
Modeling code quality using machine
intelligence

Erik Kindt

er6425ki-s@student.lu.se

Arvid Malmström

ar2464ma-s@student.lu.se

June 2022

LTH—Lund University
Department of mathematical sciences

Engineering physics

Master’s thesis work carried out at Ingka Group Digital.

Supervisors: Carina Geldhauser, carina.geldhauser@math.lth.se
Dan Wahlin, dan.wahlin1@ingka.ikea.com

Examiner: Gabriele Brüll, gabriele.brull@math.lth.se

er6425ki-s@student.lu.se
ar2464ma-s@student.lu.se
carina.geldhauser@math.lth.se
dan.wahlin1@ingka.ikea.com
gabriele.brull@math.lth.se

Abstract

For any company with a software development branch, one of the most
important aspects is to write maintainable, understandable, high-
quality source code. This will result in fewer work hours to refactor
the code if changes are needed. Therefore it’s expensive to keep work-
ing with source code of poor quality. The question is, how to measure
the quality of source code?

The writers of this thesis approached the problem using machine learn-
ing. Firstly two literature studies were conducted, one concerning
usable software metrics and one concerning usable machine learning
algorithms. Secondly, a large, external, labeled data base was set up
and the models were trained on said data. There were different final
models set up. Two to focus on large projects consisting of hundreds
of files and two to focus on singular stand-alone files. After examin-
ing the models, the ones with the lowest RMSEs on the test set were
used to compare the predictions from the models with the opinions of
experienced developers.

The final models were built using the algorithms artificial neural net-
work and random forest which both gave similar results. The models
for specific files were tested for both front end and back end files
where four files in each were ranked according to the final score from
the model. The rank was then compared to a ranking of the same
files by experienced software developers. The results showed for front
end files, that the model agreed with the developers ranking to a large
extent. For back end files, there was a wider discrepancy between the
opinions of the developers and the predictions made by the model.

The final models were also able to evaluate a large project over time,
to evaluate the overall code quality, which also was one thought ap-
plication of the model. When a project that was rewritten a year ago
was continuously evaluated, the code quality improved which was the
expected result according to developers in the project.

Keywords: Machine Learning, Artificial Intelligence, Software Develop-
ment, Software Metrics

Acknowledgements

First of all, the writers of this thesis would like direct a big thank you to the
entire team at Ingka Group Digital. Especially to our supervisor Dan Wahlin
for always supporting us with both theoretical and practical issues, as well
as always being invested in the writing of the thesis. Also a big thank you
to Magnus Pettersson, who is the responsible manager, for allowing us the
opportunity to write our thesis at Ingka Group Digital.

Secondly we would also like to direct a big thank you to our supervisor at
LTH, Carina Geldhauser. Thank you for always being someone to turn to
regarding any machine learning algorithm and for giving us necessary con-
structive criticism regarding the structure of the thesis.

Finally we would also like to thank the team members of the team at Ingka
who helped us evaluating our models.

CONTENTS

Contents

1 Introduction 1
1.1 Previous work . 1
1.2 Purpose . 2
1.3 Research Questions . 2
1.4 Scope & limitations . 2
1.5 Outline . 2
1.6 Ingka Group Digital . 3

2 Theoretical background 4
2.1 The Qscored data set . 4
2.2 Code smell . 5

2.2.1 God class . 5
2.2.2 Brain method . 6
2.2.3 Brain class . 6
2.2.4 Feature Envy . 7
2.2.5 Data Class . 7

2.3 Maintainability & Testability 7
2.4 Front and back end . 7
2.5 A selection of other software metrics 8

2.5.1 Lines Of Code (LOC) 8
2.5.2 Number of functions/methods 9
2.5.3 Code Duplication (CD) 9
2.5.4 Control Flow Chart . 9
2.5.5 Cyclomatic complexity 10

2.6 Machine intelligence algorithms 10
2.7 Supervised learning . 11
2.8 ANN networks . 11
2.9 Loss functions, optimizers, learning rates, batch sizes and epochs 16
2.10 Decision trees . 19

2.10.1 Building a decision tree 19
2.11 Pruning . 21
2.12 Bootstrapping . 22
2.13 Bagging . 24
2.14 The Random Forest (RDF) algorithm 24
2.15 Gradient boosting . 26
2.16 Ridge regression . 28
2.17 Lasso regression . 30
2.18 Hyper-parameters . 33
2.19 Outlier removal . 33

CONTENTS

2.20 Standardization and z-score 33
2.21 Performance measurements . 34

2.21.1 Root Mean Squared Error 34
2.21.2 Mean Absolute Error 35

3 Methodology 36
3.1 Gaining knowledge in the subject 36
3.2 Finding the tools . 36
3.3 Choice of metrics . 38
3.4 Differences between Qscored and SonarQube 39
3.5 Gather data points from the database. 40
3.6 Inspecting and dividing the data 41
3.7 Preprocessing data . 43
3.8 Building the models . 45
3.9 Comparing the models . 46
3.10 Gather software metrics from projects 47
3.11 Evaluating the model . 47

3.11.1 Test 1 . 47
3.11.2 Test 2 . 48

4 Results 50
4.1 Evaluation of model . 50

4.1.1 Results, test 1 . 50
4.1.2 Results, test 2 . 52

4.2 RMSEs, MAEs and hyperparameters for respective different
models . 53

4.3 Comparing metrics . 57

5 Discussion 59
5.1 On the overall performance in the different tests 59
5.2 On the design and potential weaknesses of the tests 60
5.3 On the performance of different models 60
5.4 On the external data set . 61
5.5 On the difference between Qscored and SonarQube 61
5.6 Metric selection . 62
5.7 Addressing the research questions 62

6 Conclusion 65

7 Future work 66

Appendices 70

CONTENTS

A The ER-digram of Qscored 70

B Open sources files which were compared 70

C Code to get cyclomatic complexity 70

D The form for developers to evaluate and rank real world files. 71

E Comments on files from developers. 76
E.1 Front end . 76
E.2 Back end . 80

CONTENTS

Abbreviations

ANN Artificial Neural Network

CC Cyclomatic Complexity

CD Code Duplication

CQ Code Quality

JS JavaScript

LOC Lines Of Code

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

RDF Random Forest

RMSE Root Mean Squared Error

TS TypeScript

1 INTRODUCTION

1 Introduction

When developing software, it’s always important to keep track of the quality
of the code. A correct management and measuring of the code will lead to
more easily understood, easily modified and more efficient projects for any
organization, which will lead to a more economic and sustainable code stan-
dard. The question of what ”good” code actually is varies between companies
as well as between the individual developers. However, there is consensus
about different ways of measuring and analysing code, as well as which of
these metrics plays a bigger role when developing software.

This thesis will try to build a model using machine intelligence algorithms
and known metrics to evaluate the quality of written source code. The idea
is to build a suitable model using well established Machine Learning (ML)
algorithms while also using widely accepted software metrics. The model will
take software metrics as inputs and produces a score or ranking as an output
to give an indication on the weather or not the Code Quality (CQ) is up to
the desired standard.

1.1 Previous work

This thesis should be regarded as a continuation or alternation of the master
thesis ’Identification of Technical Debt in Code using Software Metrics’ by
Erica Schillström and Dan Wahlin from 2021. The work from last year con-
sisted of a deep dive in the theory regarding the concept of technical debt.
After this work had been conducted through a literature study as well as
interviews with developers at Ingka, a model to measure technical debt was
constructed. The thesis can be found here.

Since the model were measuring technical debt, the writers of this thesis were
to build a similar model, but measuring code quality rather than technical
debt. The model used last were also a rather simple model, with a sum of
inputs with respective weights. The weights were set up in accordance with
the opinions of software developers at the company. This year, the model
were going to measure code quality rather than technical debt and were
to be built using ML-algorithms. Instead of using the opinion of software
developers to construct the models, their opinion would be used to validate
the models after it was built.

1

https://lup.lub.lu.se/student-papers/search/publication/9066720

1 INTRODUCTION

1.2 Purpose

The purpose of the thesis is to investigate and understand how well software
code quality can be measured and modeled using machine intelligence. The
final model is planned to both be used during development to get an idea
if the projects CQ is improving during development, as well as the use of
comparing different projects to each other with regards to CQ.

1.3 Research Questions

To properly investigate the purpose of the thesis, three research questions
were formed.

• Q1. Is it possible to construct a ML model to evaluate a company’s
software code quality?

• Q2. In the specified data set, which ML algorithms achieve the best
performance?

• Q3. What are the possible usages of such a model?

The thesis is supposed to find answers to these three research questions.

1.4 Scope & limitations

The scope of the thesis is that it will only consist of supervised learning algo-
rithms with continuous outputs. It will not consider unsupervised learning
algorithms nor supervised learning algorithms with discrete outputs. The
thesis will only feature well established, commercially used software metrics
found in regularly used, commercial code analysis tools such as Designite,
SonarQube, Embold etc.

1.5 Outline

The thesis begins with a short introduction and then swiftly moves on to
give a theoretical background in section 2. This section has two purposes, to
partly give the reader an introduction to software metrics, but also to provide
the reader with the mathematical and theoretical knowledge regarding the
used machine learning algorithms. It also describes the data set used for
training the model in depth. In chapter 3 the methods used when writing
the thesis are described while chapter 4 presents the results and evaluation
from the models. Chapter 5 will focus on discussing the results of the previous

2

1 INTRODUCTION

chapter, as well as answering the questions presented above in section 1.3.
Chapter 6 will wrap up the thesis in conclusions while the final chapter 7
will present possible future work.

1.6 Ingka Group Digital

The thesis is written in collaboration with Ingka Group Digital and will here
on forward be named as simply Ingka. The company is part of the IKEA
franchise. The writers of this thesis have been working closely to two soft-
ware development teams at Ingka.

The software development in these teams is structured in an agile way, while
implementing a development process in accordance with the Scrum model.

The product the team is currently working on is an application to create
membership or finding existing memberships. The application is for touch-
screens inside the stores around the world. Other products focused on are
arranging a lottery for different markets and a function to cancel an existing
membership. The products depend on data from other teams, so they have
to collaborate with other teams in the company. There are some employees
in the team working with data science, but it was seen as an interesting op-
portunity since there was an expressed desire from the team to incorporate
more data science in general and machine intelligence specifically into the
team’s pipeline.

The purpose of the models is to be able to evaluate code quality of software
code at the two concerned team at first and implemented in their pipeline.
After this has been successfully done, there might be possibilities to incor-
porate the model in other parts of Ingka as well.

3

2 THEORETICAL BACKGROUND

2 Theoretical background

In this chapter, a theoretical background will be provided. It will cover the
data set used to train and test the models. It also will cover both descriptions
of software metrics used in the models and machine learning algorithms used
in the practical part of the thesis. Especially the Random forest algorithm
and the Artificial Neural Network will be used in the thesis. Some other
useful terms when discussing CQ will also be described.

2.1 The Qscored data set

The Qscored data set is an open source data set which is available to the
public1 and the base of a paper, Sharma and Kessentini (2021), which the
following section is written in accordance with. It was created in July 2020
and is continuously extended. At the point of writing this thesis, it contains
analysis of more than 109 000 different projects from Github. The projects
in Qscored is written in the programming languages Java or C#. This anal-
ysis consists of measures of 26 software metrics as well as a ”quality score”
or a Qscore connected to each project. This score indicates the CQ of each
project. The relationships is inverted, the lower the score, the higher the CQ.

The constructor of the data set, professor T Sharma, has built the data set
using the Designite code analysis tool, which he has also built. This tool
calculates a collection of software metrics for Java and C# code.

One thing to note regarding the data set, is that it contains data for the
same project, but at different points in time. Therefore there are a lot of
data points which have roughly the same metrics.

The Qscore of each project is calculated based on the detected code smells
in each field, according to equation 2.1 below,

Qscore =
ωa × ASD + ωd ×DSD + ωi × ISD

ωa + ωd + ωi

, (2.1)

where ASD is the architecture smell density, DSD is the design smell density
and ISD is the implementation smell density. ωa, ωd and ωi is the corre-
sponding weights. The concept of code smells is described in section 2.2.
The reader should note that the lower the score, the higher the code

1Available to download as of May 2022 at https://zenodo.org/record/4468361#

.Ym-YT_NBxJU

4

https://zenodo.org/record/4468361##.Ym-YT_NBxJU
https://zenodo.org/record/4468361##.Ym-YT_NBxJU

2 THEORETICAL BACKGROUND

quality.

To determine the values of these weights, professor Sharma conducted a sur-
vey where 31 experienced software developers gave their opinion on which
type of code smell were the most important to direct their work on for a high
quality code. The results were that the majority of the software developers
would direct 50 % their time towards architectural issues, 30 % of their time
towards design issues and 20 % of their time towards implementation issues.
Therefore the weight were set as ωa = 0.5, ωd = 0.3 and ωi = 0.2. The score
calculated with equation 2.1 is the labels for the models in this thesis and
the metrics in the data set the features.

Since the Qscore provided by the data set will act as labels in the constructed
model will act as ground truth. This will of course introduce a bias towards
the model used in Qscored, but it was decided that it was a necessary sacrifice
to be able to use supervised learning. This would enable the writing of the
thesis and hopefully shed new light on the possibility of modeling CQ using
ML.

2.2 Code smell

The term code smell were popularized by Fowler in 1999. It is used to de-
scribe any signs in the source code that there might be a hidden underlying
problem with the structure of the code. These could be problematic choices
of implementation or general design of the program. For example, according
to Paiva et al., a for-loop where the iteration index is not increased is a type
of code smell. The presence of these code smells suggest that the code need
to be refactored, meaning changing the code to improve the internal structure
and integrity of the program.

Fowler introduced 22 different types of code smells in his book Refactoring:
Improving the design of existing code. This list includes duplicated code,
long methods, large classes and so on. In the next subsection some of the
commonly identified code smells are listed, to give the reader an introduction
to the concept of code smells. The most important is the following smells
according to Object-oriented metrics in practice:

2.2.1 God class

According to Marinescu (2006), a god class is when one class has most of the
intelligence of the system. The class then performs too much of the work by

5

2 THEORETICAL BACKGROUND

itself and rely on data from other classes. The god classes are often large
and complex. This can slow down a software system.

To detect a god class there are three main components which is:

• Access data from simpler classes.

• Big classes that are long and complex.

• Low cohesion between the methods in that class.

Those are shown in the following figure:

Figure 1: How to detect a god class (AFTD - access to foreign data).

If the class uses many foreign attributes, then the ATFD will be high and be
more probable to become a god class. The functional complexity is measured
by a weighted method count.

2.2.2 Brain method

Another often identified code smell is the so called brain method. A brain
method is a software method which centralizes the intelligence of a class
and often takes the shape of a method which is very long, complex and
complicated to understand. This often leads to that the brain method is
challenging to maintain for software developers, demanding that a lot of
hours to refactor if needed according to Vidal et al. (2018).

2.2.3 Brain class

Olbrich et al. (2010) defines a brain class as, in similarity with a god class,
a class which contains a lot of intricacy and complexity. The main difference

6

2 THEORETICAL BACKGROUND

however is that a brain class doesn’t use much data from external or outside
classes, not in the same degree as a god class does.

2.2.4 Feature Envy

Feature envy is described by Paiva et al. (2017) as the process when a method
in an object which is mainly using attributes from other objects. This can for
example be if an object evokes get-methods on other type of objects to then
use this data to do calculations within the original object class according to
Fowler (1999). This points to the fact that the method should be placed in
the class which uses is the most.

2.2.5 Data Class

A data class is a class in the code which doesn’t contain enough complex-
ity. They mainly store data and other classes are heavily dependent on the
data class, according to Fontana et al. (2015). They often contain a lot of
attributes, but lack logical methods to go with them. It exposes the data to
other classes through accessor methods.

2.3 Maintainability & Testability

The maintainability describes the easiness or difficulty with which a program
can be modified. According to Visser et al. (2016), this includes e.g. if the
code is easy to understand, if it’s robust or how easy it is to find and correct
bugs. These changes often occur both before and after the release of the
software product according to Lewis and Bassetti (2000).

Another important aspect of developing software is to be able to test the pro-
gram through out the development-process, this is described as a programs
testability. In an easily testable program, it’s easy to find possible problems
in the source code. If a program is not easily testable, it might be required to
go through a process of refactoring and redesigning to be able to find these
bugs according to Freedman (1991).

2.4 Front and back end

The following part is based on an article by Almuttairi (n.d.).

Developers often make a difference between front end and back end develop-
ment. Front end is the part of a website or application that interacts with

7

2 THEORETICAL BACKGROUND

the user. Front end includes things like text colour, graphs and tables etc
which are things the user experience directly. Also the design, structure and
behavior of what is seen on a web page or application is designed by a front
end developer. Front end files also needs to be responsive and not slow which
also is a task for a front end developer. Front end files are usually written in
HTML, CSS and JavaScript.

The back end developer is focused on the server side of the website or ap-
plication. In the back end, the data is stored, updated and arranged for the
front end side to use. It is the part of the website or application that the
user do not interact with. Back end files are usually written in PHP, C++,
Java, Python and JavaScript.

2.5 A selection of other software metrics

When discussing quality of code, this is often subject to different opinions.
Different developers and companies have different approaches and priorities
to design their code and programs. However, to concretize the code, it’s
often useful to introduce metrics of the code. This can for example be the
size of the project or the number of lines in a file. In this section, software
metrics used in the model will be introduced. These metrics are typically
not regarded as code smells, but other seperate metrics of the code.

2.5.1 Lines Of Code (LOC)

This section is written in accordance with Pfleeger (2015). One rather sim-
ple, but still powerful software metric is to count the LOC in the project.
This is a metric used to measure the size of the project. LOC is an often
used metric by different developers and organizations, but one thing to note
regarding the metric is that it matters whats written in each line of code.
For example one line might just be blank or contain a comment, while an-
other contains an entire while loop. The complexity is greater in the second
alternative, but when counting LOC they both simply result in one line of
code. The metric LOC is still a powerful tool, but it’s important to be aware
of what it actually says about the code.

8

2 THEORETICAL BACKGROUND

2.5.2 Number of functions/methods

The software metric number of methods is very similar to lines of code as it
is also a size metric. The metric count the number of methods in a file or a
project.

2.5.3 Code Duplication (CD)

Another important metric that can be used to measure the quality of code is
if the code is often duplicated. These are blocks of code that could probably
be refactored e.g. turned into a method or saving the results from the pre-
vious time the block was executed. This is often a result when a developer
simply uses copy and paste on a block of code. One problem with code du-
plication is that if a bug is found in one of the code blocks, and it’s modified,
then the second code block will also have be updated, something that might
be forgotten according to Visser et al. (2016).

In the used data set, the level of code duplication within a project is calcu-
lated with a index-based algorithm suggested by Hummel et al. (2010). This
index maps sequences of normalized statements to their occurrences. This
algorithm is outside the scope of the thesis, but will ultimately result in a
percentage of how much code is duplicated.

2.5.4 Control Flow Chart

When examining a written software programs complexity, a flow chart is
often used to described the algorithm. This flow chart will display every
possible path through the program. It will prove a useful tool when working
with certain software metrics e.g. Cyclomatic complexity. Two examples of
control flow charts are displayed in figure 2 below.

9

2 THEORETICAL BACKGROUND

(a) Flowchart of an if statement. (b) Flowchart of a while statement.

Figure 2: Flowchart of different two statements.

2.5.5 Cyclomatic complexity

One way to describe the complexity of the code is using McCabe’s Cyclomatic
Complexity (CC). This is combined with flow charts of the code and is defined
by equation 2.2 below, according to Pfleeger (2015).

V (f) = E −N + 2 (2.2)

In equation (2.2) V is is the CC, f is the selected flowchart, E is the number
of edges is the chart and N is the number of nodes in the chart.

Looking back at the flow charts from section 2.5.4, for example, the flowchart
in figure 2a would have N = 6 and E = 6 which would result in a CC of
V (f) = 6−6+2 = 2. Since CC measures the number of linearly independent
paths through f it is easy to realize there are two in figure 2a.

2.6 Machine intelligence algorithms

The thesis will now move on to target machine learning rather than data sci-
ence. This will be done by describing some foundations of machine learning,
rigorously introduce the algorithms used and also swiftly discuss the ways to
evaluate and compare different models with each other.

10

2 THEORETICAL BACKGROUND

2.7 Supervised learning

Supervised learning is one of the foundations of machine intelligence. The
algorithm is trained on labeled data, meaning each sample of the training set
has a label connected to it. This means that every combination of parameter
values in the training set also has a predetermined output. The models is
modifying its parameters to match the output of the training set. The idea
is that the trained model will later be able to predict an output on unseen
data as input, according to Marsland (2009). This can be done for several
types of problem, e.g. regression and classification tasks. Supervised learning
stands in contrast with unsupervised learning which doesn’t use any labels in
it’s algorithms. Unsupervised learning are often use for tasks like clustering
or dimensionality reduction. In the following section some supervised ML-
algorithms will be introduced.

2.8 ANN networks

When discussing predictive supervised machine learning algorithms, one of
the most powerful tools is the Artificial Neural Network (ANN). The ANN
is a name for several algorithms which replicates the neurons in the human
brain. Figure 3 shows the algorithm of one simple neuron, or a node, using
three inputs.

Figure 3: A simple neuron using three inputs. Present in the figure is also
the weights, the bias, the activation function as well as the output.

The output from a neuron is calculated according to equation 2.3 below,

11

2 THEORETICAL BACKGROUND

a =
N∑
k

ωkxk + b

y = ϕ(a)

(2.3)

where ωk is weight k, xk is input k, b is the bias and ϕ is called the activation
function. This activation function often contains a threshold behaviour for
some level of input and will determine which output in each node in the
network will produce. There are several popular activation functions, e.g.

• Linear - ϕ(a) = a

• Heaviside - ϕ(a) = θ(a)

• ReLU - ϕ(a) = max(0, a)

which are also shown in figure 4.

Figure 4: Three commonly used activation functions, linear, heaviside and
ReLU.

12

2 THEORETICAL BACKGROUND

The heaviside activation function is often used for binary classification and
also when using gradient descent for back propagation, the derivation of the
heaviside is non differentiable at x = 0 and 0 elsewhere. So when updating
the weights, gradient descent will not make progress.

The linear activation function always produces a constant output when us-
ing gradient descent. Another downside of always using a linear activation
function is that the output will also be linear and a function of the first layer.
So a non-linear relationship will not be picked up if this activation function
is chosen.

One upside of using the ReLU is that it is good at handling vanishing gra-
dients. Since it is non-linear it can also capture non-linear relationships
between the input and the output. ReLU is also rather fast since it is always
equal to zero when x < 0. However the ReLU can cause some nodes to be
saturated and will thereafter always produce negative results, according to
Edén Ohlsson (2021).

The structure of the nodes like the ones in figure 3 is called the networks
architecture. This includes both how many layers of nodes is used in the
network, as well as how many nodes there are in each respective layer. The
two major ways of structuring a network are called feed forward - and feed
backward architecture. The feed forward network doesn’t have any closed
signal loops and the inputs are always processed forward through different
layers.

The feedback or recurrent network does however, as the name suggest, intro-
duce the option to include feedback connections according to Edén Ohlsson
(2021). A simple diagram of the two architectures are displayed in figure 5.

13

2 THEORETICAL BACKGROUND

(a) A simple feed forward network.

(b) A simple recurrent network.

Figure 5: Two simple neural networks.

A feed forward network is often suited for e.g. regression types of problems.
The goal of the network is often to generate output close to the targets. A
recurrent network is often suited for dealing with sequence data, such as text
data, speech data or numerical time series according to Edén Ohlsson (2021).

When building neural networks for regression types of problems, one of the
most commonly used type of layer is the fully connected (or dense in Keras)
layer. This means that each of the nodes in the layers is connected to all the
nodes in the previous layer. Two of these fully connected layers is displayed
in figure 6 below.

14

2 THEORETICAL BACKGROUND

Figure 6: Two fully connected hidden layers. The two biases are shown in
the bottom of the screen.

In figure 6, xk represent input k, ωjk weight on connection from input k

to node j, h
(1)
j node j in hidden layer 1 and so on. x0, h

(1)
0 and h

(2)
0 is

the biases. The usage of this biases is to shift the activation function and
thereby moving the threshold. The output y from the network above would
be calculated according to

y = ϕ0

(∑
l=1

ωlϕ
(2)
h

(∑
j=1

ωljϕ
(1)
h

(∑
k=1

ωjkxk + ωj0x0

)
+ ωl0h

(1)
0

)
+ ω0h

(2)
0

)
.

(2.4)

In equation (2.4), ϕ0 is the activation function of the output node and ϕ
(1)
h

and ϕ
(2)
h is the output functions of the two hidden layers.

When adding more layers, equation 2.4 expands rapidly. But it’s still not
the most complex equation, it’s rather just sums of weights, inputs and biases.

15

2 THEORETICAL BACKGROUND

The reader should note the term hidden layer in figure 6. A hidden layer
indicates a layer in between the input and the output. In figure 6 there are
two hidden layers present. It is possible to build a network just connecting
the input to the output, such as the simple perceptron, but it is more com-
mon to use several hidden layers according to Edén Ohlsson (2021).

Another commonly used layer is the dropout layer. This is added to the
network to avoid overfitting. It means that there is a chance for weights to
be set to zero for nodes and there by dropping the node. The dropping of
these nodes are applied randomly with parameter p, which is the probability
to keep a node. These nodes are only temporarily dropped, but returned the
next time the training is done, as stated by Edén Ohlsson (2021). Figure 7
shows a network before and after dropout is applied.

Figure 7: A neural network before and after dropout have been applied. The
nodes marked with a cross have been dropped.

2.9 Loss functions, optimizers, learning rates, batch
sizes and epochs

For the network to know what the purpose of the algorithm is, it is necessary
to introduce a loss function. This function, often denoted by L(ω), which
is the function to be minimized during training and thereby optimizing the

16

2 THEORETICAL BACKGROUND

algorithm. The weights and biases defined in equation (2.3) is represented
with the symbol ω and the aim is to find the ω that solves the problem as
well as possible. For a regression type of problem with continuous output
it is common to use the Mean Squared Error (MSE) loss function which is
stated in equation 2.5 below.

L(ω) =
1

2N

N∑
n=1

(yn − dn)
2. (2.5)

In equation (2.5) ω is the weights, N is the number of samples, yn = y(ω,xn)
is the output for sample n and dn is the corresponding target. Note that the
factor 1

2
could be discarded, it won’t affect the result of the optimization

according to Edén Ohlsson (2021).

Since this loss function is to be minimized, this has now turned into a opti-
mization problem. The goal is to find weights ω which minimizes the loss in
equation (2.5). It’s possible to differentiate all of the losses and activation
functions according to equation (2.6)

∂L
∂ωk

=
∑
n

∂L
∂yn
· ∂yn
∂an
· ∂an
∂ωk

=
∑
n

∂L
∂yn

ϕ′(an)xnk, (2.6)

where ωk is the k-th input weight, an is the input to the output function
ϕ at sample n. One strategy, or optimizer is to update the weights in the
network according to ∆ω = −η∇ωL, where η is the learning rate which can
be arbitrarily chosen. This is known as the gradient descent algorithm or
gradient descent optimizer according to Edén Ohlsson (2021).

As seen above the choice of optimizer used to train the network can play a
big part in the training of the network. This is the algorithm used to min-
imize the loss function. When dealing with regression problems, it is often
common to use the the optimizer known as root mean squared propagation
or RMSProp for short.

RMSProp is closely related to the gradient descent optimizer. It’s designed
to increase the speed of the process when finding the minimum of the loss
function by reducing the number of function evaluations according to Good-
fellow et al. (2016). It uses a weighted, moving average of the calculated
gradients, discarding early extreme gradients. The algorithm is shown in
pseudocode in algorithm 1.

17

2 THEORETICAL BACKGROUND

Algorithm 1 The RMSProp algorithm.

Requires: Global learning rate η
Requires: Initial parameters ω
Requires: Small constant δ for numerical stability
Initialize accumulation variables r = 0
while Stopping requirement not fulfilled: do

Sample a minibatch m examples from training set {x(1), ..., x(m)} with
corresponding targets y(i).

Compute the gradient g← 1
m
∇ω

∑
i L(f(xi;ω), y(i))

Accumulate squared gradient r← ρr+ (1− ρ)g ⊙ g.
Compute parameter update; ∆ω = −η√

δ+r
⊙ g .

Apply update: ω ← ω +∆ω.
end while

In algorithm 1, a new hyperparameter is introduced in ρ which controls the
length of the moving average. δ is a small constant, often δ = 10−7, and ⊙
represent elementwise multiplication between the gradients g. RMSProp has
been shown to work well for neural network, both practically and effectively.
It is one of the most common optimizers for neural networks according to
Goodfellow et al. (2016).

As seen above, one of the hyperparameters that need to be decided on
is the learning rate. This indicated how much of the modification of the
weights should be included in the new neural network. This is included in
all neural networks, weather it’s feed forward, recurrent or convolutional net-
works. This learning rate can be arbitrarily chosen but is often, according
to Edén Ohlsson (2021), selected as a small number, e.g. η = 0.01. However
when deciding the learning rate it’s a lot of trial and error since it depends
on the data and the architecture of the network. A to high learning rate
leads to an unstable loss reduction while a to high leaning rate makes the
loss reduction slow according to Edén Ohlsson (2021).

Goodfellow et al. (2016) also states that learning rates goes hand in hand
with the number of epochs used when training the network. An epoch means
an update of all the weights in the entire network when all of the training
points has been passed through the network. However since this often is very
computational-heavy it is preferred to send that data through in batches. The
sizes of these batches can be arbitrarily chosen and depends on the size of
the data set.

18

2 THEORETICAL BACKGROUND

2.10 Decision trees

This section about decision trees is based on section 16 in the book Murphy
(2013).

CART stand for classification and regression trees and are commonly known
as decision trees. The basics of a decision tree is that the input space is
recursively divided where each region contains it’s own model.

The following example explains shows the basics of a decision tree.

Figure 8: Basic decision tree where R2 is the final output.

In the first step, if x1 is less or equal to the threshold t1 then it will follow
the left leaf and to the right if it is bigger than t1. With continuous splits,
each input ends up in a leaf (in this example R1−5). This will split the input
space into five regions. The prediction can then be written as

T (x; Θ) = E[y|x] =
N∑
i=1

ωiI(x ∈ Ri) =
N∑
i=1

ωiθ(x;vi) (2.7)

where ωi is the mean response in region Rm and vi is the variables chosen to
split on and their threshold value. Θ is the parameters Θ = {Ri, ωi}.

2.10.1 Building a decision tree

The most common way to build a tree is to start with a single leaf which
is called the root. The leaf is assigned a value from a majority vote in the

19

2 THEORETICAL BACKGROUND

training set. This procedure is then done iterativly for each leaf and each
split is examine in terms of a gain. Of all the possible splits (or the option
not to split at all) the best one is chosen with the one that maximizes the gain.

The problem to partition data in an optimal way is NP-complete and there-
fore a greedy approach to find the optimal solution for the partition. There
are many algorithms that could be used to build a decision tree. Some of
those are ID3, C4.5 and CART. For all of those it’s common to use the
following algorithm to find the locally optimal MLE(maximum likelihood es-
timation).

Algorithm 2 Recursive procedure to grow a decision tree.

1. function fitTree(node,D,depth);
2. node.prediction = mean(yi, i ∈ D)//or class label distribution;
3. (j∗, t∗,DL,DR) then
4. IF not worthSplitting(depth,cost,DL,DR)) then
5. return node
6. else
7. node.test = λx.xj∗ < t∗ //anonymous function;
8. node.left = fitTree(node,DL,depth+1)
9. node.right = fitTree(node,DR,depth+1)
10 return node

Where D is a tree or a subtree, t is a threshold for for a specific node, T is
the set of thresholds, x is the input and y is the response.

Algorithm 2 chooses the best features and value to split on according to:

(j∗, t∗) = arg min
j∈1,...,D

min
t∈Tj

cost({xi, yi;xij ≤ t}) + cost({xi, yi;xij > t}) (2.8)

Where (j∗, t∗) are the optimal split feature and the threshold. Tj is all the
thresholds for a one feature(duplicates would not be counted.).

There are many ways to check weather the split is worth doing or not.

• If the cost reduction is too small.

• If the tree has reached the maximum depth.

20

2 THEORETICAL BACKGROUND

• If either DL or DR is homogeneous enough, then there is no more
splitting of that set.

• If numbers of samples in DL or DR is too small.

For regression problems, which is the problem in this thesis, the cost function
is defined as

cost(D) =
∑
i∈D

(yi − ȳ)2 (2.9)

where ȳ is the mean response.

2.11 Pruning

The section about pruning is based on the section 3 in Breiman et al. (1984).

One way to avoid overfitting in decision trees is to use make use of pruning.
When just running algorithm 2, the trees tends to be overfitted to the train-
ing data.

Pruning will often remove nodes and synapses in the decision which is shown
in the following figure.

(a) Decision tree before pruning. (b) Decision tree after pruning.

Figure 9: How pruning changes a decision tree.

According to Breiman et al. (1984), one commonly used algorithm is cost
complexity pruning.

The cost complexity measure for a subtree is defined as:

Rα(T) = R(T) + α|T̃ | (2.10)

21

2 THEORETICAL BACKGROUND

where the complexity parameter α ≥ 0 is a real number and |T̃ | is the num-
ber of terminal nodes.

Using equation 2.10, for each value of α, the aim is to find the subtree
T (α) ≤ Tmax which minimizes equation 2.11:

Rα(T (α)) = min
T≤Tmax

Rα(T) (2.11)

For a small α, the penalty will for a lot of terminal nodes be small but for a
large alpha, the penalty will be big. Therefore with increasing α, there will
be smaller and smaller amount of terminal nodes.

2.12 Bootstrapping

The following section will introduce the technique bootstrap to measure the
accuracy of a model. Section 2.13 will focus on how to use bootstrapping to
improve a model prediction.

Suppose a model is to be fitted to a training set X = x1, x2, ..., xN . Then a
random draw with replacement is done on the data set, producing B different
bootstrap datasets with the same size as the original data set. The model is
then fitted to each of the bootstrap datasets and the model can be examined
to study the models behaviour to all the samples according to Hastie et al.
(2001).

Say the prediction of the model is denoted as f̂(X) for any input point. Any
aspects of the distribution of f̂(X) can the be examined, therefore giving in-
formation how the model behaves to different datasets with slight variation.

The next step would be to use bootstrapping to estimate a prediction error.
If f̂ ∗b(xi) is the prediction at xi, derived from the model that were fitted to
the b-th bootstrap dataset, the estimate is given by equation (2.12) below,

Êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi, f̂ ∗b(xi)), (2.12)

where B is the number of bootstrapped samples, N is the number of data
points in the original dataset, yi is the models predicted value and L is the
chosen loss function.

22

2 THEORETICAL BACKGROUND

This approach, however, might introduce another problem. The reason this
approach does not provide a good estimate, is because in this case the boot-
strapped samples are acting as training samples and the original training set
is the test set. Since all of these samples contains overlapping samples, over-
fitting can occur and make prediction errors lower than they actually would
be when predicting unseen data.

One way to work around this is to define the Êrr differently. Defining it
as equation (2.13), leaves out the bootstrap samples b that does not contain
observation i, denoted by C−i. |C−i| is the number of such samples.

Êrr =
1

N

N∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂ ∗b(xi)). (2.13)

The method described above is known as the leave out bootstrap. This
procedure means that the bootstrapped samples will not any longer have the
same size as the original dataset. The leave out method approach does solve
the earlier stated overfit error, but still does have a problem with imposing a
bias concerning the size of the training set. The bias is introduced because of
the non-distinct observations in the bootstrap samples that originates from
the sampling with replacement according to Hastie et al. (2001). However
bootstrapping will still be useful when used through bagging in training of
the random forest. The leave out bootstrap method is displayed in figure 10.

23

2 THEORETICAL BACKGROUND

Figure 10: The leave out bootstrap algorithm.

2.13 Bagging

Bagging or Bootstrap aggregating is, as stated earlier, a way to improve
the predictions of a model. The following section will describe the bagging
method for the regression problem.

Suppose a model is to be fitted to a training set X = x1, x2, ..., xN . The
goal is that the model will make prediction f̂(xi) at input xi. The algorithm
creates B different bootstrap samples and the model is fitted to each of these
samples and makes a prediction f̂ ∗b(x) for the b-th sample. The bagging
estimate is then defined according to equation (2.14) Hastie et al. (2001).

f̂ ∗b =
1

B

B∑
b=1

f̂ ∗b(x). (2.14)

This isn’t equal to the true bagging estimate, but rather a Monte Carlo
estimate approaching the true estimate as B →∞.

2.14 The Random Forest (RDF) algorithm

Bagging or bootstrap aggregation is a technique used to reduce the variance of
a predictor. The technique is described in depth in section 2.13. The bagging

24

2 THEORETICAL BACKGROUND

work especially well for high variance, low bias predictors such as the decision
tree. This technique can be used to train several decision trees on slightly
different training sets, to reduce the single decision trees tendency to overfit.
This is known as the random forest algorithm. The algorithm constructs
an ensemble of decision trees which is a collection of several decision trees.
Therefore the algorithm can combine the predictions of several different de-
cision trees to reduce the risk of overfitting that often occurs with the single
tree. The final prediction consists of an average over all the predictions from
all the trees in the forest. The algorithm is depicted below in figure 11.

Figure 11: The random forest algorithm consisting of N trees.

Note in figure 11 the term ”Bootstrap sample b”. The algorithm doesn’t
train all B trees on the whole of the training set, instead it randomly sam-
ples the training set using bootstrapping, as described earlier in section 2.12.

The algorithm is described in pseudocode below as algorithm 3 in accordance
with Hastie et al. (2001).

25

2 THEORETICAL BACKGROUND

Algorithm 3 The random forest algorithm for regression

1. For b = 1 to B:
a) Draw a bootstrap sample X∗ of size N from the training data
b) Grow a random-forest tree Tb to the bootstrapped recursively
data, by repeating the following steps for each terminal node of
the tree, until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:

f̂B
rf (x) =

1
B

∑B
b=1 Tb(x)

One of the downsides of using the random forest algorithm is that the easy
interpretability of the single decision tree is lost. The decision tree is often
easy to understand, as seen in figure 8, but with the random forest it rapidly
gets more difficult. The forest often consist of several hundreds of trees, de-
pending on the size of the data set. However the sacrifice in interpretability
is often repaid in higher accuracy since the risk of overfitting of the model is
reduced accoording to Murphy (2012).

2.15 Gradient boosting

Another variant of decision trees is the gradient boosting algorithm. Gradi-
ent boosting is a technique that uses an ensemble of weak learners (in this
case decision trees) to predict on a regression problem.

A decision tree can be defined as equation (2.7). A boosted tree is in this
case a sum of such trees.

fm(x) =
M∑

m=1

T (x; Θm). (2.15)

Where T is the tree, x is the input and Θi is the parameters Ri and ωi ac-
cording to equation (2.7).

The difference between gradient boosting and random forest is how the trees
in equation (2.15) are built. When a boosting technique is used, then the

26

2 THEORETICAL BACKGROUND

residual for the sum of the previous trees are calculated and from the residual
a new tree is added. This makes boosting an adaptive technique where the
new tree is dependant of the previous error. For each new tree, the following
has to be solved:

Θ̃m = argmin
Θm

N∑
i=1

L(yi, fm−1 + T (xi; Θm)). (2.16)

Equation (2.16) shows that the new constrains and regions of the next tree
is given by the current model by minimizing a loss function. The best tree
is then the decision tree that best predicts the residuals yi − fm−1(xi).

As equation (2.16) shows, a loss function is needed which should be differen-
tiable. The following are the most common loss functions too use.

Table 1: The most common loss functions and their gradients for regression.

Loss function L(yi, f(xi)) −∂L(yi, f(xi))

∂f(xi)
1
2
[yi − f(xi)]

2 yi − f(xi)

|yi − f(xi)| sign[yi − f(xi)]

Huber
yi − f(xi) for |yi − f(xi)| ≤ δm

δmsign[yi − f(xi)] for |yi − f(xi)| > δm
where δm = αth-quantile{|yi − f(xi)|}

Usually the default option is in table 1 is squared error to calculate the resid-
ual. Hastie et al. (2001).

For gradient boosting the difference compared to equation (2.16) is that
instead of only fitting to the residual, instead the tree should be fitted to the
negative gradient. This gives the new equation for squared errors as a loss
function:

Θ̃m = argmin
Θ

N∑
i=1

(−gim − T (xi; Θ))2, (2.17)

where gi =
∂L(yi, f(xi))

∂f(xi)
is the residual of the loss function.

27

2 THEORETICAL BACKGROUND

This results in algorithm 4, described in pseudocode below:

Algorithm 4 The gradient boosting algorithm for regression

1. Initialize f0(x) = argminγ

∑N
i=1 L(yi, γ).

2. For m = 1 to M:

a) For i = 1, 2, ..., N compute rim = −

[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

b) Fit a regression tree to the targets rim giving terminal regions
Rjm,j = 1, 2, ..., Jm.

c) For j = 1, 2, ..., Jm compute
γjm = argminγ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ).

d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm).

3. Output f̂(x) = fM(x)

2.16 Ridge regression

In the simple linear regression, the least square error is used to calculate
the minimum between the actual and the predicted values. The goal is to
minimize this difference, to make the best prediction on new data points.
Another way to approach a regression problem is by using so called shrink-
age methods. These methods introduces a penalty function to each coefficient
according to Hastie et al. (2001).

The ridge regression approach imposes a penalty to the coefficients depending
on their respective sizes. It penalizes a residual sum of squares , where the
ridge estimate is calculated according to equation (2.18),

β̂ridge = argmin
β

{ N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
, (2.18)

where yi is the true values for each training case n, xij is the input for train-
ing case n, βj is the jth coefficient and λ is the shrinkage parameter. The
β0 is often known as the intercept. Equation (2.18) can also be expressed as
equation (2.19). The λ ≥ 0 controls the amount of shrinkage, how largely the

28

2 THEORETICAL BACKGROUND

coefficient are to be penalized. The larger the λ, the greater shrinkage are
performed on the coefficients. The coefficients are therefore shrunk towards
zero with increasing λ.

β̂ridge = argmin
β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2.

subject to

p∑
j=1

β2
j ≤ t.

(2.19)

One thing to note in equations (2.18) and (2.19) is that the intercept β0 is
left out of the penalty term. This is because adding this would result in the
ridge estimate being dependent on the chosen origin for the result interval Y ,
since the inputs are not equivariant when subject to scaling. This means that
the adding of a a constant c to each of the targets yi would not simply shift
the prediction by the same amount c. Therefore one should usually scale the
inputs before applying the penalty term and solving equation (2.18). This
approach is also used in neural networks, but goes by another name, weight
decay according to Hastie et al. (2001).

The constraints in the two equations (2.18) and (2.19) can be visualized in
figure 12. The figure shows the two-parameter case. On the axes there are
the two parameters β1 & β2. The red ellipses are the least square error
function. The blue circle is the constraints show in equation (2.18). Note
that the constraints takes the shape of a disc (in the two-parameter case).
This means that there are no room for any parameters to be shrunk all the
way down to 0.

29

2 THEORETICAL BACKGROUND

Figure 12: The constraints are given by β2
1 + β2

2 < t.

Understanding of the ridge regression will facilitate the understanding of the
lasso regression, described in section 2.17.

2.17 Lasso regression

The lasso regression is another type of linear shrinkage method which also
aims to penalize the coefficients of the simple linear regression model. The
name is an acronym for Least absolute shrinkage and selection operator.
It’s similar to the ridge regression, but with a slight difference. The lasso

30

2 THEORETICAL BACKGROUND

estimate is defined according to equation (2.20) below or on Lagrangian form
according to equation (2.21).

β̂lasso = argmin
β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2.

subject to

p∑
j=1

|βj| ≤ t.

(2.20)

β̂lasso = argmin
β

{1
2

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|
}
. (2.21)

The lasso estimates appears to be very similar to the ridge estimate, which
is true, but there are some differences. Partly the factor in the beginning of
the expression, but more importantly is the L2 penalizing term β2

j used in
the ridge regression replaced by the L1 penalizing term |βj|. This change of
penalty term makes the solutions non-linear in yi.

Setting t in equation (2.20) sufficiently small will lead to some of the regres-
sion coefficients to be equal to zero according to Hastie et al. (2001), which
means that the lasso regression does a sort of continuous selection of the
variables to be used in a model.

If t is chosen larger than t0 =
∑p

1 |β̂j|, the lasso estimates are equal to the

least squares estimates β̂j = β̂j. But t0 can be chosen differently. If it is
chosen as t = t0/2, then the least square estimates are shrunk with about
50 % on average according to Hastie et al. (2001). Using lasso regression,
some parameters can be shrunk all the way down to 0, in contrast to ridge
regression. The lasso constraints for the two-parameter case is depicted in
figure 13.

31

2 THEORETICAL BACKGROUND

Figure 13: The lasso regression constraints. The constraints are given by
|β1|+ |β2| < t.

As seen in figure 13, the constraints marked in blue now takes the shape
of a square rather than a circle as the ridge regression in figure 12. This
slight change in penalty term means that the lasso regression allows some
parameters, say β̂j to be reduced all the way down to β̂j = 0, as stated by
Hastie et al. (2001).

32

2 THEORETICAL BACKGROUND

2.18 Hyper-parameters

When building a machine learning model of any kind, one thing that always
needs to be finely tuned are the hyper-parameters. These are the parameters
or ’settings’ for the model. These settings often include such information as
how many times the algorithm should train, what’s the learning rate i.e. at
what rate should the weights in the algorithm be updated and which opti-
mizer to use. Understanding how these hyper-parameters affects the model
structure and performance is often vital to achieve good results. However,
since there are some many combinations of different hyper-parameters the
process are often done through trial-and-error.

2.19 Outlier removal

When dealing with data for machine learning, it’s often beneficial to analyze
the outliers. One way to approach outliers is through the 1.5xIQR-rule. This
is also often displayed in boxplots. Firstly the interquartile range is defined
according to IQR = Q75 − Q25, where Q75 is the 75%-percentile and Q25 is
the 25%-percentile. The 1.5xIQR-rule then states the following limits

upper limit = Q75 + 1.5IQR

lower limit = Q25 − 1.5IQR.
(2.22)

Any datapoint falling outside of these limits can be suspected outliers. These
limits are often depicted as lines within a boxplot. One common approach
to outliers is to remove all of the datapoints falling outside of the interval in
equation (2.22) according to Vinutha et al. (2018).

2.20 Standardization and z-score

Another important preprocessing aspect when working with ML is standard-
ization. One popular way to transform data is through by using z-score.
This changes the values of the data points to become zero mean, with unit
variance. This is done by performing the transformation in equation (2.23)
below,

z =
x− x̂

σ
, (2.23)

where x is the data value, x̂ is the mean and σ is the standard deviation
as stated byKaptein and van den Heuvel (2022). Edén Ohlsson (2021) also
established that transforming the data is often useful when dealing with
machine learning algorithms. According to Gal and Rubinfeld (2018) data

33

2 THEORETICAL BACKGROUND

standardization can lead to better machine learning and is especially use-
ful when outliers has been handled according to Muhammad Ali and Faraj
(2014).

2.21 Performance measurements

When working with different models, it is absolutely vital to be able to
measure the performance of each model. Therefore different metrics is used
to evaluate how well the models described the relationships in the data. The
metrics need both to be able evaluate the models fit as well as the models
generalization performance.

2.21.1 Root Mean Squared Error

The mean squared error is one measure which can be used when determining
whether or not a model is fitted well to the data. The MSE is defined
according to equation (2.24) (and also mentioned in equation (2.5)) below,

MSE =
1

N

N∑
n=1

(yi − di)
2, (2.24)

where N is the number of inputs, the yi is the true value for input i and the
di is the predicted value for input i according to Sammut and Webb (2010).
This is a tool often used when evaluating models and often goes by the name
of squared residuals as well.

However because of the squaring in equation (2.24) the residual for input i
does not have the same unit as the original target value yi, which is why it
is common to take the square root of the MSE to receive a measure with the
same unit as the targets. The Root Mean Squared Error (RMSE) is defined
by equation (2.25), with the same notations as previously stated above and
in accordance with Chai and Draxler (2014).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − di)2 (2.25)

This is a useful tool when comparing different models to each other, with the
benefit of having the same units as the targets.

34

2 THEORETICAL BACKGROUND

2.21.2 Mean Absolute Error

An alternate measure which also can be used when evaluating models is the
Mean Absolute Error (MAE) in short. This is defined by equation (2.26)
below,

MAE =
1

n

∑
n

|yi − di| (2.26)

where n is the number of inputs, the yi is the true value for input i and the
di is the predicted value for input i. The MAE will always be lower than the
RMSE according to Chai and Draxler (2014).

One thing to note is that even though MAE provides additional information
regarding the errors of the model, it performs better for uniform distribu-
tions. Since model errors are likely to have a normal distribution RMSE is
often the better metric to consider when evaluating models as stated by Chai
and Draxler (2014).

35

3 METHODOLOGY

3 Methodology

In this section, the methodology of this thesis is described. It will explain
the entire working-process so that it can be replicated and similar results
produced. It will describe the different programs and tools used and it will
also describe the preprocessing procedure as well as the two test used to
evaluate the real-life applications of the models.

3.1 Gaining knowledge in the subject

To be able to grasp the concepts, difficulties and possibilities connected to
measuring of CQ, a literature study were conducted. This literature study
focused on different software metrics often used when analyzing source code
as well as a deep dive in the concept of code smells.

A literature study on useful ML-algorithms was also conducted, to gain
knowledge regarding several possible ways to build the model. Which al-
gorithms would be preferred to use for these types of problems and which
is not. The knowledge gained from these studies is displayed in the theory
section, section 2, of the thesis.

3.2 Finding the tools

When the literature studies were conducted, the focus now shifted to the
practical part of the project. The first step in the modeling were to set up a
large, usable and labeled data set for the models to be trained on. This soon
proved to be difficult using the data set provided by Ingka. This was because
the data set only consisted of a small set of samples which would not be suf-
ficient. There were some ideas regarding how to work around this problem,
e.g. modifying the available data set at Ingka, either manually or by using
data augmentation. However, after having dialogues with both supervisors,
it was decided that the best way forward was to try to find an external data
set with labels that contained different software metrics.

After spending some time looking for a usable, properly labeled data set,
the one which was deemed the most suitable was the Qscored data set. The
data set is described in more detail in section 2.1. It was decided that this
data set contained the needed metrics to build a suitable model. The prob-
lem with the Qscored data set was that it solely consisted of metrics from
programs written in Java and C#. The data set was constructed using tools

36

3 METHODOLOGY

only applicable to these two programming languages. In it self, this isn’t a
problem but since the software development team at Ingka writes its code
in JavaScript (JS) in TypeScript (TS), there needed to be someway to ac-
quire the same features to be used, but in the programming languages used
at Ingka. A ER-diagram of the Qscored database can be found in appendix A.

After some investigating, the analyzing tool deemed the most appropriate
was SonarQube. SonarQube is a code analyzing tool that is able to scan
projects and extract metrics from many different languages. This includes
the languages JS and TS which are the ones that are mainly going to be an-
alyzed at Ingka. It can detect different kinds of code smells and also measure
more common software metrics e.g. number of methods or code duplication.

The entire workflow of the developing models and making predictions on new
data using Qscored and SonarQube is depicted in figure 14.

Figure 14: The process of developing the models and making predictions on
new data.

37

3 METHODOLOGY

3.3 Choice of metrics

Since the models were to be used when analysing code in JavaScript and
Typescript, the metrics needed to be available in both the training data as
well as the external analysis tool SonarQube. Only metrics available both
in Qscored and SonarQube could be used, which were one basis on feature
selection.

Using Qscored to train the data and using SonarQube when analysing new
projects posed another problem. Metrics from a project analyzed in Qscored
needed to produce roughly the same results in SonarQube. Therefore a small
test were constructed where four files that were present in the Qscored data
set were analyzed by SonarQube, to investigate the translatability between
the two tools. This was another basis of which features to use in the models.

After examining the results and investigating if the metrics were roughly the
same both from Qscored and SonarQube, the metrics which were deemed
usable and translatable are depicted in table 2. CC represents cyclomatic
complexity, described in section 2.5.5.

Table 2: The used metrics in the model.

Target
variable

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

score LOC method count CC code duplication total smells

A correlation heat map of these metrics is shown in figure 15 below.

38

3 METHODOLOGY

Figure 15: A correlation heat map of the five metrics used in the models.

As can be seen in figure 15 above, there is a strong positive correlation be-
tween the ”score” and ”total smells”. There are weaker negative correlations
between ”score” and ”CC” and ”score” and ”method count”. Between the
last two variables, ”code duplication” and ”LOC” and the target variable
there is a small negative correlation. There were some consideration to re-
move these variables, but since there might still be some correlation between
that variables they stayed in the model. A simple correlation matrix only
examines linear relationships between variables and there are possibilities for
non-linear relationships between variables and the target variables.

3.4 Differences between Qscored and SonarQube

There is a discrepancy between the data base Qscored and the chosen an-
alyzing tool SonarQube. The metric code smells is defined a bit differently
with Qscored with respect to SonarQube. For example, SonarQube doesn’t
analyze so called architectural code smells, while they appear in Qscored.
This might cause a problem, but was decided to be kept in the database
when training the models. All types of smells were simply added together
and the idea was to examine the metrics and see if Qscored and SonarQube
returned roughly the code smell count.

SonarQube is also able to analyze projects in several more languages than
Qscored. So if a project in the data base is analyzed using SonarQube, the
analysis might consist of more files than the data base were able to investi-

39

3 METHODOLOGY

gate. If a project contains mainly code written in C#, but also containing
some files in other programming languages such as python or HTML, the
analysis of these languages will appear in SonarQube, but will not be in-
cluded in Qscored.

3.5 Gather data points from the database.

For building a data set that included all the metrics that we wanted use from
section 3.3, some tables in figure 23 in appendix A needed to be combined
in order to be able to train a model.

The data was then filtered so it only included each project in Qscored once.
Since one project could have been analysed at multiple occasions, only the
latest analyse of each project was included in the data set.

First of all, the table solution contains most of the metrics we’re looking for.
It is only cyclomatic complexity that is not so trivial to retrieve. The code
to get cyclomatic complexity in the correct way is in appendix C. After CC
were extracted, the tables created in the data bases could be used to create
the models.

40

3 METHODOLOGY

3.6 Inspecting and dividing the data

In the Qscored data set only the files programmed in C# did contain the
metric code duplication. The Java files did not since the evaluation tool
which created the data set didn’t have any way to measure code duplication
for Java files. After some discussion with the supervisor at Ingka, a decision
was taken to discard Java files since they lacked the metric code duplication.
The reasoning behind this decision is that code duplication could play a role
when measuring code quality and since it was available in SonarQube it was
to be included in the model. The Java files were discarded and this reduced
the number of samples from 86652 to 31337. This was considered to still be
a large enough data set to construct a ML-model from.

Then the data was split in two separate parts. This was done to train one
model on small projects with less than 5000 lines of code and one model on
large projects with more than 5000 lines of code. The distribution of the
entire data set is shown in figure 16, while the distribution after the divide
is shown in figure 17a and figure 17b respectively. The data sets will from
here on be out named as data set A for the data set with LOC < 5000 and
data set B for the data set with LOC >= 5000.

The reasoning behind this split is as follows. The idea was to derive one set
of models trained to be able to give predictions on smaller singular files. The
other set of models were to give better predictions on larger projects, often
consisting of more than 100 singular files.

The files to be analyzed and Ingka hardly ever exceeds a size of 5000 LOC,
while the projects often are larger. The limit was drawn at 5000 to ensure
that all smaller, singular files were to be predicted by the models trained at
the smaller data set. The limit is arbitrarily chosen and could have been
around 2500-3000 LOC as well.

41

3 METHODOLOGY

Figure 16: The distribution of the variable LOC for all data points.

(a) (b)

Figure 17: The distributions of the variable LOC after the divide was made.
On the left (a) the distribution for data set A and on the right (b) the
distribution for data set B.

The specifics for each of the two data sets are shown in table 3 below.

42

3 METHODOLOGY

Table 3: Specifics for both of the data sets.

LOC Min Max Mean Number of data points
< 5 000 300 4 999 2366.13 19 575
>= 5 000 5 000 1 236 196 19 867.61 11 762

Table 3 shows more than figure 17, especially for figure 17b, since there are
some data points which really distorts the distribution. The largest data
point has a LOC of 1236196, but the mean for data set B is rather 19867.61,
which gives a more true insight about the variable LOC in the two data sets.

3.7 Preprocessing data

Before the models could be trained, the data needed to be preprocessed.
First the data was inspected with regards to boxplots. The target variable
was especially considered since it had a lot of outliers. The distributions and
boxplots for the target variable score was created for both data sets and are
depicted in figure 18 and figure 19.

(a) (b)

Figure 18: The distribution of the target variable(score) before outlier re-
moval, on the left (a) for data set A and on the right (b) for data set B.

43

3 METHODOLOGY

(a) (b)

Figure 19: Two boxplots of the target variable score, on the left (a) for data
set A and on the right (b) for data set B.

The outliers were removed with regards towards the target variable. This was
done using the 1.5xIQR-rule described in section 2.19. The IQR statistics
for both data sets can be seen in table 4.

Table 4: The IQR statistics for both data set A and B.

data set 25%-quantile 75%-quantile IQR Lower limit Upper limit Number of outliers
A 7.42 20.24 12.82 -11.81 39.47 2 580
B 7.91 27.20 19.29 -21.03 56.14 1 651

No outliers below the box were removed, since there are no negative values
for the target variable. Each data point with a score greater than 39.47 were
removed for data set A and each data point with a score greater than 56.14
were removed for data set B. The data points considered are the ones outside
the boxes in figure 19 and the removal of these reduced the number of data
points with 2580 and 1561 data point for data set A and B respectively.

The distributions after the removal of the outliers in the target variable is
shown in figure 20 below.

44

3 METHODOLOGY

(a) (b)

Figure 20: The distribution of the target variable(score) after outlier removal,
on the left (a) for data set A and on the right (b) for data set B.

After the outliers were removed, all data was standardized in accordance
to the z-score transformation described in section 2.20. The target variable
score was kept untransformed. Note that any predictions on new data need
to be transformed with the same standardizer which was used to scale the
training data.

When the data had been preprocessed, another split could be made on the
data sets, to create a training set and one test set. The models were, as the
name suggests, trained on the training sets and tested on the test sets. The
data points were randomly chosen and the percentage between training and
test were 80% to 20%.

3.8 Building the models

After the data had been preprocessed and split into training and test sets,
the models could start to be built and optimized. The procedure of finding
good models was done on both data sets. This was done since there was
an idea of differentiate models. Some models were trained on large projects
containing hundreds of files and some focused on individual, singular files.

The building of the models was done using Python and more specifically by
using the TensorFlow package by Abadi et al. (2015) and the Scikit-learn
package by Pedregosa et al. (2011). The initial testing used were performed

45

3 METHODOLOGY

using the default hyperparameters as seen in each respective python package.
The built-in packages provide simple and efficient tools when applying many
types of different machine learning algorithms.

Initial testing started with seven different types of models, which are pre-
sented in table 5 below.

Table 5: The initially tested algorithms.

Model Algorithm used
1 Linear regression
2 Decision tree regression
3 ANN
4 Random forest
5 Gradient boosting
6 Lasso regression
7 Ridge regression

This selection of algorithms were deemed to represent three different types
of algorithms. Linear, lasso and ridge represent the linear regression family,
the decision tree, random forest and gradient boosting represent the decision
tree family while the ANN represent the neural network algorithm.

The artificial neural network was built and was tested with a lot of different
nodes and number of layers until we settled on this final model. The process
to find the optimal architecture and hyperparameters of the nerural network
is always a difficult process. There was a lot of trial and error to find an
architecture which produced good results.

The hyperparameters for the different regression models as well as the deci-
sion tree-algorithm were tuned by testing different learning rates, depth and
number of estimators.

3.9 Comparing the models

The models were tested on the testing data and the different models were
compared with each respective RMSE. The MAE was briefly taken into con-

46

3 METHODOLOGY

sideration, but the measure which was the deciding one were the RMSE. The
two models with the lowest RMSEs were deemed the most suitable when eval-
uating real life applications of the models.

3.10 Gather software metrics from projects

As mentioned before, SonarQube was the tool used for analyzing new files
and projects and to gather software metrics. The process was pretty straight
forward, making api calls to get files and then get metrics from the files.
These metrics were than transformed with the same scalar used when trans-
forming the training data.

3.11 Evaluating the model

The RMSE can be used to compare different models, but it was also de-
sirable to validate the model on real life data, rather than just the models
performance on the Qscored dataset. Therefore two tests were created, which
would evaluate two possible applications of the models. Firstly the possibility
to compare different singular files with one another and secondly the possi-
bility to evaluate the same project over time to examine if the code quality
is increased over time. The tests are described below in section 3.11.1 and
3.11.2 respectively.

3.11.1 Test 1

To test the models in real life appliances, test 1 was designed. The test
consisted of letting the two models make predictions on internal Ingka files
from both front end and back end. Four front end files and four back end
files were chosen. After the models had evaluated the files, three developers
from Ingka with varying working experience ranked the files individually in
terms of code quality. The working experience of each developer is presented
in table 6 below.

47

3 METHODOLOGY

Table 6: Experience of the three developers, both at Ingka and in software
development in general.

Developer
Time at Ingka
(years)

Time working in
software development (years)

1 1 5
2 1 20
3 3 21

The form sent out to developers with their instructions can be found in ap-
pendix D.

The files were partly chosen based on the score the models predicted. The
idea was to choose files with varying evaluations by the models, to give a
selection of different scores. All of the developers gave feedback for each file
about the code quality and then ranked the files according to code quality.
When the results from the developers were received, it was compared to the
predictions made by model.

3.11.2 Test 2

In addition to the opinions of the developers, test 2 was created. This was
done by evaluating one project at Ingka at different points in time. By using
the history of commits to GitHub, it was possible to let the models evaluate
the same project and see if the quality of the code was improved. This is
also thought to be a possible application of the model.

The models tested the project ten times during the span of ten months. The
first data point was simply a copy of the old version of the project, which
was later reduced and refactored, which is why the project initially is very
large. The assumption after discussing with the developers responsible for
the project was that the the code quality were to be improved over time and
the score predicted by the models were therefore to decrease over time.

The reasoning behind the assumption that the code quality would increase
over time was due to the opinion of the developers. The developers pointed
specifically to the following problems.

• Not a uniform terminology.

• Not a uniform structuring of the logic.

48

3 METHODOLOGY

• Difficulties to keep developing the program.

• Difficulties to maintain.

These were the aspects of the code which were improved by the developers
during these months and the reason to why the CQ should increase. This
would result in a decrease in the score predicted by the models.

A decision was made to exclude Ingkas internal test files since they increase
the complexity but won’t be used for the real application. This was taken
after consultation with the responsible developers, which declared that the
inclusion of these files would not be representing the quality of the code.
These files increases both the complexity and size of the project. The files
doesn’t affect the functionality of the program and it would therefore be mis-
leading, according to the developers, to include these files when discussing
the projects CQ. Also they were not in the first file so it would not be difficult
to compare the project with or without test files.

This removal is done by excluding all files that had the string .test. or
cypress/ in the file name. The data was then saved in a dataframe with
software metrics and the file path. To find the metrics for the entire project,
all the metrics were summed from each individual file to get the total value.

49

4 RESULTS

4 Results

In the following section, the results will be presented. Firstly the results
from the two carried out tests will be presented. Secondly the RMSEs and
MAEs will be presented for both the inital testing of the models and for the
final models used in the tests. Lastly four analyses made by SonarQube and
Qscored will be presented and compared.

4.1 Evaluation of model

4.1.1 Results, test 1

From the form sent to the developers the following results were obtained
compared to the rank of our model. For the front end files, table 7 displays
the rank given by the developers and the two models. ”1st” is the file with
the highest code quality and ”4th” is the file with the lowest.

Table 7: Rank of front end files according to developers and the model

rank Developer 1 Developer 2 Developer 3 ANN Model RDF Model
1st file 3 file 3 file 3 file 3 file 3 and file 4
2nd file 4 file 4 file 4 file 4 -
3rd file 2 file 1 file 2 file 1 file 1
4th file 1 file 2 file 1 file 2 file 2

They also gave their reasoning for the given rank.

Developer 1 : I think files which is easy to read usually is easier to maintain,
has lower complexity, higher robustness and easier to catch errors. It was a
close call between file 3 and 4, but file 3 is easier to maintain with less du-
plicated code even though the file has higher complexity with nested switch
statements.

In the bottom of the list, it was close between file 1 and 2. In the end I
decided to rank file 2 above 1 because it had less commented out code and
less comments which I did not know what they meant. I also think it would
be easier to fix the issues in file 2.

Developer 2 : Given that we are a development team the files 1 and 2 are
very hard to add logic too and in addition very error prone since too many

50

4 RESULTS

functionalities.

Developer 3 : The rank is motived having in mind your input related to the
complexity, the maintainability, the robustness and error handling of the
code.

The model gave predictions displayed in table 8 below.

Table 8: Score of the files used for the front end evaluation.

File ANN Score RDF Score
1 4.7543 2.03
2 4.9509 2.32
3 3.9674 1.5956
4 3.9696 1.5956

The ranking of the back end files are presented in table 9 below.

Table 9: Rank of back end files according to developers and the model.

rank Developer 1 Developer 2 Developer 3 ANN model RDF model
1st file 4 file 2 file 2 file 4 file 2
2nd file 2 file 4 file 1 file 1 file 3
3rd file 1 file 1 file 4 file 2 file 4
4th file 3 file 3 file 3 file 3 file 1

Below is a transcript of the developers reasoning regarding the back end files.

Developer 1 : File 4 is very easy to follow because of low complexity and high
readability. Thus, being maintainable and less risk for errors slipping by.

File 2 is also easy to follow with good documentation of public methods. File
3 is easy to follow.

It was a close call between file 2,3 and 4, but in the end the ordering was
decided by the time I had to spend to understand what the code was doing.
File 3 was the least understandable with higher complexity. Being a large
file and function it took longer time to understand and evaluate function,
robustness etc.

51

4 RESULTS

Developer 2 : I like class based files, Also I think the createUser file does too
much. There is no structured way of doing it.

Developer 3 : The rank is motived having in mind your input related to the
complexity, the maintainability, the robustness and error handling of the
code.

The model gave the following score:

Table 10: Score of the files used for the back end evaluation.

File ANN Score RDF Score
1 3.9397 1.608
2 3.9602 1.474
3 3.9787 1.509
4 3.7436 1.520

4.1.2 Results, test 2

The next test was to evaluate a project at different points in the developing
process. The evaluation was done using the neural network as well as the
RDF trained on data set B. The metrics results are presented in table 11 and
presented as a time series in figure 21.

Table 11: Dates, metrics and scores for the same project evaluated at different
points in time. Evaluated both by ANN- and random forest-models.

Version Date LOC method count CC CD % Smells ANN score RDF score
1 21-06-14 53 346 1560 3011 21.0 413 1.4647 2.5174
2 21-08-10 67 894 1400 2627 61.8 437 1.3437 2.445
3 21-09-15 29 408 595 1013 13.2 132 1.3188 1.8882
4 21-10-12 29 894 605 1033 13.0 142 1.3265 1.8697
5 21-11-30 31 259 698 1188 11.9 161 1.3362 1.8755
6 21-12-23 32 965 763 1356 11.2 156 1.2939 1.8461
7 22-01-31 33 258 814 1460 5.1 142 1.2466 1.7461
8 22-02-21 33 648 847 1542 5.0 131 1.2215 1.7649
9 22-03-14 33 819 915 1673 5.3 131 1.2244 1.7813
10 22-04-14 34 425 971 1765 4.8 123 1.20114 1.7439

52

4 RESULTS

Figure 21: The evaluation over the same project over time, at ten different
dates during the span of ten months. The evaluation is made both by the
ANN (blue) and the random forest (orange).

4.2 RMSEs, MAEs and hyperparameters for respec-
tive different models

There was some initial testing done, without tuning of any hyper-parameters
with models that were deemed useful for the problem. The initial training
results for both data sets are presented in table 13, with both the RMSE and
the MAE.

The architecture and hyperparameters of the initial ANN is shown in table
12.

53

4 RESULTS

Table 12: The architecture and hyperparameters of the initial ANN.

Layer Type Number of nodes Probability
Input Dense 5 -
Hidden 1 Dense 100 -
Hidden 2 Dense 100 -
Hidden 3 Dropout - 0.01
Hidden 4 Dense 100 -
Output Dense 1 -
Hyper-parameters
Learning rate, η 0.001 Epochs 50
Weight initalizer random Activation functions relu
Optimizer rmsprop

Table 13: The initial seven algorithms RMSEs and MAEs from the test set
for both data sets.

data set A data set B
Model Index Algorithm RMSE MAE RMSE MAE
1 Linear regression 3.40149 2.34368 9.32053 6.22647
2 Decision tree 1.43261 1.00895 1.69959 1.07359
3 ANN 1.14416 0.79933 1.27581 1.01420
4 Random forest 1.01560 0.72248 1.22203 0.71701
5 Gradient boosting 1.10727 0.80212 1.53488 1.04683
6 Lasso 3.95056 2.70239 9.53730 6.95084
7 Ridge 3.40145 2.34356 9.32107 6.22706

According to the initial testing, the models which performed the best were
the different types of decision trees as well as the ANN. The linear regressors
were performing rather poorly. This was true for both data sets, even though
every algorithm performed slightly worse for data set B.

Following of these initial results, attempts to improve the models were done
by tuning the models different hyperparameters. However, most of the mod-
els were performing best with the initial hyperparameters. The algorithm
which was improved by fine tuning was the neural network. This was done

54

4 RESULTS

by changing the architecture of the network as well as trying out different
activation functions and learning rates.

The final architecture of the neural network consisted of one input layer,
seven hidden layers and one output layer. The learning rate were set to
η = 0.001 and it was trained over 100 epochs. This resulted in a final RMSE
of 1.11961. However since there are infinitely many way to construct a ANN
there might be other structures which gives a lower RMSE. The RMSE =
1.11961 was however deemed reasonable and used in the evaluation of Ingkas
internal projects.

The architecture of the ANN is displayed in table 14 and the loss during 100
epochs is depicted in figure 22 below.

Table 14: The architecture and hyperparameters of the final ANN.

Layer Type Number of nodes Probability
Input Dense 5 -
Hidden 1 Dense 100 -
Hidden 2 Dense 100 -
Hidden 4 Dropout - 0.01
Hidden 5 Dense 100 -
Hidden 6 Dense 100 -
Hidden 7 Dense 100 -
Hidden 8 Dense 100 -
Output Dense 1 -
Hyperparameters
Learning rate η 0.001 Epochs 100
Weight initializer random Activation functions relu
Optimizer rmsprop

55

4 RESULTS

Figure 22: The loss over 100 epochs for the final neural network.

In table 15, the final RMSEs and MAEs of every algorithm is shown for both
data sets. These result were the reasons that the random forest and neural
network were the two models used when evaluating real life appliances. Note
that it’s only the values for the ANN which have changed from table 13.

Table 15: The initial seven algorithms RMSEs and MAEs from the test set
for both data sets.

data set A data set B
Model Index Algorithm RMSE MAE RMSE MAE
1 Linear regression 3.40149 2.34368 9.32053 6.22647
2 Decision tree 1.43261 1.00895 1.69959 1.07359
3 ANN 1.11961 0.75398 1.27581 1.01420
4 Random forest 1.01560 0.72248 1.22203 0.71701
5 Gradient boosting 1.10727 0.80212 1.53488 1.04683
6 Lasso 3.95056 2.70239 9.53730 6.95084
7 Ridge 3.40145 2.34356 9.32107 6.22706

56

4 RESULTS

4.3 Comparing metrics

It was important that the metrics were valued same, or at least in the same
magnitude, both in the external data set that the model were trained on
and the metrics received from SonarQube. Because of this, SonarQube were
tested on projects from the external dataset and the metrics compared. The
metrics from four open-source projects analyzed both in SonarQube and
Qscored are presented in table 16 to table 19.

Table 16: Project 1: ecomms.

Metric SonarQube Qscored
LOC 1221 1551
Number of methods 104 110
CC 206 126
code duplication 1.9% 1.61 %
Smell count 55 41

Table 17: Project 2: glazedlists-tutorial. Note that this is a Java-file, hence
why the metrics CD is missing.

Metric SonarQube Qscored
LOC 1292 1292
Number of methods 90 97
CC 175 175
code duplication 38.6% -
Smell count 65 236

57

4 RESULTS

Table 18: Project 3: StjMbs.

Metric SonarQube Qscored
LOC 3349 2835
Number of methods 262 146
CC 332 179
code duplication 2.9% 0 %
Smell count 49 99

Table 19: Project 4: WeatherService.

Metric SonarQube Qscored
LOC 1598 1917
Number of methods 81 59
CC 140 102
code duplication 0% 0 %
Smell count 290 230

Since these files are open source, the reader can access these projects and the
links will be located in appendix B.

58

5 DISCUSSION

5 Discussion

5.1 On the overall performance in the different tests

Inspecting the results from test 1, where the models was trained on data
set A, they showed that the small models performed quite well compared to
developer rankings and opinions. It performed especially well for the front
end files as seen in table 7. Developer 1 and 3 slightly disagreed with the
models at one point and ranked it differently. However the developers still
agreed with the models in two out of four cases. This obviously gives the
models some validity, that it overwhelmingly agrees with the developers in
most cases for the front end files. Developer 1 pointed out that it was a close
call between file 3 and 4 for being the best file and the same with file 1 and
2 for being the worst. It’s interesting that the RDF model agrees to such
a large extent with developer 1, that it gives the two files the exact same
score as seen in table 8. The models agree with this and file 3 and 4 are
closely matched in terms of score. This shows that the models at least can
effectively draw a conclusion which are the worst files. This will make it eas-
ier for the company in the future choose which files that needs to be rewritten.

In the case of the back end files, there are bit more discrepancy between the
models predictions and the developers. This is seen in table 9. The models
agrees with all three developers regarding which file has the lowest CQ, but
only agrees with one regarding which one is the best. It agrees with one de-
veloper regarding which file has the second highest CQ and not agreeing with
one developer regarding the third best. This might be an indication that the
models are more applicable to predict front end files rather than back end
files. However, looking at table 10, the spread of scores is not as large for the
back end files compared to the front end files. This might also be a reason
to why the developers and the models didn’t agree quite as clearly as for the
front end files. There isn’t large differences between the CQ of the files for
the back end, according to the models.

Regarding test 2, where the models were trained on data set B, the score
were expected to be lowered throughout the different months assuming the
code were refactored and improved. This was the case as seen in table 11 and
figure 21, which might indicate that the models might be used to evaluate a
project over time to examine if the quality of the code is improved.

59

5 DISCUSSION

5.2 On the design and potential weaknesses of the tests

One problem with test 1, described in section 3.11.1, is that it is susceptible
to bias from the developers. There’s a lot of room for the developers own
opinions. This could be problematic since what one developer considers bad
code, another developer might approve of. However, looking at the experience
of the developers seen in table 6 their requirements for what is considered to
be high quality code is thought to be rather similar. It was also problematic
to find back end files which gave a large spread in the scores. This might
be an explanation to why the ranking differs to the ranking of the developers.

Regarding test 2, described in section 3.11.2, the test was conducted under
the assumption that the code quality improved over time. The results in
figure 21 agrees as well as the asked developers, but there’s no guarantee
that this is the case. There might still be that the code quality over time
doesn’t always decrease, even though the results indicates it, and the models
predictions might be misleading.

5.3 On the performance of different models

As seen in table 15, the algorithms with the lowest RMSEs were the decision
tree algorithms e.g. random forest and gradient boosting, as well as the ANN.
All of the linear regressors performances were rather poor and produced high
RMSEs compared to the other models. The ones which performed the best
were the random forest, gradient boosting and ANN.

One aspect that the writers of the thesis found interesting were that the gra-
dient boosting algorithm had slightly worse performance than the random
forest algorithm. This was surprising, since the authors expected gradient
boosting, which incorporate earlier errors in the model, to perform better
than the random forest algorithm. This might be due to noise in the data
which the gradient boosting accidentally models while the random forest
doesn’t. The gradient boosting often performs better than random forest,
but might have problems with noisy data which is a possible explanation to
the results.

The reason behind the poor performance of the linear regressors could be
that the relationship between the target variable and the other variables is
non linear. Then a linear regressor gives poor results which table 13 shows.
Then for example a random forest will find other more complex relations
and the results shows this is the case. Also the neural network will find

60

5 DISCUSSION

non linear relations from the ReLU activation functions. If the relationship
is non linear, it is possible to model it with the decision tree algorithms as
well as the artificial neural network. However, both ridge and lasso is part
of the linear regression family and it can therefore not overcome this obstacle.

Another explanation to why the ridge and lasso regressors performs poorly
on the test set is due to the fact that they might be reducing variables which
might actually have an impact on the models. There is always a risk when
reducing variables that their shrinkage worsens the results. This could of
course be the case in the neural network as well, but the low learning rate
might counteract it.

5.4 On the external data set

One major problem with the thesis and the building of the models was to find
a large, labeled data set. When Qscored was discovered it was a great step
forward in the process, but it introduced another problem. If a model is to
be trained on a external data set, how certain is it that the labels in Qscored
are true? At some point, a ground truth must be established, but how is this
decision taken? The Qscored data set were considered to be valid because
of the interviews that was held during the creation of the data set. The
opinion of 31 professional developers is deemed to validate the data set and
make it a useful truth to optimize against when training our models. There
is also a discussion about if the concept of ”good” quality code changes over
time, but since the data set was created in 2020 it’s assumed to be up to date.

Another aspect of the Qscored data set is that it only built using Java and
C#. These are two very common programming languages, but at the de-
partment at Ingka, JS and TS is almost exclusively used. This introduces
a problem regarding if the model can be used on a programming language
different from the one it was trained on. Java and C# code might have an-
other structure to the other languages and might contain i.e. more or less
logic than a program written in JS and TS. One idea might be to use the
model, but at another department at Ingka which is using more Java or C#,
but since there is a lack of labeled data for JS and TS this was deemed as
an acceptable solution.

5.5 On the difference between Qscored and SonarQube

One difficulty when discussing modeling of code, or rather the exchangeabil-
ity between different analysis tools, is the different definitions of metrics. The

61

5 DISCUSSION

models are trained on metrics from Qscored, but when analysing the same
projects in SonarQube, the metrics are not identical. This is seen in table
16 to table 19. These differences were especially apparent with regards to
the code smell metric. This might of course lead to problems when making
predictions on new data. The models would probably benefit from training
on another data set with data points more similar to the ones it will make
new predictions on.

When comparing the Qscored to SonarQube, there are some differences how
the metrics are counted. However, since the metrics are rather similar for
the projects, at least in the same magnitude, this was deemed acceptable.

5.6 Metric selection

As mentioned in section 3.3 the five metrics that were used in the data set
was LOC, number of methods, CC, code duplication and number of smells.
The fact that these metrics were available both in Qscored and in Sonar-
Qube was one reason to include these five features. The results in section
4.3 shows that the metrics for four different project compare relatively well
and is often in the same magnitude. It should be noted that code smells are
calculated a bit different between Qscored and Sonarqube. Qscored has more
of a focus on architecture and design smells while SonarQube mostly focus
on implementation smells. Then the question was whether we would include
design and architecture smells in the data set for training our models. After
comparing different combinations of implementation, architecture and design
smells, it was chosen to use all three combined and since the magnitude is
roughly the same, this was accepted.

Another topic when selecting metrics is how to select which ones to include
in the models. What impact will they have on the models? As seen in figure
15 the most dominant variable is the ”total smells” variable. This however is
expected since the original score was calculated using the smell density. The
other variables have lower linear correlation with the lowest being the ”code
duplication” and ”LOC”. These might not have an impact on the models,
at least not a linear one, but were still kept. There might still be some
relationships between the two variables and the target variable, even tough
they might be rather weak.

5.7 Addressing the research questions

The research questions stated at the start of the thesis were the following.

62

5 DISCUSSION

• Q1. Is it possible to construct a ML model to evaluate a company’s
software code quality?

• Q2. In the specified data set, which ML algorithms achieve the best
performance?

• Q3. What are the possible usages of such a model?

These questions are addressed below.

Q1. The findings of this thesis points to the fact that there are possibilities
to construct a ML-model to evaluate code quality. There might be better
models than the ones used in the thesis, but the conclusion is that there at
least are possibilities. The findings seem to point at the models performing
better at front end files rather than back end files according to test 1.

The data set is at the moment the best one to be found for modeling code
quality, but it is not perfect. If there were some software engineers who took
the time and reviewed a large amount of files and labeled them, that would
be a much better way to build a data set for training a machine learning al-
gorithm. But the results still show that it is possible to evaluate code quality.

Q2. Using the Qscored data set, the models which achieved the best per-
formance were the different types of decision tree-algorithms as well as the
ANN. The linear, ridge and lasso, regressors were performing poorly for this
specific problem. This was seen when testing the models on the external
data set and comparing RMSEs. This might point to a non-linear behaviour
between the input variables and the target variable.

Q3. The results from test 1 indicates that it is possible to use the models
to compare singular files with one another as well. This is also a though
application, to measure which files have the higher code quality and which
files has the lower.

As figure 21 shows, it is possible to follow how the code quality develops over
time. In the case shown in the results, the code quality increases over time
which is the desired result. The models agrees with the assumption that the
code quality is improved over time.

Regarding the decision to make to distinct models, one for larger aspects
such as entire projects and one smaller to investigate CQ of singular files.
This was thought to improve the models and make separate ones for large

63

5 DISCUSSION

and small files. One idea could also be to make one model to increase the
models ability to generalize, but a decision was taken to create two versions.

64

6 CONCLUSION

6 Conclusion

In conclusion, a model for estimating code quality was built and seemed to
work reasonably well. This model works especially well for front end files
where it is able to distinguish well written files from more poorly written
files. For back end files, the same conclusion could not be drawn. The model
is also able to get a measure for the code quality in an entire project con-
sisting of a greater number of files. This could help a company to keep track
whether the code quality of a project improves or decreases over time. Then
the model can also be used to point out which files that needs to be improved
the most to improve the code quality.

The findings of this thesis shows that it is possible to model code quality us-
ing machine learning-algorithms and it would be an area to further explore.
The artificial neural network, random forest algorithm and gradient boosting
all performs well, while the different linear regressors perform poorly. The
findings also points to the fact that the models are able to evaluate and com-
pare singular files, while also being able to evaluate larger projects over time,
which are the two main usages of the models. The models appears to be able
to rank front end files more successfully than back end files. The models
are not planned to point to exact points in source code which need to be
refactored, but rather to give an indication on which files might need to be
restructured. There is a discrepancy between the data set used for training
and analyzing tool which might cause problems when making predictions on
new data. The process would probably improve if the models were trained
on a data set created by analyzing projects in SonarQube.

Overall, the thesis is shedding new light on the incorporation between soft-
ware development and machine learning. The two areas can be intertwined
successfully and the writers of this thesis think that the possibilities of com-
bining software development and ML are great. There might be a lack of
labeled data in the software development field, but as long as there is large
data bases to train models on, there exists a lot of benefits of combining ML
and data science.

65

7 FUTURE WORK

7 Future work

This thesis shows the potential for modeling code quality in terms of software
metrics, the final model did not include a lot of metrics since there were only
so many that matched between Qscored and SonarQube. One way forward
could be to try to include more abstract variables in to the model, such as
how many persons would have worked on the project, for how long etc. This
would enhance the model and give it even more reach. That would make
it more of a technical debt problem rather than just code quality. If this is
done, the models could show which files and projects that are too dependant
on one person for example.

Another future continuation would be to build a data set more fit for the
purpose at hand. That would include scanning projects for software metrics
in the same program and language as the evaluation is made. This would
make the correlation between the data set and data which the model is used
on higher. It would also be a good idea to for each file/project to be evalu-
ated by experienced software developers have better labels for the data set.
The problem is that it would be rather time consuming to evaluate so many
files and that it would still be a subjective opinion from the developers, some
developers would think differently about different files and what is important.

This could prove an important aspect for any software developing company.
They could take time to periodically evaluate their own projects and files,
to start building their own labeled data set. This could for example happen
during one day every third month. Like it is with a lot of collections of data,
it’s often preferable to start earlier rather than later. Software developing
companies could greatly benefit from having data on the quality of the writ-
ten code.

66

REFERENCES

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

D. R. M. Almuttairi. What’s the difference between the front- end and back-
end?

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

T. Chai and R. R. Draxler. Root mean square error (rmse) or mean ab-
solute error (mae)? – arguments against avoiding rmse in the litera-
ture. Geoscientific Model Development, 7(3):1247–1250, 2014. doi: 10.
5194/gmd-7-1247-2014. URL https://gmd.copernicus.org/articles/

7/1247/2014/.

P. M. Edén Ohlsson. Introduction to Artificial Neural Networks and Deep
Learning. Media-Tryck, 2021.

F. Fontana, M. Mäntylä, M. Zanoni, and A. Marino. Comparing and exper-
imenting machine learning techniques for code smell detection. Empirical
Software Engineering, 21:1143–1191, 2015.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA, 1999. ISBN 0201485672.

R. S. Freedman. Testability of software components. IEEE transactions on
Software Engineering, 17(6):553–564, 1991.

M. Gal and D. Rubinfeld. Data standardization. SSRN Electronic Journal,
01 2018. doi: 10.2139/ssrn.3326377.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive com-
putation and machine learning. MIT Press, 2016. ISBN 9780262035613.
URL https://books.google.co.in/books?id=Np9SDQAAQBAJ.

67

https://www.tensorflow.org/
https://gmd.copernicus.org/articles/7/1247/2014/
https://gmd.copernicus.org/articles/7/1247/2014/
https://books.google.co.in/books?id=Np9SDQAAQBAJ

REFERENCES

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code
clone detection: incremental, distributed, scalable. In 2010 IEEE Inter-
national Conference on Software Maintenance, 2010. doi: 10.1109/ICSM.
2010.5609665.

M. Kaptein and E. R. van den Heuvel. Statistics for Data Scientists - An
Introduction to Probability, Statistics, and Data Analysis. Undergradu-
ate Topics in Computer Science. Springer, 2022. ISBN 978-3-030-10530-
3. doi: 10.1007/978-3-030-10531-0. URL https://doi.org/10.1007/

978-3-030-10531-0.

W. E. Lewis and W. H. C. Bassetti. Software Testing and Continuous Quality
Improvement, First Edition. Auerbach Publications, USA, 2000. ISBN
0849398339.

M. L. R. Marinescu. Using Software Metrics to Characterize, Evaluate, and
Improve the Design of Object-Oriented Systems. Springer, 2006.

S. Marsland. Machine Learning - An Algorithmic Perspective. Chapman and
Hall / CRC machine learning and pattern recognition series. CRC Press,
2009. ISBN 978-1-4200-6718-7.

P. Muhammad Ali and R. Faraj. Data normalization and standardization:
A technical report. 01 2014. doi: 10.13140/RG.2.2.28948.04489.

K. P. Murphy. Machine learning : a probabilistic perspec-
tive. MIT Press, Cambridge, Mass. [u.a.], 2012. ISBN
9780262018029 0262018020. URL https://www.amazon.com/

Machine-Learning-Probabilistic-Perspective-Computation/dp/

0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

K. P. Murphy. Machine learning : a probabilistic perspec-
tive. MIT Press, Cambridge, Mass. [u.a.], 2013. ISBN
9780262018029 0262018020. URL https://www.amazon.com/

Machine-Learning-Probabilistic-Perspective-Computation/dp/

0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

S. Olbrich, D. Cruzes, and D. Sjøberg. Are all code smells harmful? a
study of god classes and brain classes in the evolution of three open source
systems. pages 1–10, 09 2010. doi: 10.1109/ICSM.2010.5609564.

68

https://doi.org/10.1007/978-3-030-10531-0
https://doi.org/10.1007/978-3-030-10531-0
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2

T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna. On the evalua-
tion of code smells and detection tools. Journal of Software Engineering
Research and Development, 5, 12 2017. doi: 10.1186/s40411-017-0041-1.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

N. E. F. . S. L. Pfleeger. Software metrics: A rigorous and practical approach.
Third edition. Taylor & Francis group, 2015.

C. Sammut and G. I. Webb, editors. Mean Squared Error, pages
653–653. Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8.
doi: 10.1007/978-0-387-30164-8 528. URL https://doi.org/10.1007/

978-0-387-30164-8_528.

T. Sharma and M. Kessentini. Qscored: A large dataset of code smells and
quality metrics. MSR2021, 01 2021. doi: 10.1109/MSR52588.2021.00080.
URL https://par.nsf.gov/biblio/10300802.

S. Vidal, I. n. berra, S. Zulliani, C. Marcos, and J. A. D. Pace. Assessing
the refactoring of brain methods. ACM Trans. Softw. Eng. Methodol.,
27(1), apr 2018. ISSN 1049-331X. doi: 10.1145/3191314. URL https:

//doi.org/10.1145/3191314.

H. P. Vinutha, B. Poornima, and B. M. Sagar. Detection of outliers using
interquartile range technique from intrusion dataset. In S. C. Satapathy,
J. M. R. Tavares, V. Bhateja, and J. R. Mohanty, editors, Information and
Decision Sciences, pages 511–518, Singapore, 2018. Springer Singapore.
ISBN 978-981-10-7563-6.

J. Visser, S. Rigal, R. van der Leek, P. van Eck, and G. Wijnholds. Build-
ing Maintainable Software, Java Edition: Ten Guidelines for Future-Proof
Code. O’Reilly Media, Inc., 1st edition, 2016. ISBN 1491953527.

69

https://doi.org/10.1007/978-0-387-30164-8_528
https://doi.org/10.1007/978-0-387-30164-8_528
https://par.nsf.gov/biblio/10300802
https://doi.org/10.1145/3191314
https://doi.org/10.1145/3191314

Appendices

A The ER-digram of Qscored

Figure 23: Caption

B Open sources files which were compared

The links to the open source projects in section 4.3.

Project number File name Hyperlink
1 ecomms https://github.com/objectthink/ecomms

2 glazedlists-tutorial https://github.com/glazedlists/glazedlists-tutorial

3 StjMbs https://github.com/cemkuru/StjMbs

4 WeatherService https://github.com/NickTaSpy/WeatherService

C Code to get cyclomatic complexity

Create table temp:

CREATE TABLE temp AS

(SELECT project.id AS

project_id,latest_solution."latest_ranked_version_id" AS

70

https://github.com/objectthink/ecomms
https://github.com/glazedlists/glazedlists-tutorial
https://github.com/cemkuru/StjMbs
https://github.com/NickTaSpy/WeatherService

solution_id,latest_solution."Designite_Project_id"

FROM latest_solution

INNER JOIN project ON project."Solution_id" =

latest_solution.latest_ranked_version_id);

Get cyclomatic complexity.

SELECT SUM(method_metric.cc) AS cc, temp."solution_id"

FROM method_metric

INNER JOIN temp ON method_metric."Project_id" =

temp."project_id" GROUP BY temp."solution_id";

D The form for developers to evaluate and

rank real world files.

71

Hi!

First of all, thank you for taking the time to help us with our thesis! We are two students at
LTH who are trying to evaluate code quality using machine learning algorithms. The thesis
goes by the working title Measuring code quality using machine learning algorithms and will
be published in early summer 2022.

To properly see the performance of the model, we need to compare it with real life
appliances. Therefore, it will be very valuable to get the opinions of experienced developers
and to compare them to our model to see if they agree in terms of the quality of the code.

Instructions: We have attached four front-end and four back-end files that we would like
you to review separately. The goal is to assess these files in terms of code quality.

You should consider aspects like the complexity of the code, if everything is robustly
implemented, if it would take a lot of time to maintain the code, if the code might be error
prone etc.

You should not consider things like, how many people have been working on the file, if the
person who worked on this file does not work here anymore. You should strictly focus on
the logic and how well the code is written.

----------------- Front-end --------------------

File 1:

Q: What did you think about the code quality in this file?
A:

File 2:

Q: What did you think about the code quality in this file?
A:

File 3:

Q: What did you think about the code quality in this file?
A:

File 4:

Q: What did you think about the code quality in this file?
A:

Q. Finally, rank each of these front-end files individually from ‘best’ to ‘worst’ with respect
to code quality.

Best

File no: _____________
File no: _____________
File no: _____________
File no: _____________

Worst

Q: Give an insight to why the files were ranked liked this? What was your reasoning?
A:

----------------- Back end --------------------

File 1:

Q: What did you think about the code quality in this file?
A:

File 2:

Q: What did you think about the code quality in this file?
A:

File 3:

Q: What did you think about the code quality in this file?
A:

File 4:

Q: What did you think about the code quality in this file?
A:

Q. Finally, rank each of these back-end files individually from ‘best’ to ‘worst’ with respect to
code quality.

Best

File no: _____________
File no: _____________
File no: _____________
File no: _____________

Worst

Q: Give an insight to why the files were ranked liked this? What was your reasoning?
A:

----------- The end ------

Once again, we are grateful for the inputs as it will massively help with writing our thesis
and validating the model.

If you have any questions, please contact us at

erik.kindt@ingka.com
arvid.malmstrom@ingka.com

Best regards,

Erik & Arvid

E Comments on files from developers.

E.1 Front end

Table 20: File 1: comments

Developer Comment about code quality
Developer 1

• Complexity: High. High nesting. Nesting of JSX
and functions.

• Robustness: Low. Hard to see.

• Maintainability: Low. Commented out old code.
Comments which do not make sense. Could use
more types. Disabled of Eslint rules. Use of excla-
mation mark.

• Readability: Low. Hugh file with mixed JSX and
functions. Not using async/await. Unused pa-
rameters to functions. Unnecessary checks e.g. of
profileData.profile

• Error prone: Possibly. Too hard to see.

Developer 2 Bad code quality. The logic and internal states are not
clear what they do. At least not on a first glance. It
also have too many responsibilities. Style inline as well
as from separate file.

Developer 3 Code is complex and difficult to maintain.

76

Table 21: File 2: comments

Developer Comment about code quality
Developer 1

• Medium. Nesting of JSX and functions. Many
useEffects.

• Robustness: Medium. Seems more robust than
above file.

• Maintainability: Medium. Large file. Disabled of
Eslint rules. Duplication of code.

• Readability: Medium. Hugh file with mixed JSX
and functions. Not using async/await. Some ef-
fects could be refactored out. Util function in file.

• Error prone: Possibly. Easier than above to see.

Developer 2 Same as file 1 too many states. Hard to follow what
happens in states. Es-lint disabled for unknown reasons.
Hard to extend with new functionality.

Developer 3 Code is complex and difficult to maintain.

77

Table 22: File 3: comments

Developer Comment about code quality
Developer 1

• Complexity: Low. Large switch statement but
easy to follow. Nested switch statements, could
be broken out to functions to reduce complexity.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: High. Has quite some duplica-
tions which might be able to remove.

• Readability: High. Nice with render/functions for
each size.

• Error prone: Does not look to be.

Developer 2 Cleaner, although a very long file it is at least quite clear
what the file does. Some weird hook that handles form
triggers is disturbing the peace.

Developer 3 This file has a good structure and it is easier to maintain.

78

Table 23: File 4: comments

Developer Comment about code quality
Developer 1

• Complexity: Low. Nice with own functions for
rendering different, but quite some duplicated
code.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: High. Has quite some duplica-
tions which might be able to remove.

• Readability: High. Nice with render/functions for
each size.

• Error prone: Does not look to be.

Developer 2 Also reasonably good. Although could be separated into
more files. Since too many components are added in the
file entry.

Developer 3 This file has a quite good structure and it is easier to
maintain.

79

E.2 Back end

Table 24: File 1: comments

Developer Comment about code quality
Developer 1

• Complexity: Low.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: Medium. A bit harder to main-
tain.

• Readability: High

• Error prone: Does not look to be.

Developer 2 Although clear what the responsibilities of the methods
are, the logic and methods behind it are hard to follow
and understand. Some logic could be broken out into
methods but since it is a controller with methods and
the methods have no common functionality maybe that
would make it even harder to follow. Also too many if
cases makes it hard to see what the ending result of each
method is.

Developer 3 Good error handling, good documentation, good struc-
ture

80

Table 25: File 2: comments

Developer Comment about code quality
Developer 1

• Complexity: Low. One nested switch statement.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: High. Small contained functions.

• Readability: High. Small contained functions.

• Error prone: Does not look to be.

Developer 2 Quite straight forward. Easy simple class with methods.
Developer 3 Very good structure, missing error handling,good struc-

ture

81

Table 26: File 3: comments

Developer Comment about code quality
Developer 1

• Complexity: Medium. Long file with nested if and
switch statements.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: Low.

• Readability: Medium. The readability would be
increased if the parameter isn’t deconstructed di-
rectly.

• Error prone: Does not look to be.

Developer 2 Badly written file. Although naming is good it creates a
user. It has some weird exceptions depending on country
and error handling is hard to understand.

Developer 3 Code is complex and difficult to maintain.

82

Table 27: File 4: comments

Developer Comment about code quality
Developer 1

• Complexity: Low. One nested switch statement.

• Robustness: High. Seems to handle the unex-
pected.

• Maintainability: High.

• Readability: High. Nice with render/functions for
each size.

• Error prone: Does not look to be.

Developer 2 Given the complexity of the of the file I think the pur-
pose of the class is quite clear. Logic is separated into
methods with good naming conventions. The file is also
FW based file it has a base class that you need to under-
stand. If you do not know how the base classes works
then it is hard to understand how lifecycle methods are
called.

Developer 3 Good error handling, easy to maintain, good structure

83

	Introduction
	Previous work
	Purpose
	Research Questions
	Scope & limitations
	Outline
	Ingka Group Digital

	Theoretical background
	The Qscored data set
	Code smell
	God class
	Brain method
	Brain class
	Feature Envy
	Data Class

	Maintainability & Testability
	Front and back end
	A selection of other software metrics
	LOC
	Number of functions/methods
	CD
	Control Flow Chart
	Cyclomatic complexity

	Machine intelligence algorithms
	Supervised learning
	ANN networks
	Loss functions, optimizers, learning rates, batch sizes and epochs
	Decision trees
	Building a decision tree

	Pruning
	Bootstrapping
	Bagging
	The RDF algorithm
	Gradient boosting
	Ridge regression
	Lasso regression
	Hyper-parameters
	Outlier removal
	Standardization and z-score
	Performance measurements
	Root Mean Squared Error
	Mean Absolute Error

	Methodology
	Gaining knowledge in the subject
	Finding the tools
	Choice of metrics
	Differences between Qscored and SonarQube
	Gather data points from the database.
	Inspecting and dividing the data
	Preprocessing data
	Building the models
	Comparing the models
	Gather software metrics from projects
	Evaluating the model
	Test 1
	Test 2

	Results
	Evaluation of model
	Results, test 1
	Results, test 2

	RMSEs, MAEs and hyperparameters for respective different models
	Comparing metrics

	Discussion
	On the overall performance in the different tests
	On the design and potential weaknesses of the tests
	On the performance of different models
	On the external data set
	On the difference between Qscored and SonarQube
	Metric selection
	Addressing the research questions

	Conclusion
	Future work
	Appendices
	The ER-digram of Qscored
	Open sources files which were compared
	Code to get cyclomatic complexity
	The form for developers to evaluate and rank real world files.
	Comments on files from developers.
	Front end
	Back end

