 2-D FCR market show similar
ordering of the models performance-wise, although, the best performing model is
not quite as clear as in the 1-D FCR market setting. The RMSE is very close for
XGBoost and RNN-oFF (0.1681 vs 0.1685) on the test data, and the accuracy on
the furthest horizons coincide somewhat for the two models as seen in Figure 5.4.
Still, the best performing model in the FCR 2-D market is XGBoost from the general
metrics.

52

5.1. GENERAL PERFORMANCE

Figure 5.3 Mean RMSE per horizon for each model on the test dataset for the FCR 2-D
market.

Figure 5.4 Mean accuracy per horizon for each model on the test dataset for the FCR 2-D
market. The actual output of the model is the predicted probability of the EV being at the
home location, and the classification is made on whether or not the predicted probability is
above some threshold. For all models and horizons, the simple threshold of 0.5 was used,
however this may be adjusted, yielding a trade-off between misclassification more for either
of the two classes.

53

CHAPTER 5. RESULTS

5.2 Example forecasts

Figure 5.5 shows an example of a generated forecast for the 1-D market for each
of the four evaluated models. The example forecast is of an arbitrary EV. The same
forecasts are exemplified in Figure 5.6 but for the 2-D market.

The high dimensionality of the output of all evaluated models makes it difficult
to show examples on an aggregate level and still maintain a good overview, hence
single examples are shown.

5.3 Performance on individual EVs

The models built are generalized models of all EVs, and the performance has thus
far been evaluated on the aggregated dataset where the observations are taken from
all EVs. In the setting where the model is applied, the predictions are performed
on single EVs. Hence, metrics with respect to individual EVs are presented in the
following figures. Figure 5.7a shows the RMSE over all EVs for the four models,
and Figure 5.7b shows the same plot for the accuracy metric. The graphs show that
the performance varies across EVs. Summarizing statistics were also calculated as
the mean over EVs and this was shown to be in line with the summarizing statistic
presented in Section 5.1.

The number of observations and the performance differs between EVs. The dis-
tribution of the number of observations and how well the models are able to forecast
the charging behavior does seem to be unrelated. Hence, the summarizing statistics
are not affected by the varying number of observations amongst EVs.

54

5.3. PERFORMANCE ON INDIVIDUAL EVS

Figure 5.5 Example of forecasts for 1-D market. The example was generated for an arbi-
trary EV. The red vertical line signifies the forecast creation time on the 9th of May at 17:00,
and the forecasted period stretches from the 10th of May at 00:00 until the 11th of May 00:00.
The forecasted period is highlighted with a red marker, and the time period that constitutes
the input sequences are highlighted with blue, one sequence is the 24 hours leading up to the
forecast creation time and the other one is placed one week prior to the forecasted period.

55

CHAPTER 5. RESULTS

Figure 5.6 Example of forecasts for 2-D market. The example was generated for an arbi-
trary EV. The red vertical line signifies the forecast creation time on the 9th of May at 14:00,
and the forecasted period stretches from the 11th of May at 00:00 until the 12th of May 00:00.
The forecasted period is highlighted with a red marker, and the time period that constitutes
the input sequences are highlighted with blue, one sequence is the 24 hours leading up to the
forecast creation time and the other one is placed one week prior to the forecasted period.

56

5.3. PERFORMANCE ON INDIVIDUAL EVS

(a) RMSE (b) Accuracy

Figure 5.7 Performance metrics per EV for the 47 vehicles on the test dataset of the FCR
1-D market. The EVs have been anonymized by removing the unique identifier. The ordering
of the EVs is according to the best model (XGBoost) and is not the same for the two metrics.

57

6
Discussion

6.1 Performance of models

The performance of the different models are discussed and connected back to how
they should be evaluated in the context of the original problem of aggregate fre-
quency regulation on the FCR markets.

Best performance
Overall, the three statistical models applied performed well and the naive baseline
was consistently beaten by the RNN models as well as the XGBoost model. The
clear winner in terms of forecasting performance was the XGBoost model. The per-
formance did not deteriorate a lot when moving from the 1-D FCR market to the
2-D FCR market (0.1458 vs. 0.1681 RMSE and 83.11 vs. 75.96 percent accuracy
for the XGBoost model on 1-D and 2-D markets). These are promising results, espe-
cially as the model hyperparameters and architectures were only optimized towards
the 1-D FCR market, and better results might be achievable with additional work
towards the 2-D market.

Performance on test and validation datasets
Interestingly, the performance on the test data was better than on the validation data
for all metrics and all models. The difference in performance was fairly large, with
a 3.8 percent (0.1516 to 0.1458) RMSE improvement and a 3.4 percent (80.22 to
83.11 percent) accuracy improvement on the 1-D FCR market for XGBoost. Even
larger relative and absolute performance improvements were achieved on the 2-
D market. The cause of the varying performance on the two datasets could have
many explanations. One hypothesis is that the Easter holidays affected the charging
behavior significantly and that this period was mainly captured by the observations
in the validation dataset. The distribution of time points for the observations in each
dataset are displayed in Figure 4.2, and shows a clear overlap between the validation
dataset and the Easter holidays (April 14th to 18th).

As for the baseline model, its performance also followed the same improvement
of the other models when applied to the test data compared to the validation data.

58

6.1. PERFORMANCE OF MODELS

The baseline model performed quite well overall and by all performance metrics it
remained in a similar domain to the more advanced models, indicating it was not
chosen to be too naive.

Performance on 1-D and 2-D FCR markets
When evaluating the performance of the models on each forecasted time step of the
1-D vs. 2-D FCR markets, some interesting patterns can be detected. For the RMSE
measure on the 1-D market the three advanced models are able to perform quite
well on the earliest forecasted time points, and then the performance deteriorates.
This is not the case for the 2-D market where the error is stable (although worse) for
all forecasted time steps. As for the accuracy metric, the RNN models show signs
of sinusoidal prediction errors over the forecasted time steps, where the patterns are
most clear for the RNN-oFF model. These sinusoidal patterns might be explained
by the fact that the forecasting period spans 24 hours. The first horizons are the
closest to the forecast creation time and thus the easiest to predict. Due to daily
periodicity in the data, the behavior at the end of the forecasting horizon is similar
to that of the earlier horizons. However, this sinusoidal tendency is not as apparent
for the RNN-oREC model and not at all for the XGBoost model.

RNN architectures
The architectures of the two RNN models may discussed as well, since the two
models are fairly similar, but as shown in Figure 4.3, the architectures differs at
some points. The RNN-oFF model consistently outperforms the RNN-oREC model
across all summarizing metrics in results tables, and also across time steps except
for some accuracy measures on the 1-D FCR market. The RNN-oFF model has
a higher model complexity and capacity with 30 818 parameters while the RNN-
oREC model has 8 378 parameters. This increased capacity thus seems necessary
to achieve the additional performance when forecasting.

Forecasting performance per EV
The performance of each model with respect to individual EVs was presented in
Section 5.3. The ability to produce reliable forecasts differed between EVs, al-
though, no model outperformed any other when looking at all vehicles. This in-
sight into how the model performs with respect to different EVs is important as it
helps the user of the forecasting tool to decide how to aggregate the vehicles and
the uncertainty in the aggregated measurements.

Examining the accuracy measures per EV, some seemed to be unreasonably
great and demanded some further investigation into the original time series of the
EVs. It then occurred that one user must have moved from their home to another
location and that two other users must have placed their charging stations further
from the home than what was accounted for during preprocessing. These finding do
surely affect the performance of the models. Recalculating the performance metrics

59

CHAPTER 6. DISCUSSION

when omitting these three EVs does however show the overall performance to be
almost identical. The forecasting performance of the models could potentially be
improved by re-iterating the preprocessing of the data and training new models with
higher quality data.

6.2 Limitations and improvements

Data
The data was gathered from 2022-01-04 until 2022-05-16, and was thus restricted
to the late winter and spring. Even though this yielded a considerable number of
observations (145 763 and 143 519 for the 1-D and 2-D FCR markets respectively),
the fact that the data does not span even a single full year could influence the results
in a negative way. It can be reasoned that the EV charging behavior changes over
the year, especially in a country like Sweden, where the seasons affect the weather a
lot. As the solution provider gathers data continuously, this issue should be resolved
over time by re-training the model with new data.

The validation dataset had many observations occurring during Easter, which
was hypothesized to negatively influence the performance of all models. This prob-
lem could be tackled by feeding the models information about current and upcoming
holidays, as they reasonably affect the charging behavior of the users. As holidays
occur throughout the year, this is a potential improvement for future research.

The choice was made to keep the 30 minute sampled data, as opposed to down-
sampling to e.g. 60 minute sampled data. A downsampled dataset would mean fewer
inputs and outputs of all involved models, thus potentially reducing model com-
plexity and risk of overfitting and perhaps improve the potential scalability of the
forecasting models. At the same time, keeping the higher sampling frequency pro-
duces a larger number of observations, gives higher resolution in the forecasts, and
a more detailed description of the predicted charging behavior which is beneficial
to inform decisions in the application setting.

The choice was made to interpolate gaps of a maximum of five time steps. This
was based on a trade-off between loss of usable data and judged risk of errors.
Figure 2.2 illustrates the usable data as a consequence of maximum gap choice, but
further interpolation may be possible without worsening the quality of the data, and
could then help improve the models.

As shown in Figure 4.2, the dates overlap between the training, validation and
test datasets. The implication then becomes that some predictions on the validation
and training datasets take place in a point in time that the model has already seen
in training, which is problematic. Each observation in the datasets is uniquely iden-
tified by the time point and EV it was gathered from, thus these overlapping time
points are at least taken from different EVs, and not identical. Nevertheless, the
gain of the splitting procedure used in this thesis is that each EV is represented in

60

6.2. LIMITATIONS AND IMPROVEMENTS

all three datasets proportionally to the total number of usable observations, and thus
the performance on each EV should be better represented.

The decision regarding what data to feed the models was that the sliding window
described in Section 4.3 allowed for overlap. The use-case for the models is for the
1-D models to make predictions only at 17:00 and for the 2-D models to only make
predictions at 14:00. It can be reasoned that the models should only be trained on
the exact task they are expected to perform. Although, had overlap not been applied,
the amount of usable data would decrease by a factor of 48.

Models
A conscious choice was made to model the charging behavior of a generalized
EV. The decision was made without fundamental insight about the individual EVs’
charging behavior, which may make the assumption that a generalized behavior ex-
ists flawed. However, to highlight differences in charging behavior a model of said
behavior is required, which was the goal of the thesis to begin with. This thesis may
lay the ground work for a more sophisticated choice of data selection and clustering
for the future.

The forecasting problem of the thesis regards two fundamentally different pre-
dictions: the regression task and the classification task. For the XGBoost model,
this was separated as the two tasks could not be performed jointly in the XGBoost
framework, with fundamentally different models and training procedures. This in
combination with the relatively small variations in architecture and hyperparame-
ters compared to the RNN models meant it was feasible to optimize the XGBoost
model configuration for the two tasks separately.

For the RNN models, the modelling was performed jointly, i.e. the same network
was trained to approach both the classification and regression tasks simultaneously.
This was a pragmatic choice, and initial exploring showed that the models’ perfor-
mance was not affected by this choice. In any case, this could be seen as giving the
XGBoost a more beneficial set of circumstances to perform in, and might contribute
to the superior performance of this model.

For all evaluated models, no optimization was done on the separate horizons,
again a pragmatic decision. This too, could change the performance of the models
used. Furthermore, the optimization of hyperparameters and architecture was con-
ducted solely on the 1-D market setting and then directly applied to the 2-D setting.
Repeating the procedure for the 2-D setting might have improved the results.

For the RNN models, the output activation functions may be chosen with some
freedom. For the binary classification, the sigmoid was applied as it is common
practice when dealing with such problems. As for the soc, the choice was not so
obvious. For regression tasks in a neural network setting, a linear activation function
may perform well, but one key characteristic of this problem is that the soc is

61

CHAPTER 6. DISCUSSION

bounded on the interval [0,1]. Thus, the sigmoid and linear activation functions
were tried, and the sigmoid proved to give more satisfactory results. The choice
makes sense as it guarantees that the forecasted values of soc will never be some
nonsense value outside the interval [0,1]. However, the choice might mean that the
predictions of soc are smoothed out and rarely assume values close to 0 or to 1.
Figure 5.5 and Figure 5.6 show that such a tendency might be apparent.

The choice of input window was presented and motivated in Section 4.3, and
was kept constant throughout the project. It is possible that different choices of
input sequences might improve the overall performance. From the XGBoost models
constructed, the was an indication that the input data from one week prior was a
better predictor of the EV being located at home, while the input data from 24
hours prior to the forecast creation time was a better predictor of the SOC.

Furthermore the feature selection could be performed differently. The results
in this thesis were all found by inputting all 15 features presented in Table 2.2.
Attempts were made during experimentation to reduce the number of features seen
by the models, however with unsatisfactory results. Thus they were all kept, as a
pragmatic consideration. A final remark about the limitations on the models may be
made that out of the many variations of RNN, only the LSTM unit was used. The
choice was based on the success that LSTMs have had on time series modelling and
their robustness to long time dependencies.

Applicability
As the application of the forecasts is quite involved and connected to the solution
provider’s proprietary control algorithm, its details have not been pursued in this
thesis. The main quantity which should be forecasted is in reality the amount of
electrical load which may be shifted through the solution provider’s scheduling of
EV charging. Translating the two forecasted time series into a measure of flexibility
may be performed through three quantities: (1) time of plug in, (2) time of plug out,
and (3) state of charge at the time of plug in. Hence, an improvement to the models
applied may be to further optimize towards the exact quantities stated.

The measure of flexibility should also be considered on an aggregate level when
bidding on the FCR markets where the forecasts are utilized. Errors on individual
EVs could thus be cancelled by errors in the opposite direction for other EVs on
an aggregate level. Thus, the aggregate flexibility measure should be more reliable
than the individual one.

It should also be noted that the binary classification output of the models are
probabilities for the EV being located at home (except for the baseline model which
outputs the predicted True or False). With the probabilities at hand, the solution
provider may choose some threshold based on the desired amount of risk.

For the end user of the models explored in the thesis, there are some final practi-
cal considerations. When moving into deployment of the model, the full dataset can

62

6.2. LIMITATIONS AND IMPROVEMENTS

be used in order to make sure that the model generalizes in the best possible way.
Furthermore, since the data used for modeling is only representative of late winter
and spring, as more data is gathered, the model would have to be re-trained in order
to ensure consistent performance.

63

7
Conclusion

The aim of this thesis was to create reliable forecasts of EV charging behavior,
which in turn can be applied by the solution provider to provide frequency regula-
tion through the FCR markets. Two different problem settings exist for forecasting:
the 1-D and 2-D markets. One XGBoost model and two variations of RNN models
were applied and compared to a naive baseline.

The forecasting problem consists of two fundamentally different tasks: predict-
ing if the EV is at the home location or not (classification), and the state of charge
of the EV (regression). The performance of the models on the two tasks was judged
by accuracy and F1-score for the classification, and by RMSE and MAE for the
regression. By all metrics, all three advanced models consistently beat the baseline.

The XGBoost model also proved to out-perform all of the other evaluated mod-
els. This can be nuanced by the fact that the XGBoost model was tailored to learn
the regression and classification tasks separately, which may have given it an edge
on the RNN models. It may be seen as surprising that the best model for a time
series forecasting task turned out to be a model where the time dependency of the
data was not encoded at all. The conclusion of the thesis shows promising results of
applying these type of models to forecasting of EV charging behavior.

7.1 Future Research

Various trade-offs and limitations of the thesis were discussed in the previous chap-
ter. Throughout the project, ideas for improving results and new directions of re-
search were discovered, and some are presented in this final section of the thesis.

Specialized loss function
The loss function for training ML models dictates what phenomena the models
are trained to capture. In the thesis, the models are trained to forecast the state of
charge and when the EV is at home, and the measure of flexibility may then be
calculated from these quantities. Future research topics may include tailoring the
training process to focus on forecasting the flexibility measure explicitly. This could

64

7.1. FUTURE RESEARCH

be accomplished by a more specialized loss function to help the model to learn the
desired task directly.

Model architecture
Recent research has shown that incorporating attention mechanisms has success-
fully improved the performance of sequence modelling for RNNs by leveraging
automatic feature selection. Applying more advanced attention mechanisms could
potentially benefit this forecasting problem [Vaswani et al., 2017].

The XGBoost models explored in the thesis are inherently single output models
and a collection of 98 individual models were required to fit the forecasting problem.
Naturally, there is a strong dependence among the individual models as the outputs
form a time series. Thus, the correlation may be leveraged to improve both the
efficiency of training and the performance of the models. These concepts are further
explored in [Zhang and Jung, 2019] and there is currently experimental support
through the XGBoost implementation [XGBoost, 2022b].

Feature engineering and clustering
All of the approaches explored in this thesis could be helped by additional external
data resources, such as holidays and outdoor temperature. Conducting a systematic
feature selection should decrease the complexity of the models and reduce the risk
of overfitting.

Furthermore, the available data for this problem grows over time, which will
benefit the modelling of charging behavior as the models used have more examples
to learn from. As the models train on data from different parts of the year, season
can be encoded and the models can learn a wider variation of behavior.

The models presented in this thesis may serve as an initial description of EV
charging behavior. By use of these models, differences in behavior among individual
users can be identified, and clustering approaches may be applied.

65

Bibliography

Bandara, K., C. Bergmeir, and S. Smyl (2020). “Forecasting across time series
databases using recurrent neural networks on groups of similar series: a cluster-
ing approach”. Expert Systems with Applications 140, p. 112896. ISSN: 0957-
4174. DOI: https : / / doi . org / 10 . 1016 / j . eswa . 2019 . 112896.
URL: https : / / www . sciencedirect . com / science / article / pii /
S0957417419306128.

Bergstra, J. and Y. Bengio (2012). “Random search for hyper-parameter optimiza-
tion”. Journal of Machine Learning Research 13:10, pp. 281–305. URL: http:
//jmlr.org/papers/v13/bergstra12a.html.

Bianchi, F. M., E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen (2017).
“An overview and comparative analysis of recurrent neural networks for short
term load forecasting”. CoRR abs/1705.04378. arXiv: 1705 . 04378. URL:
http://arxiv.org/abs/1705.04378.

Chen, T. and C. Guestrin (2016). “XGBoost”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. DOI: 10.1145/2939672.2939785. URL: https://doi.org/10.
1145%5C%2F2939672.2939785.

Chollet, F. (2017). Deep Learning with Python. 1st. Manning Publications Co.,
USA. ISBN: 1617294438.

Dodson, T. and S. Slater (2019). Electric Vehicle Charging Behaviour Study. URL:
http : / / www . element - energy . co . uk / wordpress / wp - content /
uploads/2019/04/20190329- NG- EV- CHARGING- BEHAVIOUR- STUDY-
FINAL-REPORT-V1-EXTERNAL.pdf.

Emulate Energy (2022). Emulate energy. English. URL: https://www.emulate.
energy/.

Friedman, J. H. (2001). “Greedy function approximation: a gradient boosting ma-
chine”. The Annals of Statistics 29:5, pp. 1189–1232. ISSN: 00905364. URL:
http://www.jstor.org/stable/2699986 (visited on 2022-05-25).

66

https://doi.org/https://doi.org/10.1016/j.eswa.2019.112896
https://www.sciencedirect.com/science/article/pii/S0957417419306128
https://www.sciencedirect.com/science/article/pii/S0957417419306128
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://arxiv.org/abs/1705.04378
http://arxiv.org/abs/1705.04378
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%5C%2F2939672.2939785
https://doi.org/10.1145%5C%2F2939672.2939785
http://www.element-energy.co.uk/wordpress/wp-content/uploads/2019/04/20190329-NG-EV-CHARGING-BEHAVIOUR-STUDY-FINAL-REPORT-V1-EXTERNAL.pdf
http://www.element-energy.co.uk/wordpress/wp-content/uploads/2019/04/20190329-NG-EV-CHARGING-BEHAVIOUR-STUDY-FINAL-REPORT-V1-EXTERNAL.pdf
http://www.element-energy.co.uk/wordpress/wp-content/uploads/2019/04/20190329-NG-EV-CHARGING-BEHAVIOUR-STUDY-FINAL-REPORT-V1-EXTERNAL.pdf
https://www.emulate.energy/
https://www.emulate.energy/
http://www.jstor.org/stable/2699986

Bibliography

Hecht, C., J. Figgener, and D. U. Sauer (2021). “Predicting electric vehicle charging
station availability using ensemble machine learning”. Energies 14:23. ISSN:
1996-1073. DOI: 10.3390/en14237834. URL: https://www.mdpi.com/
1996-1073/14/23/7834.

Hewamalage, H., C. Bergmeir, and K. Bandara (2021). “Recurrent neural networks
for time series forecasting: current status and future directions”. International
Journal of Forecasting 37:1, pp. 388–427. DOI: 10.1016/j.ijforecast.
2020.06.008. URL: https://doi.org/10.1016%2Fj.ijforecast.2020.
06.008.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory.” Neural Com-
putation 9:8, pp. 1735–1780. URL: http://ludwig.lub.lu.se/login?
url=https://search.ebscohost.com/login.aspx?direct=true&
AuthType=ip,uid&db=inh&AN=5736179&site=eds-live&scope=site.

International Energy Agency (2022). Energy transitions require innovation in
power system planning. URL: https://www.iea.org/articles/energy-
transitions-require-innovation-in-power-system-planning.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2021). An Introduction to Sta-
tistical Learning: with Applications in R. Springer Texts in Statistics. Springer
US. ISBN: 9781071614174. DOI: 10.1007/978- 1- 0716- 1418- 1. URL:
https://link.springer.com/10.1007/978-1-0716-1418-1.

Jozefowicz, R., W. Zaremba, and I. Sutskever (2015). “An empirical exploration
of recurrent network architectures”. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37.
ICML’15. JMLR.org, Lille, France, pp. 2342–2350.

Keras (2022). How can i obtain reproducible results using keras during develop-
ment? URL: https://keras.io/getting_started/faq/#how-can-i-
obtain-reproducible-results-using-keras-during-development.

Kingma, D. P. and J. Ba (2014). Adam: a method for stochastic optimization. DOI:
10.48550/ARXIV.1412.6980. URL: https://arxiv.org/abs/1412.
6980.

Lim, B. and S. Zohren (2021). “Time-series forecasting with deep learning: a sur-
vey”. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 379:2194, p. 20200209. DOI: 10.1098/rsta.
2020.0209. URL: https://doi.org/10.1098%2Frsta.2020.0209.

Madjidian, D., M. Roozbehani, and M. A. Dahleh (2018). “Energy storage from
aggregate deferrable demand: fundamental trade-offs and scheduling policies”.
IEEE Transactions on Power Systems 33:4, pp. 3573–3586. DOI: 10.1109/
TPWRS.2017.2766144.

67

https://doi.org/10.3390/en14237834
https://www.mdpi.com/1996-1073/14/23/7834
https://www.mdpi.com/1996-1073/14/23/7834
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1016%2Fj.ijforecast.2020.06.008
https://doi.org/10.1016%2Fj.ijforecast.2020.06.008
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=5736179&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=5736179&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=5736179&site=eds-live&scope=site
https://www.iea.org/articles/energy-transitions-require-innovation-in-power-system-planning
https://www.iea.org/articles/energy-transitions-require-innovation-in-power-system-planning
https://doi.org/10.1007/978-1-0716-1418-1
https://link.springer.com/10.1007/978-1-0716-1418-1
https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098%2Frsta.2020.0209
https://doi.org/10.1109/TPWRS.2017.2766144
https://doi.org/10.1109/TPWRS.2017.2766144

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y.
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
(2015). TensorFlow: large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org. URL: https://www.tensorflow.
org/.

Olah, C. (2015). Understanding lstm networks – colah’s blog. English. URL:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Rashmi, K. V. and R. Gilad-Bachrach (2015). “Dart: dropouts meet multiple ad-
ditive regression trees.” URL: http : / / ludwig . lub . lu . se / login ?
url=https://search.ebscohost.com/login.aspx?direct=true&
AuthType=ip,uid&db=edsarx&AN=edsarx.1505.01866&site=eds-
live&scope=site.

Schuster, M. and K. Paliwal (1997). “Bidirectional recurrent neural networks”.
IEEE Transactions on Signal Processing 45:11, pp. 2673–2681. DOI: 10.1109/
78.650093.

Sharma, S., S. Sharma, and A. Athaiya (2020). “Activation functions in neural net-
works”. In:

Shifaz, A., C. Pelletier, F. Petitjean, and G. I. Webb (2021). Elastic similarity mea-
sures for multivariate time series classification. DOI: 10.48550/ARXIV.2102.
10231. URL: https://arxiv.org/abs/2102.10231.

Svenska Kraftnät (2022a). Bilaga 3: villkor för fcr, avtal 4620-3. Swedish. URL:
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-
o-elmarknad/balansansvar/aktuella-balansansvarsavtal/4620_3-
bilaga-3-fcr.pdf.

Svenska Kraftnät (2022b). Frekvenshållningsreserv normaldrift (fcr-n). Swedish.
URL: https://www.svk.se/aktorsportalen/systemdrift-elmarknad/
information-om-stodtjanster/fcr-n/.

Svenska Kraftnät (2022c). Guidance on the provision of reserves. English. URL:
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-
o- elmarknad/information- om- stodtjanster/guidance- on- the-
provision-of-reserves.pdf.

Svenska Kraftnät (2022d). Svenska kraftnät börjar upphandla fcr-d ned för 2022.
Swedish. URL: https://www.svk.se/press-och-nyheter/nyheter/
elmarknad- allmant/2021/svenska- kraftnat- borjar- upphandla-
fcr-d-ned-for-2022/.

68

https://www.tensorflow.org/
https://www.tensorflow.org/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1505.01866&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1505.01866&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1505.01866&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1505.01866&site=eds-live&scope=site
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.48550/ARXIV.2102.10231
https://doi.org/10.48550/ARXIV.2102.10231
https://arxiv.org/abs/2102.10231
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/balansansvar/aktuella-balansansvarsavtal/4620_3-bilaga-3-fcr.pdf
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/balansansvar/aktuella-balansansvarsavtal/4620_3-bilaga-3-fcr.pdf
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/balansansvar/aktuella-balansansvarsavtal/4620_3-bilaga-3-fcr.pdf
https://www.svk.se/aktorsportalen/systemdrift-elmarknad/information-om-stodtjanster/fcr-n/
https://www.svk.se/aktorsportalen/systemdrift-elmarknad/information-om-stodtjanster/fcr-n/
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/information-om-stodtjanster/guidance-on-the-provision-of-reserves.pdf
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/information-om-stodtjanster/guidance-on-the-provision-of-reserves.pdf
https://www.svk.se/siteassets/4.aktorsportalen/systemdrift-o-elmarknad/information-om-stodtjanster/guidance-on-the-provision-of-reserves.pdf
https://www.svk.se/press-och-nyheter/nyheter/elmarknad-allmant/2021/svenska-kraftnat-borjar-upphandla-fcr-d-ned-for-2022/
https://www.svk.se/press-och-nyheter/nyheter/elmarknad-allmant/2021/svenska-kraftnat-borjar-upphandla-fcr-d-ned-for-2022/
https://www.svk.se/press-och-nyheter/nyheter/elmarknad-allmant/2021/svenska-kraftnat-borjar-upphandla-fcr-d-ned-for-2022/

Bibliography

Taieb, S. B., G. Bontempi, A. Atiya, and A. Sorjamaa (2011). A review and compar-
ison of strategies for multi-step ahead time series forecasting based on the nn5
forecasting competition. DOI: 10.48550/ARXIV.1108.3259. URL: https:
//arxiv.org/abs/1108.3259.

Ullah, I., K. Liu, T. Yamamoto, R. E. A. Mamlook, and A. Jamal (2021a). “A com-
parative performance of machine learning algorithm to predict electric vehicles
energy consumption: a path towards sustainability”. Energy & Environment 0:0,
p. 0958305X211044998. DOI: 10.1177/0958305X211044998. eprint: https:
//doi.org/10.1177/0958305X211044998. URL: https://doi.org/10.
1177/0958305X211044998.

Ullah, I., K. Liu, T. Yamamoto, M. Zahid, and A. Jamal (2021b). “Electric vehicle
energy consumption prediction using stacked generalization: an ensemble learn-
ing approach”. International Journal of Green Energy 18:9, pp. 896–909. DOI:
10.1080/15435075.2021.1881902. eprint: https://doi.org/10.1080/
15435075.2021.1881902. URL: https://doi.org/10.1080/15435075.
2021.1881902.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin (2017). Attention is all you need. DOI: 10.48550/ARXIV.
1706.03762. URL: https://arxiv.org/abs/1706.03762.

Wen, R., K. Torkkola, B. Narayanaswamy, and D. Madeka (2017). A multi-horizon
quantile recurrent forecaster. DOI: 10.48550/ARXIV.1711.11053. URL:
https://arxiv.org/abs/1711.11053.

XGBoost (2022a). Extreme gradient boosting. URL: https : / / github . com /
dmlc/xgboost.

XGBoost (2022b). Xgboost multiple outputs. URL: https : / / xgboost .
readthedocs.io/en/stable/tutorials/multioutput.html.

Yang, X., C. Chen, W. Zhao, and Y. Li (2021). “Electric vehicle load forecasting
in distribution transformer based on feature engineering”. In: 2021 IEEE 4th
International Electrical and Energy Conference (CIEEC), pp. 1–5. DOI: 10.
1109/CIEEC50170.2021.9510549.

Zhang, Z. and C. Jung (2019). Gbdt-mo: gradient boosted decision trees for multiple
outputs. DOI: 10.48550/ARXIV.1909.04373. URL: https://arxiv.org/
abs/1909.04373.

69

https://doi.org/10.48550/ARXIV.1108.3259
https://arxiv.org/abs/1108.3259
https://arxiv.org/abs/1108.3259
https://doi.org/10.1177/0958305X211044998
https://doi.org/10.1177/0958305X211044998
https://doi.org/10.1177/0958305X211044998
https://doi.org/10.1177/0958305X211044998
https://doi.org/10.1177/0958305X211044998
https://doi.org/10.1080/15435075.2021.1881902
https://doi.org/10.1080/15435075.2021.1881902
https://doi.org/10.1080/15435075.2021.1881902
https://doi.org/10.1080/15435075.2021.1881902
https://doi.org/10.1080/15435075.2021.1881902
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1711.11053
https://arxiv.org/abs/1711.11053
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/stable/tutorials/multioutput.html
https://xgboost.readthedocs.io/en/stable/tutorials/multioutput.html
https://doi.org/10.1109/CIEEC50170.2021.9510549
https://doi.org/10.1109/CIEEC50170.2021.9510549
https://doi.org/10.48550/ARXIV.1909.04373
https://arxiv.org/abs/1909.04373
https://arxiv.org/abs/1909.04373

A
Data attributes

A.1 EV time series attributes

1. time - Datatype: String. Description: encodes date and time of the measure-
ment using the TZ-format ("YYYY-MM-DDThh:mm:ss.fffZ")

2. period - Datatype: Integer. Description: Counting sequence of number of
minutes passed since the EV was onboarded, i.e. has increments of 30, the
sampling frequency.

3. soc - Datatype: Float. Description: State of charge of the EV battery in deci-
mal form, i.e. soc ∈ [0,1] at all time points (0 % to 100 %).

4. odometer - Datatype: Float. Description: Measurements from the cars inter-
nal odometer, measuring the total distance traveled by the EV.

5. latitude - Datatype: Float. Description: Measurements of the latitude at
which the EV is located.

6. longitude - Datatype: Float. Description: Measurements of the longitude at
which the EV is located.

7. charge_status - Datatype: String/Categorical. Description: Indicates
Charge status of the EV, which falls into one out of three categories,
charge_status ∈ {CHARGING, NOT_CHARGING, FULLY_CHARGED}

8. isPluggedIn - Datatype: Boolean/Categorical. Description: Indicates
whether or not the EV is plugged in to a charging station. isPluggedIn
∈ {True, False}

A.2 EV metadata attributes

1. id - Datatype: Integer. Description: Unique identifier of specific EV.

70

A.2. EV METADATA ATTRIBUTES

2. state - Datatype: String/Categorical. Description: Indicates if the
EV is actively participating in the data gathering process, state ∈
{active, pending}.

3. manufacturer - Datatype: String. Description: Indicates the manufacturer
of the EV.

4. product - Datatype: String. Description: Indicates the name of the product.

5. customer - Datatype: Integer. Description: Identification number of the cus-
tomer that owns the EV.

6. onboarded_at - Datatype: String. Description: Date and time of onboarding
of the EV, i.e. date and time that data started being collected. Encoded using
the TZ-format ("YYYY-MM-DDThh:mm:ss.fffZ")

7. home_location - Datatype: Tuple of floats. Description: Gives coordinates
of home location for the EV on the format "(latitude, longitude)".

8. battery_capacity - Datatype: Float. Indicates the preferred state of charge
of the EV, i.e. the state of charge at which it is considered fully charged. This
is not necessarily 100 %, but is a setting that may be tweaked by the customers
at any time.

71

B
Model parameters

B.1 RNN hyperparameters

Parameter Description
FF units # of nodes in a FF layer

LSTM-units # of LSTM cells in a layer

Out activation function, soc
Final activation function in output

layer for soc forecasts
Optimizer Algorithm used in training

Batch size
Number of observations in randomly

selected batch
Epochs Number of epochs in training

Learning rate
Size of steps in negative gradient

direction

Min delta
Minimum improvement between epochs

in measured loss

Patience
Number of epochs that training can violate

min delta before early stopping

Kernel regularization
What penalty is put on large

weights, L1 or L2 norm

Regularization coefficient
Coefficient before the penalty on

weight size

Dropout rate, FF layer
Probability of killing weights

connected to FF layer

Dropout rate, LSTM layer
Probability of killing weights

connected to LSTM layer

Table B.1 Explanation of hyperparameters for RNN models

72

B.2. XGBOOST HYPERPARAMETERS

B.2 XGBoost hyperparameters

Parameter Description
Number of estimators Number of trees built by model

Learning rate
How quickly model should

fit the training data

Gamma
Minimum improvement for

tree to be added
Max depth Maximum depth of each tree

Booster
Boosting technique,

either DART or GBTree

Column sample by tree
Percentage of how columns

shown to each tree

Subsample of data
Percentage of how many

observations shown to each tree

Drop rate
Probability of dropping tree

(only when DART used as booster)

Only day
If true, only yesterday-sequence is used,

otherwise last week as well

Table B.2 Explanation of hyperparameters for XGBoost models.

73

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2022
Document Number
TFRT-6169

Author(s)

Fredrik Sidh
Gustaf Sundell

Supervisor
Daria Madjidian, Emulate Energy AB
Richard Pates, Dept. of Automatic Control, Lund
University, Sweden
Anders Rantzer, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Data-driven forecasting of electric vehicle charging for frequency regulation

Abstract

Electric vehicle (EV) charging may be used in aggregation as virtual batteries to provide a frequency
regulating service to the power grid. The service is sold on the Frequency Containment Reserve
(FCR) markets, and is traded one and two days ahead. Forecasts of charging patterns are essential to
reliably provide this ancillary service. The thesis aims to build a generalized model for forecasting
EV charging behavior of 47 EVs in Sweden. The charging behavior is characterized by the state of
charge and whether the EV is plugged in to the home charging station or not. Recurrent Neural
Networks (RNNs) and XGBoost are applied to produce forecasts that fit the two FCR market settings.
Performance of the models is evaluated and compared to a naive baseline in terms of RMSE, MAE,
accuracy and F1-score. The naive baseline assumes the same charging behavior as the previous week.
The results show both classes of models to consistently beat the naive baseline on both markets, and
XGBoost proved to be the best forecaster.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-73

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Acronyms
	Introduction
	Aim and Scope
	Background
	Previous research
	Scientific contributions
	Outline of the Thesis
	Code

	Data
	Data description
	Preprocessing of Data
	Final attributes for modeling

	Theory
	Learning task
	Neural Networks
	Gradient Boosting Decision Tree

	Methods
	Forecasting in the FCR market setting
	Forecasting Models
	Data formatting for learning
	Model training
	Hyperparameter tuning
	Setup for model training
	Performance evaluation

	Results
	General performance
	Example forecasts
	Performance on individual EVs

	Discussion
	Performance of models
	Limitations and improvements

	Conclusion
	Future Research

	Bibliography
	Data attributes
	EV time series attributes
	EV metadata attributes

	Model parameters
	RNN hyperparameters
	XGBoost hyperparameters

	Tom sida

