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Abstract

Traditional concurrent data structures like queues or stacks have inherent bot-
tlenecks due to all operations having to access them through the same points,
leading to high contention. By relaxing the semantics of a data structure, we
don’t have to force each operation to take effect in the same order as they were
invoked. This can often lead to reduced contention and increased throughput,
at the cost of accuracy.

This thesis builds on an earlier paper which introduced a lock-free frame-
work for such semantically relaxed data structures where the relaxation could
be decoupled in two orthogonal dimensions. Our contribution is to be able to
change these two relaxation measures during run time for their queue and stack.
The two data structures use different ideas but build on creating auxiliary nodes
to encode relaxation changes.

By analyzing the algorithms this thesis proves their correctness and bound
their relaxation errors. In the empirical evaluations, the elastic stack had almost
no throughput penalty and the elastic queue was only a few per cent slower when
compared to the original.
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Chapter 1

Introduction

Basic data structures such as queues and stacks are used in a plethora of different applications
where things need to be collected and ordered. Their ideas are often simple and easy to im-
plement in sequential programs. But as the amount of multi-threaded applications continues
to increase, so does the demand for efficient concurrent data structures. Data structures like
the Michael Scott queue[8] or the Treiber stack[12] are great in that they are concurrent and
lock-free. But they are inherently limited due to their sequential specifications. Their low
number of access points quickly becomes a bottleneck when the load and number of threads
increase[2].

A potential solution to this is called Semantic relaxation[6] and it relaxes the sequential
specification of the data structure to allow different out of order behaviours. The relaxation
we will look at is k-out-of-order[10] which for a stack allows each pop to return any element
among the top k + 1 elements, instead of always the topmost one. There has been quite a
lot of work in this area recently and several good data structures have emerged[6, 10, 9, 13,
4, 5]. A common tactic is to increase the number of access points by having several normal
data structures in parallel which for example can be seen in the MultiQueue[13] and the
2D framework[10]. A problem with them, and most others[6, 4, 5] are that the amount of
relaxation has to be specified up front at compile time. This limits the applications as they
cannot change behaviour dynamically over time[9].

This thesis presents a solution to that problem for the queue and coupled stack from the
2D framework by extending them to be able to vary relaxation during run time. We call this
extension elastic since it is still gives strong relaxation guarantees while also making the data
structures more flexible. This extension is done for the 2D queue and the 2Dc stack from
the 2D framework[10], and we use a different new method for each of them. We think these
methods are applicable to similar data structures and should at the least be usable for the
remaining 2D stack and deque. This extension to the 2D framework makes it an excellent
choice when you want a highly efficient and scalable relaxed data structure, with a bound on
the actual relaxation, which you can have running for a long time and adapt its behaviour
depending on workload.
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1. Introduction

The research question of the thesis is How can the list-based data structures from the 2D
framework[10] be extended, so that the allowed relaxation can be changed during run time? and to
limit the scope we will only investigate the queue and stack. To be able to measure how good
such an extension is we use the following points, which all should be fulfilled for an ideal
extension.

• The extension should be lock-free.

• The extension should guarantee some notion of correctness and have a bound for
worst-case relaxation, like the original data structures[10].

• The extension should have similar throughput to the original data structures when the
relaxation is kept constant.

• A change in relaxation should take effect quickly.

The thesis starts with the background needed to understand the work in chapter 2 and
goes over some related work in chapter 3. Chapter 4 describes our new ideas and designs and
in chapter 5 we prove their correctness and bound their relaxation. Finally, we evaluate our
implementation in chapter 6 and end with some discussion and conclusions in chapter 7.
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Chapter 2

Background

This section will describe the necessary material to understand the ideas in this thesis. It
starts with the fundamentals of concurrent programming, and unless otherwise specified,
the source we use for all of these fundamentals is the extensive book Writing Efficient C Code:
a thorough introduction[11]. Readers who are already familiar with concurrent programming
can probably skip that chapter, or only read sub-sections they feel are interesting. After that,
we describe the previous work this project builds upon, namely relaxed semantics and the
2D framework.

2.1 Concurrent programming
Concurrent programs are those in which different parts of the code executes asynchronously
in different threads (which can be mapped to different cores). There are different reasons
why to do this, but in this thesis, we focus on the most obvious one which is increasing
performance. Many computers nowadays have several cores and unless you have concurrent
code your machine will largely only use one of those cores at a time, which is a waste of
potential.

In the ideal case, we can let each thread work on completely different parts of the pro-
gram, not reading and modifying the same data. Writing code for that is just like writing
normal code, except you tell each thread which part to run. But in reality, it is required for
the threads to communicate and work with shared resources, such as a queue or stack, which
is what makes the field complex.

One thing to keep in mind when doing concurrent programming is that the executions are
not deterministic. In a single-threaded program, all instructions are (conceptually) executed
in order, and thus the same thing will happen every time unless you use some randomness.
But when you have several threads the output can depend on the interleaving and timings
of the threads and their memory accesses. Thus the program may run fine and pass a test
on the first 100 tries, but fail on the 101st due to some hard to spot bug. It can also be very
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2. Background

dependent on the computer used and work fine on your computer, but when someone else
tries, it crashes immediately. This makes the need for formal proofs and reasonings about
correctness more important in concurrent programs than in normal ones.

2.1.1 Correctness in concurrent programs
In this section, we look at what challenges we will face when writing concurrent code, as well
as how to work around them. Here we will approach it from the C language as that is what is
used in the project, as well as it being quite explicit with what happens in the machine. But
most ideas here are also directly applicable to most other modern languages.

Atomic instructions
A simple example of why concurrent programs are complex to reason about is incrementing a
shared variable, such as x++ or x+=1. You might think that this is just an atomic instruction
which increments x by one. But what happens is that the thread reads y := x, computes
z := y + 1 and stores x := z. This can cause problems as shown in Algorithm 1 where two
attempts at incrementing a variable only lead to it being incremented once. Behaviour like
this which depends on the timings of different threads is called a race condition and should
(almost always) be avoided.

Algorithm 1: Data race when incrementing a shared variable. Two threads try to
increment x, but at the end, x will only have increased by 1.

Thread A
read(x)
compute(x + 1)

store(x + 1)

Thread B

read(x)
compute(x + 1)

store(x + 1)

This problem stems from the fact that normal code instructions are not necessarily atomic,
but rather are split into several smaller instructions in the hardware. This discrepancy moti-
vates the need for special instructions in the hardware which can give the programmer some
promise of atomic behaviour. The most important function is that we want to be able to read
and write some memory without any other thread accessing that memory between our read
and our completed write. We call it an atomic instruction as it can be seen as a taking effect
in a single instant.

The most common and basic such instruction is what is called compare-and-swap (CAS).
What it does is simply write some value to a memory location if and only if the memory
location contains the expected value. The idea of it is visualized in Algorithm 2. Note that
this requires extra hardware support and would not work if implemented directly in software
as we then would run into the same issue as in Algorithm 1. The most basic use case for it is
to read some value (commonly a pointer), calculate the next value (maybe a pointer to some
new object), and try to replace the old pointer with the new one.

Using CAS you can implement other things such as mutual exclusion with locks which
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2.1 Concurrent programming

Algorithm 2: Compare and Swap idea

if x = x_old then
x← x_new;
return true;

else
return f alse;

end

is very widely used. The idea then is that only one thread can hold the lock at a time and
then access some shared state. Since the shared state can only be accessed while holding the
lock it makes all such accesses seemingly atomic. A lock is conceptually just a boolean and
to acquire it you must update it from false to true with a successful CAS, and when you are
finished you set it to f alse. The reason this is so popular is that it is very easy to use. You
can basically take any normal data structure, like a queue or stack, decorate it with a lock at
all access points and it will be a valid concurrent data structure.

When talking about atomicity the term linearizability often comes up[11, 7]. This is a prop-
erty of a method operating on some state or object. Essentially it means that the method must
seemingly take effect instantaneously sometime between its invocation and return. That in-
stant is often called the linearization point and can be very useful when proving the correctness
of concurrent data structures. An example is a shared counter updated using CAS. Then the
linearization points are the moment you successfully complete the CAS for an update, and
every time you read it for a read. For something with a lock the linearization point can be
viewed as any time between the acquisition and release of the lock, but maybe simplest is to
think of the instant of release as the point where all changes become visible at once.

Compiler and hardware optimizations

Modern compilers are very sophisticated and can make the code you write significantly faster
using different optimization algorithms. These optimizations make sure to not change the
result of the code, but unless specified the compiler assumes the code is to be run in one
thread. The same thing goes for modern hardware which also has many optimizations to
improve performance. This means that if you have several threads these optimizations can
severely break your program. Here we will look at some simple examples of what can go
wrong to hopefully give some intuition for what to keep in mind when writing concurrent
code on a shared memory system.

One danger is register allocation of shared variables. If the code reads a variable x and
later reads it again without having changed it, then it can just assume it has not changed and
use the old value. By saving the value in a local register it thus can avoid the second read from
memory. This can cause issues as seen in Algorithm 3 where one thread can get stuck forever,
not realizing a variable has changed. Both reads and writes are in danger of this, for example,
a thread might not immediately write something to memory, but keep it in a register for a
while until it is time to write it to memory. This shows that we must be wary to specify which
variables can be changed from different threads. In C this can be done by defining a variable
as _Atomic (since C11) or volatile which is older but has a similar effect.
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2. Background

Algorithm 3: Thread B can get stuck in an infinite loop if it register allocates x = 0.

Thread A

x ← 1

Thread B
x ← 0

while x = 0 do
/* Can be stuck forever. */

end

Another tricky issue is that of ordering operations, in which both the compiler and hard-
ware are involved. The compiler is allowed to change the order of operations as long as it
behaves the same, and it assumes the code is for one thread unless otherwise specified. The
hardware can start several instructions in parallel and since different instructions take dif-
ferent amount of time the hardware might want to start on future instructions before all
the previous ones have been completed. Together they will do this to not affect the single-
threaded execution, but threads observing each other can see very strange orderings. Take the
example in Algorithm 4 where the instructions can be re-ordered to cause the second thread
to seemingly observe an impossible state.

Algorithm 4: By reordering the read of y in Thread B to within the loop, or by
re-ordering the writes in Thread A, Thread B can read y ̸= 1. Both x and y are
_Atomic.
Thread A
y ← 1
x ← 1

Thread B
while x ̸= 0 do

/* Wait */
end

/* Can read y ̸= 1 */
read(y)

A healthy way to think about these re-orderings is that once one thread looks at a se-
quence of actions by another, they can be completely re-arranged without almost any promise
of logical order. This is of course disastrous for writing correct concurrent programs and thus
there are ways to enforce orderings within concurrent programs. One approach is using some-
thing called a memory consistency model, which is described further down. The benefit of using
them is that you don’t have to keep track of all possible re-arrangements, but instead force
the compiler and hardware to not violate certain important orderings within the program.

Memory consistency models
To enforce orderings in the program we utilize what is called memory consistency models.
These allow us to create happens-before dependencies between different points in the code. A
happens-before relation is exactly what it sounds like and guarantees that one thing happens
before another thing, for all observers, which is incredibly powerful. If we know x happens
before y then when observing x we know everything done before y must also be visible. Take
Algorithm 4 again as an example. Here we can specify that the two writes in Thread A must
be ordered and that the reads in Thread B must be ordered, and then we would never observe
the inconsistent state. But relaxing either one of those orders could cause the inconsistent
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2.1 Concurrent programming

observation.
There are several consistency models to choose from and they are all just different ways

to specify where there are happens-before dependencies. In languages such as C, the base
memory order gives no guarantees except intra-thread dependencies, but you can specify
different memory consistency orders for the access to _Atomic variables which can also be
called synchronized variables.

The most basic and strong order is Sequential Consistency[11] (SC). Conceptually it forces
every instruction on synchronized variables to occur in the code order, and no two instruc-
tions can occur simultaneously. Furthermore, no normal memory access can be reordered
past the access to a synchronized variable. A great aspect of SC is that it creates a global
order of accesses to the synchronized variables, even if they are not related. So if one thread
sees x happen before y then no other thread will see y happen before x. The price it pays
for being very strict is that it prevents a lot of possible optimizations and slows down the
program if used excessively. However, if used sparingly it can be very powerful as a global
order of all accesses to all synchronized variables is useful when reasoning about correctness.

Another ordering is Weak Ordering[11] (WO) which as its name implies is less strict. Here
all accesses to any synchronized variable are globally ordered and like in SC no normal mem-
ory access can be reordered past the access to a synchronized variable. The big difference
to SC is that there is no total global ordering of accesses to all synchronized variables. So
each synchronized variable has an ordered history of accesses which all threads will observe
identically, but when observing the global order of all accesses to synchronized variables one
thread might see a different interleaving order between each variable than another thread.
This weakening of consistency enables the programs to become a bit faster, but reasoning
about the correctness of the program becomes harder to prove.

ABA problem
The ABA problem is a common problem in concurrent programming and has to do with
an inherent limitation in CAS. Programs relying a lot on CAS to update data, such as the
algorithms in this thesis, constantly have to think about this problem. The problem is that
the use case of CAS is often that "If the value of x has not changed, let x ← xnew", but what
it actually does is instead "If the value of x is xexpected , let x ← xnew". This means that the
CAS can complete, even if x has been changed since i was last read, just as long as it has
been changed back to the same value. This can have devastating effects, for example when
combined with pointers. Say you want to change some pointer to some immutable data,
given some aspect of the data and you update it with CAS. Then the pointer might have
changed, the original object garbage collected, the memory reallocated as a new object and
the pointer to it written in the location we are looking at. In that case, the pointer will still be
the same, but what it points to might be completely different, leading our update to succeed
on completely false assumptions and could in a good scenario cause a crash.

The most common way to circumvent the ABA problem is to use so called ABA counters
together with the pointer value x you want to update. Then each time you want to CAS x
you increment the counter and CAS both x and the counter together. Since the counter is
always increasing, this makes sure that the CAS only succeeds if there has been no change
since you observed it last.

One problem with this is that the counter is of course not unlimited and when it overflows
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2. Background

it can wrap around to 0. Thus it is possible that you observe a counter with the expected value,
but that it has just changed so much that it wrapped back around to the same value. This is
unlikely, but as you often want to decrease the size of the counter to increase efficiency you
can potentially run into problems. This makes all programs using ABA counters in a way not
completely safe, but it would be incredibly unlikely a problem would arise unless using a too
small counter.

Proving Correctness
There are many ways of proving that something is correct in concurrent programming and
no proof strategy has taken hold as the de facto one to use. However, proving linearizability
is often the start of proving correctness[7].

One way to prove correctness is to reason about the order between different operations.
As earlier discussed, order in concurrent programs is less strictly defined and not all instruc-
tions in different threads need to be ordered. But if we assume all memory accesses on shared
data are synchronized with sequential consistency then the set of all instructions is a partially
ordered set, ordered by happens-before relations.

A known fact is that each partially ordered set can be extended to a totally ordered set[7].
This means that for each such program execution there must be at least one way to extend
all instructions to a totally ordered set. Thus when using SC on the shared data it is possible
to reason that either x happens before y, or y happens before x. So even if there is no im-
posed order between two operations (x and y), there must be at least one way to order them
consistently with the rest of the history. Another way to look at this is that each concurrent
(partially ordered) history can be rearranged into at least one linear (totally ordered) history.
This can be a useful tool in proofs by contradiction.

2.1.2 Efficiency in concurrent programs
Just writing correct concurrent programs can take a programmer a long way. But to make
concurrent programs fast there are several points to keep in mind. Here we will look closer
at how to write code to optimize memory accesses and to make sure threads are not blocked
unnecessarily. We assume the computer used has several cores.

Memory hierarchies
Memory is not just one big central array of storage locations. Reading from the central mem-
ory is slow and thus modern computers have several layers of caches between the main mem-
ory and where the computations are done which can store a smaller part of the memory and
enable faster access. Caches use a cache coherency protocol to guarantee that there are not
two different valid values of a variable in two different caches. When you try to access a
variable in a cache, but find that it is not there, or that it is outdated, the computer has to
fetch it from further away and we call it a cache miss. These cache misses take a lot of time
and can be on the order of hundreds of normal instructions. Therefore it is very important
in all high performing code to think about the cache performance.

Each core has its own small cache with fast access, so if a core wants to access a variable
written by another core it will get a cache miss. A cache miss forces he core to fetch the
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2.1 Concurrent programming

memory from some higher lever cache, which takes time and can significantly slow down the
program. So threads on different cores working on the same data will inevitably slow each
other down. Instead, we want as much as possible for each thread to work on private data
which no other thread is modifying, to avoid as many cache misses as possible. This concept
is called data locality and is important when designing multicore algorithms[10].

Instead of only considering one processor with several cores it is also common for com-
puters to have several processors. Each of these processors then has its own cores and caches.
Communicating between two such processors takes much longer than communication within
one of them and thus we say that such an architecture uses non-uniform memory access
(NUMA). If instead only using one processor we say it has uniform memory access (UMA).
In NUMA settings data locality becomes even more important as you want to avoid frequent
communication between processors as much as possible. The difference between UMA and
NUMA is quite large and it can often be faster to run say 8 threads on one of the processors
and let the other be idle than run 8 threads on both processors. Ideally, you would write code
in such a way that the threads tried to work in groups according to which processor they
belonged, but this is not trivial and not often done.

Non-blocking code
Locks as described earlier are very simple to use, but they have an inherent drawback. When
one thread holds the lock all other threads trying to acquire the lock are blocked and must
wait for it to release the lock. If the thread holding the lock for some reason gets suspended,
or for any other reason runs slower all blocked threads must wait an extra long time. This
is often not a problem when there are few threads wanting to acquire the same lock but can
cause big performance degradations when the amount of threads increase and the contention
on the lock becomes high.

This is the reason the term lock-free (also called non-blocking) was introduced and is quite
important. The definition from[7] is that if one or more threads invoke a lock-free function
then at least one of them will make progress in a finite number of steps. Lock-free algo-
rithms are potentially faster than blocking ones as they involve less time spent waiting for
other threads. However, they can be more complicated to design as several threads can work
on the same things concurrently. It also means that the data structures are often in non-
consistent states which the threads together have to make consistent. These algorithms often
rely on CAS to swap out key parts of the shared state by some strategy and there are often
races between threads to see which one will finish an operation first, prompting the other to
potentially discard their work. Classic examples of lock-free algorithms are the Treiber stack
[12] and the MS queue [8].

CAS implementation details
Compare-and-Swap is an essential tool when it comes to lock-free programming. The promise
of atomicity is quite costly and it scales badly with the size of the memory location to oper-
ate on. If used on a single word (commonly 64 bits) CAS usually has quite good hardware
support, but on larger objects, the performance may vary. On processors with a reduced in-
struction set like PowerPC, there is usually no built in direct support for larger than single
word CAS[11], and thus you want to stay within a single word as much as possible. On proces-
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2. Background

Figure 2.1: Visualization of the ABA problem with the Treiber stack.
The numbers on the nodes signify which memory location they have.

sors with more complex instruction sets, like Intel processors, there can be support for wide
CAS[1], updating two adjacent words concurrently without taking too much extra time. So
the use of a wide CAS might be fast on some computers, but very slow on others. In this
thesis we will allow the use of wide CAS as the preexisting code from the 2D framework[10]
requires x86 and already using several wide CAS.

2.1.3 Classic lock-free data structures
Here we present two classic lock-free data structures which are used as components in the
2D framework[10] as well as in this thesis.

Treiber stack
The Treiber stack[12] is a very simple lock-free stack. Internally it is just a linear linked
list where we add and remove nodes at the head. The shared mutable state is the so called
descriptor which keeps track of the top node (the head) of the stack.

To add an element to the stack you create a node and set its next field to the current head
of the stack. Then you try to update the descriptor of the head of the stack to point at the
new node. If it fails you just update the next field to the newly observed head and try again
until success. To remove an element you just read the next field of the head, and then try to
update the head descriptor to the read next node with a CAS, retrying until successful.

A naive implementation of a Treiber stack is a good showcase of the ABA problem which
was described earlier. Since the ABA problem is important for the design of our data struc-
tures, we use this as a chance to further explain it and visualize it with Figure 2.1. Assume
thread A wants to pop and reads that the top pointer points to 3 and that the next node is 2
in the first state. Simultaneously, thread B pops both 3 and 2 and finally pushes 3 again. If
after that thread A proceeds with the pop and tries to linearize with a CAS it will succeed,
since the top is 3 now, just as when the thread observed it last. However, the next node is no
longer 2, which is what thread A will set the new top as, leading to the final state in the figure.
Since node 2 is no longer a valid node on the stack the whole stack completely breaks. By
letting the descriptor contain both the top pointer and a ABA counter we solve this problem.
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2.2 Semantic relaxation

MS queue
The Michael & Scott queue[8] (MS queue) is a slightly more complex lock-free implementa-
tion of a FIFO queue. It is not necessary to understand all of it for this thesis, but an idea of
how it works is required as it is used as an internal queue in our proposed elastic queue. The
difference from the Treiber stack is that we now must operate on both the head (where nodes
are dequeued) and tail (where nodes are enqueued). Like the Treiber stack it is a linked list,
but now with one descriptor for each end. The next pointers inside of the list must also now
be considered shared to be able to enqueue items. Its descriptors also contain a pointer and
an ABA count, but when describing it we will omit the counter to make it more concise.

To enqueue an element we should add it to the tail of the queue. To do this we both
need to update the tails next field as well as the tail descriptor, which is done in two steps
as they are separated in memory. First we update the next field of the tail and if successful
we continue to try to update the descriptor. If some other thread managed to first change
the next pointer of the tail, you first help that enqueue to update the tail descriptor to the
next node of the current tail, before retrying the enqueue. So after updating the next field of
the tail the queue is in an inconsistent state until one of the threads fixes it by updating the
descriptor to the new tail, allowing further enqueues.

Performing a dequeue is almost identical to popping an element from the Treiber stack.
You read the heads next pointer and try to update the descriptor to it with a CAS, given that
it is not NULL as the queue then is empty. Here it also checks if the head and tail descriptors
point at the same node, in which case it tries to help the pending enqueue if present before
proceeding.

An interesting part of the queue which is exploited in this thesis is that the head does
not actually point at the next node to dequeue, but rather the most recently dequeued node
(which in turn has a pointer to the conceptual head). This is to avoid the queue ever being
completely empty and both descriptors having a NULL pointer. In that case, it would be
hard to add an element as it would want to be added to both ends concurrently. If instead
the queue is empty both the head and the tail will point at the most recently dequeued node.

2.2 Semantic relaxation
The term semantic relaxation is used in concurrent data structures to mean that the original
specification (semantics) of the data structure has been relaxed in some way[10]. Commonly
this involves allowing operations on the data structure to execute out of order. This can allow
an operation on a data structure to not return the expected element (like the topmost one
on a stack) but instead a sub-optimal element (like one of the topmost on the stack). By not
forcing every thread to access the data structure through the same element we should be able
to improve performance[6].

The main relaxation we will look at in this thesis is the k-out-of-order relaxation for the
remove operations. This is the relaxation used in the original 2D framework[10] and this
thesis continues with the same foundation. If applied on a stack for example the relaxation
does not force the pop operations to remove the top element, but instead, it can skip up to
k elements and return the k + 1’th element. Each removed element has a corresponding rank
error[13] which is how many higher priority elements were skipped in favour of the chosen
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one. By designing data structures around this relaxation you can achieve higher throughput
as seen in earlier papers[10, 6, 5].

2.3 2D framework
This thesis extends the previously published 2D framework[10], which in turn uses the Treiber
stack[12] and MS queue [8]. Here we present the important ideas of the 2D framework which
are needed for the ideas in this thesis. However, if the reader wants to get the full picture
or another presentation we recommend reading through sections 3, 4 and preferably 5 in the
original paper[10]. The framework presents concurrent k-out-of-order relaxed implementa-
tions of stacks, queues, deques and counters and gives analytical bounds on the worst-case
rank costs. All their data structures use the ideas of multiple sub-structures synchronized
with a global window and all updates are done with CAS using sequential consistency (which
this thesis will continue using). We will start by introducing their queue and then generalize
the ideas to their most successful stack. We will skip the decoupled stack, deque and counter
as they are out of scope for this thesis.

2.3.1 2D queue
The main idea of the 2D queue comes from having several classic queues in parallel (call
them sub-queues), and then the threads can spread out their operations over the sub-queues
to decrease contention. If there are two sub-queues and two threads for example each thread
could take its own sub-queue and mostly work on it, avoiding contention. This is also what
introduces the relaxation as we then are not sure the items are enqueued and dequeued in
the correct order. They have chosen to use MS queues for all sub-queues which we continue
with in this report, but it could also use another queue.

To not let the rank errors be infinite there must be some way to synchronize the sub-
queues so that they have made similar amounts of enqueues and dequeues. This is done by
encoding a counter into the head and tail descriptor of each sub-queue which keeps track of
how many get respectively put operations have been done on that sub-queue. We call the row
of a node the count at which it was inserted. Note that this count is the same as an ABA
counter which we would need anyway! Then there is a global window which specified in
which ranges they are allowed to operate on the two ends of the sub-queues. The put window
specified the maximum count to which nodes can be enqueued on each sub-queue, and the get
window specifies the maximum count where nodes can be dequeued. For example, you are not
allowed to dequeue from a sub-queue with more than n prior dequeues. Then when all sub-
queues have reached this amount of dequeues/enqueues the threads together help shift the
window up to some higher count which now becomes the limit. This is visualized in Figure
2.2 where several of dequeues are made and the window shifts up one step. The distance the
window is shifted up is called shift and the range of each window is called depth. For the queue
the depth will automatically become the same as shift, so its is referred to as depth.

When one thread wants to do an operation it must search for a valid sub-queue concern-
ing the current window. The search should minimize contention and maximize data locality.
The first way this is done is that each thread always goes back to the sub-queue it last suc-
cessfully updated so that hopefully each thread can do several local updates before having to
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2.3 2D framework

Figure 2.2: A 2D queue where four dequeues lead to it shifting its
window up to allow more dequeues on all sub-queues.

switch sub-queue. Furthermore when there is contention on the sub-queue or the descriptor
hits the window max then the thread does a few random jumps to try to find a new valid
descriptor, and if no one was found it searches for one in a round-robin fashion. If it reads
all descriptors in a round-robin fashion and finds that they are all full, it tries to shift up the
window by depth and then again look for a valid sub-queue.

As an emptiness check, the queue can only return NULL if it during its search for a valid
sub-queue observes all sub-queues as empty. Note that this is not a linearizable emptiness
check as the sub-queues are checked sequentially and not in a single instant. Thus there
might at all instants be some queues which are not empty, but when we observe them they
are empty and some other queues instead have got elements.

The maximal rank error is decided by the width and depth of the window and is given as
(width − 1)depth. This follows from all nodes on each sub-stack being completely ordered,
while a node can be ordered before or after any other node in each window.

2.3.2 2D stack
The ideas for the 2D stacks are very similar to the queue, but since all operations access
the same end of the list there are a few differences. Primarily they present two strategies
for windows and sub-counts. The first and best performing one is called 2D coupled (2Dc)
window and it only has one window which states in which size ranges the sub-stacks are
allowed to be. The second one called 2D decoupled (2Dd) window is more similar to the
queue and keeps two counts in each descriptor, one get count and one put count. It then
also has two shared windows which separately provide ranges on the number of allowed puts
and gets on each sub-stack. The coupled window leads to a bit fewer window shifts and is
conceptually simpler so we will only consider it in the rest of this thesis, however it does have
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Figure 2.3: The 2Dc stack only has one active window which bounds
the size of all sub-stacks both upwards and downwards.

a drawback of being harder to generalize to a deque. A visualization of the 2Dc stack can be
seen in Figure 2.3.

For the 2Dc stack the distance to shift the window shift will not be the same as depth as
nodes can both be pushed and popped in the window. If shift = depth it would always shift up
from a (practically) full window to an empty one and then maybe directly shift down. Instead
we set shift = depth/2. The stack searches for valid sub-stack in the same pattern and returns
NULL in the same way as the queue. It now uses Treiber stacks [12] for the sub-structures
and uses its methods to push and pop. The final difference from the queue is that it needs an
ABA counter for the shared window and sub-stack descriptors as their counts now no longer
are monotonically increasing.

The real major difference between the coupled window of the 2Dc stack and the decou-
pled windows of for example the 2D queue is the interleavings of operations and the relax-
ation behaviour. If we in the queue observe that the window is full we know that it will never
become not full again until the window is shifted up. However, in the 2Dc stack a thread
might observe all sub-stacks at the top of the window, but the CAS to shift the window up
might not go through before the linearization of several pops which made the old window
empty. This would lead to a state where all the heads of the sub-stacks are below the bot-
tom of the new active window. Importantly here we allow pushes if the descriptor count is
below the upper limit and pops if it is above, not necessarily inside. This allows sub-stacks to
temporarily be outside the active window after shifts, which makes the worst-case relaxation
errors a bit worse. This also makes it harder to extend the stack as it not just grows in one
direction monotonically but instead goes back and forth.

The maximal rank error for the 2Dc stack is decided by the width, depth and shift of the
window. It is not as intuitive as the queue but is given as

(
2shift + depth +

⌊ depth−1
shift

⌋
shift

)
(width−

1). This is actually not proven in the original paper due to an oversight, but we give a cor-
rected proof with this bound in Theorem 6.
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Chapter 3

Related work

In the last decade, there have been several good articles on semantic relaxation in data struc-
tures ranging from theoretical to implementation based. Here we present some related papers
which can be good to read for a deeper understanding of the field. All of the papers share the
fact that the relaxation behaviour has to be specified up front, and cannot be changed during
run-time, just like the original 2D framework[10]. Thus it would be interesting to extend all
of them to be able to change the relaxation just like this thesis does for the 2D framework[10].

3.1 K-segment stack
The k-segments stack [6] was introduced in 2013 and is, just like the 2D stack[10], a k-out-of-
order relaxed stack. It is a stack of segments each containing k unordered elements, leading
to the out of order relaxation. When doing an insertion or deletion it always tries to do it
on an arbitrary index in the top segment, avoiding conflicts and decreasing contention. A
visualization can be seen in Figure 3.1a. The paper also contains theoretical definitions of
several different relaxations as well as concurrent ordering relations.

The complicated part with this stack is the addition and removal of the k-segments. If
you want to push an element but the top segment is full you have to push a new k-segment,
or remove the top segment if it is empty and you want to pop. When pushing a segment
there can be concurrent pop operations on the past top segment, making it not full anymore
and can take a state like in Figure 3.1b. On the other hand, if you want to remove the top
segment and another thread does a concurrent push to it there is a problem, as then the
element would be lost. Therefore the stack has to do extra checks when removing segments
and adding elements which counteracts the simplicity of the idea.

The k-segment stack is very similar to the 2D stack with a depth of one. But by not
having the segments as explicit storage locations the 2D stack can avoid these problems with
removing segments.
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(a) Perfectly filled. (b) Not perfectly filled.

Figure 3.1: Visualization of the k-segment stack. Both the ideal case
is when all non top segments are full, as well as when concurrent
operations make them not full.

3.2 Distributed queues
From many of the same people as the k-segment stack came a paper about relaxed queues in
2013 called Distributed Queues in Shared Memory [5]. The paper introduces two distributed
queue (DQ) algorithms which both build upon having a shared array of sub-queues to spread
out contention, just like the 2D framework[10]. The difference between the algorithms comes
from how they select which sub-queue to operate on.

The first algorithm uses load balancers to try to spread out the operations over the queues.
One load balancer samples several queues at random and then proceeds to operate on the one
with the fewest (most) element for an enqueue (dequeue). To quickly determine the approxi-
mate number of elements in a queue they simply take the difference between the ABA coun-
ters at the head and tail of the queue. The other load balancer maintains a set of index pairs,
each assigned to one or more threads. When a thread wants to do an operation it increments
its assigned counter for that operation atomically and proceeds to do the operation on the
index the counter was incremented from. Both approaches can achieve good speed-ups and
enable the user to choose the amount of relaxation.

The other algorithm instead maintains the invariant that the ABA counter across all
heads (or tails) should be at most one apart. This is easy to maintain since if you observe a
counter with value n and then one with n−1 you know it is safe to operate on, and increment,
the second one. This idea does not scale as well under high contention as the load balancers,
but it is a very simple idea. One reason it does not scale well is that you cannot change the
degree of relaxation and it is always quite low. It is interesting to think about how effective it
would be to change the invariant to maintain a difference of for example two, or any positive
number, instead of one.
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3.3 MultiQueues
An efficient and simple relaxed priority queue is presented in the first MultiQueue paper[9]
from 2014. It is very similar to a special case of the first load-balanced distributed queue and is
made up of several priority queues in parallel. Inserting elements is done into a random queue.
Removing an element on the other hand selects two random sub-queues and tries to remove
an element from the one with the highest priority top element. This best of two choices when
removing acts as a regulative force to keep the expected rank errors from diverging.

As this algorithm relies heavily on randomness and gives no real promises on how large
the worst case rank errors are. The original paper[9] has some analysis but does not answer
all the questions. For that, the paper on the Power of Choice [2] came out in 2017 and did
a theoretical analysis of a slightly simplified MultiQueue. Its most important result was a
theorem that stated that the likely rank error of a removed element is proportional to the
number of sub-queues, both in expectation and in high probability. This means that is is
unlikely that the rank errors will diverge over time.

An extension to the original paper from 2021 [13] introduced buffers to both ends of the
queue to improve cache behaviour. In a normal priority queue, you have to traverse nodes,
probably allocated in different cache blocks, to do an operation. Since they work on so many
different queues many of these reads of nodes will be cache misses. What they do instead is
keep a small buffer of nodes in an array before and after the queue so that most operations
only will operate on the buffers and not start to traverse the queue, which should reduce
cache misses. This noticeably sped up the algorithm and shows how important it would be
to think about cache behaviours in these concurrent algorithms. An influence of this can be
seen later in how our elastic queue handles elastic changes.

3.4 Time-stamped stack
The time-stamped stack [4] from 2015 does not use relaxed semantics, but it showcases that
a concurrent stack can be seen as correctly ordered even if not totally ordered. It too uses
a shared array of sub-stacks to spread out contention, but the key idea here is that after
successfully pushing an element it is given a time-stamp. Each thread pushes elements to its
own sub-stack, but when removing an element it must search the sub-stacks for the newest
element and try to remove it.

One positive is that each sub-stack is totally ordered, and thus they must only look at the
top element of each such stack when removing. The other is that if a thread reads a node that
has not yet been given a time-stamp it can be viewed as concurrently being inserted, which
means it is safe to remove. There can be several such elements at the same time which means
they are not totally ordered, but they show that it is always possible to construct a correct
linear history from the concurrent history. This shows how important it is to let to of the
idea that all events must be totally ordered in a concurrent setting.
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Chapter 4

Elastic designs

Here we describe the novel ideas presented in the thesis. They are all extensions to the
2D framework [10] and provide ways to change the relaxation during run time. The 2D
framework supports changing the sub-structures to different ones, but we continue using
the MS queue and the Treiber stack. There are only two parameters controlling the relax-
ation, namely the width and the depth and our extensions implement the functionality to
change those variables in future windows.

One solution to making the width elastic is to redistribute the nodes to new sub-structures
when the width changes. This could take a long time and block all other operations on the
data structure, reducing its responsiveness. Instead, our designs never alter inserted nodes,
limiting the possible designs to ones that can only change how nodes are inserted in the
future.

4.1 Elastic 2D queue
The 2D queue is in one way inherently easier than the stack as it always only visits each
window once, instead of moving back and forth. Thus we start with presenting the design
for it.

Changing the depth during run time is quite simple for the queue with its separate win-
dows as depth is only read when shifting the windows up and never written to after initial-
ization. Thus we can do as the original algorithm but allow concurrent updates of the global
depth, with a sequentially consistent CAS. Then once one thread reads the new global depth
and uses it for a shift, all future shifts will see that new depth, or a newer one.

To be able to change the width it is not enough to just change a variable somewhere, mak-
ing it more complicated than the depth. As discussed before we will not try to re-arrange the
inserted elements in the sub-queues. Instead the number of sub-queues which are operated
upon will change over time.

Since no elements will be rearranged inside the sub-structures and the relaxation must

19



4. Elastic designs

(a) Floating sub-queue after increasing width.
(b) Frozen sub-queue after decreasing
width.

Figure 4.1: Visualization of how we conceptually could try to in-
crease or decrease the width of a 2D queue, starting from width 3.
In both cases, the get window must catch up for it to change width.

be kept bounded the only real option is to change the width of the put window. Then over
time as the get window catches up, it will also change its width as needed. In the original 2D
queue, each thread goes back to the sub-queue it successfully operated on last, independent
of which type of operation it was. This becomes problematic for an elastic queue as the put
and get windows can have different width and thus an index can be in bounds for one end
of the queue (one operation) while being out of bounds for the other. Instead, we chose to
decouple the saved indexes so when a thread does an enqueue it goes back to the sub-queue
where it succeeded with an enqueue last, and the dequeues go back to the index with the last
successful dequeue.

When we increase the width of the window we want to operate on more sub-queues to the
right of the previous ones. But these new sub-queues will not have been filled with elements
like the others and thus have gaps in them where they were inactive. This is visualized in
Figure 4.1a where the width is increased and thus there is a gap under the first element in the
fourth queue.

We can do a similar technique for decreasing the width and disallow insertions into the
sub-queues we are trying to remove. We can think of it as freezing them which is visualized
in Figure 4.1b.

To get this working we want to combine these ideas into a place where we can first de-
crease the width, then increase and so on, making the sub-queues possibly full of gaps. The
conceptual idea should work for both the stack, queue and deque as they all are just versions
of linked lists, or some collection of linearly sorted elements. However, they are inherently
different in their access patterns and an implementation idea which is good for one of them
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might not work well for another.

4.1.1 Implementation
This design builds upon the idea of characterizing the gaps (from changes in width) in the
sub-queues as actual nodes, called gap nodes. These nodes are inserted during put operations
when the width of the put window is changing. Then, when the get window reaches the
part of the queue with the gap nodes, it knows to change to a new width. Pseudocode for
the structures used, window searches and extra functions can be seen in Algorithm 5, 6, 7
respectively. One large change from the original 2D queue is that its windows only contained
the variable max, while ours now also have width and a couple other variables which will be
explained below. The algorithms will be explained below but by having the pseudo code in
parallel we think the ideas can be easier to grasp.

Algorithm 5: 2D Elastic queue structs

Struct Des
Node* node
Int getcount
Int putcount

Struct PutWindow
Int max
Int width
Int active_width

Struct GetWindow
Int max
Int width

Struct NormalNode
Node* next
Item content

Struct FreezingNode
Node* next
Int start_width
Int start_count

Struct FloatingNode
Node* next
Int stop_width
Int stop_count
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Algorithm 6: Elastic queue window search algorithm

Function WindowSearch(op, index, cont)
if cont then

index← RandomIndex(width);
end
if op = put then

return PutWindow(index);
else

return GetWindow(index);
end

Function PutWindow(put_index)
Random← 0;
SYNC_WIN(LpWin, pWin, put_index);
while True do

Des← putArray[put_index];
if LpWin ̸= PWin then

SYNC_WIN(LpWin, pWin, put_index);
else if Des.putcount < LpWin.max then

if put_index ≥ PWin.active_width then
InsertFreezing(Des, put_index);

else if Des.node is FreezingNode then
InsertFloating(Des, put_index);

else
return {Des, put_index};

end
else if hops < LpWin.width then

HOP(LpWin.width, put_index);
else

NWin.max← LpWin.max +
depthglobal;

NWin.active_width← widthglobal;
NWin.width←

max(NWin.active_width,
LpWin.width);

CAS(pWin, LpWin, NWin);
SYNC_WIN(LpWin, pWin, put_index);

end
end

Function GetWindow(get_index)
Random← 0;
SYNC_WIN(LgWin, gWin, get_index);
while True do

Des← getArray[get_index];
putcount←

putArray[get_index].putcount;
limiter← min(LgWin.max, putcount);
if LgWin ̸= gWin then

SYNC_WIN(LgWin, gWin, get_index);
else if Des.getcount < limiter then

if Des.node is not FreezingNode then
return {Des,index};

else if Des.node.next.stop_count ≤
LgWin.max then

DequeueFloating(Des);
else

IncDescriptor(Des, limiter);
end

else if hops < LgWin.width then
if Des.getcount < putcount then

notempty← 1;
end
HOP(LgWin.width, get_index);

else if notempty then
NWin.max← min(LgWin.max +
depthglobal, pWin.max);

NWin.width←
AdaptiveWidth(NWin.max);

CAS(gWin, LgWin, NWin);
SYNC_WIN(LgWin, gWin, get_index);

else
return {Des,index};

end
end
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In the queue each gap is made up of two parts, the initial gap node called the freezing
node and eventually, once the sub-queue gets active again, the ending gap node called the
floating node. As seen in Algorithm 5 they encode some information about the instant they
were enqueued, which will be explained in detail later. When the width decreases we insert
freezing nodes on all sub-queues outside the new width, and when the width increases we
insert floating nodes into all newly activated sub-queues. Exactly how we insert these is
explained in the paragraph below. Figure 4.2 shows an example of how a queue could look
after decreasing or increasing width with these gap nodes. Since the width is coupled with
the windows we ideally would want to atomically insert all these nodes when the window
shifts and changes width, but this is practically difficult and would be too expensive, so we
compromise. We introduce what we call a transitional window which is a put window which
has changed width from the last put window. During this transitional window we make sure
that all gap nodes are inserted before shifting away from it. The gap nodes are enqueued
during the push operations when the thread finds an index without a gap node where there
should be a gap node. Since the threads must visit all indexes before shifting we make sure
all gap nodes will be inserted. Before the transitional window the insertions were done at the
old width and after the transitional window the insertions will be done at the new width.

When inserting gap nodes we also include some extra information in them, to eventually
be of use for the get window. For both nodes we save the new width in the fields start_width
and stop_width. We only want to insert one gap node into each sub-queue, but we still want
to fill out the window. This is done by increasing the descriptors count directly from the
bottom of the window to the top when inserting such a gap node, instead of incrementing
by one. For both nodes we save this put count at which the gap is completed in its fields
start_count and stop_count. In the MS queue, other threads can help update the descriptor for
halfway completed put operations, and normally the descriptor would just be incremented
by one then. Instead, we now have a check if it is a gap node when helping an enqueue, and
in that case, we update the count directly to the put window’s max.

Importantly each thread must know when it is in a transitional window to insert these
gap nodes. When the width of the put window has increased the threads will find freezing
nodes among the descriptors inside the width and then know it should complete the gaps
by pushing floating nodes on those sub-queues. But when width decreases there are no such
hints and the threads need extra information. This is done by encoding another width called
active_width into the put window. The active_width is equal to width in all cases except in
a transitional window when the width is decreasing, in that case, width is the old width,
and active_width is is the new width we want to change to. So when PutWindow looks for a
valid index to insert a normal node and notices it is outside the active_width it should insert
a freezing node there before moving on. Respectively when it notices the last node was a
freezing node it should enqueue a floating node.

So far we have described how the gap nodes are inserted to change the width of the put
window, so now we will move on to how they are dequeued and how the get window adapts
its width using them. The idea is that the get window will look for gap nodes when shifting,
and possibly change width. We start with how the gap nodes are dequeued, before moving on
to how they are used to adapt the width. The important part when dequeuing gap nodes is
that we need their information when shifting to the new width they encode, so we should not
remove them before we have used this information. Here we utilize the fact that we are using
MS queues and that its tail points to the most recently dequeued node (the last head). As long
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Algorithm 7: 2D elastic queue helper functions

Function Enqueue(new_item)
node← Node(new_item);
do

{Des, index} =
WindowSearch(put_index, cont,
get);

while !TryEnqueue(Des, put_index, &cont,
node);

Function Dequeue()
while True do

{Des, get_index}←
WindowSearch(get_index, cont,
put);

node← TryDequeue(Des, index,
&cont);
if node.next is not FreezingNode then

return node.next.item;
end

end
Function AdaptiveWidth(max)

width← LgWin.width;
alias edge = getArray[width - 1].node;
while edge is FrozenNode do

width← edge.start_width;
end
alias edge = getArray[width].node.next;
while edge is FloatingNode ∧ edge.gap_stop
≤ max do

width← edge.stop_width;
end
return width;

Function InsertFloating(Des, index)
floating.stop_width←

LpWin.active_width;
floating.stop_count← LpWin.max;
InsertGap(floating, Des);

Function InsertFreezing(Des, index)
freezing.start_width←

LpWin.active_width;
freezing.start_count← LpWin.max;
InsertGap(freezing, Des);

Function InsertGap(node, Des)
CAS(Des.node.next, NULL, node);
NDes.put_count← LpWin.max;
NDes.node← Des.node.next;
CAS(Des, NDes);

Function IncDescriptor(Des, max)
NDes.node← Des.node;
Ndes.getcount← max;
CAS(Des, NDes);

Function DequeueFloating(Des)
NDes.node← Des.node.next;
NDes.getcount←

Des.node.next.stop_count;
CAS(Des, NDes);

Macro HOP(width, index)
if Random < 2 then

index← RandomIndex(width);
Random += 1;

else
hops += 1;
index += 1;
if index ≥ width then

index← 0;
end

end
Macro SYNC_WIN(LWin, Win, index)

LWin←Win;
hops← 0;
if index > LWin.width then

index← 0;
end
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(a) Floating sub-queue after increasing width by insert-
ing a gap node.

(b) Frozen sub-queue after decreasing
width by inserting a gap node.

Figure 4.2: Visualization of how we increase or decrease the width
of a 2D relaxed queue using gap nodes, starting from width 3. We
just inspect the tail since the head only adapts when it catches up. In
both cases, the last active put window can be viewed as a transitional
window as it still knows what the old width was and has to insert
gap nodes.
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as the last head is not a freezing node we allow a normal dequeue of the next node as long as
it is in the window, but if it turns out to have been a freezing node the dequeue operation is
retried and the get count for the descriptor is updated to the window max. In actuality, we
don’t update it to the window max, as it could be higher than the put count for the index
which can cause edge case problems, so it is updated to the minimum of the window max and
the put count. After having dequeued a freezing node the queue can be thought of as being
within a gap and we have easy access to both gap nodes, as the freezing node will be the last
head. This design keeps us from unnecessarily having to read the contents of a node before
dequeuing it which would introduce extra latency and thus failure chance to each dequeue.
A floating node can be dequeued if its field stop_count is below or equal to the get window’s
max, and then we update the descriptors count to the read stop_count and exit the gap.

Now we move on to how the gap nodes are used to change width of the get window, which
also can be seen in AdaptiveWidth in Algorithm 7. Each time a thread tries to shift the get
window up it looks at the two last heads at the edge of the current width. If the width is
shrinking the last head at index width − 1 should be a freezing node, which means that the
sub-queue has entered a gap. Then the new width is read from that freezing nodes start_width.
This is repeated until we can’t find a freezing node at index width − 1. Then if the width
is increasing the freezing node at index width should have a floating node as its next node,
and that floating nodes stop_count should be smaller than the next get window’s max. Again
the new width is read from the floating nodes stop_width. This is also repeated until no such
floating node is found. The reason these searches have to be repeated is that the elastic depth
can make the get window to be much deeper than the past put windows, which means there
could be several width changes in one get window. But by first checking for all possible
decreases and then all possible increases we will not miss any so far observable changes for
the next window. A larger example of both increasing and decreasing width can be seen in
Figure 4.3 which can give a larger intuition for how the gap nodes are placed in the queue.

A hard to spot effect of the elastic queue is what might happen if the queue is almost
empty and the width increases. Imagine that there is a transitional put window which has
inserted all its normal nodes, but not yet the floating nodes. Then the get window might
dequeue all those normal nodes and try to shift up as it has reached the top of the window,
but as the floating nodes are not yet inserted it will not notice the increase in width and thus
not change its width. If the put window then shifts up, inserts some new nodes in the new
width and then stops inserting nodes. Regardless of how many gets are performed, it will
never dequeue the nodes in the new width as it will never shift up and notice the gap nodes
and the new width. By not letting the get window shift to a higher max than the put window
we eliminate these inconsistency problems.

4.2 Elastic 2Dc stack
The elastic stack is similar in essence to the elastic queue but has a few significant differences.
Just like for the queue we only allow the elastic changes to be noticed during window shifts
and then encode the required information into the windows, like the depth and width in this
case. This way each window always has a unique shape, which makes it easier to reason about
correctness.

To make the width elastic we use the same ideas as in the queue where we freeze sub-stacks
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Figure 4.3: A full visualization of how the window can both shrink
and expand using gap nodes and how the gaps are represented in the
queue.

when we want to decrease width and create floating sub-stacks when we want to increase
width. The ends of the queue can be thought to constantly move in one direction, as things
are added and removed at different ends. But the stack adds and removed things at the same
end, which makes it move back and forth instead. These back and forth movements mean it
can enter and leave one different stack width several times when the queue only will enter
and move through it once for each change.

4.2.1 Implementation
The implementation of the elastic stack diverges from the queue and does not use the same
idea with gap nodes. Instead, it introduces the concept of a lateral stack which exists to the side
of the 2D stack and tries to push a lateral node every time the stack changes width. The lateral
stack is like the sub-queues represented as a Treiber stack where the count of the descriptor
corresponds to rows in the real stack.

Algorithm 8 shows the structs used for the elastic stack. One can see that the lateral nodes
and descriptors are almost identical to the normal ones but instead of encoding inserted
items, the lateral nodes encode widths. The window also has a bit more information than for
the queue and for example has to encode depth as it is required continuously for the stack to
check if a pop is valid, and not just at shifts. There are some other new fields which will be
explained further down. Furthermore, the rest of the pseudo-code can be seen in Algorithms
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9, 10, 11.

Algorithm 8: 2D Elastic stack structs

Struct Des
Node* node
Int count
Int version

Struct Node
Node* next
Item content
Int next_count

Struct LatDes
LatNode* node
Int count
Int version

Struct LatNode
LatNode* next
Int width
Int next_count

Struct Window
Int version
Int max
Int depth
Int width
Int old_width
Int active_width
Int pos_last_bottom
Int upper_bound

Algorithm 9: Stack entry operations

Function Push(new_item)
node← Node(new_item);
do

{Des, index} = WindowSearch(index,
cont, get);

node.next← Des.node;
node.next_count← Des.count;
NDes.node← node;
NDes.version← Des.version + 1;
NDes.count = max(LWin.max -

LWin.depth, Des.count + 1);
cont← !CAS(Des, NDes);

while cont;

Function Pop()
do

{Des, index}←
WindowSearch(index, cont, put);
if Des.node ̸= NULL then

NDes.node← Des.node.next;
NDes.version← Des.version + 1;
NDes.count←

Des.node.next_count;
cont← !CAS(Des, NDes);

else
return 0;

end
while cont;
return Des.node.item;

28



4.2 Elastic 2Dc stack

Algorithm 10: Elastic stack window search algorithm

Function WindowSearch(op, index, cont)
if contention then

index← RandomIndex(LWin.width);
end
if op = put then

return PutWindow(index);
else

return GetWindow(index);
end

Function GetWindow(index)
Random← 0;
SYNC_WIN(get);
while True do

Des← desArray[index];
putcount← desArray[index].putcount;
if LWin ̸=Win then

SYNC_WIN(get);
else if Des.count > LWin.max - LWin.depth
then

return {Des, index};
else if hops < LWin.width then

if Des.count > 0 then
empty← 0;

end
HOP(LWin.width, index);

else if empty then
return {Des, index};

else
Shift(get);
SYNC_WIN(get);

end
end

Macro HOP(width, index)
if Random < 2 then

index← RandomIndex(width);
Random += 1;

else
hops += 1; index += 1;
if index ≥ width then

index← 0;
end

end

Function PutWindow(index)
Random← 0;
SYNC_WIN(put);
while True do

Des← desArray[index];
if LWin ̸=Win then

SYNC_WIN(put);
else if Des.count < LWin.max then

return {Des, index};
else if hops < LWin.active_width then

HOP(LWin.width, index);
else

Shift(put);
SYNC_WIN(put);

end
end

Function Shift(op)
SyncLateral(LWin.active_width,

Lwin.old_width);
NWin.active_width← widthglobal;
NWin.old_width← LWin.active_width;
NWin.version← LWin.version + 1;
if NWin.active_width = NWin.old_width then

NWin.depth← depthglobal;
NWin.max← ShiftMax(op);

else
NWin.depth← LWin.depth;
NWin.max← LWin.max;

end
if NWin.active_width = NWin.old_width ∧ op =

get then
NWin.pos_last_bottom← LWin.max -

LWin.depth;
else

NWin.pos_last_bottom← ∞ ;
end
NWin.width← ShiftWidth(NWin.max -

NWin.depth + 1, NWin.active_width);
CAS(Win, LWin, NWin);
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(a) Ideal case (b) Messier case

Figure 4.4: Two different elastic stack states after changing width
from three to two to four. The messy case shows that the bottom
of the gaps does not completely have to line up and that the lateral
stack does not have to exactly describe the widths.

The key invariant of each lateral node is that starting below the row it is placed at and
continuing until where the next lateral node is placed, all rows in the normal stack have
width smaller or equal to the lateral node’s width. Furthermore, all rows at or above the
lateral descriptor should have width smaller or equal to active_width. To know at which row
the next lateral node is placed each one of them has a field next_count and the topmost node’s
row is determined by the descriptors count. This information can then be used when shifting
the window to see if it must adapt to the width below it. To shift correctly the lateral stack
must therefore be in a consistent state before each such window shift and that is ensured by
the function SyncLateral in Algorithm 11, which all threads have to perform before trying to
shift the window. Two possible states of the elastic stack are shown in Figure 4.4.

Since the width is elastic we will have gaps in the sub-stacks when we increase the width
and create floating ones. But as we don’t insert gap nodes into the sub-stacks we need another
way of representing where the gaps are. This is done by adding the field next_count to all
nodes which save which count the previous node was placed at. This means that after a pop
the descriptor is not decreased by one but instead updated to the next_count stored in the
node. When pushing nodes it is hard to know if we are creating a gap or not, so we add the
constraint that a node can only be inserted at or above Window.max − Window.depth. This
automatically creates the gaps from changing the width, but can also create small gaps when
a sub-stack happens to be below the bottom of a window.

The main difference from the original stack is that the elastic one has to synchronize
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Algorithm 11: 2D elastic stack helper functions

Function SyncLateral()
LatDes← Lateral.Des;
if LWin ̸=Win then

return;
end
NDes← LowerLat(LatDes.node,

LatDes.count);
CAS(LatDes, NDes);
if LWin.active_width ̸= LWin.old_width
then

PushPhase(LatDes);
end

Function LowerLat(node, count)
lower← LWin.max - LWin.depth + 1;
upper← LWin.pos_last_bottom + 1;
if count ≤ lower then

return node, count;
end
if node.width ≤ LWin.active_width then

new_count← min(node.count,
lower);

else if node.width > LWin.active_width
then

new_count← min(node.count,
upper);

next, next_count = LowerLat(node.next,
node.next_count);
if node.next_count ̸= next_count ∨

node.next ̸= next then
node← copy(node);
node.next_count← next_count;
node.next← next;

end
return node, new_count;

Function PushLat(LatDes, count, width)
node← LatNode(LatDes.node,

LatDes.count, width);
NDes.node← node;
NDes.count← count;
NDes.version← LatDes.version + 1;
CAS(LatDes, NDes);

Function PushPhase(LatDes)
lower← LWin.max - LWin.depth + 1;
upper← LWin.upper_bound + 1;
if LWin.active_width > LWin.old_width ∧

LatDes.count ≤ lower then
PushLat(LatDes, lower, old_width);

else if LWin.active_width <
LWin.old_width ∧ LatDes.count ≤ upper
then

PushLat(LatDes, upper, old_width);
Function ShiftMax(max, new_depth, old_depth,

op)
shift← (new_depth+1)/2;
if op = put then

new_max← max + shift;
else

new_max← max - old_depth - shift
+ new_depth ;

end
return max(new_depth, new_max);

Function ShiftWidth(bottom, new_width)
widths← [new_width,

LWin.active_width];
lat_node.next_count←

Lateral.Des.count;
lat_node.next← Lateral.Des.node;
while lat_node.next_count > bottom do

lat_node = lat_node.next;
widths.append(lat_node.width);

end
return max(widths);

Macro SYNC_WIN(op)
LWin←Win;
hops← 0;
empty← 1;
if op = get ∧ index > LWin.width ∨ op =

put ∧ index > LWin.active_width then
index← 0;

end
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and utilize the lateral stack when shifting. We start with describing how it sets all window
variables when shifting before moving on to how it synchronizes the stack:

• active_width is the width of not frozen sub-stacks and is read from the global width.

• depth is read from the global depth.

• max is found by shifting the top or bottom limit of the window by shift := depth/2
depending on if the window shifts up or down respectively, but it is always at least
depth.

• width is the width of the window, including the frozen sub-stacks, and is found by
taking the max of active_width, old_width and the width of all lateral nodes with a higher
count than the bottom of the window.

• old_width is the old windows active_width and is used to see if the window has just
changed width.

• version is the ABA count and is increased by one for each window.

• pot_old_bottom is set to the bottom of the window if it is shifting down or∞ if shifting
up and is used for lowering lateral nodes.

• upper_bound is the largest row at which a node can exist and is used for inserting lateral
nodes. It is set to max if shifting down and the maximum of the new max and old
upper_bound.

To keep the lateral stack in a consistent state there must be a unique set of operations
to perform on it each window which all threads agree on and help perform. We call this
synchronizing the lateral and is done in SyncLateral in Algorithm 11. It is just like how the
elastic queue had to insert several gap nodes before trying to shift. We divide this into two
phases which are to first lower lateral nodes and secondly push a new lateral node. Both these
phases are explained in more detail below but what they do is uniquely determined by the
variables in the window. Each is completed with a CAS if needed and they are forced to
happen in the correct order. In both phases, nothing may be changed, and then there is no
CAS.

The first phase is to lower lateral nodes which is done to maintain all their invariants
and to get as tight bounds as possible (we could just always have width = ∞ but that would
be quite slow). If a node is lowered beneath its next_count it should instead be popped as its
domain would be empty. By calculating the count each node would be lowered to, we can
see if they can be lowered or stay where they are. The new count depends on its width as
described below.

• width < active_width: Node is lowered to the window’s bottom (max − depth + 1) as
nodes can be inserted to violate their invariants.

• width > active_width: Node can only be lowered if the window last shifted down and
then to the bottom of that last window (pos_last_bottom), as the nodes must have been
popped from those sub-stacks and cannot be inserted outside active_width.
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• width= active_width: Just like first case the node is lowered to the bottom of the window
(max − depth + 1). Are several possibilities for what to do here, but they have minor
consequences.

These rules should now be applied to all lateral nodes, but we can save some work by only
looking at lateral nodes with counts higher than the bottom of the window, as we don’t lower
past that. The only special case is if the topmost lateral node has width = old_width and is at
row upper_bound in which case another thread must have completed the push phase already,
so we abort. As the algorithm should be lock-free each node down to the last one needing to
be mutated is cloned, and then the top of the stack is updated with a CAS. This way we can
modify several nodes using only one CAS which is nice as we not only wanted to modify the
topmost node.

Finally, after the nodes potentially have been lowered there is a possibility to push a
new lateral node if old_width ̸= active_width. Only one such node should be pushed which is
achieved by not pushing one if the count at which to push it is not higher than the top of the
lateral stack. Its count is again determined by its width.

• old_width < active_width: The count becomes the bottom of the current window (max−
depth + 1).

• old_width > active_width: The count becomes the upper bounds where nodes can cur-
rently exist (upper_bound).
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Chapter 5

Analysis

In this chapter, we will look at the correctness of the new designs and provide bounds for their
relaxation rank errors. By correctness we mean that no element should be returned twice,
no element which has not been inserted should be returned and if doing infinite remove
operations while bounding the insert operations, we should eventually reach an empty data
structure. This can almost be formulated as a pool like in [6], but since the emptiness check
is not linearizable the last clause has to be less restrictive than for a pool.

5.1 Elastic queue
Theorem 1. The elastic 2D queue is correct and its successful enqueue and dequeue operations are
linearizable.

Proof. When it comes to linearizability each successful operation linearizes with a successful
CAS. For the enqueue the linearization point is at the update of a tail’s next pointer and for
the dequeue it is updating a descriptor. This also means that no normal node can be returned
twice as it is still only represented as a single node in the queue.

The only way to return an element is to dequeue it from a sub-queue using CAS. To
return an element not inserted we would have to dequeue a node which was never inserted,
and the only such nodes are the gap nodes, which we could mistake for a normal node and
return some nonsense value. After dequeuing a node we check that it is not a freezing node,
in which case we retry, so it can’t happen for a freezing node. To return a descriptor from the
window search we check that the descriptors node is not a freezing node and since floating
nodes only ever occur after freezing nodes it can’t happen for them either. Thus we can never
return an element not inserted.

The only possibility of not being able to return an inserted element would be to not
properly insert it or that it is inserted into a sub-queue which never becomes active. It is
always inserted on a valid sub-queue within the active width using CAS, so that is not a
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problem. If a node is enqueued in a sub-queue, that sub-queue must have been activated by
the put window either at the initialization of the queue or by increasing width and inserting
floating nodes into all newly active sub-queues before shifting and adding any more nodes.
For the get window to not include such a node it must not have noticed the increase in width
during the transitional put window. Since the get window cannot shift above the global put
window it can’t shift to a count where the node could have been inserted without seeing the
floating nodes during the shift and increase its width accordingly. Thus no element can ever
be lost.

Theorem 2. The maximal rank error when dequeuing an element x from the elastic 2D queue is
(widthput − 1)depthput + (widthget − 1)(depthget − 1) where the subscripts indicate which of x’s
windows the variable comes from.

Proof. Let us inspect node x and try to maximise its rank error, which is the number of nodes
enqueued before, but not dequeued before it. A way to visualize this problem is to color all
nodes in a queue with up to two colors. All nodes which can be enqueued before x are colored
green and all nodes which can be dequeued after x are colored red. The maximum rank error
is then the maximum number of nodes which are both red and green. We can use Figure 5.1
to visualize this coloring and we will step by step explain the coloring here.

The coloring comes from three different invariants. First, we argue why all nodes of
one color are not also of the opposite color: (i) All nodes enqueued in a later put window
(dequeued in an earlier get window) than x must then also be enqueued later (dequeued
earlier) than x due to the operations being ordered by the windows, thus they can’t be green
(red). Conversely, now we argue why the colored nodes have their colors: (ii) All nodes in the
same sub-stack as x are correctly ordered by the sub-stack and (iii) Nodes in other sub-stacks
in the same or earlier put windows (later get windows) can, or if different windows must be
enqueued (dequeued) before x, meaning they are green (red).

These three invariants enforce a unique coloring of all of the nodes in the queue, which
again can be seen in Figure 5.1. We see that these bi-colored nodes are the ones in the same
or earlier put window as x while simultaneously being the same or later get window than x.
To maximize their number x should be on the bottom of its put window and the top of its
get window. It can easily be seen by trying to move any of the windows while keeping x in
them and seeing that the number of bi-colored nodes shrinks. Then their number becomes
the size of both the windows, minus their overlap of one row (which has the width of the put
window as x is inserted there) which gives the bound.

Now that we have the theorem for an elastic 2D queue concerning both width and depth
we can examine the special cases where only one of the dimensions is elastic. Note also that
the reason the get and put windows can span different sets of rows is because of the elastic
depth which can send them out of sync.

Corollary 1. The maximal rank error when dequeuing an element x from the elastic depth 2D queue
is (depthput + depthget −1)(width−1) where depth is the depth of the window where x was enqueued
or dequeues.

Proof. The proof is the same as in the case of the version where the width is also elastic, but
now the width of the get and put windows must be the same.
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Figure 5.1: The core idea of the proof for the fully elastic 2D queue.
The black node is the one inspected, the red nodes can be dequeued
after and the green nodes can be enqueued before. The windows are
the worst-case scenarios of where they could be placed to cause the
maximum possible rank error.

Corollary 2. The maximal rank error when dequeuing an element x from the elastic width 2D queue
is (widthput − 1)depth where widthput is the active width of the window where x was inserted.

Proof. This follows from the earlier proof of the fully elastic 2D queue, but now the get and
put windows must span the same sequence of max values {i · depth}i since the depth can’t
change. Thus the window where the node is inserted and removed will have the same width
and span the same rows and it becomes just like the normal bound except that the width can
vary in different parts of the queue.

An important part of these structures is that they are lock-free. Here we show that this
is also the case for this elastic version as well.

Theorem 3. The elastic 2D queue is lock-free.

Proof. To show that it is lock-free we must show that there will always be progress if some
thread tries to make progress for a finite number of steps. The proof of this is that there
is always a finite number of predefined operations to be done for each window. A certain
number of enqueues/dequeues must be done and in the case of an elastic change there must
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also be a certain number of gap nodes which are inserted or deleted before the window again
can shift up. Once these actions are done the window can shift, guaranteeing more progress.
Each of these actions linearizes with a CAS and can not be undone during the window as the
descriptor counts always increase with each CAS. Thus there is a finite number of actions
during a window to do, each guaranteeing progress and they all linearize with CAS without
having to wait for anything else to complete which could block it.

5.2 Elastic stack
The correctness on the lateral stack builds on each lateral node encoding an invariant as
stated in Lemma 1. We will start with proving that these invariants hold, which will in turn
make it easier to prove correctness and bound the rank errors.

Lemma 1. (lateral node invariant) At the linearization of each window shift it holds that for all lateral
nodes lat and normal nodes node it holds that

lat.next_count ≤ rownode < rowlat =⇒ indexnode ≤ lat.width (5.1)

(lateral descriptor invariant) Also considering the lateral descriptor des it holds that

des.count ≤ rownode =⇒ indexnode ≤ window.active_width (5.2)

where indexnode signifies the index of the sub-stack where node resides and rownode signifies its row.

Proof. This proof will be done by induction over the sequence of windows, as the lemma is
only guaranteed at the shift instant of each window. In all windows before the first elastic
width change, this is trivial as there are no lateral nodes and all normal nodes will be inserted
inside active_width.

If we assume we are at the linearization point of an arbitrary window shift, and the lemma
held last window shift, we shall prove that it will also hold now. We will only push or pop
nodes above the bottom of the window, and we will not modify lateral nodes at or below that
row, so their invariants will stay true from the last window. So we will only look at lateral
nodes which are above the bottom of the window and we call those the active lateral nodes.
There can be many such active lateral nodes, especially if the depth of the window has just
increased. First, we examine what effect the lowering phase has (where we try to lower lateral
nodes), and then the push phase (where we potentially push a lateral node).

It is now possible to push normal nodes inside the current window which means that all
active lateral nodes with smaller width than the active_width are initially invalidated. If the
lowest active lateral node is one of those it will be lowered to the bottom of the window,
and all others will be popped. If one was successfully lowered its invariant will still hold
as we know it held before this window until the next lateral node, and now it must still
hold on the subset of rows beneath the window as they can’t have any new nodes inserted.
Lowering these nodes will not destroy the invariants of nodes above with higher width. This
is because the rows which were previously affected by the lowered nodes were smaller than
active_width and all laterals above the bottom of the window will after the lowering phase
have width > active_width.

Now we instead inspect how active lateral nodes with width > active_width are lowered.
Some of them will stay where they are and their invariants will not be violated as we cannot
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push nodes outside active_width. But if the last window shifted down we try to lower the to
the bottom of the last window. Here we inspect what the possible results of these lowerings
have on the invariants depending on the node’s width lat_width compared to the old window’s
active width old_width.

• If lat_width ≤ old_width then the lateral node must in the last window have been low-
ered to that window’s bottom. Thus we will not succeed in lowering it and its invariant
is unaffected.

• If old_width < lat_width then for the last window to successfully shift down it must
have observed all sub-stacks within its width to be at the bottom of the window. If
the lateral node was above the bottom of the old window, the old window’s width
must have been at least lat_width. Since the old and new windows do not allow pushes
outside active_width those stacks must still be at or below the bottom of the old window.
Therefore it is safe to lower the lateral node to there and we know the width above
that point must be≤ max(old_width, active_width). However, if old_width > active_width
then the descriptors invariant must not hold after this lowering.

Now we need only to inspect the active lateral nodes with width = active_width. If above
the bottom of the window they are tried to be lowered there and if possible the invariant will
not be violated. If it is lowered or popped the node above it (or descriptor of topmost) must
have width ≥ active_width and thus its invariant will not be violated either.

That were all cases of how lateral nodes are lowered and what invariants then can become
violated. But there can also be problems not to do with nodes being lowered. If active_width ≥
old_width then since the descriptors invariant held last window it will also do it this one as we
now only have a more generous invariant. If instead active_width < old_width then there is a
problem before the new lateral node is pushed as the topmost rows are bounded by old_width
and not active_width.

So after the lowering phase, there were only two cases which could lead to violated in-
variants and in both cases it is because active_width < old_width and thus the descriptors
invariant breaking. If active_width < old_width then the push phase will push a lateral node
at upper_bound width width = old_width. This makes it so that no nodes are possible to reside
above the inserted node and thus the descriptor’s invariant is not violated as there are no
nodes to apply it to. The pushed node will also cover the same region as the descriptor did
last, which we knew was smaller than old_width.

The last paragraph depended on upper_bound being the highest row we possibly could
have nodes at, and here we quickly show that that assumption holds. When shifting down
we set upper_bound to the maximum of the old and new window’s max. This is because if
shifting down all nodes must be below or at the top of the window, and in the next window
they can only be inserted higher if it has a higher top. If it shifts up we set it to the maximum
of the previous upper_bound and the new max. This is because the new max either exceeds the
old bound or not. So assuming the lateral stack was consistent at the last shift, meaning the
width of the window must not miss any nodes above its bottom, there cannot be any node
above upper_bound.

Finally we examine the other case where old_width < active_width. Here a node is only
pushed for efficiency and not correctness, but we must make sure its invariant holds. If we
can push the node at the bottom of the window it must be the topmost node. All rows below
it until the next node would last window have been less than old_width since there cannot have

39



5. Analysis

been any node above this at the last shift. Since the descriptor invariant held last window
this node’s invariant must also hold.

So the invariants must hold this next window shift and induction gives they must always
hold.

Corollary 3. During a window, there cannot be nodes above the row upper_bound.

Proof. This was proved in the third to last paragraph of Lemma 1.

Theorem 4. The elastic 2Dc stack is correct and its successful push and pop operations are linearizable.

Proof. Each successful push and pop linearizes in the same way as the method would on a
normal Treiber stack[12]. This means that no element can be returned twice and we only
remove nodes which have earlier been inserted.

The only possibility of not being able to return an inserted element would be for its node
to be at a larger index than the window’s width and that all sub-stacks within width are empty
at some point during the window. But due to Lemma 1 and how the window determines its
width in Function ShiftWidth (Algorithm 11), there cannot be a row inside the window with
a node outside width. These two sentences contradict each other, so it is impossible for the
first to be true, meaning the stack must be correct.

Theorem 5. The maximal rank error when popping an element x from the elastic 2Dc stack is
(2depth + 2shift − 1)(width − 1), where depth, shift and width are the maximum of those win-
dow variables between the push and pop of x.

Proof. To maximize the number of nodes pushed after x but not popped before x we need to
find two bounds. The first one is the lowest bottom (xlower) of a window max − depth which
could have taken place after the push of x, as nodes pushed after x must have been pushed
above that. The second is the highest possible row nodes can reside when x is popped (xupper).

To find xlower we consider the instant of pushing element y, which happens while x is
somewhere on the stack. This means that the current upper_bound due to Corollary 3 has to
be larger or equal to the row of x. The upper bound is calculated at shifts as its old value,
or the max of the window if shifting down. Thus the lowest row y can be pushed on is
rowx − depth − shift + 1 = xlower + 1 where depth and shift must have been in some window
since the push of x. We could make more detailed and strict assumptions about depth and
shift but we choose not to make the theorem clearer. For example, depth must only really be
included if it is the depth from the window x was pushed.

Finding xupper is simpler as we can use 3 directly. As x can only be popped in a window
where x is above its bottom, we have that xupper = rowx + depth + shift − 1.

Together we have xupper − xlower = 2(depth + shift) − 1 which that must then be the
maximal number of elements pushed after x and not popped before it on a single sub-stack.
Multiplying with width − 1 gives the bound, which is done as the sub-stack x is pushed on
must be ordered.

We will not give a separate result for the stack where only the depth is elastic, as we don’t
have a tighter bound there than Theorem 5.
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5.2 Elastic stack

5.2.1 Revisiting 2Dc stack
For the the final Corollary where the stack only has elastic width we will essentially use the
same bounds as the normal stack. However, the bound in the original paper has a small
oversight in its proof and has a too low bound. Therefore we have revisited the analysis
(Theorem 5 in the original paper[10]) and here will give a slightly worse, but accurate, rank
error bound. Its starts with a few lemma to build up to the final bound in Theorem 6 The
new lemmas and theorems take inspiration from the original paper, but build the theory
differently to account for the changes and are quite different from the original ones.

These proofs are more consistent in style with the original paper than the rest of this
thesis. Here we introduce the differing notations.

• Global is the global window’s max,

• Wi denotes the window with max = shift × i,

• Wmax
i = shift × i,

• Wmin
i = shift × i − depth,

• N j is the number of nodes on sub-stack j .

Lemma 2. Given that Global = shift× i, it is impossible to observe a state (S) such that N j > Wmax
i+1

(or N j < Wmin
i−1 ).

Proof. This is proved in the main article.

Lemma 3. If x is pushed to sub-stack j while observing Wi , then

Wmin
i − shift + 1 ≤ N j ≤ Wmax

i ∀ j ∈ [0,width) (5.3)

where N j is the number of items on the sub-stack j after the push.

Proof. By Lemma 2 we get bounds on the sub-stack in the moment of observing Wi . Now we
add the constraint that the push must be valid by N j ≤ Wmax

i which becomes the new upper
bound. Add 1 to both bounds from the new push and the interval is found.

Lemma 4. If x is popped from sub-stack j while observing Wi , then

Wmin
i + 1 ≤ N j ≤ Wmax

i + shi f t ∀ j ∈ [0,width) (5.4)

where N j is the number of items on the sub-stack j before the pop.

Proof. Same proof as above, but now use the criteria for valid pop and don’t remove 1 as N j
is before the pop.

Lemma 5. If x is pushed to sub-stack j while observing Wi and then popped while observing Wi′ , the
difference between the two windows is in the interval

−2 shift −
⌈
depth − 1

shift

⌉
shift ≤ Wmax

i′ −Wmax
i ≤

⌊
depth − 1

shift

⌋
shift (5.5)

41



5. Analysis

Proof. Assume x is inserted at position Wmax
i − θ where θ is how far it is from the top of the

window. From Lemma 3 we get the bounds θ ∈ [0, depth + shift − 1]. Using Lemma 4 and
that the pop must be valid we get

Wmin
i′ + 1 ≤Wmax

i − θ ≤ Wmax
i′ + shift

⇐⇒ −shift − θ ≤Wmax
i′ −Wmax

i ≤ depth − 1 − θ.

But as shi f t is constant the difference of the windows can only be a multiple of shift.
Furthermore, the limits of θ are known. This gives us the final bounds

−shift −
⌈
θ

shift

⌉
shift ≤ Wmax

i′ −Wmax
i ≤

⌊
depth − 1 − θ

shift

⌋
shift.

⇐⇒ −shift −
⌈
depth + shift − 1

shift

⌉
shift ≤ Wmax

i′ −Wmax
i ≤

⌊
depth − 1

shift

⌋
shift

⇐⇒ −2 shift −
⌈
depth − 1

shift

⌉
shift ≤ Wmax

i′ −Wmax
i ≤

⌊
depth − 1

shift

⌋
shift

.

Theorem 6. 2Dc-Stack is linearizable with respect to k-out-of-order stack semantics, where k =(
2shift + depth +

⌊ depth−1
shift

⌋
shift

)
(width − 1).

Proof. Assume x is pushed to sub-stack j′ while observing Wi and later popped while observ-
ing Wi′ . Using Lemma 2 we can get bounds for the other sub-stacks at those moments.

At push ∀ j ̸= j′ : N j ≥ Wmin
i − shi f t

At pop ∀ j ̸= j′ : N j ≤ Wmax
i′ + shi f t

As k is the maximal number of items pushed after x as well as popped after x these
inequalities are key. All sub-stacks can vary their items in this period between those limits.
But the sub-stack j must of course end up with the same items when x is pushed as popped,
as x must be at the top for both.

So the largest number of new items pushed after the push of x, still on the stack after
the pop of x becomes the sum of the possible difference of all but the j ’th sub-stack. This
together with Lemma 5 gives

k = max (width − 1)(Wmax
i′ + shift − (Wmin

i − shift))
= max (width − 1)(Wmax

i′ −Wmax
i + depth + 2shift)

= (width − 1)
(
depth + 2shift +

⌊
depth − 1

shift

⌋
shift

)
.
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5.2 Elastic stack

5.2.2 Final elastic stack analysis
Corollary 4. The maximal rank error when dequeuing an element x from the elastic width 2Dc stack
is
(
2shift + depth +

⌊ depth−1
shift

⌋
shift

)
(width−1), where width is the maximum width between the push

and pop of x.

Proof. This follows from the earlier Theorems 6 where it is shown for the original stack, and
from the proof of Theorem 4 where the elastic stack adapts its width correctly. The elastic
width does not affect the original theorems, except by changing the number of possible sub-
stacks.

The only other difference in functionality between the elastic width stack and the normal
one is that the elastic one does not allow pushes under the bottom of the window. This can
not worsen the bound as it only in some cases creates empty spaces in the stack which could
have been taken up by nodes to swap order with x. But it is still possible to construct an
example with the given bound, so it cannot be lowered.

Theorem 7. The elastic 2Dc stack is lock-free.

Proof. The stack searches for valid indexes the same way as the original and does not have any
blocking capabilities. The lateral synchronization has a maximum of two CAS to complete.
When one thread has completed the lowering no other node will find any nodes to lower, and
cannot try to lower anything. The push of a new node is also just a potential CAS. A thread
cannot destroy the push of a new node by lowering it as if it is narrower than active_width
it would try to lower it to the same row and if it is wider the special case will prevent the
thread from proceeding with the lowering. The only other new thing is the calculations for
the window shifts but they are just a bounded number of computations and then a CAS.
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Chapter 6

Evaluation

Using experiments we evaluate the performance of our new elastic data structures and com-
pare them to the original versions. As the original paper compares its data structures with
other state of the art implementations we only focus on comparing with the original 2D im-
plementations. The code is written in C and builds on the code from the original paper [10],
but with some modifications. The elastic code and the original are kept as similar as possi-
ble, without incorporating any elasticity into the original versions to guarantee fairness. The
original code in turn builds on the ASCYLIB library as well as its SSMEM memory manage-
ment framework [3].

During the experiments, we will mostly measure throughput (operations per second) and
relaxation rank errors. We want to capture how much the throughput is slowed down after an
elastic change, during an elastic change and if there are no elastic changes at all. We further
want to see how this depends on the number of threads and the amount of relaxation. For
rank errors we want to make sure it stays inside the analytical bounds and that it hopefully
should not be much worse than the original. Additionally, we want to see how the rank error
changes over time after an elastic change.

As we care about the case of high contention we mostly do tests where all threads are just
inserting and deleting elements without any work in between and unless otherwise specified
the insertion and deletions have equal probabilities. The data structures also start with 214

nodes to avoid empty returns as much as possible in the benchmarks, which is a standard
practice[10, 13]. Each experiment is run for five seconds and the result is obtained as the
average of ten such runs.

To measure rank error we create a shared normal data structure and a lock in parallel to
the relaxed one like in[10]. Then all CAS operations to insert or remove an element from
the structure are encapsulated in the lock and the element is inserted into both the relaxed
and normal structure if successful. Then the rank errors can simply be measured as distances
on the normal data structure. This is not a perfect measurement, as the locking to a certain
extent changes the dynamics of the data structure, but there does not seem to be consensus
in the field for how to measure rank errors.
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6. Evaluation

(a) Even workload (b) 70% enqueues

Figure 6.1: Plots of how the original, decoupled and elastic queues
scales with threads using width = 16 and depth = 16.

The experiments are run on an x86-64 Intel Xeon E5-2687W v2 machine which has two
sockets. Each socket has an eight-core Intel Xeon processor running at 3.4 GHz, where each
core can run two threads and with cache sizes L1d: 32 KB, L1i: 32 KB, L2: 256 KB, L3: 25.6 MB.
The machine runs on Ubuntu 18.04.6 LTS. During runs, each software thread is pinned to a
hardware thread and they run on one socket with one thread per core. As compiler we used
gcc 7.5.0 with optimization flag -O3.

6.1 Elastic queue
When benchmarking the performance degradation of the elastic version compared to the
original we want as fair of a comparison as possible. One big difference between them how-
ever is that the search indexes for the elastic were decoupled. So the decoupled has one index
to go back to for the enqueues and one for the dequeues, while the original only has one index
for both operations. To make the comparisons fairer we introduce the decoupled queue which
is exactly like the original queue but also has decoupled search indexes like the elastic queue.
In our evaluations, we will compare all three queues to get a better view of what is causing the
difference in performance. In theory, the elastic queue should never be able to be faster than
the decoupled queue, as it just has some extra work, but it might be faster than the original
in settings benefiting the decoupled queue.

In Figure 6.1 we can see how the elastic queue compares to the decoupled and original
when it comes to scaling with threads at medium relaxation. Here the elastic queue does not
do any elastic changes. Recall that the decoupled queue is when the enqueue and dequeue
operations save different indexes of where they succeeded last and try to continue operating
on. As expected the elastic is a bit worse than the decoupled and they both are worse than
the original. We can also see that both the elastic and decoupled perform relatively better
with the skew workload in Figure 6.1b which probably is due to them then being closer to
the original then since at 100% skew workload the decoupled and original are identical and
they are as far apart as possible at even workload.

To characterize the cost of a width shift in the elastic queue you can constantly shift
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6.1 Elastic queue

(a) Scaling with threads (16 width) (b) Scaling with width (8 threads)

Figure 6.2: Comparison of how the elastic queue performs with no
width changes and with the maximal amount possible. The stressed
queue changes each window shift between width and 2width, making
its active width always width.

between two widths x and y each window shift. Then the active width will always be the
smaller width and the indexes in between the widths will constantly be filled with alternating
freezing and floating nodes. In Figure 6.2 we can see how doing this betweenwidth and 2width
affects the throughput of the elastic queue. Overall it is quite a low performance cost and
changing width this often is not expected, so the actual cost of changing width seems to be
very low.

To see the long-lasting consequences of shifting the width of the elastic queue we can in-
sert the initial elements and then change the width before starting to measure the throughput.
This will mean that the put window will quickly shift up and notice the new width which it
then will run with for the rest of the experiment. Results from this can be seen in Figure 6.3
which essentially confirms the fact that there are no long term performance effects of chang-
ing the width. As long as the transition period has passed and the get window has caught up
to the new width it will perform just like a normal elastic queue which is not changing width.

One feature of the original queue was that it scaled monotonically with relaxation. In
Figure 6.4 we see how the elastic and decoupled queue compares with the original under
scaling relaxation. Notably the elastic and decoupled perform quite similarly for the high
relaxations, while the original has slightly different behaviour. As expected the throughput
increases monotonically for all of them when increasing depth (Figure 6.4a) and so does the
observed rank error (Figure 6.4b).

To see more clearly how the relaxation changes over time after an elastic shift we can look
at how it changes for the individual removed elements. When we measure the relaxation we
can save all of the rank errors of the removed items and then plot a moving average over these
errors in the order they were removed to see the elastic changes effect in action. This can be
seen in Figure 6.5 where we for two cases first change depth and then width after a third and
two thirds of the experiment respectively. It behaves for the most part as expected and has
three seemingly stable regions corresponding to the three window shapes. But one can also
see a small transition period when initially changing depth. This stems from the fact that
we for a period are deleting elements which were inserted in the old depth, since the depth
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6. Evaluation

(a) Directly changing from width 16 (b) Directly changing to width 16

Figure 6.3: Comparison of how the elastic queue performs when di-
rectly elastically changing to a width at the start of the experiment
as compared to starting at the width.

(a) Throughput (b) Observed relaxation

Figure 6.4: Plots of how the queues scale with relaxation. The relax-
ation is scaled by first increasing the width to 24 and then increasing
the depth. The experiments are using eight threads and 50-50% en-
queues and dequeues.
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6.2 Elastic stack

(a) Depth and width from 8 to 16 (b) Depth and width from 16 to 8

Figure 6.5: Moving average of rank errors for dequeued nodes in
elastic queue. In both cases, we first do a change in depth after 1/3
time and then one in width after 2/3 time.

(a) Even workload (b) 70% puts

Figure 6.6: Plots of how the original and elastic stacks scale with
threads using width = 16 and depth = 16.

is updated at both ends of the queue simultaneously. Since the change in width must travel
through the queue no such transition period is seen for the changes in width.

6.2 Elastic stack
For the elastic stack, we benchmark its performance against the normal stack. In Figure 6.6
we see how the elastic compares to the original algorithm without any elastic changes under
even and skewed workload (Figure 6.6b). They perform very similarly, suggesting that the
extra work from the elasticity is almost negligible when no elastic changes are made.

To measure the lasting costs of a change in width for the stack we change the width
directly to x after inserting the initial elements, and then compare it to a stack which started
at width x. This is seen in Figure 6.7 where we on the left directly switched from width 16
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6. Evaluation

(a) Directly changing from width 16 (b) Directly changing to width 16

Figure 6.7: Comparison of how the elastic stack performs when di-
rectly changing elastically to a width at the start of the experiment
as compared to starting at the width.

to other widths, and on the right switched from other widths to 16. In it, we see that there
is no large difference at all and that the stack seemingly has no major lasting consequences
of changing width.

In Figure 6.8 we present the rank errors over time for a queue with elastic changes. To
see more clearly we use a moving average of 10 000 points. In the plots, the depth is first
changed and later the width. Comparing the results for the queue in Figure 6.5 to the stack
in Figure 6.8, we see that the stack lacks the small middle ground of rank errors after changing
the depth. This is because for the stack the depth change does not have to traverse the data
structure to reach both windows.
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6.2 Elastic stack

(a) Depth and width from 8 to 16 (b) Depth and width from 16 to 8

Figure 6.8: Moving average of rank errors for dequeued nodes in
elastic stack. In both cases, we first do a change in depth after 1/3
time and then one in width after 2/3 time.
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Chapter 7

Conclusion

In this part, we discuss some of the problems we faced when designing the algorithms. This
can hopefully be useful for people who want to extend this work by providing some con-
text and motivation for the design choices. Furthermore, we will discuss some of the many
possible ways to continue this work and lastly some conclusions.

It was immediately obvious that the elastic width was harder to implement, compared to
the elastic depth. The simplest solution seemed to be to have some pointers or descriptors
in parallel to the structure for how wide each row should be. This is similar to the idea that
eventually became the elastic stack. A similar thing could probably have been done for the
queue but there is one major issue to do with the direction of information. In a stack, the gaps
are always created and removed from the same (topside) direction which means the nodes can
have a next_count field to encode where the gaps are. But for the queue, we dequeue the gap
from the other side, and we would need to modify an already insert node when completing
the gap if we want to use the same idea. This is not that appealing as it would require the
nodes to be mutable, which gap nodes circumvent.

Initially, we also wanted to reuse the gap nodes for the stack. There are however some
issues and many of them come from the fact that the stack does not grow monotonically in
one direction like the queue. In the queue, the put window has a transitional window where
it inserts the gap nodes before the change and thus we know that after that window shifts
up the gap nodes will be in place. But for the stack that does not work as easily as we can
shift both up and down. That means that we might have to push and pop gap nodes for
the same width change several times as we shift up and down. Especially the freezing nodes
would have to be popped when popping elements under them, but then add the nodes when
shifting further up. However, we believe it is possible to find a nice solution with gap nodes
for the elastic stack as well and that they in a way are stronger than the lateral stack as they
are harder to miss.

By using our elastic 2D data structures one can adjust the amount of relaxation dynam-
ically and hopefully be able to increase performance. This leads to shorter running times
which in itself is useful as it allows things which are dependent on the result to get it faster.
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7. Conclusion

But it also leads to lower energy consumption which is good for the environment.
In this thesis, we have not focused that much on the elastic depth. This comes down to

the fact that just implementing elastic depth is easy, especially for the queue. You just have
to change one variable to being shared (_Atomic/volatile) and have some way to update it
from outside. This has no negative impact on performance. Although, it can lead to some
unexpected relaxation behaviours as seen in Corollary 1. According to the original paper[10]
the performance gain from increasing the width is not that noticeable after two to three times
the number of threads, and instead starts to decrease due to more hops. Changing the depth
has no such drawbacks and is suitable for changing back and forth when the extra throughput
is needed. It is possible that the best idea is to use elastic structures with only elastic depth,
as the extra code needed for elastic width can cause a bit of performance degradation, like in
Figure 6.1a.

The elastic stack seems to be fast, but we feel the algorithm has a few problems. One
is that it is too complicated as compared to the core idea. One symptom of this is that the
window has too many, and quite convoluted, variables. For example, we might be able to
remove the field for the potentially last bottom if we instead lower nodes to the current
window max (which should always be larger). The proof for the elastic stack is also long and
wordy and it would be nice to make it more concise and better structured. A possibility
would also be to use some proof assistant like in [6].

7.1 Future work
The original 2D paper[10] has more data structures than we covered in this thesis and it
would be nice to create elastic extensions for all of them. The 2Dd stack on its own is not
that exciting on its own as we now have a solution for the 2Dc stack which outperformed the
2Dd stack. The counter could be interesting to make elastic, but it is quite different from the
other data structures. Primarily we want an elastic extension to the deque, which in a way is
a combination of a stack and queue. We feel that by using the techniques and ideas presented
in this thesis it should be possible to create an elastic deque. Probably it would need gap
nodes as it, much like the queue, can enqueue and dequeue gaps from different directions.

This thesis has only focused on the design of these new data structures, but it is also of
great interest to know how effective they can be in different applications. There have been
benchmarks used in earlier papers[5] where relaxed queues are used in graph algorithms, such
as minimal spanning trees. Relaxed priority queues have been used for efficiently finding
the shortest path in a graph[13]. It would be very interesting to look at use cases for these
elastic data structures. In graph algorithms like shortest path the amount of nodes in the
data structure can be high at the beginning and then become lo during the last part. Here
it would be interesting to look at whether the relaxation could be kept high at the start but
lower in the end, and in that way lead to increasing performance.

A more analytical direction to continue in would be to define other semantic relaxation
properties for the data structures. There could be a tighter definition than k-out-of-order for
the queue as it is impossible to return the k + 1’th topmost element several times in a row.
This is because the relaxation is bounded within the windows and eventually you must return
the topmost elements before shifting away. For example, the definition of lateness[6] could
be incorporated which means that there can pass at maximum k get operations between each
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7.2 Final words

correctly ordered one.
A theoretically simple improvement for this thesis is to optimize the elastic queue as its

throughput is lower than we expected. In each enqueue/dequeue it has to check the content
of the node to look for gap nodes before proceeding with the CAS, but this should not have
to fetch extra memory as we already have to read the node for its next pointer. The shifts
do take longer, but like the elastic stack they should take up a small portion of the time
and thus not be that detrimental either. There is little use guessing about the reason for the
performance cost without thoroughly profiling the program, but we don’t see any real reason
why our elastic queue idea has to be much slower than the normal queue.

Another direction would be to look further into optimal ways to couple the put and get
search indexes. For the elastic queue, we had to decouple the indexes as the respective widths
could be different. As its operations operate on different ends of the sub-queues it should
not decrease the data locality to decouple the indexes. But in actuality, it has to check the
tail when trying to dequeue from the head to check if the sub-queue is empty. But coupling
the indexes will also probably increase the number of hops (which is changing which sub-
structure to inspect) since a get operation can change the index even if the put operations
want to stay. This means it is a trade-off as can be seen when we made the workload skew
in Figure 6.1b. For example, the queue can save its hop count for each operation between
function calls if the indexes are decoupled. In the elastic stack, we had a coupled index as
both operations shared the same window. But even there the get operations can operate on
the frozen sub-stacks which the put ones cannot, which might make it beneficial to decouple
the indexes in some way.

This thesis has only tried to extend the 2D framework, but there are other relaxed data
structures that could be made elastic. Similar techniques can probably be used for some of
them, like some of the DQs[5]. Other data structures like the priority queues of MultiQueues[13]
require more work as they are not linear in the same way, and thus pose an interesting prob-
lem.

7.2 Final words
This thesis has extended semantically relaxed queues and stacks to be able to vary their relax-
ation during run time. This was done in two different ways which both are promising when
it comes to doing similar extensions in the future. Firstly we introduced the concept of gap
nodes which are auxiliary nodes inserted into the data structure to easily keep track of elastic
changes. Secondly, we introduced the lateral stack which was a parallel linear structure to the
elastic one which kept track of elastic changes.

The main research question of the thesis was to try to create elastic extensions for the
stack and queue, which we succeeded in. Additionally, we introduced four points on which
to measure how good an extension would be. The first criteria was that they should be lock-
free, which ours are. Secondly we proved the correctness of our extensions and gave strict
rank error bounds, even though the proofs could be more concise and formal.

Third, our experimental results show that the elasticity in the queue can add a little
overhead and reduce the performance by a few percent. This is acceptable, but it would
preferably perform a little bit better. The elastic stack on the seems to be almost as fast as
the original and therefore fulfills the criteria.
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7. Conclusion

Finally, our results also showed that the changes in elasticity don’t reduce the throughput
that much. However, the actual change in relaxation only happens at window shifts and
increasing the width for the queue has to wait a bit extra as the floating nodes take up space
instead of normal nodes. This was done to make the analysis easier, but it could be improved
further so the changes takes effect more quickly.

In conclusion we succeeded with the goal of the thesis. It can be continued by improving
the proofs, increasing the performance of the elastic queue and making the changes take
effect quicker. An interesting area of future work is to use the introduced techniques to
extend other data structures, like the 2D deque[10].
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Effektiva, flexibla och inexakta köer

POPULÄRVETENSKAPLIG SAMMANFATTNING Kåre von Geijer

För att undvika flaskhalsar i program vill man ha effektiva och skalbara strukturer för
att lagra och ordna data. Detta arbete har byggt vidare på två typer av effektiva men
inexakta köer så att de flexibelt kan ändra sin precision vid behov.

Nya datorer blir effektivare varje år men nu blir de
inte längre så mycket snabbare, utan får ofta istäl-
let fler kärnor. En kärna är som en egen minidator
och detta gör att man kan köra allt mer instruk-
tioner samtidigt i datorer. Men för att köra saker
samtidigt måste man anpassa hur man skriver pro-
gram.

Ett exempel är grundläggande datastrukturer
som köer. De representerar ungefär en kö i
mataffären där folk ställer sig i slutet av kön och
kallas fram till kassan från början av kön. Men
i vårt fall är det en kö av information istället för
personer. När ett program kör på flera kärnor kan
man se det som att det finns väldigt många kassor.
Att bara ha en kö blir då långsamt då alla kassor
måste tävla om att ropa fram den längst fram i kön
hela tiden. Istället har vi ofta flera köer, kanske en
till varje kassa, vilket gör det hela smidigare men
inte längre lika rättvist (exakt) då köerna rör sig
olika snabbt. Detta är i princip grundtanken med
en tidigare publicerad artikel om effektiva men in-
exakta datastrukturer (tänk köer) som detta ar-
bete bygger vidare på.

Detta arbete vidareutvecklar dessa datastruk-
turer och möjliggör dem att ändra hur inexakta
de är under körning, vilket kan liknas vid att än-
dra antalet köer. På detta sätt kan man anpassa
inexaktheten efter hand beroende på belastning,
önskad precision, tillgängliga kärnor och så vidare
för att få ett mer flexibelt program.

Vår lösning för kön illustreras i bilden nedan och
kan liknas vid att ställa in start och stopp skyl-
tar i olika köer när man vill öka respektive minska
antalet. Dessa ställs in längst bak i köerna och fly-
ttas fram allt eftersom andra köer rör sig framåt.
Vi presenterar en lösning för andra typer av köer
som bygger på att man håller koll på förändringar
i en extra kö vid sidan av dem ursprungliga.

Våra resultat visar att det inte är stor skillnad i
prestanda mellan våra mer flexibla köer och de ur-
sprungliga om man inte tillåter antalet att ändras.
Dessutom bevisar vi deras korrekthet och begrän-
sar hur inexakta de är beroende på deras parame-
trar. Att de nya datastrukturerna inte är mycket
långsammare än de vanliga, men nu är flexibla,
gör att de kan öka totala prestandan över längre
körningar om man utnyttjar deras flexibilitet.
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