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Abstract

Pull-based development is a widespread paradigm in both open source and pro-
prietary software projects. Since pull requests are a central piece of this work-
flow, their natural language descriptions are often key to ensuring an organized
project progression. This thesis explores the usage of BERT based models for
automatic pull request classification, and compares how models pre-trained on
code and natural language react to different components of a pull request. We
extended an existing dataset of 38,500 pull requests with additional features. We
also collected and manually annotated a new test set of 500 pull requests. Us-
ing these datasets we fine-tuned and evaluated multiple transformer bases on
different compositions of features and hyperparameters. We first show that the
transformer models can reach higher F1-scores than the previous FastText classi-
fier from DeepRelease when using the same input features. The results improved
further when extending the inputs with additional data, allowing our best en-
semble classifier to achieve a macro average F1-score of 0.63. Surprisingly, we
find that the models pre-trained on code perform similarly or only slightly bet-
ter than those trained on natural language when classifying code diffs.

Keywords: NLP, transformers, deep learning, pull requests, MLonCode, CodeBERT,
CodeBERTa, BERTOverflow, DistilBERT, DeepRelease
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Chapter 1

Introduction

1.1 Background and Context
Working as a software developer generally involves a heap of responsibilities, which do not
entail development, but facilitate usage and further growth of a project. These might take
the form of composing and maintaining a documentation, reviewing contributions, or writ-
ing release notes. More often than not, these responsibilities are seen as tedious tasks and
constitute the least favored part of a developer’s work. This results in a tendency for such
tasks to get overlooked and creates a range of potential problems for project progression as
a whole.

Backtick Technologies has been exploring ways to offload developer responsibilities by
means of automation. The company is currently developing a product which enables gener-
ation of documentation pages from text content in the code base. In practice, the product
takes the form of a web application which can synchronize with services like GitHub or Bit-
bucket and pull documents from repositories in order to host them through the service. This
approach eliminates the need to build custom solutions which elegantly presents the infor-
mation. Furthermore, since the documents are version controlled together with the code they
describe, the assumption is that they will also be easier to maintain.

Naturally, the final level of sophistication for this kind of service would be to generate
the documentation content automatically, without involving the developers at all. This is
by no means an easy task, as code alone is rarely unambiguously tied to the contents of its
documentation. Factors like design choices, mental frameworks, and development philoso-
phy all have great impact on the final form of documentation. With this in mind, the more
approachable variant of this problem is to work with an existing documentation structure
and update or add entries based on changes committed to the code.

One essential milestone needed to achieve this functionality is the ability to automatically
determine the nature of a change in the code base. Certain updates to a code base, for example
new features, should almost always issue a documentation update which describes the new
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1. Introduction

functionality and how to use it. Other updates such as bug fixes, are less likely to require new
content in the documentation, but might yield changes to existing entries.

This Master’s thesis explores the problem of automatic classification of code changes,
with the goal of facilitating the development of more sophisticated solutions for automated
documentation maintenance. More precisely, we compare possible input features from pull
requests and investigate several different pre-trained transformer bases and their perfor-
mance on this downstream task.

1.2 Pull Requests
Pull-based development is a widespread paradigm in both private and open source projects.
In this workflow, contributors create a feature branch (or fork) of a central master version
when project content needs to be augmented. This enables individual tasks to be solved in
isolated environments without impacting the functionality of the base state. Upon comple-
tion of such a task, the branch is submitted for review in the form of a pull request (PR).

The review essentially aims to determine whether the task has been solved safely and ap-
propriately, and is often carried out by other project contributors. If approved, the branch
is merged back to the central version, the PR is closed, and the feature branch is deleted.
The main advantage of such a process is that consequently, contributors never submit code
directly to the working state of a project. This minimizes the risk that a change breaks the
repository and ensures that the master branch only contains finished and collectively ap-
proved work (Yu et al., 2016).

In order to easily review a PR, the PR usually gets assigned some metadata such as a ti-
tle and body, describing the nature of its contribution. The PR can also be assigned a label
from a set of categories. These labels are rarely standardized and may differ substantially
between repositories. However, most projects do have overlapping or equivalent labels cor-
responding to the relatively typical categories of changes such as bug fixes, new features, or
documentation changes.

1.3 Problem
In this thesis, we explored the use of state-of-the-art (SOTA) transformer models to auto-
matically label changes in code. Since such changes have an intricate relation to their natural
language descriptions (e.g labels or documentation), we also use pull requests and their cor-
responding natural language metadata as a proxy for modifications to code.

Why is it Important? Tools which automate tedious tasks are great for increasing
developer productivity, as they free up the developer’s attention to focus on more important
tasks while relying on the tools. Our research aims to enable more automation in this regard
and curtail developer responsibilities. Furthermore, it is common for developers to forget
to label a pull request, and different open source projects use different labels. Developing
an automated and standardized way of solving this burden also has the potential to improve
project progression as a whole. Automatic labeling of pull requests could be used directly as a
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1.4 Previous Work

feature in Docks, a tool for automating tasks tied to writing and maintaining documentation,
developed at Backtick Technologies.

Scope. Our approach focuses on pull requests from open source repositories on GitHub
as a proxy for changes to code. More specifically, we use the pull requests included in the
dataset provided by DeepRelease (Jiang et al., 2022) together with a gold standard test set that
we annotated for this thesis (see Sect. 2.3). The features that we explore in our experiments
are: title, body, commit messages as well as code changes for each pull request. We examine
several pre-trained transformer models based on the BERT and RoBERTa architectures with
varying inputs and hyperparameters on the downstream task of pull request classification.

Goal. Our goal is to expand on the research of DeepRelease and hopefully contribute with
even better results using BERT based transformer models. A central part will be exploring
how transformers pre-trained on different types of data react to fine-tuning on specific input
types like natural language and code.

DeepRelease chooses fastText over BERT for faster inference and deployment. In their
case, the pull request classification is part of a larger system and needs to be fast. Our re-
search has a relaxed time constraint and will evaluate classifiers based solely on accuracy and
robustness – even though inference with these models is relatively quick.

1.4 Previous Work
There has been lots of research on the NLP classification task throughout the years, including
a fair amount of research in the domain where code and natural language meet. This domain
has recently started to see new models emerge that are based on the transformer architec-
ture (Vaswani et al., 2017). This section describes previous work that we found particularly
relevant for our thesis, listed in chronological order.

Pull Request Classification. Antoniol et al. (2008) demonstrated that it’s possi-
ble to automatically classify an issue in an issue tracking system as either “bug” or “non-bug”
based solely on the text of the issue. They used decision trees, naive Bayes classifier and lo-
gistic regression in their experiments, and were able to achieve precision between 0.64-0.98
and recall between 0.33-0.97.

Yu et al. (2018) proposed a supervised classification model combined with supervised
topics model (LDA) and a naive Bayes classifier in order to automatically label (classify) pull
requests on GitHub with an average precision of 0.6.

CodeSearchNet. Husain et al. (2019) created the CodeSearchNet Corpus, which is
a large bimodal dataset of 2.1 million functions in six programming languages (Go, Java,
JavaScript, PHP, Python, and Ruby) along with their corresponding documentation, orig-
inating from a larger unimodal dataset of 6.1 million functions scraped from GitHub. On
top of this, they presented the Code Search Challenge, which was a challenge on semantic
code search. Their contributions have enabled lots of further interesting machine learning
research on code and natural languages, particularly in the field of deep learning.
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1. Introduction

CodeBERT. Feng et al. (2020) introduced CodeBERT, a transformer model (limited to
an encoder) that has been trained to learn representations from both programming languages
(PL) and natural language (NL). It has been pre-trained on both the 2.1 million bimodal data-
points and the 6.4 million unimodal datapoints from the CodeSearchNet corpus in the tasks
of masked language modeling (MLM) and replaced token detection (RTD). They showed em-
pirically that CodeBERT outperformed other models in the downstream task of code search.

They also created a dataset for NL-PL probing 1, based on data from the CodeSearchNet,
to investigate what type of knowledge CodeBERT learns. CodeBERT outperforms baselines
on both NL and PL probing for all six languages. CodeBERT also achieved SOTA perfor-
mance in the task of documentation generation. Furthermore they demonstrated in the task
of generating NL summaries from C# that CodeBERT can generalize to unseen languages.
Their research demonstrates that CodeBERT is able to learn implicit alignments between
NL-PL as a general purpose representations that can be used for various downstream tasks
that require NL-PL understanding.

CommitBERT. CommitBERT (Jung, 2021) is a BERT transformer model (encoder-
decoder) for automatically generating commit messages based on code changes. They demon-
strate that the large gap in contextual representation between code and natural language can
be bridged using CodeBERT. They further demonstrate that it’s better to pass only changed
lines of code (additions and deletions) rather than the entire git diff into the model. They also
contribute with a new dataset consisting of 345,000 code modifications from six program-
ming languages (Python, PHP, Go, Java, JavaScript and Ruby) along with their corresponding
commit messages, which they were able to retrieve from GitHub using the CodeSearchNet
dataset.

Evaluating CodeBERT. Karmakar and Robbes (2021) evaluated CodeBERT, Code-
BERTa, and GraphCodeBERT using probing to investigate if the encoders have actually man-
aged to encode sufficient knowledge of code. This was evaluated by comparing them to a
regular BERT model (trained on text). The difference in performance was slim, suggesting
that future research on how to properly embed code knowledge into BERT encoder models
is needed.

DeepRelease. DeepRelease (Jiang et al., 2022) is a newly developed system which au-
tomatically generates release notes based on pull requests. A central component in the system
is a fastText model referred to as category discriminator. In essence, this is a pull request clas-
sifier which outputs relevant, standardized labels based solely on the title of a pull request.

Before development, the team conducted a study of release notes to identify the most
common categories of change used in open source projects. Based on change frequency, they
selected four category labels as a tagset for their classifier. To extend on their research and
make our results comparable, our classifier will use the same four categories, namely: fix-bug,
non-functional, new-feature, and documentation.

1A task similar to MLM, in which the goal is for the model to correctly predict/recover a masked token of
interest from a pair of NL-PL tokens.
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1.5 Contribution
Code is typically developed incrementally in cohesive units that can be categorized according
to the nature of their contribution. Pull requests are commonly used in modern development
workflows and enable individual tasks to be solved in isolated environments without impact-
ing the functionality of the base state of the repository. They are typically opened on services
like GitHub or Bitbucket, where they can be assigned metadata like descriptive texts and
category labels. The vast amount of available open source repositories, along with their pull
requests, make up a huge data source with the potential to enable lots of interesting research.

However, the pull request category labels are not standardized. Instead, they vary on a
project-to-project basis and have to be manually assigned by developers. This task, although
simple, is both tedious and prone to get overlooked.

In this thesis, we show that the BERT based transformer models are capable of automat-
ically classifying pull requests into four predefined mutually exclusive labels. We achieved
better results than the previous fastText model from DeepRelease (Jiang et al., 2022) on our
own annotated dataset (see Sect. 2.3) using only pull request titles as input. The classification
results improve further when combining more features such as code diffs and commit mes-
sages, allowing our best model to achieve a macro-average F1-score of 0.63. Furthermore, we
found that transformers pre-trained on code performed similarly on the classification task
compared to DistilBERT – regardless of the input being natural or programming language.

Our research demonstrates that transformer models are suitable for code related NLP
tasks such as classifying pull requests. We anticipate our thesis to encourage more research
in the field of automating tedious developer tasks using NLP techniques. For example, auto-
matic classification of pull requests would most likely be a useful feature in more advanced
challenges, such as finding discrepancies between code and documentation.

Distribution of Work. The work has been done in collaboration, and more or less
all sections have been written by both authors.
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Chapter 2

Datasets

2.1 DeepRelease
The DeepRelease dataset is derived from around 38,550 semi-automatically labeled PRs, but
has been expanded by the authors to contain 10 times more entries through means of aug-
mentation. Each datapoint in this set is comprised of a repository name, PR number, PR
title and a category label. In its final form, it consists of around 385,500 datapoints with a
label distribution which can be observed in Figure 2.1.

The titles in the dataset have been cleaned according to the rules described in DeepRe-
lease, and the dataset has been split into training and validation subsets. The cleaned title
entries are essentially distilled versions of the original PR titles, without any markdown or
other formatting, and contain only natural language.

Figure 2.1: Distribution of categories in the data from DeepRelease

13



2. Datasets

Although the datasets are not extremely unbalanced, we explored how their imbalance
affects the performance in our experiments by training both using the datasets provided as
is as well as balanced versions of the datasets. The balanced versions were created by un-
dersampling the provided datasets so that each category only contains as many examples as
the smallest category (documentation). These experiments are not mentioned in the evalua-
tion part of this thesis, as we quickly realized that the resulting reduction in datapoints only
impaired performance and decided to use the larger, original, distribution.

2.2 Scraped
As mentioned, the DeepRelease dataset is comprised of pure natural language titles. Because
we were interested in exploring how additional metadata would affect the performance of
our models, we needed an extended version of this set. Fortunately we were able to retrieve
unique identifiers for each pull request by combining repository name and PR number in
order to extend the datapoints. We used the GitHub API to scrape the original titles our-
selves, along with the complete description body and the first 100 corresponding commit
messages. This is the same approach that Jung (2021) used to create their dataset based on
the CodeSearchNet corpus.

There are a couple of differences worth noting about our scraped data compared to the
one provided by DeepRelease. The scraped entries in our dataset use the original text titles
that can be found on GitHub. This was done intentionally so that the descriptions retain
their formatting, which hypothetically could be a source of information for our models. In
DeepRelease, the texts have been cleaned to remove anything that isn’t natural language con-
tent. Their data has also been augmented to expand the dataset by a factor of 10, while our
scraped dataset only has one datapoint per PR. Although more data is usually desired, we
decided to not augment our scraped data. This decision was made due to time constraints
as well as the tricky and erroneous nature of augmenting text data which isn’t confined to
natural language.

2.3 Our Gold Standard
The test set used for evaluation needs to be of highest quality in order to accurately assess
the performance of a model. Since the DeepRelease dataset has been constructed using var-
ious rule-based automations, it is highly unlikely that it is entirely correct and was deemed
inadequate for proper evaluation. Besides, we were interested in applying the DeepRelease
fastText model on a dataset other than the one used in the original paper.

As we were unable to find any existing dataset suitable for our needs, we had to manually
create our own by collecting and annotating data. We selected two familiar open source
repositories and we labeled pull requests by manually looking at the title, body, commit
messages, and code diffs. To somewhat speed up this process while not paying for existing
solutions, we built a custom annotation tool for this using React.

The first repository selected for annotation was Cowait1, an open source Python frame-
work for creating containerized distributed applications developed by Backtick Technolo-

1https://github.com/backtick-se/cowait
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2.4 Scraped Diffs

gies. This was a natural choice for evaluation, as we ideally wanted our final model to per-
form well for Backtick employees. Secondly, we chose GRDB2, which is a wrapper for sqlite
written in Swift. Choosing Swift enabled us to evaluate if our models can generalize to un-
seen programming languages. We annotated around 250 pull requests from each repository,
resulting in our gold standard dataset consisting of approximately 500 datapoints.

2.3.1 Inter-annotator agreement
An interesting note is that the DeepRelease fastText classifier performed very poorly on our
gold standard dataset. Naturally, we had to find out if we used a different judgment for cate-
gorizing pull requests. In order to measure this, we first manually annotated 100 datapoints
from the DeepRelease dataset. We then compared our annotations to the original labels and
measured the inter-annotator agreement (IAA) using Cohen’s kappa as metric. This resulted
in a score of 0.51. Although it corresponds to a “moderate strength of agreement” according
to the benchmarks by Landis and Koch (1977), we would have expected stronger agreements
of 0.7 or higher.

2.4 Scraped Diffs
For our final experiment, we wanted to explore if the results would improve when using code
changes as a model feature. We extended the scraped dataset with code diffs for each pull
request scraped from GitHub. After discovering that some diffs are very large, we inspected
their contents and came to the conclusion that we need to filter some of the entries. In
order to avoid collecting metadata and focus on the actual code changes, we filter each diff
to include only changes of files with certain extensions. The file extensions that we included
are based on the languages used in DeepRelease and our gold standard set. Table 2.1 shows
the list of them3.

Language File extensions
Python .py
C / C++ .c .cpp .cc .h .o
C# cs
Java .java
JavaScript .js .ts

PHP .phtml .php*
Ruby .rb
Go .go
Swift .swift
Web .html .htm .xml .xlf .css .scss .sass .less
Other .json .yaml .yml .md .rst .txt .sh .sql

Table 2.1: Languages and file extensions

2https://github.com/groue/GRDB.swift
3The * character acts as a wildcard and matches any symbol
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2. Datasets

In order to reduce the number of tokens for each datapoint, we also decided to distill the
dataset by constraining the diff entries to only contain file location, additions, and deletions.
While losing potentially valuable context data, this compromise would enable us to tokenize
the diffs without truncating large portions of the changes. To our surprise, we later found out
that Jung (2021) demonstrated that including only modifications without the surrounding
context can actually improve the results.
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Chapter 3

Theory

In this chapter, we cover theory that we consider crucial for understanding this project. We
describe the fundamentals of neural networks and how to prepare input data using vectoriza-
tion. We extend this with the transformer architecture along with some implementations, the
classification task and relevant metrics. This leads up to transfer learning, which explains the
relation between transformers and classification. Finally, we describe how multiple networks
can be combined into one using ensemble classification and the fastText model architecture,
which is used as a baseline from previous work relating to this thesis.

3.1 Neural Networks
Neural networks have proved to be successful in many tasks within machine learning and
NLP, including the task of classification. They are a foundation for the transformer models
that we explore in this thesis. Although the neural network model was originally inspired by
neuroscience (Fitch, 1944), it is currently better understood as a mathematical model that
exhibits several desirable properties, like the ability to perform distributed computations
(Russell and Norvig, 2016).

A central part of the neural network is the neuron (also called node). A neuron takes
input from other neurons, each with an associated weight. The weighted sum of inputs is
optionally passed into an activation function (along with a bias) which essentially works like
a threshold. When using activation functions, the neuron is fired and passes its output along
only if the threshold is exceeded (Figure 3.1). If no activation is used, the output of the neuron
is simply the weighted sum of its previous connections. This way a network of interconnected
nodes can be created.

Depending on how the neurons are connected, different architectures can be constructed
for different types of learning. In this thesis we focus on the simple feed-forward network
(FFN), where neurons are connected in a directed acyclic graph (DAG). The neurons are
organized in layers so that each neuron is connected to every neuron in the adjacent layers,
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3. Theory

as illustrated in Figure 3.2 (Russell and Norvig, 2016).

Figure 3.1: The structure of a single artificial neural network, from
Yacim and Boshoff (2018).

The purpose of a neural network is (like any machine learning model in general) to find
a function that accurately maps input data to output data. Simple linear combinations or
complicated nonlinear functions can be modeled because of the activation functions. The
model is trained by modifying the many (often millions of) parameters incrementally using
gradient descent. In this procedure, the model’s predictions are compared to the true values
on random samples from the training data using a loss function. The loss function exists to
express the performance of the model, and needs to be differentiable so that the gradient
can be computed with respect to the model parameters. The parameters are then updated
based on the gradient – a step which augments the mapping function towards its optimal
value. This is commonly termed backpropagation and depends on the chain rule, which is
necessary because of how the nodes are interconnected and influence each other.

3.2 Vectorization
Vectorization is the process of encoding all inputs into numeric tensors. This is necessary
because neural networks, and machine learning models in general, only know how to deal
with numerics (Chollet, 2017).

Tokenization. In order to effectively represent text data as numbers, we must first go
through a process called tokenization. In this procedure, the text is divided into smaller parts
called tokens. A token can be a word, a subword or a character depending on the strategy a
model chooses to implement. By defining a fixed set of known tokens (a vocabulary), we can
express a token numerically simply by referring to it by its position in this set.

Consequently, there is a trade-off between the length of a single token and the size of the
vocabulary. If shorter tokens are used, the vocabulary needs less entries to cover all possi-
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3.3 Transformers

Figure 3.2: An illustration of a feed forward deep neural network by
IBM (2020).

ble inputs – and vice versa. The precise tokenization strategy depends on the model, and is
chosen to adequately encode the input types which a network will be trained on. The most
common approach for the models used in our experiments is subword tokenization. How-
ever, models trained on code may implement different strategies to encode programming
languages more effectively (Chollet, 2017).

Embeddings. By simply referencing tokens with their position in the vocabulary, we
use what’s commonly known as one-hot encoding. Unfortunately, this technique does not
scale well and does not preserve the semantic relationship between tokens. A more current
approach for numeric representation is using so-called embedding vectors – or simply em-
beddings. The idea here is to represent each token with a point in a large vector space. By
training embedding models on large corpora, this type of representation is able to retain
semantic relations.

A commonly used example to illustrate this property involves vector operations on the
words “woman” and “king” in a 2D embedding space. In this scenario, shown in Figure 3.3,
adding the embedding vectors for “woman” and “king” would result in the embedding for
“queen.” This has the additional consequence that semantic distance between words can
easily be computed using cosine similarity (Chollet, 2017).

3.3 Transformers
The transformer architecture was first proposed in Vaswani et al. (2017) as a simplified al-
ternative to recurrent neural networks (RNNs) and long short-term memory (LSTM). Just
like these predecessors, the architecture is designed for processing sequential data. However,
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3. Theory

Figure 3.3: A conceptual illustration of how word embeddings can
preserve semantic relationships.

transformers address several drawbacks of classical sequential models by relying on the atten-
tion mechanism and feed-forward layers instead of recurrence. As such, the need for feeding
back states from previous inputs is eliminated. This results in easier parallelization, mak-
ing the architecture cheaper and more effective to train. Furthermore, by processing whole
sequences at a time, the network is able to learn arbitrarily long dependencies with ease.

Although the original paper describes transformers as a sequence-to-sequence network
with an encoder-decoder structure (see Fig. 3.4), our focus will almost exclusively lie on its
encoder portion. While there are plenty of interesting sequence-to-sequence applications for
transformers, our problem is that of classifying sequences and does not require a decoder.
Why this is the case will become apparent after Section 3.3.2.

The structure of the encoder is relatively simple, as it contains N (usually 6) identical
blocks stacked on top of each other. Each of the blocks is comprised of self-attention and
feed-forward layers, along with normalization steps which keep the values in finite ranges.
Before the first encoder block, a positional encoding is added to the token embeddings to
equip them with the positional information which is not apparent from embeddings alone.

3.3.1 Attention
The attention mechanism is the central building block of the transformer architecture, and
enables learning of relations between elements in sequential inputs. It is, in its simplest form,
a method of contextualizing sequences of vectors. While attention can be applied between
two differing inputs, our previously targeted encoder part of a transformer applies atten-
tion on singular sequences to contextualize their elements – a process also referred to as
self-attention. With this in mind, our descriptions will henceforth be limited to this specific
type of attention.
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Computing self-attention for an element is done by expressing a weighted combination of
all other elements in the sequence. By attributing higher weights to more relevant elements,
the mechanism is able to capture the importance of each element in relation to the whole
sequence. The calculated attention can then be applied to the sequence vectors in order to
“drag” each element towards the context of the sequence in the embedding space. In practice,
this means that elements will be represented differently depending on the context they are
in. To illustrate this intuitively, let us imagine we have two sentences containing the word
“bank”.

I keep all my money in the bank.
I swam across the river to reach the other bank.

It is evident that the word’s meaning differs depending on which sentence we refer to.
When putting the sentences through a trained encoder block, the intuition is that the vec-
tor representing the word “bank” will be shifted towards “money” and “keep” or “river” and
“swam” respectively. That is if the attention layer has weights which are trained to contextu-
alize sequences of English words (Vaswani et al., 2017).

3.3.2 Implementations
BERT
BERT is an acronym for Bidirectional Encoder Representations from Transformers. As the
name suggests, it is a model architecture based on transformers which uses its encoder portion
exclusively. It was first presented by Google Research in Devlin et al. (2018) along with SOTA
results on various NLP tasks.

The paper presents an approach of pre-training transformer encoders using self-supervised
tasks, which enables the model to robustly learn a general understanding of language. The
pre-training is done using two tasks, Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). In MLM, randomly selected tokens are masked out and the model is tasked
with predicting the missing token based on the left and the right context. The NSP task on
the other hand, tasks the model with predicting the successor sentence for a given input. This
fuses the left and the right context together, enabling the model to learn deep bidirectional
representations.

Pre-training of this particular implementation is done on the English Wikipedia of 2,500M
words as well as a book corpus of 800M words. This enables the encoder to capture a general
sense of the structure of natural language. A BERT model pre-trained on this data can, in its
final form, contextualize the input embeddings very effectively. Such a base network can then
be extended and fine-tuned for a wide variety of downstream tasks, including classification
(Devlin et al., 2018).

RoBERTa
RoBERTa is an acronym for: A Robustly Optimized BERT Pretraining Approach. Liu et al.
(2019) demonstrated the importance of choosing the right hyperparameters when pre-training
BERT with the following modifications:
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• Train longer with bigger batches over more data

• Remove the NSP task

• Train on longer sequences

• Dynamically change masking pattern in MLM

Their research shows that the original BERT model was under-trained and that better
results can be achieved using these modifications. The purpose of RoBERTa models is the
same as BERT, it is simply an alternative approach which can give improved results (Liu et al.,
2019).

3.4 Classification
One of the most common tasks in machine learning is classification. In order to perform clas-
sification, a model is trained to be able to assign a correct label based on a given set of input
features. If the task is constrained to assigning a single class to each datapoint, it is referred to
as binary classification. In this case, the model usually outputs a number representing its con-
fidence in the assignment of this single class. If the model is to assign numerous classes, the
task is instead referred to as multiclass classification. Here, the model usually outputs multiple
values indicating its confidence in each of the classes.

Since we are working with four mutually exclusive categories, our downstream task is that
of multiclass classification. In relation to transformers, this is accomplished by connecting
the output layer of an encoder with a classification head (more about this in Section 3.5).
The head is a linear layer that outputs the same number of nodes as the number of classes
(in our case 4). After applying the softmax function, the output corresponds to the model’s
confidence that the input is of a certain class, interpreted as a probability (number between
0 and 1), for each class. Then the classification is just a matter of choosing the class with the
highest confidence.

3.4.1 Evaluation
As classification is the primary focus of this thesis, we need some metrics to evaluate the
performance of our classifiers. The most straightforward and intuitive way to express the
models ability to assign correct labels is the accuracy metric, signifying the frequency of
correct assignments:

Accuracy =
Correct Assignments

Total Assignments

While this is an easily digested metric, it’s not that descriptive when it comes to multiclass
classification. Note that it does not express anything about the individual classes. Consider a
model which simply outputs a single class regardless of the input. If all our datapoints belong
to this fixed class, the accuracy for their classification would be a perfect 1 – despite the fact
that the model is terrible at classifying and the data is skewed.
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In order to define more sophisticated measures, we need to understand the concept of
true/false positives and negatives. These are measures tied to each one of the specific classes,
and are relatively self-explanatory once presented in this context. Examine the table below,
where y and ŷ correspond to a true and predicted class respectively:

y = 1 y = 0
ŷ = 1 True Positives (TP) False Positives (FP)
ŷ = 0 False Negatives (FN) True Negatives (TN)

Having a total of four categories, we would assess the true and false negatives for a class by
treating the 0 label as “any one of the three remaining classes.” With these measures, we can
define a couple of relevant metrics which help us concretize the performance of a multiclass
classification model:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

F1-score = 2 ·
Precision · Recall
Precision + Recall

While these are slightly less intuitive, they give us excellent ways to quantify the correct-
ness of our classifications. Precision tells us how many of the items classified as a certain
class actually belong to that class, whereas recall expresses how many of the items belong-
ing to a certain class got classified correctly. By combining these two metrics in a harmonic
mean, we arrive at arguably the most important metric in classification – the F1-score. This
is the de facto standard metric for evaluating classifiers, giving us a robust metric which can
be compared to previous results.

At this point, the attentive reader has noticed that the metrics covered above are cal-
culated separately for each class, and do not reveal the overall performance on a multiclass
task. While there are multiple strategies which combine them into singular numeric values,
the most general and straightforward for our purposes is the macro average F1-score. As
its name suggest, it is calculated by simply combining the F1-scores for each class into an
unweighted average value.

3.5 Transfer Learning
Having covered transformers and classification, an additional piece of theory is needed to tie
these concepts together – transfer learning. It is a concept which has gained huge popularity
in the recent years, as it effectively reduces the amount of data needed to train an efficient
model. The general idea is rooted in storing knowledge gained while learning one task and
applying it on a different, related task. This can be done in many ways, depending on how
much of the base knowledge that should be transferred to the target model.
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One easy approach is to simply treat the output of an already trained network as an input
to another during training. However, fully trained neural networks usually exhibit a behavior
where the early layers of the network learn more general concepts, while the latter layers
become more and more task-specific. This means that we can conceive countless variants
of this approach. For example, only half of a pre-trained network could be used in order to
utilize the more general layers of the network and discard the specifics. Moreover, we can let
certain layers of the base network learn when training for the new task, while freezing others
to conserve their original weights.

Taking computer vision networks as an example, the early layers will usually be more
focused on detecting simple things like edges, while the later layers might detect shapes
and finally complex patterns like objects or people. A great example of transfer learning
is DeepLabCut presented in Mathis et al. (2018), which uses a neural network trained for
human pose estimation as a base for animal pose estimation and achieves excellent results
with minimal data.

In our case, knowledge will be transferred from transformer encoders trained on enor-
mous corpora with self-supervised objectives (MLM, NSP) to a classification downstream
task. Since the pre-training tasks for implementations like BERT and RoBERTa are focused
on contextualizing inputs, the full models are usually utilized with an attached head – an
extension of the network comprised of additional layers. The weights of these added lay-
ers must of course be trained on additional data. This process is referred to as fine-tuning a
transformer, and will in our case be the training of a linear classification layer.

This raises the question: Should the previous pre-trained layers also be learning during
fine-tuning and if so, which ones? The recommended strategy is to freeze the base of the
network and gradually unfreeze more layers from the end of the network. The number of
layers to unfreeze is a hyperparameter that needs to be found through experimentation. In
general, the more training data we have, the more base layers can be included in fine-tuning
(Chollet, 2017).

Sun et al. (2019) experimented with how to fine-tune BERT for text classfication. Layer-
wise decreasing learning rate can overcome the catastrophic forgetting problem that can oth-
erwise occur during transfer learning. HuggingFace makes this easy to implement using the
provided learning rate scheduler.

3.6 Ensemble Classification
In order to use multiple features of different formats as input for classification, several classi-
fiers (one for each feature type) can be combined and merged into a single multi-input classi-
fier. This typically yields a better performance than any one of the models on their own, and
can be applied to both binary and multiclass classifiers. The merging can be implemented
in several ways – bootstrap aggregating, boosting and stacking being some popular methods.
Aiming at simplicity, we decided to use stacking for our final experiment. It involves taking
the outputs of trained models and training an additional layer on top of these outputs (see
Figure 3.5). The network can alternatively be extended by additional layers on top of this,
ending with a classifier. Chollet (2017)
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3.7 FastText
Bojanowski et al. (2016) introduced fastText, developed by Facebook. It is not a deep neural
network, but a simpler architecture that can be trained orders of magnitudes faster than deep
neural networks while still achieving comparable performance. Joulin et al. (2016) trained a
fastText classifier on more than one billion words in less than ten minutes on a CPU, and clas-
sified half a million sentences among 312,000 classes in less than a minute. This is currently
far from possible using a deep neural network.

The fastText model generates word embeddings using n-grams. A word is represented
as the sum of its n-grams, where each n-gram associated with a vector. By using vectors
at the n-grams level instead of words, an internal structure of building blocks for words is
preserved. This leads to better representations of rare unknown words where part of the
n-grams building up the word is known. The benefit is stronger for certain languages that
exhibits certain grammatical features like declensions and compound words, like German
(Bojanowski et al., 2016).

Despite the promising research on fastText, we will only use it as a baseline in this thesis.
Several BERT based transformer models will be trained and compared against the fastText
model developed by DeepRelease (Jiang et al., 2022) in the task of classifying pull requests. A
notable difference between fastText and BERT is that fastText embeddings are not contex-
tualized.
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Figure 3.4: The transformer architecture from Vaswani et al. (2017).
The left part depicts the encoder and the right part depicts the de-
coder. This thesis only focuses on the encoder. Instead of passing
output from the encoder into a decoder we will pass it into a classi-
fication head.
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Figure 3.5: An illustration of the simplest possible combination
of multiple classifiers. Two networks outputting four values are
merged by stacking their last layers into a dense layer.
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Chapter 4

Approach

4.1 Method
The methodology used to reach our results was based on IBM’s Cross-Industry Standard
Process for Data Mining (CRISP-DM). It is a proven data mining life cycle model consisting
of six phases which ensure steady progression of any data mining project. The standard is
flexible while offering effective guidelines for typical tasks in each phase. Moreover, it is not
necessarily sequential which means that projects may iterate between the phases freely (IBM,
2021).

Figure 4.1: The CRISP-DM life cycle as depicted in IBM’s documen-
tation (IBM, 2021).
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Business Understanding. The first phase focuses on exploring the business expec-
tations of the project. By involving key partners, the goal is to establish what type of business
result the investors hope to obtain. It is crucial that all participating for-profit parts and
others are on the same page when it comes to what the project might generate (IBM, 2021).

Data Understanding. In order to understand existing and potential data sources,
this phase focuses on exploring the attributes and nature of the data involved. At this stage, it
is important to answer questions such as: Are there existing data sources? Which attributes of
the data seem promising and which irrelevant? Is there enough data? Is the data of sufficient
quality? Does additional data need to be collected?

Data Preparation. This phase is often the most burdensome and time-consuming
aspect of data mining projects. As raw data can be obtained from virtually any source, it fol-
lows that it might need to be processed extensively to fit its target application. The processing
is comprised of different augmentations to the data depending on the project. Generally, it
will involve selecting (aggregating, splitting), cleaning, formatting and even composition of
new attributes until the data is fit for model training (IBM, 2021).

Modeling. When data is prepared, it is time to put it to good use. At the modelling
stage, different models are first trained on the data with default parameters in order to de-
termine a good fit. This way, a general understanding of what architectures work can be
obtained. The best models are then chosen for hyperparameter optimization until the mod-
els are effective and satisfactory results are obtained (IBM, 2021).

Evaluation. Evaluation looks different depending on the task a model is trained to
solve. Generally speaking, several metrics should be obtained in order to properly evalu-
ate the performance of models. In this phase, these metrics are computed and tied back to
the goals obtained during business understanding. The main goal here is to establish whether
the model does what it’s supposed to do. If not, it is a perfect stage to revert back to previous
phases in order to make sure that it does (IBM, 2021).

Deployment. In this final stage, the superior models are either formally integrated, or
the insights gained from them are put to use. That could mean deploying the models for pro-
duction inference or simply using the results to make improvements withing the organization
(IBM, 2021).

4.2 Implementation
The language of choice for the entire implementation was Python because of its extensive
supply of useful machine learning libraries. Early on, we wrote quite robust command line
interface tools (CLI) for communication with GitHub through its REST API, web endpoints,
and the git protocol. We utilized them to collect the gold standard dataset and extend the
DeepRelease datapoints. In order to effortlessly annotate our collected data without paying
for existing solutions, we also wrote a simple annotator tool with JavaScript and the React
framework.
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Tools. The HuggingFace model hub along with their Transformers library (Wolf et al.,
2020) provided us with all of our pre-trained transformer bases. We built a fine-tuning proce-
dure using a mix of components from Transformers and raw PyTorch. We made the decision
not to use Tensorflow or the HuggingFace trainer API for these tasks due to model compat-
ibility, flexibility, and complexity of GPU setup.

We used Matplotlib for plotting and Scikit-learn for evaluation metrics such as confusion
matrices and classification reports. We wrote all our programs using Jupyter notebooks, with
the exception of data gathering and certain formatting measures.

Hardware. Initially, our notebooks ran on Google Colab as it offers free Python en-
vironments with access to relatively powerful GPUs – without requiring any setup. After
training a couple of models, we realized that the platform did not meet our needs due to the
computing and time restrictions imposed by Google. In order to address this, we configured
a personal gaming PC with an RTX 2080 Super GPU with CUDA as a dedicated remote
machine for our training procedures. As it turns out, this decreased the training time by a
factor of approximately 5 compared to Colab’s Tesla K80 GPUs. It also enabled us to train
without time or processing restrictions, making it painless to run large training jobs during
convenient times without the need to maintain a network connection.

Preparation. In order to maximize the training speed, we prepared for training by:

1. Tokenizing each datapoint in the set and computing its length.

2. Computing the distribution of all tokenized lengths and the last ventile1 breakpoint
value in order to determine the token length which covers 95% of the set.

3. Applying a threshold with this value as the max length for the tokenizer with a mini-
mum value of 32.

Since all our transformer bases have an input size of 512, this strategy gives significant
speed improvements if working with short sequences. By limiting the length of input se-
quences to the model, less nodes are activated in the network and thereby the number of
nodes involved in backpropagation is reduced. When training the later models with aggre-
gated inputs and diffs, however, the ventile value is slightly above 512 and some inputs are
instead truncated to fit the model.

Training. We start by shuffling and splitting the dataset into training and validation
subsets with a ratio of 80/20. After tokenizing the entries, the selected transformer base is
initialized with a classification head comprised of a linear layer converging the output of the
transformer into 4 nodes. The model is solidified by freezing all base layers up to the linear
classification layer, and an AdamW learning rate optimizer is instantiated with an initial
learning rate of 10−3 (default). We then train for 10 epochs while saving the loss, accuracy
and macro F1 metrics for both the training and validation sets. Additionally, we save the
model state with lowest validation loss so far. The process repeats with the next transformer
base using the same parameters.

1Quantile of order 20
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When all transformer bases have been trained on the data with this base configuration,
we continue into an intermediate evaluation step. By comparing the learning metrics and
applying the lowest-loss model on the test set, we establish which transformer bases are per-
forming best and discard those that perform poorly. Next, the training procedure for the
most promising bases are repeated three times. Each time, another rearmost layer of the
base encoder is unfreezed for backpropagation. An illustration of this process can be seen in
Figure 4.2. Lastly, we compare each version’s learning progress and try adjusting the initial
learning rates for the champions as preparation for a final round of training with the most
promising set of parameters.

Figure 4.2: An illustration of the training steps when unfreezing lay-
ers of the base encoder. The state showed in the figure corresponds
to the first training after evaluating the base configurations. Next
round, block 2 will also be unfreezed for backpropagation.
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Models

All of the following models are available on the HuggingFace model hub. They have been
chosen based on their type of training data and popularity. Their pre-training data ranges
from natural language to code, with some being trained on natural language in a code context
and others on a mix of both natural language and code.

5.1 DistilBERT
DistilBERT is a pre-trained encoder model trained on natural language in the same fashion as
BERT, but with much fewer parameters. The authors were able to show in Sanh et al. (2019)
that the BERT model complexity can be reduced by 40%, while retaining 97% of its language
understanding capabilities and being 60% faster. This was accomplished using knowledge
distillation, which is a compression technique for ML models. The motivation for their re-
search was that smaller models are cheaper and faster to train with reduced environmental
footprint. Figure 5.1 shows a graph of complexity vs release date for some of the most popular
transformer bases from the last five years. It is evident that the complexity to performance
ratio for this model is groundbreaking, even today.

5.2 CodeBERT
CodeBERT is a transformer that has been pre-trained on both programming and natural lan-
guage, developed by a Microsoft research team in China. The model architecture is exactly the
same as RoBERTa and has a total of 125M parameters. Pre-training was done on the Code-
SearchNet corpus (Husain et al., 2019) which consists of 2.1 bimodal datapoints of NL-PL
pairs as well as 6.4M unimodal PL datapoints, all across six programming languages (Python,
Java, JavaScript, PHP, Ruby, Go). The pre-training is done on both MLM and NSP. Code-
BERT achieves state-of-the-art performance on downstream tasks including natural language
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Figure 5.1: Number of parameters of various models, over time, from
Sanh et al. (2019)

code search and code-to-documentation generation. The model also seems to generalize to
other languages in their experiment on unseen data in C# Feng et al. (2020).

5.3 BERTOverflow
BERTOverflow is an encoder that has been pre-trained on a corpus of 152 million sentences
from StackOverflow’s 10 year archive (2008-2018). They evaluated several models on a man-
ually annotated test set (of sentences from StackOverflow and GitHub) and showed that the
BERTOverflow embeddings improved the results on the downstream task.

The StackOverflow NER corpus, used as test set, has been manually annotated by 4 stu-
dents. 20 types of fine grained entities have been labeled on questions and answers from
randomly selected questions as well as random sentences from GitHub readme files. The
inter-annotator agreement Cohen’s Kappa score before adjudication was 0.62.

Tabassum et al. (2020)

5.4 CodeBERTa
CodeBERTa is a RoBERTa-like model trained on the CodeSearchNet corpus. The tokenized
corpus can be encoded more efficiently due to the structured and repetitive nature of code in
contrast to natural language. Sadly, there is little to no information available as to the details
of this model1.

1https://huggingface.co/huggingface/CodeBERTa-small-v1
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Chapter 6

Evaluation

We evaluate the DeepRelease classifier on our Gold Standard dataset as a first experiment
(Sect. 6.1). We also train and evaluate our BERT classification models in a similar setting
using only titles (Sect. 6.2). We then try to improve the results of our classification models
by experimenting with different features. In one experiment, we use additional text as input
(Sect. 6.3) and in another experiment we use only code-diffs as input (Sect. 6.4). Finally, we
combine theses features in an ensemble classifier (Sect. 6.5).

6.1 FastText Classifier
We evaluated the fastText classifier provided by DeepRelease on our Gold Standard dataset
as a baseline. This resulted in a macro F1-score of only 0.33, and the full classification report
can be seen in Table 6.1. It is apparent that the model is very eager to assign the fix-bugs
category, resulting in a low precision for the label. The new-features and non-functional
categories are particularly likely to get misclassified as bug fixes, resulting in poor recall for
both categories.

6.2 Titles
We then trained our classification models on the scraped dataset that only contains formatted
titles (Section 2.2). A comparison of all the transformer bases with the base configuration
can be seen in Figure 6.1. We observe a quite large difference in performance between the
models, with DistilBERT and CodeBERTa outperforming the others by a large margin.

Optimization. Considering that DistilBERT and CodeBERTa performed well with the
base configuration, we chose these two models for the second round of training. Following
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Precision Recall F1-Score Support
fix-bugs 0.17 0.66 0.27 76
new-features 0.42 0.26 0.32 149
documentation 0.58 0.37 0.45 52
non-functional 0.46 0.19 0.27 228

accuracy 0.30 505
macro avg 0.41 0.37 0.33 505
weighted avg 0.42 0.30 0.30 505

Predicted

fix-bugs new-features documentation non-functional
fix-bugs 0.67 0.15 0.03 0.15

Tr
ue new-features 0.58 0.26 0.03 0.13

documentation 0.21 0.08 0.37 0.35
non-functional 0.62 0.16 0.03 0.19

Table 6.1: Test set results for the baseline fastText classifier.

the procedure described in Section 4.2, we completed three rounds of training and unfreezing
encoder layers for each model.

The configurations showing most promise were DistilBERT with two unfreezed layers
and CodeBERTa with one. Since the training metrics seem stable, the learning rate was not
adjusted. A comparison of the best configuration for both bases can be seen in Figure 6.2,
where we observe that DistilBERT yields slightly better results on the validation set. This
is also the case for the test set, where CodeBERTa achieves a macro F1-score of 0.47 and
DistilBERT of 0.52. The complete test set classification results of the best performing model
can be seen in Table 6.2.

6.3 Extended Text Data
We then used our scraped dataset with body and commit messages as features for each pull
request in addition to title. We concatenated all inputs into a single string that is tokenized
and passed into the models. The results for the base configurations can be seen in Figure 6.3,
where we see DistilBERT performing quite well again. CodeBERTa, on the other hand, seems
very unstable in its learning progress.

Optimization. After running the training procedure with additional unfrozen layers,
we saw that both CodeBERTa and DistilBERT gained performance with one unfreezed layer.
Also, when reducing the learning rate by half, we found that the CodeBERTa model gained
some stability and that the DistilBERT results improved further. A comparison of the best
models with one unfreezed layer and adjusted learning rates can be seen in Figure 6.4.
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Figure 6.1: Comparison of each transformer with the base configu-
ration - trained on titles

6.4 Code Diffs
In another experiment, we used our scraped dataset containing code diffs for each pull request
(2.4). At first, we experimented with per-file prediction where each file entry in the diff was
input and the parent PR category was the label. This approach seemed better, as it yields less
truncated inputs. However, after comparing with models trained on entire PR diffs, it was
clear that this strategy gave significantly worse results.

The comparison of each transformer base for per-PR prediction can be seen in Figure
6.5. Here, we actually see that CodeBERTa pre-trained on code yields slightly better results,
reaching a macro F1 of 0.59 – but the CodeBERT model still lags behind DistilBERT.

Optimization. Surprisingly, we could not improve the results from the base config
training of these models. A fully frozen CodeBERTa and DistilBERT with default learning
rates were the best candidates, but ultimately CodeBERTa showed slightly better metrics
(Figure 6.5). As can be seen in Table 6.4, the overall results for the best model were not very
impressive. However, the accuracy is still better than pure guessing so the model should add
some performance to the extended data classifiers when combined in an ensemble.

6.5 Combined Classifiers
The training of an ensemble classifier is preferably done on data previously unseen by the
individual classifiers. Due to scarcity of such data, we tried training the ensemble classifier on
both the training and validation (unseen) data. Interestingly, it showed better performance
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Figure 6.2: Comparison of the best DistilBERT and CodeBERTa ver-
sions - trained on titles

for the former. This might be due to the fact that the validation set was considerably smaller
and was not enough to learn how to properly combine the network outputs.

Table 6.5 shows the metrics for the final ensemble classifier combining the DistilBERT
model for titles, body and commits with CodeBERTa for code diffs. We eventually reached
a macro F1 of 0.63 with our best model.
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Precision Recall F1-Score Support
fix-bugs 0.33 0.87 0.48 76
new-features 0.50 0.36 0.42 149
documentation 0.67 0.65 0.66 52
non-functional 0.66 0.43 0.52 228

accuracy 0.50 505
macro avg 0.54 0.58 0.52 505
weighted avg 0.57 0.50 0.50 505

Predicted

fix-bugs new-features documentation non-functional
fix-bugs 0.87 0.04 0.03 0.07

Tr
ue new-features 0.37 0.36 0.03 0.24

documentation 0.15 0.02 0.65 0.17
non-functional 0.32 0.21 0.04 0.43

Table 6.2: Test set metrics for DistilBERT with two unfreezed layers
– trained on titles.

Figure 6.3: Comparison of each transformer with the base configu-
ration - trained on extended text data
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Figure 6.4: Comparison of the best DistilBERT and CodeBERTa ver-
sions - trained on extended text data

Precision Recall F1-Score Support
fix-bugs 0.42 0.83 0.56 76
new-features 0.57 0.49 0.53 149
documentation 0.80 0.71 0.76 52
non-functional 0.60 0.48 0.53 228

accuracy 0.56 505
macro avg 0.60 0.63 0.59 505
weighted avg 0.59 0.56 0.56 505

Predicted

fix-bugs new-features documentation non-functional
fix-bugs 0.83 0.04 0.00 0.13

Tr
ue new-features 0.15 0.49 0.00 0.36

documentation 0.10 0.02 0.71 0.17
non-functional 0.25 0.23 0.04 0.48

Table 6.3: Test set metrics for DistilBERT with one unfreezed layer
– trained on extended text data.
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Figure 6.5: Comparison of each transformer with the base configu-
ration - trained on diffs

Precision Recall F1-Score Support
fix-bugs 0.27 0.76 0.39 76
new-features 0.45 0.69 0.54 149
documentation 0.58 0.27 0.37 52
non-functional 0.62 0.09 0.16 228

accuracy 0.39 505
macro avg 0.48 0.45 0.37 505
weighted avg 0.51 0.39 0.33 505

Predicted

fix-bugs new-features documentation non-functional
fix-bugs 0.76 0.22 0.00 0.01

Tr
ue new-features 0.26 0.69 0.04 0.01

documentation 0.33 0.19 0.27 0.21
non-functional 0.46 0.43 0.02 0.09

Table 6.4: Test set metrics for the solid CodeBERTa model – trained
on diffs.
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6. Evaluation

Precision Recall F1-Score Support
fix-bugs 0.46 0.88 0.60 76
new-features 0.56 0.68 0.61 149
documentation 0.85 0.77 0.81 52
non-functional 0.69 0.39 0.50 228

accuracy 0.59 505
macro avg 0.64 0.68 0.63 505
weighted avg 0.63 0.59 0.58 505

Predicted

fix-bugs new-features documentation non-functional
fix-bugs 0.88 0.04 0.00 0.08

Tr
ue new-features 0.11 0.68 0.01 0.20

documentation 0.13 0.02 0.77 0.08
non-functional 0.25 0.33 0.03 0.39

Table 6.5: Test set metrics for the ensemble classifier combining the
DistilBERT text data model and the CodeBERTa diff model.
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Chapter 7

Discussion

Our best model achieves an F1-score of 0.63 on our annotated dataset, which can be inter-
preted both positively and negatively. Although it’s not bad, there is definitely some room for
improvement. Due to the systematic differences between training data and test data (mea-
sured by inter-annotator agreement, see Sect. 2.3.1) a higher score like 0.9 would practically
not have been possible. Considering that, we argue that 0.63 is actually a pretty good result.

It is interesting to note how well DistilBERT did in our experiments and in many cases
outperformed BERTOverflow, CodeBERT and CodeBERTa. We would have expected the
PL-NL trained embeddings to yield better performance on text from pull requests that often
makes use of a code related vocabulary and Markdown1 formatting. This makes us question
the capability of these models to capture the intricate relationship between NL and PL. Like
Karmakar and Robbes (2021), we would like to call for future research on pre-training NL-PL
transformers.

The size of the input to a transformer is limited by the self-attention operation that scales
quadratically with the sequence length. This is the main reason why we had to reduce the
input size in our final experiment as described in Sect. 2.4. Beltagy et al. (2020) address this
with an alternative self-attention mechanism that scales linearly. Although interesting, it is
not something that we have had time to explore in this thesis and we leave it for future work.

1The markup language used for formatting text on GitHub, Stackoverflow and other platforms.
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Chapter 8

Conclusion

With our best model, we obtained a macro F1 of 0.63 on the classification of pull requests into
four categories. We consider our work an important milestone for enabling further research
in bridging the gap between code and documentation at Backtick.

8.1 Future Work
This section contains some ideas for future work that we have identified, but did not have
time to complete during our thesis.

Hyperparameters. Due to time constraints, we have not spent much time tuning
hyperparameters. It would, however, be interesting to find out how much the performance
could be improved by optimizing the configurations further. If we had enough time to do
this, we would have considered a grid search over all combinations of parameters. This would
be very time-consuming and preferably done on a GPU of higher caliber than the one used for
our trainings. Some of the hyperparameters with high potential for tuning include learning
rate, input composition, number of epochs, number of frozen layers. Even the small amount
of tuning we actually did gave significant improvements in certain cases.

Our ensemble classifier essentially uses output concatenation, as described in Sect. 3.6.
Another approach would be to have the fully connected layers trainable, including the lay-
ers before the networks are merged. This might lead to better results for some number of
unfreezed layers.

More Models. Other models and architectures could be explored. We have identified
CodeT5 as an interesting candidate, a T5 transformer that has been trained on code (Wang
et al., 2021). We would also like to experiment with other neural network architectures.
Although transformers generally outperform Bi-LSTM it would be interesting to explore the
difference in the domain of code and natural language. Completely new model architectures
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8. Conclusion

are also emerging, with the potential to outperform transformers in new domains. Two of
the most interesting and recent advancements in such networks that we have identified are
the PALM system from Google (Chowdhery et al., 2022) as well as the Big Science research
workshop on large multilingual models and datasets by HuggingFace 1. These models are
trained on multiple natural languages and programming languages. It would be interesting
to explore how new models with a better general code and language understanding could
improve our results.

Investigate. Surprisingly, our models pre-trained on code do not significantly outper-
form our models pre-trained on text. This is similar to the results of Karmakar and Robbes
(2021) and calls for more investigation.

Create Datasets. A problem that we faced throughout our thesis is the lack of high
quality labeled datasets. In order to solve more complicated problems like finding discrep-
ancies between code and documentation, more high quality data is needed. An essential
contribution enabling more research on this problem is to create such datasets. This task
might be aided by a pull request classifier, since certain types of code changes likely correlate
with certain types of changes in the documentation.

We noticed that there may be disagreement between annotators. The IAA between us
and DeepRelease were lower than expected. To tackle this challenge, we recommend having
multiple overlapping annotators.

8.2 Last Words
Our hope is that the findings and results from this thesis will make it easier to approach the
development of more advanced systems that automate even more complex tasks related to
the relation between code and its natural language descriptions.

In addition, we hope that our work will facilitate further research leading to more tools
for automating tasks which require models with an understanding of code and natural lan-
guage. Lastly, we hope that the Docks product will benefit from our findings and potentially
incorporate new features based on our models.

1https://bigscience.huggingface.co
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Klassificering av kodändringar som stöd
för utvecklare

POPULÄRVETENSKAPLIG SAMMANFATTNING Oscar Fridh, Szymon Stypa

Transformer -arkitekturen har gett upphov till kraftfulla modeller för språkförståelse,
och börjar dyka upp i nya sammanhang. Detta arbete undersöker hur väl arkitekturen
presterar vid klassificering av kodändringar i form av pull requests, och är ett försök
att förbättra tidigare kategorisering med utökad data bestående av både text och kod.

Mjukvaruprojekt med många utvecklare använder
ofta ett arbetssätt där ny funktionalitet utvecklas i
separata miljöer för att eliminera konflikter mellan
versioner. När en ändring är klar, kan en begäran
om att slå ihop dess miljö med centrala projek-
tversionen göras. Denna begäran kallas för pull re-
quest, och måste godkännas av andra medarbetare
för att ändringen ska sammanfogas.

För att underlätta granskningen är det nöd-
vändigt att beskriva alla begäranden, samt kat-
egorisera dem med klasser som tydliggör ändrin-
gen. I detta arbete har vi utforskat hur väl det går
att automatisera kategoriseringen med hjälp av
modeller baserade på Transformer-arkitekturen.
Målet är att främja nya verktyg som hjälper
utvecklare att sköta administrativa uppgifter, och
låter dem fokusera på att skriva kod.

I arbetet behandlar vi flera olika förtränade
nätverk, och granskar hur de reagerar på olika
typer av indata. Genom att använda olika sam-
manställningar av komponenter från pull requests
som prediktorer (eng. features), studerar vi hur
nätverkens förmåga att klassificera påverkas.

Vi demonstrerar att Transformer-arkitekturen
överlag lämpar sig väl för uppgiften. Slutligen
bygger vi en sammansatt modell som uppnår av-
sevärt bättre resultat än tidigare forksning på vår
egeninsamlade data. Samtidigt finns det mycket
rum för förbättringar, och framförallt ett behov
av mer kvalitativt annoterad data.

Ett oväntat och intressant resultat är att mod-
eller förtränade på vanlig text presterade nästan
lika bra eller bättre än modeller förtränade på kod
vid klassificering av råa kodändringar. Detta ty-
der på att det finns ett behov av mer detaljerad
forskning kring förträning av modeller, med fokus
på hur träningsdata relaterar till modellernas in-
lärda förståelse.

Vi hoppas att vårt arbete kan agera byggsten
för vidare forskning i domänen där kod och språk
möter varandra. Automatiserande verktyg för att
skriva och underhålla dokumentation är ett exem-
pel där vi tror att arbetet kan komma till nytta.
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