
MASTER’S THESIS 2022

Personalizing the Order of
Search Results Using Machine
Learning
Liam Fahlstad, Max Gustafson

ISSN 1650-2884
LU-CS-EX: 2022-39

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-39

Personalizing the Order of Search Results
Using Machine Learning

Personalisering av sökträffars ordning
m.h.a. maskininlärning

Liam Fahlstad, Max Gustafson

Personalizing the Order of Search Results
Using Machine Learning

Liam Fahlstad
li3576fa-s@student.lu.se

Max Gustafson
ma2565gu-s@student.lu.se

June 23, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Emelie Lundh, emelie.lundh@ingka.ikea.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:li3576fa-s@student.lu.se
mailto:ma2565gu-s@student.lu.se
mailto:emelie.lundh@ingka.ikea.com
mailto:pierre.nugues@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

With the growth of the internet, search algorithms such as ‘Google’ have been
developed which help the user navigate the web. The high standard set by such
search engines is transferred to enterprise internal search, which unfortunately
is often inferior.

One aspect that is utilized extensively by commercial search engines, but rarely
by large companies, is personalization. Together with IKEA, we study the effect
of personalization in enterprise search by modeling a reranker. Such a reranker
reorders the result list returned by the search engine to place documents rele-
vant to the user towards the top. The reranker is built using supervised machine
learning which is trained using the ‘learning-to-rank’ algorithm’ LambdaMART.

We implemented this algorithm using three frameworks. These frameworks are
XGBoost (Xtreme Gradient Boosting), LightGBM (Light Gradient Boosting Ma-
chine), and a neural network on two different datasets, one from IKEA and one
public from Yandex, a search engine popular in eastern Europe, used in a Kaggle
competition. For the IKEA dataset, there was a significant improvement, while
for Yandex there was a slight one. In particular, there was an improvement in
our main metric NDCG (Normalized Dicounted Cumulative Gain) of ∼1.3% for
Yandex and ∼5.2% for IKEA.

Keywords: Personalization, Search, Machine Learning, LambdaMART, Learning to Rank

2

Acknowledgements

“Happiness is not reaching your goal. Happiness is being on the way.”
– Ingvar Kamprad

Firstly, we would like to thank all our coworkers at the INGKA ‘Internal Comms. Team’
for welcoming us as thesis students. In particular, we would like to thank Fredrik Ekström
and Johannes Sörensen for helping us with the data collection. An additional thanks goes
to Johannes for all the help he provided. Finally, a special thanks goes to Emelie Lundh for
supervising and supporting us throughout this thesis.

Secondly, thanks also go to all our friends and family supporting us, and giving input, during
our work.

Lastly, we would like to thank our LTH supervisor Pierre Nugues for all the advice and as-
sistance he provided.

3

4

Contents

1 Introduction 11

1.1 Background . 11

1.1.1 General . 11

1.1.2 Problem formulation . 12

1.1.3 Findings . 13

1.2 Previous Work . 14

1.3 Specification of Contributions . 15

2 Approach 17

2.1 Outline and Definitions . 17

2.1.1 Why both Yandex and IKEA . 18

2.1.2 The Yandex Dataset . 18

2.1.3 Datasets: IKEA . 19

2.1.4 Quantities . 20

2.2 Method . 23

2.2.1 Partitioning . 23

2.2.2 Labeling – Relevancy of a Document 25

2.2.3 Features . 25

2.2.4 Feature Selection . 26

2.2.5 Model Outline . 31

2.2.6 Model Selection . 31

2.3 Evaluation Setup . 33

5

CONTENTS

2.3.1 Evaluation Metrics . 34

2.4 Implementation . 36

2.4.1 Dictionaries . 37

2.4.2 Implementation steps . 37

3 “Learning-to-Rank” Algorithms 41

3.1 Introduction . 41

3.2 RankNet . 41

3.3 LambdaRank . 43

3.3.1 Introducing NDCG in RankNet 43

3.4 Speeding up LambdaRank . 44

3.5 Multiple Additive Regression Trees (MART) 44

3.5.1 Regression Trees . 45

3.5.2 MART . 45

3.6 LambdaMART . 46

4 Evaluation 49

4.1 Model Free Analysis . 49

4.1.1 IKEA datasets . 50

4.1.2 Comparing to the Yandex Dataset 52

4.2 Results . 53

4.2.1 Dataset: EntryPoint . 53

4.2.2 Dataset: Reduced Yandex . 54

4.2.3 Result by user history . 55

4.3 Discussion . 57

4.3.1 Performance and Features . 57

4.3.2 Long Term Gain . 59

4.3.3 Click Bias . 59

4.3.4 Ethical Considerations . 60

5 Conclusions 61

5.1 Summary of Findings . 61

5.2 Further work . 62

5.2.1 Dwell-time . 62

5.2.2 Deployment to Evaluate Click Bias 63

6

CONTENTS

5.2.3 Promoted links . 63

5.2.4 Neural Networks . 64

A IntraNet Results 65

B Feature Importance 67

B.1 EntryPoint dataset XGBoost . 68

B.2 EntryPoint dataset LightGBM . 73

B.3 Yandex dataset XGBoost . 73

B.4 Yandex dataset LightGBM . 78

References 81

7

CONTENTS

8

Glossary

click When a user has issued a search query, they can chose to click a result. 18, 19

document A document is, in an more general sense, something that can be indexed by the
search engine and can be clicked by user in response to a search query. URL is an
example of a document. 19

domain The domain of the URL e.g. www.lth.se is a domain while https://www.lth.
se/utbildning/teknisk-matematik/ is a URL. 19, 28

query A query is one or more words which is used by the search engine to retrieve informa-
tion and is what the user enters into the search-field. 18, 19

SERP The search engine is indexing a set of documents returning a list to the user. This list
is called a result page or SERP (Search Engine Result Page) abbreviated. 12, 19, 20, 25,
26, 28, 53, 54, 57, 59, 60, 63

session A session is a sequence of actions where a user issues one or more queries and may
click on one or more results in response. A user may have multiple sessions, but a
session does not extend across users.. 18, 19

term A query is built up by one or more terms. The query ‘Java Coffee’ consists of terms
‘Java’ and ‘Coffee’. 19

URL A link that i.e. a reference to a web-source or a document in a database. An example
is https://www.lth.se/utbildning/teknisk-matematik/. 18, 19, 35

user A user can be seen as an agent that issues search queries and clicks on results i.e. someone
who uses the search engine. 19

9

www.lth.se
https://www.lth.se/utbildning/teknisk-matematik/
https://www.lth.se/utbildning/teknisk-matematik/
https://www.lth.se/utbildning/teknisk-matematik/

Glossary

10

Chapter 1

Introduction

In the introduction, we provide the background for our work. In addition, we present re-
lated literature as well as a summary of our findings. Lastly we provide the specification of
contribution from both authors.

1.1 Background

1.1.1 General
The last years have seen an expansion of the internet of unquestionable magnitude. As such,
the sheer amount of available information has put heavy demands on commercial search en-
gines. Some very sophisticated search engines, such as ‘Google’, have emerged with high user
satisfaction. This, in turn, has led to higher expectations for enterprise search in internal
databases and file systems. Unfortunately, when people use search at work, it is more diffi-
cult to find the relevant information when compared to a commercial search platform.

One aspect that is utilized extensively by commercial search engines, but rarely by compa-
nies, is personalization. By using information about previous searches, an engine can present
a personalized result relevant to the specific user. Companies may not be able to implement
this approach due to a lack of data. However, large companies, such as IKEA with ∼160,000
coworkers, may have enough data to derive personalization models from previous queries.
While the amount data per user may still be small, personalization can still be applied by
looking at related users e.g. field of work, country etc. We can then wonder how to build
models so that search at work becomes more similar to commercial search engines using per-
sonalization.

To perform a search, a user writes a search query consisting of up to a few words, and the

11

1. Introduction

search engine returns a search engine result page (SERP) which is a list of related documents.
However, the order in the list might be non-optimal and relevant results might be lost at
the bottom of the list. Personalization can be applied to move documents more relevant to
the user up to a higher rank. Earlier research has shown that the position of a document
has an impact on the “consumers click behavior” in e-commerce (Ursu, 2018). In essence,
presenting relevant documents at positions higher in the list increases the probability that
the user clicks the link. The worst case is that the user abandons the session by simply not
clicking any document.

The task seems deceivingly simple: ranking the documents and returning them in order of
rank gives the optimal solution. While this is true for users with identical preferences, usually
different users expect different results when providing the same search query. The preferences
are heterogeneous as initially described by de Vrieze (2006). A user presenting the search query
“Java” might be interested in:

1. Java coffee,

2. the programming language Java,

3. a vacation to the Java island.

As such, as explained by Yoganarasimhan (2020), the relevance of the presented documents
is user-specific. The framework presented needs to take this into account.

1.1.2 Problem formulation
With this background, the goal of this thesis is to study the effect of personalization using a
reranker. Such a reranker ranks a list of documents in the order most relevant to the specific
user issuing the search query. A schematic example of a reranker is shown in Figure 1.1. It
takes the original list produced by the search engine, processes it through a model, which
returns a new order based on the particular user’s preferences.

Figure 1.1: A schematic example of a re-ranker.

In particular, we can formulate reranking as a binary categorization problem between docu-
ments. Given two documents, we want to predict which documents is more relevant to the

12

1.1 Background

user and rank that one higher. In the case of a whole result list, this is done for all possible
pairs.

In this thesis, we explore and implement a machine-learning framework to power the reranker.
We evaluated the resulting models using multiple metrics with support in literature.

The reranker should operate in real time, thus efficiency is an aspect we consider important.
Efficiency is the notion of returning a good reranking given a list within milliseconds, as
required by IKEA. Since we use large datasets and we need to extract a lot of information,
time complexity should be kept in mind when developing the framework.

To summarize:

• Main goal: explore if search experience at work can be improved using personalization.
In particular, is it possible to create a reranker using ‘learning to rank’ algorithms, a
supervised machine learning problem for ranking documents, to serve this purpose.
It is considered an improvement if relevant documents, for a particular user, appears
higher in a reranked result page compared to the original one.

• As requested by IKEA, the program and model should be accurate, time-efficient and
scalable. We hence set the following sub-goals:

– compare different training algorithms and resulting models,

– compare different machine learning framework,

– implementation is scalable in the sense that it should run in linear time,

– investigate what information the models deem relevant.

1.1.3 Findings
In this thesis, we present a machine learning framework which can be used for reranking.
We first analyzed the state of the art in reranking. From this analysis, we concluded that
the LambdaMART algorithm obtained the best accuracy, while still being efficient. Lamb-
daMART solutions have won many Learning to Rank challenges, such as the ‘YAHOO!
Learning to Rank Challenge (Track 1)’ (Chapelle and Chang, 2011). We thus selected this
algorithm, based on boosted regression trees, for our subsequent implementations.

To implement LambdaMART, we evaluated two state-of-the-art implementations of gradi-
ent boosting machines, XGBoost and LightGBM. A neural network was implemented as
comparison.

In Chap. 3, we describe the LambdaMART algorithm. We then describe the models we
trained using the frameworks XGBoost and LightGBM. These models are used to rerank doc-
uments for personalized search. The full models includes 500+ features and a suggestion how
to prune a full model to avoid overfitting and increase efficiency is further provided.

In this thesis, we used three datasets on which we applied our models: one publicly available
and two from IKEA. To measure their performance, we used the Normalized Discounted
Cumulative Gain (NDCG) metric, Mean Reciprocal Rank (MRR), Average Error in the
Rank of a Click (AERC) and Click Through Rate CTR. For our LambdaMART models,

13

1. Introduction

we observed an improvement in all the metrics. We saw an increase in the main metric
NDCG by 1.3% on the public yandex_dataset from a Kaggle competition, which moti-
vated the validity of our model since a top competitor scored 2.3% using similar labels as
us, on much more data. On the two IKEA datasets, we improved NDCG by 5.2% for one
dataset (entrypoint_dataset), and deemed the other too small to properly evaluate. We
also saw an increase in the other metrics such as MRR, AERC and CTR. In particular, the
LambdaMART implementations outperformed the Neural Network on all datasets.

1.2 Previous Work
Before building a personalization model, it is important to understand when and how to do
personalization. Dou et al. (2007) present a large-scale framework, where the authors show
that personalized search indeed improves search engines. In particular, click-based personal-
ization (i.e. dependent on a user’s click history) is more effective than user-interest or group-
interest personalization. However, not every query benefits equally from personalization.
Some queries might even be harmed. An important notion is click entropy. A query can only
effectively benefit from personalization if different users click on many different results. A
query such as ‘Google’ leads in a large majority to clicks at www.google.com, no matter the
number of users. This is what is known as a ‘navigational query’ and personalization is insuf-
ficient for such queries. This is important to consider when we evaluate the datasets we use
in our thesis.

The notion of ‘learning-to-rank algorithms’ (LTR) is an application of machine learning in
the construction of ranking models, where the goal is to rank documents in a list. Burges
(2010) introduced the theory of LambdaMART, the state-of-the-art machine learning frame-
work used for learning-to-rank problems. This is applicable to personalization since we want
to rerank based on user specific information. The author wrote a concise report about Lamb-
daMART and the algorithms leading up to it. In particular, the mathematical aspect of the
algorithms is discussed. In addition to explaining the mathematical baseline, the author mo-
tivates the machine learning specifics in LambdaMART such as using boosted regression trees
when ranking as well as which metric to use when we evaluate a list of documents. Lamb-
daMART is state-of-the-art in reranking, and we will compare implementations of it in our
thesis. Burges (2010) report is important to understand the algorithms underlying mathe-
matics.

Yoganarasimhan (2020) provides implementation details for LambdaMART and discusses the
implementation of a program which outperformed the winner in Kaggle’s Personalized Web
Search Challenge (Kaggle, 2013). The author discusses how data can be partitioned into ‘past
data’ serving as information on earlier searches by users in addition to train, validation, and
test data. Yoganarasimhan (2020) also presents a baseline of features to use when personaliz-
ing search, many of which are used in this thesis. Since one of the datasets we used is a smaller
version of the dataset used by the author, we have used some of her features, adding index re-
lated features as explained in Section 2.2.3. For the data provided by IKEA, we have extended
these features to utilize the additional information provided. Further, evaluation metrics
are discussed. In particular NDCG (Normalized Discounted Cumulative Gain), ∆CTR@p
(change in click through rate at position p) and AERC (Average Error in the Rank of a Click)

14

www.google.com

1.3 Specification of Contributions

are introduced. These are metrics which the author has collected through a literature study,
which proved their superiority when evaluation Learning-to-rank algorithms. As such, we
will use the same metrics. Lastly, the report analyzes the dataset in the Kaggle competition
and discusses what type of searches can/should be personalized. Further, we use the same
evaluation metrics as the report and analyze the data in a similar way. Once again, this is
because one of our datasets is a smaller version of the data used by Yoganarasimhan (2020).

When XGBoost (Xtreme Gradient Boosting) was released in 2016, it was the state-of-the-
art implementation of LambdaMART. In their paper, Chen and Guestrin (2016) present the
approach used when implementing XGBoost. In essence, XGBoost uses:

a novel sparsity-aware algorithm for sparse data and weighted quantile sketch
for approximate tree learning.

Further, the paper discusses cache access patterns, data compression and sharding. All used to
“build a scalable tree boosting system”. from LambdaMART. This implementation’s Python
API will be used in this report to train our LambdaMART model, since it was found to be
considered state-of-the-art (Ye, 2020).

One disadvantage of XGBoost is that it only handles numerical data, with only experimen-
tal support for categorical values. In particular, the data provided by IKEA contains much
information about users in the form of categorical values. While one-hot-encoding can be
used, an alternative implementation is LightGBM (Ke et al., 2017) which supports categorical
features. It is an improvement on XGBoost developed by Microsoft. In addition to handling
categorical features, it is lightweight with high performance.

Lastly, an alternative family of machine learning algorithms used to learn how to rank are the
neural networks. While training and predicting generally are slow and not used for reranking
Nardini et al. (2022) provide an example where a neural network implementation has been
used for reranking. While not explored in this thesis, we have compared our LambdaMART
implementations to a multi-layer perceptron regressor using sklearn’s neural network pack-
age. This report is thus important for future work since the authors claim their neural net-
work outperforms LambdaMART implementations, which differs from our result.

1.3 Specification of Contributions
The workload was split equally, but each author focused on different aspects. Max suggested
the LambdaMART algorithm, after conducting an initial literature study. Liam suggested
the XGBoost framework and after discussion between the authors, we decided to use this as
our main framework. After suggestions from our supervisor, we also studied LightGBM and
a neural network.

While Max initially wrote code for parsing the dataset, Liam revised and improved it. The
process of revising each others code was present throughout this thesis. However, Liam fo-
cused more on parsing the dataset to the correct format for XGBoost and adding features,
while Max focused on analysis of the dataset and parsing data to a structure for LightGBM.
As before, both authors contributed to each others parts.

15

1. Introduction

Considering the report, Max wrote much of Chap. 1 and 4, while Liam wrote most of Section
2.2. We contributed equally to any chapter or section not mentioned. The entire report was
revised by both of us, and many sections were extensively discussed between us and thus
produced together.

16

Chapter 2

Approach

In this chapter, we describe our approach i.e. all decisions made and the motivation behind
them. This chapter is divided into these following sections:

1. 2.1 where we describe the datasets, their background and motivation for using them,
as well as introducing necessary definitions,

2. 2.2 where we describe the outline of the models, how that datasets and frameworks
where used to create them as well as how to evaluate our models. We also discuss our
implementation of our program.

2.1 Outline and Definitions
In this thesis, we have worked with three separate datasets. Two of them are supplied by
IKEA and the third is used as a baseline to validate our model. This is further discussed in
the preceding section 2.1.1. The datasets are:

1. a publicly available dataset consisting of anonymized data from Yandex, one of eastern
Europe’s largest search engines. This dataset was provided for the Kaggle web search
personalization competition (Kaggle, 2013). We call this dataset the yandex_dataset.

2. At IKEA, we worked on a project involving two platforms EntryPoint and IntraNet.

IntraNet is a search engine for internal documents stored in sharepoint; we call this
dataset the IntraNet_dataset;

17

2. Approach

EntryPoint is an aggregating engine for disparate sources; such as the products and
people databases. Notably, EntryPoint indexes IntraNet, thus they share some
documents. We call this dataset the entrypoint_dataset.

Although these two platforms share some of the documents, they present them in dif-
ferent ways. We have therefore decided to train two different models, one for each
platform. The differences are further discussed in Sects. 2.1.2 and 2.1.3.

The models created from yandex_dataset, intranet_dataset and entrypoint_dataset
are called yandex_models, intranet_models and entrypoint_models respectively.

2.1.1 Why both Yandex and IKEA
While the goal is to improve search at IKEA, the improvements made are speculative in the
sense there is no point for reference of how much search can be improved. By incorporating
data from a personalization competition (Kaggle, 2013), we can compare the performance of
our models to those in the competition. We can therefore get an indication of how well the
model performs. Then, if the model performs well, we posit that we can use the same method
to create a model for the IKEA dataset.

Another issue is that we cannot disclose the IKEA datasets in this report, as they contain
sensitive information. It is therefore essential to include Yandex for the reader.

2.1.2 The Yandex Dataset
The dataset from Yandex contains 27 consecutive days of data from the year of 2011 and is
provided as a .txt file. Exact information about the dates is not disclosed. However, it is
disclosed that the data is sampled from one large city and is preprocessed in two ways:

1. “sessions containing queries with commercial intent detected with Yandex proprietary
classifier are removed”,

2. “sessions with top-K most popular queries are removed. K is not disclosed”. The exact
method of defining sessions used by Yandex is also not disclosed (Kaggle, 2013).

The data is fully anonymized in the sense that queries, URLs etc. have been converted to
anonymous numbers. The data is further sorted by sessions. In total, the dataset contains
34,573,630 sessions.

Table 2.1 shows an example of a session. The first row contains meta-data about the search,
as indicated by the “M”. It tells us about the sessionID (7), which day the session occurred (15)
and the userID (1). In the session, rows with “Q” denotes queries and rows with “C” denotes
clicks. This example consists of the following steps:

1. The user issued query with id 2685901, which contains the terms with ids 1403091,
1576407, and 709728, at the start of the session. Number 0 under column head M
means that the session has just started.

18

2.1 Outline and Definitions

7 M 15 1
7 0 Q 0 2685901 1403091,1576407,709728 19070833,1994676 19070785,1994663 3334821,451714

26466527,2597528 28891144,2834037 46415647,3967156
7807541,943850 68619915,5138944 62948695,4828867 49680334,4165241

7 23 Q 1 2686894 1403353 53533848,4359008 62946524,4828867 3334825,451714
28881052,2834018 56212472,4467930 39918555,3595774
56177047,4466491 28858835,2833991 59532827,4640381 7981226,945625

7 33 C 1 53533848

Table 2.1: Example session from the Yandex dataset.

2. In response ten (URL ID, Domain ID) combinations are provided with (19070833,1994676)
at the top of the list. The query has index 0, indicated by the fourth column.

3. The user does not click any result but instead issues another query with ID 2686894
with term 1403353, 23 time units into the session which produces ten new (URLID,
DomainID) combinations. This query has index 1.

4. Finally, 33 time units into the session, the user clicks URL with ID 53533848 placed at
the top of the list in response to query with index 1.

As we are restricted to run the code on our laptops supplied by IKEA, the full yandex_dataset
will not be used as it requires too much computational power. We thus used a subset of the
full dataset, referred to as the red_yandex_dataset (reduced Yandex dataset) which in-
cludes the first 106 lines of data of the .txt file, containing the yandex_dataset. Table 2.2
shows some statistics about the red_yandex_dataset.

The Yandex dataset contains users, queries, terms, URLs, domains, clicks and sessions. In
addition, a date indicating the day (1 -27) was provided. For sessions, session start-time and in
session time is disclosed but not the time-unit.

Notably, after a query is issued, Yandex only provides data for the first search engine result
page (SERP) since most users do not go beyond the first page.

2.1.3 Datasets: IKEA
Information about the search is collected and stored in the same database for EntryPoint and
IntraNet. In particular, data is collected every time a user triggers an event, which in our case
would be clicking a link. Similarly as in the Yandex dataset, IKEA collects information about
users, queries, documents and clicks as defined in the glossary. Domains and terms can be
extracted. Since we mainly index databases of documents, URLs and documents are used
interchangeably when considering the IKEA datasets. The start of every session and every
click is paired with a UNIX-timestamp. Sessions are reported differently to Yandex since
data is stored when clicking a link at IKEA while Yandex stores data every time a session is
started.

However, Yandex does not disclose its definition of a session. Thus what is considered a
session will differ between datasets. In contrast to Yandex, the only anonymized information
in the IKEA dataset is the userID. While the ID is anonymized, specifications about the user
are not. In particular, the dataset contains the following information about the user:

19

2. Approach

Country: which country the user is located in,

Business Unit: which business unit the user is located in, i.e. if the user works in IT, man-
agement, department store, etc.,

Work Title: self defined work title by the user,

Company: what part of IKEA the user works at and is based on location,

Site: what work site the user is mainly located at e.g. Hubhult-Malmö, Barkarby Store-
Stockholm,

The IntraNet Dataset. IntraNet presents a SERP as a single ordered list of docu-
ments, similarly to that of Google, Yandex, and other commercial search engines. The doc-
uments are stored in SharePoint, a website-based collaboration system, to store, search, and
interact with documents.

One characteristic specific to IntraNet is that of promoted documents. These are documents
added by hand by the developers, providing the most frequently sought information for cer-
tain popular queries. There could be multiple promoted documents, but as a general rule,
there is only one. When a promoted document is present in the SERP, we hypothesize that
users almost always click the promoted document. Due to an inconsistency in the IntraNet
dataset, we could not extract reliable data on the number of clicks on promoted documents.
This does not need to be accounted for it is not considered when making predictions for In-
traNet. However, in the EntryPoint dataset SERPs with one or more promoted documents
resulted in a click on a promoted document 96% of the time.

The EntryPoint Dataset. When a user issues a query in EntryPoint, a list of K
documents is presented. In contrast to IntraNet, EntryPoint presents its results in batches,
where each batch consists of indexed documents corresponding to a certain category. The
category is an important aspect of EntryPoint that heavily influences the user experience.

The results in each category are indexed differently depending on the origin of the document
and several documents are presented for the most relevant categories. If the user clicks “load
more results”, a new search is made and new documents are indexed and added to the list in
the given category. As a general rule, only 3 results are initially displayed in each category.
An example of the structure is presented in Fig. 2.1 and 2.2.

The category “Inside” corresponds to the result from IntraNet. These results, documents and
order, would the same as those provided by a search with IntraNet. Only the number of
documents shown would change. As such, promoted links are also present in EntryPoint.

Table 2.3 shows statistics about the IKEA datasets. We provide this data to give an under-
standing about the size of each dataset, and compare them to each other and the red_yandex_dataset
in Table 2.2. Note that the entrypoint_dataset is contain more users than the intranet_dataset
and tha red_yandex_dataset, but the red_yandex_dataset contains more queries.

2.1.4 Quantities
We introduce some different notations that we will use in the rest of this thesis:

20

2.1 Outline and Definitions

Q : the list of all the queries issued in the dataset, Q = {q1, q2, ...}

Di : all the documents, Di = (d1
i , d

2
i , ..., d

K
i), that appeared as the result of query qi ∈ Q.

Dataset: Number of Users Number of Sessions Number of Queries Number of Unique Queries
Yandex 34,656 212,553 356,682 236,010

Table 2.2: Statistics about the reduced Yandex dataset.
Dataset: Number of Users Number of Sessions Number of Queries Number of Unique Queries
IntraNet 13,814 36,157 36,157 11,846
EntryPoint 57,884 260,596 299,712 50,206

Table 2.3: Statistics about the two IKEA datasets IntraNet and En-
tryPoint.

21

2. Approach

Figure 2.1: Example of result page in EntryPoint for query “Billy”.

Figure 2.2: Example of result page in IntraNet for query “Billy”.

22

2.2 Method

2.2 Method
One of the goals of this thesis is to build a reranking model using supervised machine learning.
To do this, we introduce these essential steps:

1. Partitioning,

2. Labeling,

3. Feature extraction,

4. Training the model.

We will explain each step in detail in the following sections.

2.2.1 Partitioning
As proposed by Yoganarasimhan (2020), the datasets are partitioned into the following sub-
datasets:

1. Past data from earlier sessions by the current user and other users,

2. Present data where we are introducing reranking.

In this thesis, we used the past data in order to make predictions on the present data. This
mimics using search history (past) to make predictions on a new search (present). In other
words, this is called across-session personalization. It is also possible to use present data, i.e.
data from earlier searches within the same session, to make predictions. This is called within-
session personalization. We only consider the across-session personalization which is properly
motivated in Section 4.1, since sessions, in general, contain a low number of queries. Thus,
the past data is the only data used to make predictions.

A supervised machine learning model is a model which learns from a set (usually called the
training set or training dataset) of input-label pairs. The label indicates which group the
input belongs to. After training, where the model learns from the training set, the model
can hopefully predict the label of a new input that it has not trained on (Russell and Norvig,
2016).

To build a supervised machine learning model, the present data was further partitioned into
train, validation and test. Train is prelabeled data upon which the model parameters are in-
ferred. We introduce the notion of overfitting, a condition when the model fails to generalize
test data and instead memorizes the noise of training data. To avoid overfitting, the model
performance in each step of training is evaluated on the validation data. A poor result on the
validation data may indicate overfitting and we cannot expect the model to perform well on
new data. The model is trained on the training dataset, but the model chosen is the one with
the best performance on the validation data. As both the train- and validation datasets are
used in model selection, the model is finally evaluated on a separate dataset called the test
data (Russell and Norvig, 2016).

23

2. Approach

Figure 2.3: Example of data split.

In Figure 2.3, an example of the partitioning is provided. Firstly, past data is extracted (ses-
sions 1, 2, 4, 6). When training the model, session 3 is used. Predictions are only made using
past data i.e. sessions 1, 2, 4 and 6. In other words, these are the only sessions used to extract
features. Features are further discussed in Section 2.2.3. Sessions, 5 and 7 cannot be used to
make predictions.

When validating the model, session 5 is used for evaluation, and sessions 1, 2, 4, and 6 can
still be used to extract features. Sessions 3 and 7 cannot be used to extract features. Similarly,
session 7 is used for testing the model, and sessions 3 and 5 cannot be used to extract features.
In general, many more users and sessions are present in each data set.

Similarly to Yoganarasimhan (2020), each session happening before day 25 is considered past
data for the red_yandex_dataset. All users with sessions occurring on days 25 to 27 are
split into train-data (60%), validation data (20%) and test data (20%). The partitioning is
done with respect to users.

For the entrypoint_dataset and the intranet_dataset, the partitioning between past
and present data is 85% and 15% respectively, a similar division to that of the red_yandex_dataset.
Had more time been given, finding the optimal threshold should be explored. The partition-
ing for train, validation and test in the present data is 60%, 20% and 20% respectively. As
with red_yandex_dataset, the partitioning is done with respect to users.

24

2.2 Method

2.2.2 Labeling – Relevancy of a Document

Since the reranker is a supervised machine learning problem, the model is created from la-
beled training data consisting of a set of training examples. During training, the model learns
to rank documents. As we want to find documents containing relevant information, the rel-
evancy is an appropriate label for the document. We found that there are two approaches to
do this:

Click-based: If a document is clicked it is considered relevant,

Dwell-time-based: An extension of the click-based approach. In addition to clicks, how
much time the user spends on a document is considered. (This method is further ex-
plained in Section 5.2.1).

As mentioned in 2.1.1, we wish to compare the performance of our Yandex models to those
in the competition. The one we are comparing to, infers a dwell-time-based approach, while
we use a click-based approach due to its simplicity. Since we compare the result (prediction
accuracy) of the two models and not the models themselves, the approaches can be different.

For the click-based approach, assume a document d has relevancy r. Then:

r = 0 : The document is irrelevant if it has not been clicked,

r = 1 : The document is relevant if it has been clicked.

2.2.3 Features

Now that we have defined relevancy a question arises: what makes a person click a document
in the first place? Is it because the user has clicked it in the past? Is it related to the user’s
field of work? Or simply that it happens to be high on the SERP? To deduce what makes a
document relevant, information about that document, query, and user is extracted to create
features. A feature xi j is, in essence, an individual measurable piece of data. While usually
numeric, they can be categorical. A categorical feature is a feature x ∈ SwhereS is a set of values
which does not need to be ordered e.g. blood type where x ∈ {A, B, AB, 0}. Examples of
categorical features in this report are company, country, weekday, etc. The features extracted
from a single document, come in the form of a feature vector xi = (xi1, xi2, . . . , xiM) where M
is the number of features. In order to find the most important features, defined in Section
2.2.6, we want M to initially be as large as possible and then we will prune the model if some
features prove non-important. To prune the model is an important step, as we want to avoid
overfitting which is discussed in Section 2.2.

By reconnecting to Fig. 1.1, we can extend our understanding of the reranker. In Fig. 2.4, we
illustrate intermediate steps in the reranker such as feature extraction. The figure illustrates
how the kth document dk

i ∈ Di , is mapped to a feature vector xk
i = (xk

i1, x
k
i2, . . . , x

k
iM).

25

2. Approach

Figure 2.4: Shows how documents have to be converted into fea-
tures, to format of the machine learning model.

2.2.4 Feature Selection
In this section, we will explain which features were used as input to our model. Most features
are derived from a function we call EventListings(θ1, θ2, θ3). Conceptually, this function
produces a feature corresponding to the count of an event (θ1) given a specific subset in the
dataset (θ2) for a document or a superset of a document (θ3). An event is for example a click
or an appearance. This function was inspired by Yoganarasimhan (2020).

Tracked Events

Given a search session and a result page in past data, we collect information about certain
events during that session. Let θ1 be such an event. The possible values for the θ1 argument
are:

Shows: how many times the document has appeared in a result list (SERP),

Weighted shows: collecting the total sum 1
index , where index + 1 is the position in the result

page where the document appeared,

26

2.2 Method

Skips: how many times the document has been skipped i.e. has a document beneath it been
clicked but not this one,

Clicks: how many times the document has been clicked,

Unique clicks: how many times the document has been uniquely clicked in a result page i.e.
a document can only be clicked once per result page,

Weighted clicks: adds 1 if it is the first document clicked chronologically on a result page, 1
2 ,

if is the second document, 1
3 , if it is the third, etc.

Now assume that document d1 has been clicked 10 times and document d2 200 times. Then
it would seem that document d2 is more relevant than document d1. However, assume that
d1 has appeared (number of shows) 10 times and d2 1000 times. Then it would seem that
document d1 is more relevant than d2 since it has been clicked every time it appeared. It
would therefore be relevant to also consider the count of the tracked event divided by the
number of appearances (Shows). We thus let θ1 take the value of the following ratios in addition:

Weighted Shows Rate : Weighted shows
Shows

Skip Rate : Skips
Shows

Click Rate : Clicks
Shows

Unique Click Rate : Unique clicks
Shows

Weighted Click Rate : Weighted clicks
Shows

Including the events above, the dimension of θ1 i.e. the total number of events are 11.

Subgroups

The events mentioned above can be counted in the entire past data. However, we assume
that users related to each other can have similar preferences. Therefore, it is also relevant to
consider events in subsets of the dataset. For example, it is interesting to see how coworkers
related by country, business unit, etc. have acted. Let θ2 denote the different ways users can
be related.

The different subgroups are:

User related subgroups:

UserID defined as in Section 2.1.3,

Country: defined as in Section 2.1.3,

Business unit: defined as in Section 2.1.3,

Company: defined as in Section 2.1.3,

Job-title: defined as in Section 2.1.3,

27

2. Approach

Site: defined as in Section 2.1.3,

Session related subgroups:

Day: which weekday it is, e.g. Monday, Tuesday etc,

Query related subgroups:

Query: given this specific query,

Terms: one subgroup for each of the terms (term1 - term4) in a query. For queries
with more than four terms, we disregard any term past four,

Others:

UserID and Query combination: when this user has issued this query previously,

Global: considering the entire past dataset.

Counting the different subgroups: user related (6), session related (1), query related (5), oth-
ers (2) we have that dim(θ2) = 14. We remind the reader that this is only the case for
the entrypoint_dataset and intranet_dataset. The yandex_dataset does not con-
tain information about the user, except the user ID. For Yandex we hence have the differ-
ent subgroups: user related (1), session related (1), query related (5), others (2) we have that
dim(θ2) = 9

Superset of documents and Index related features.

The documents on a SERP are the results which can be can be interacted with and tracked.
While information about the documents is relevant, we assume that it is also relevant to study
supersets for documents, in our case the domains of a document similarly to Yoganarasimhan
(2020), but also the category as introduced in Section 2.1.3. These supersets are important. If
a document has no prior history, we might be able to make predictions based on the superset
the document belongs to. By introducing supersets, related documents will influence the
prediction of another, possibly unseen, document.

Click Bias In this thesis, the model is evaluated on the Test-dataset. The model is evalu-
ated under the assumption that the user issuing the query knows which information he/she
is looking for, i.e. that the same document is to be clicked no matter the ranking. This is not
necessarily true, since the order in which the documents are displayed probably influences
the decisions of the user. For example, users have a bias and tend to click on documents
higher in the SERP regardless of relevancy! It is therefore reasonable for the model to try
and capture this behavior by introducing index related features. These features serve the pur-
pose of predicting which document is to be clicked, only considering where the document
appears on the result list. However, since users are more likely to click on documents higher
in the list (and by including index-related features) it is more likely that reranked list will be
more similar to the original order. In other words, by introducing index-related features we
somewhat trust the original order provided by the search engine and give less weight to our
reranker. As such, we let

θ3 = {category, domain, document, index}.

28

2.2 Method

The relation between these supersets is illustrated in Fig. 2.5.

Figure 2.5: Example of supersets. This is true for every category ex-
cept for promoted which rather is an indication if it is high on the
list.

Summary. Now that θ1, θ2 and θ3 have been defined, the number of features can be
calculated. As we are considering all combinations of the parameters θ1, θ2 and θ3, the to-
tal number of features the can be extracted using EventListing(θ1, θ2 and θ3) is dim(θ1) ×
dim(θ2) × dim(θ3), which is:

11 × 14 × 4 = 616

For IKEA and
11 × 8 × 3 = 264

for Yandex. A few examples of function calls are given below.

EventListing(clicks, global, document = d) calculates the number of times d has been clicked
in total in the global past dataset.

EventListing(shows, user ID = i, document = d) calculates the number of times document
d has appeared in the result page of the user with userID=i.

EventListing(clicks, country = c, domain = o) calculates the number of times users in coun-
try c has clicked on documents with domain i.

EventListing(skips,weekday = w, category = c) calculates the number of times a document
in category c has been skipped on weekday w.

EventListing(Click Rate, query = q, index = i) calculates the number of times index i was
clicked divided by the number of result pages of at least length i, in response to query
q.

29

2. Approach

Other features

SERP-rank: To further capture user behavior, and the likelihood of a document being clicked
just by its location in the result page, we introduce another index-related feature SERP-
rank Yoganarasimhan (2020).

Categorical features: For LightGBM, it is possible to include categorical features as defined in
Section 2.2.3. These features can directly be included into the model. The drawback is
that categorical features cannot be compared by a numerical value (lower or higher) and
is instead compared in the sense that if two values are equal or not. If the dimension,
i.e. number of possible values, is too large for a certain feature, two values are unlikely
to be equal. Therefore, the dimension of the feature has to be reasonably small to
avoid overfitting. The dimension depends on the size of the dataset. The categorical
features included are country, site, company, job title, business unit and weekday and
are included to predict relevancy given related users. It is worth noting that this is only
valid for LightGBM with the IKEA datasets.

Removing redundant features directly. We have that EventListings(weighted shows
shows , θ2, index)

will directly produce SERP-rank no matter the value of θ2 and all of these features are there-
fore removed directly. This is because the weight of a certain index always is the same, since
it always has the same position. For example

EventListings(
weighted shows

shows
, θ2, index = 2) =

1
1+2 +

1
1+2 + ... +

1
1+2

1 + 1 + ... + 1

=
L · 1

1+2

L · 1

=
1

1 + 2
= SERP-rank(index = 2)

In addition, we remove EventListings(weighted shows, θ2, index) since

EventListings(weighted shows, θ2, index = 2) =
1

1 + 2
+

1
1 + 2

+ ... +
1

1 + 2

= L ·
1

1 + 2
= L · SERP-rank(index = 2)

which is SERP-rank times a constant. Thus, the maximal number of features for our IKEA
models is:

616 + dim(SERP-rank) − 2 · dim(θ2) = 616 + 1 − 2 · 14 = 589

when considering XGBoost, plus 7 categorical when considering LightGBM. For Yandex this
is

264 + dim(SERP-rank) − 2 · dim(θ2) = 264 + 1 − 2 · 9 = 249

In comparison, a top kaggle competitor included 293 features (Yoganarasimhan, 2020).

30

2.2 Method

2.2.5 Model Outline
We wish to create a model that predicts the relevancy of a document given a feature vector.
In essence, this can be reduced to finding a scoring function f : RM → R that maps the feature
vector xi ∈ RM to a score si , indicating the relevancy of the document. The goal is to find
the optimal scoring function fopt, i.e. the optimal model weights, ωopt

i , that minimize the cost
function C(ω1, ω2, . . . , ωN ; X, y), where X = {x1, x2, ...} and y = {y1, y2, ...} are all the feature
vectors and all the relevancy labels respectively. Specifically, X = Xtrain and y = ytrain. The
outline of the scoring function and how it is derived is presented in Section 3.

2.2.6 Model Selection
Now that we have defined the model outline, we need a machine learning algorithm to train the
model and a machine learning framework that implements it. The algorithm, LambdaMART,
is explained in detail in Section 3.

During our research, and after consulting our supervisor, we concluded that the state-of-
the-art LambdaMART implementations (Ye, 2020) to be compared are; XGBoost (Chen and
Guestrin, 2016) and LightGBM (Ke et al., 2017). A multi-layer perceptron regressor using
sklearn’s neural network package was further implemented for comparison. The resulting
models will be used to determine which family of algorithms (LambdaMART or Neural Net-
work) is best to implement the reranker for IKEA. In the case of LambdaMART, we will
compare the two implementations. The reasoning for comparing two different implemen-
tations of LambdaMART are different, in particular the regression trees. Regression trees are
explained in detail in Section 3.5.1.

XGBoost

XGBoost is an open-source library and well documented. It is an open-source library that im-
plements machine learning algorithms under the gradient boosting framework. In particular,
it is an optimized distributed gradient boosting library that is highly efficient, flexible, and
portable. It was released in March 27, 2014 (XGBoost, 2021).

LightGBM

LightGBM is another gradient boosting framework. It shares a lot of XGBoost’s advantages and
is similarly designed to be distributed, efficient, accurate, and scalable (LightGBM, 2021).
One important advantage is that supports categorical features.

Neural Network

XGBoost and LightGBM implement the LambdaMART algorithm, but we train neural net-
work in a different way and is included to compare the results of the models derived from the
LambdaMART implementations. The neural network train on single documents, trying to

31

2. Approach

predict the label of that particular document. We hypothesize that we should use the Lamb-
daMART algorithm to train our models, but if these models are proven to be worse i.e. less
computationally efficient and less accurate, then there is no need to use LambdaMART and
we should consider the neural network instead.

Feature Importance

For the models trained by XGBoost and LightGBM, it was possible to extract the feature im-
portance. This is a measurement of how important the model deems certain features. Specifi-
cally, it measures gain: the improvement in accuracy brought by a feature. To fully understand
gain as a metric, one should first understand regression trees introduced in Section 3.5.1. The
Gain implies the relative contribution of the corresponding feature to the model calculated
by taking each feature’s contribution for each tree in the model. There are three main factors
contributing to the feature’s importance:

Correlation: how a specific feature correlates with the relevancy of the document. High
correlation means high feature importance,

Feature correlation: how much correlation there is between features, which means that highly
correlated features contain the same information and only one of them will have large
features importance,

Existence: since most of the features are countable, if there are few instances where this
feature has been incremented it is too specific and hence not reliable.

Model Pruning

When developing our models, as much information as possible was extracted and included in
the model. Depending on the dataset, this may result in overfitting since there is not enough
data to support the number of features. A certain feature combination may correspond to
a single sample in the training set which may lead to poor model performance on new data.
As such, we would like to evaluate a pruned model where many less important features have
been removed.

By introducing feature importance as a method of scaling the model, non-important features
can be removed while preserving most of the model accuracy. This method was implemented
due to its simplicity. There exist more sophisticated algorithms, such as “χ2-pruning” (Rus-
sell and Norvig, 2016) or the “Backwards-Elimination Wrapper” approach (Yoganarasimhan,
2020), but due to lack of time we very not able to implement such an algorithm. Using the
feature importance, we include the Npruned features, in order, corresponding to 95% of gain.
Had more time been given, other thresholds e.g. 90% would have been explored.

If the dataset is not big enough, pruning the model in this way might improve performance
due to overfitting. If the dataset is sufficiently large, removing features may decrease model
accuracy even if the feature importance is low. However, the lowered training time and im-
provement in processing speed might support the loss in accuracy, especially when consider-
ing customers’ lack of patience when waiting for search results.

32

2.3 Evaluation Setup

2.3 Evaluation Setup
We are evaluating our models on three different sets of result pages:

Original: The original result pages without any reranking,

Prediction: The result pages when reranked using the machine learning model,

Optimal: The result pages that have been optimally reranked such that the most relevant
document is highest in the list, the second most relevant document is second to highest,
etc.

Optimality

In this thesis, we have a limited way of labeling documents (0 and 1). Therefore, it is im-
portant to note that there are often multiple ways to create the optimal list. Consider the
example in Fig. 2.6, where there are two ways to create the optimal list. Thus, an important
distinction to make is that the optimal list is decided from label ordering not document ordering.
In other words, there can be multiple optimal ordering of lists. As long as no document is or-
dered above a document of higher relevance, the list is optimal. Hence, the internal ordering
of documents with the same label is not important.

Figure 2.6: An example showing two different ways to create an op-
timal list

Relativity of Predicted Values

We are interested in the reranking of lists, more so than the actual prediction of whether a
document is relevant or not. Hence, the predicted values of the model are important in a
relative sense looking at the result page, not the value by itself. An example illustrating this is

33

2. Approach

shown below in Fig. 2.7. In these two examples, the scores are different but the result is the
same. It is, therefore, appropriate to evaluate on the result page, not single documents.

Figure 2.7: An example how reranking is relative to the result page.
The two rerankings are equally good, but the scores produced are
different.

2.3.1 Evaluation Metrics

NDCG and Other Metrics

To evaluate our models, we first introduce the notion of discounted cumulative gain (DCG)
(Burges, 2010), which is an evaluation metric for lists of documents, in this case, result pages.
Given a list of K documents, where the ith document di has relevance ri , DCG is defined as:

DCG@K =
K∑

i=1

2ri − 1
log(1 + i)

.

A large DCG indicates a well-ranked list, since documents with high relevance is placed at
the top of the list. The main advantage with DCG is that an error towards the bottom of
the list is less penalized than an error towards the top of the list due to the denominator i.e.
we give more importance to documents towards the top of the list, which is advantageous
(Burges, 2010). Another advantage is that DCG handles non-binary relevance levels i.e. ri ∈

{0, 1, 2, ..., n}.
DCG is however not relative to the list. Two optimally ranked lists may get different DCG
scores. Fig. 2.8 visualizes this. To correct this, we introduce the normalized version as

34

2.3 Evaluation Setup

NDCG@K =
DCG@K

maxDCG@K
,

where maxDCG@K is the DCG@K for the optimally ranked list.

Figure 2.8: A few examples displaying the difference between DCG
and NDCG of optimally ranked lists. All lists in the figure are opti-
mally ranked.

It is reasonable to use NDCG as our main evaluation metric, since this will be the metric
used when traing our model. This is further explained in Chapter 3.

In addition to NDCG, we also introduce Average Error in the Rank of a Click (AERC), Mean
Reciprocal Rank (MRR) and Change in Click-Through Rate by Position (∆ CTR) as proposed by
Yoganarasimhan (2020). These metrics are also important since they serve as neutral metrics
which no model uses during training. This is particularly important when comparing to the
neural network, which does not explicitly train on NDCG.

Mean Reciprocal Rank

Mean reciprocal rank (MRR) measures at what index the first click appears on average. For
example, if the first click on average appears at index 0 the MRR would be 1

0+1 = 1, at index
1 the MRR would be 1

1+1 = 0.5, at index 2 the MRR would be 1
2+1 = 0.33 etc. Averaging

over all lists gives a metric of how far up the list the user clicks. This metric was suggested
by our supervisor, and is included since we consider it simple and intuitive.

Average Error in the Rank of a Click

In a well-ranked list, clicks will occur towards the top of the list. In a poorly ranked list,
clicks will instead happen towards the bottom (if they happen at all). Thus, measurements
that captures the position of clicks are often considered when evaluating “recommendation-
systems” (Ricci et al., 2011). Presenting URLs is such a system since we recommend results

35

2. Approach

in response to a query. In particular, we would like a metric that captures the difference
between the optimal list and a reranked list. In other words, a metric that captures the error
in the rank of clicked documents.

AERC is such a metric. First, we introduce ERC for a document dk
i in a list Di . This metric

calculates the difference in position for a document dk
i in Di and a completely optimized list

D∗i . Mathematically:

ERC
(
dk

i ,Di
)
=


∣∣∣p(dk

i ,Di) − p(dk
i ,D

∗
i)
∣∣∣, if dk

i has a relevancy label different from 0
0, otherwise,

where p(dk
i ,Di) is the position of document dk

i in list Di . AERC is then the average ERC
over the entire list of documents;

AERC(dk
i ,Di) =

∑
dk

i ∈Di ERC(dk
i ,Di)∑

dk
i ∈Di 1

(
r(dk

i) ̸= 0
) ,

where 1
(
r(dk

i) ̸= 0
)
= 1 if and only if r(dk

i) ̸= 0 i.e. the relevancy of dk
i is different from 0.

Considering Fig. 2.6, we notice that a document has to be moved three spaces to create the
optimal list.

Change in Click-Through Rate by Position

Click-through rate (CTR) simply measures how often users click at certain positions in a
list. The metric is often important for firms (Yoganarasimhan, 2020) since it measures how
often users click at top positions i.e. how often relevant information appears towards the top
of the list. A model that improves CTR towards the top of the list, at the expense of CTR
towards the bottom of the list is a good algorithm for our problem. Thus, we would like to
measure the change in CTR. Mathematically we introduce ∆CTR@p as the change in CTR
at position p between a list D and a re-ranked list Dr . The metric can also be extended to
only consider high definition clicks (relevancy r > 1) as ∆HDCTR@p.

Note that for the entire list the CTR is always unchanged i.e.
∑K

p=1 ∆CTR@p = 0, which is
why, we need to consider ∆CTR@p for each p separately.

2.4 Implementation

In this section we discuss our implementation, what is supplied directly from IKEA and what
is supplied by a third party. For the IKEA, all of the implementation are done by us except
the data sampling. For Yandex, the implementation is done by us except data sampling and
the initial parsing.

36

2.4 Implementation

2.4.1 Dictionaries
As mentioned in Section 2.2.3, we are collecting a lot of information to make the model
as good as possible. We, therefore, need an efficient data structure to support writing and
reading, such that data can be efficiently stored, retrieved, and updated. Dictionaries in python
are hash-tables and serve this purpose.

2.4.2 Implementation steps

Step 1: Parsing

As data is given in a somewhat different format for the red_yandex_dataset and the two
IKEA datasets, the parsing is different but the resulting structure after parsing is the same.
To collect data efficiently, we use layered Python dictionaries. The structure of col-
lected data after parsing is illustrated in Fig. 2.9. As we are iterating through each row of
the DataFrame and doing a fixed number of iterations, the parsing is done in linear time
complexity.

For Yandex, a pre-written parser from another Kaggle-competitor on GitHub was used (Kaggle,
2014), such that we get a user-dictionary, mapping each userID to the corresponding sessions.

For IKEA, the initial parsing is done using pandas DataFrame with the function read_csv().
DataFrames is convenient since it accesses a certain part of data and removes corrupted data.
Since there is a column stating the environment in which the data was collected, we can re-
move data not relevant to the model. There are three different environments: production
(EntryPoint), IntraNet, and testing. Since we are creating separate models for EntryPoint
and IntraNet the relevant data can easily be extracted using DataFrame.loc. When the
non-relevant information has been removed, it is converted into a user-dictionary similar to
that of Yandex using our own implementation.

Step 2: Split

For Yandex we use the provided information about which day a session occurred to partition
data into past (1-24) and present (25-27). For the present dataset, the unique userID’s where split
into train (60%), validation (20%) and test (20%) set using train_test_split from sklearn.

For the entrypoint_dataset and the intranet_dataset, we use 85% of samples as past
data and the remaining 15% as present data, as discussed in Section 2.2.1. The partitioning of
present data into train, validation, and test was done the same way as for red_yandex_dataset
and intranet_dataset.

Step 3: Preprocessing

To make feature collection as efficient as possible the data was preprocessed before the actual
feature extraction. Without preprocessing, it is possible for all documents to be involved
in the feature extraction of a single document. Thus, the time complexity for the feature

37

2. Approach

extraction of a single document would be O(Dpast) where Dpast are all documents in the past
dataset. By introducing preprocessing, the feature extraction of a single document is done in
constant time. This improves the efficiency of the program.

During preprocessing, every document in Dpast is iterated. The features collected are those
mentioned in Section 2.2.4. The time complexity of the preprocessing is O(kmax · Qpast),
where Q is the number of queries issued in the past data and kmax is the max number of
results found on a result page. Since kmax is constrained and in general small (< 12) the time
complexity is simply O(Q). The reasoning for why a linear program is necessary, is that in
our initial, quadratic implementation the program would run for around 30 min for 10, 000
documents while the linear implementation now runs around 10 seconds. This also improves
the scalability of the program, as requested by IKEA.

Step 4: Creating Features

During preprocessing, features are saved in dictionaries such that the can be fetched in con-
stant time. For a single document we extract M features and the total time complexity is
O(M · Dpresent) where Dpresent is the number of documents in the present data. The features
for every document in train, validation and test are saved in the matrices X_train, X_valid
and X_test respectively. The labels are saved as y_train, y_valid and y_test.

Step 5: Creating Models

For XGBoost, the models are trained using xgboost.core.Booster.train with (y_train,
X_train) and (y_valid, X_valid). The parameters are the following:

• eta (learning rate): 0.1,

• objective: ‘rank:ndcg’ (uses LambdaMart introduced in Section 3)

We made a prediction using xgboost.core.Booster.predict and X_test and it was
evaluated against y_test.

For LightGBM, the models are trained using lightgbm.sklearn.LGBMRanker.fit with
(y_train, X_train) and (y_valid, X_valid). The parameters are the following:

• eta (learning rate): 0.1,

• objective =‘lambdarank’,

• metric = ‘ndcg’,

• boosting_type =‘dart’,

• importance_type = ‘gain’

We made a prediction using lightgbm.sklearn.LGBMRanker.predict and X_test and
it was evaluated against y_test.

38

2.4 Implementation

Figure 2.9: Diagram showing the layers of data. Red blocks means
that the information is specific to IKEA.

39

2. Approach

40

Chapter 3

“Learning-to-Rank” Algorithms

In the previous chapter, we introduced the concept of features, labels and the goal of find-
ing the optimal model i.e. the optimal model weights, ωopt

i . As mentioned in Section 1.2,
the family of algorithms specifically designed to create ranking models are called learning-
to-rank-algorithms (LTR). In this thesis, we have used a state-of-the-art LTR called Lamb-
daMART. Implementations using LambdaMART have won multiple learning-to-rank com-
petitions such as the ‘YAHOO! Learning to Rank Challenge (Track 1)’ (Chapelle and Chang,
2011). To understand this algorithm, we first present its predecessors RankNet and Lamb-
daRank. Most of the theory is based on the work of Burges (2010).

3.1 Introduction
For a reranker, we assume that we have a search engine that, given a query, will return a list
of the K first documents, DK

i = (d1
i , d

2
i , ..., d

K
i). In this thesis, choosing K as the number of

documents displayed on the first page will suffice. As presented by Yoganarasimhan (2020),
this is a reasonable assumption since most users do not click on a page beyond the first one.
To simplify our notation, we will denote DK

i = Di .

3.2 RankNet
RankNet lays the groundwork for LambdaRANK and consequentially LambdaMART, in
particular the cost function. As mentioned in Section 2.2.5, we want to find the optimal
scoring function f : RM → R that maps a feature vector to a score. For RankNet, f is an
arbitrary C1 function. Assume di and d j are two documents in the same result list D. We

41

3. “Learning-to-Rank” Algorithms

denote di ▷ d j as the case where document di is more relevant than d j , i.e. that document di
should be ranked higher than d j . The probability is mapped via a logistic function as:

Pi j ≡ P(di ▷ d j | f , xi, x j , σ) =
1

1 + exp
(
− σ

(
f (xi) − f (x j)

)) ,
=

1
1 + exp

(
− σ(si − s j)

) ,
where σ is the shape parameter. We define Pi j as the observed probability and it is defined
as follows:

Pi j =


1, if di is more relevant than d j ,

0, if d j is more relevant than di,

0.5, if di and d j are equally relevant.

We hence can define the likelihood of our model, given di and d j , as:

L(di, d j) = PPi j
i j · (1 − Pi j)1−Pi j ,

Instead of maximizing the likelihood of our model given the data, we can instead minimize
the negative log-likelihood of our model. We hence define the cross-entropy function (cost
function) as:

C(di, d j) = − log L(di, d j) = −Pi j log Pi j − (1 − Pi j) log(1 − Pi j) (3.1)

hence we have that

C =


− log Pi j , if Pi j = 1
− log (1 − Pi j), if Pi j = 0
− 1

2 (log Pi j + log (1 − Pi j)), if Pi j = 0.5.

The cost function penalizes deviation in the output probabilities Pi j from the observed prob-
abilities Pi j .

In a labeled training data set, Pi j is known. As such, we can introduce:

Pi j ≡
1
2

(1 + Si j) (3.2)

where

Si j =


1, if di is labeled as more relevant than document d j ,
−1, if d j is labeled as more relevant than di ,
0, if the documents have the same label.

Combining Eq. (3.1) and Eq. (3.2), we arrive at:

C(di, d j) = C =
1
2

(1 − Si j)σ(si − s j) + log
(
1 + exp

(
− σ(si − s j)

))
42

3.3 LambdaRank

where we notice the following symmetry.

Si j = 1 =⇒ C = log
(
1 + exp

(
− σ(si − s j)

))
but

Si j = −1 =⇒ C = log
(
1 + exp

(
− σ(s j − si)

))
.

Finally, the gradient of the cost function Eq. (3.1) is constructed as

∂C
∂si
= σ

(
1
2

(1 − Si j) −
1

1 + exp
(
σ(si − s j)

)) = −∂C
∂s j

(3.3)

The model weights {ωi}i=1,...,N are updated using gradient descent yielding:

ωk ← ωk − η
∂C
∂ωk
,

← ωk − η
(
∂C
∂si

∂si

∂ωk
+
∂C
∂s j

∂s j

∂ωk

)
,

(3.4)

where η > 0 is the learning rate parameter. We can factorize Eq. (3.4) using Eq. (3.3) yielding:

∂C
∂ωk

=
∂C
∂si

∂si

∂ωk
+
∂C
∂s j

∂s j

∂ωk

= σ

(
1
2

(1 − Si j) −
1

1 + exp(σ(si − s j))

)(∂si

∂ωk
−
∂s j

∂ωk

)
= λi j

(∂si

∂ωk
−
∂s j

∂ωk

)
where we in the third equality define:

λi j ≡ σ

(
1
2

(1 − Si j) −
1

1 + exp(σ(si − s j))

)
. (3.5)

Here, λi j is the gradient of the cost with respect to the scores and is important for future
improvements. These improvements are discussed in the upcoming sections.

3.3 LambdaRank

3.3.1 Introducing NDCG in RankNet
When considering two documents in RankNet where the relevancy ordering is wrong, they
are updated equally in each step. This means that RankNet is designed to minimize the number
of inversions between documents with different labels (relevancy) and is not designed to take
user behavior into account. To improve ranking, we introduce NDCG when training our
model.

43

3. “Learning-to-Rank” Algorithms

The crucial observation to improve RankNet is that we do not need the value of the cost
function, only the gradient. If we have computed the gradient, we can simply model the cost
with respect to the model scores λ. LambdaRank includes NDCG as a metric, which makes
it an improvement over RankNet. Imagine there is a utility function C where we modify λi j
in Eq.3.5 by multiplying the size of the change in NDCG produced by swapping the place of
the two documents di and d j , denoted

∣∣∣∆NDCGi j
∣∣∣:

λi j ≡ σ

(
1
2

(1 − Si j) −
1

1 + exp(σ(si − s j))

)∣∣∣∆NDCGi j
∣∣∣. (3.6)

By multiplying with
∣∣∣∆NDCGi j

∣∣∣ it proven empirically that this maximizes NDCG. For the
proof the is encouraged to read Burges (2010, page 9).

3.4 Speeding up LambdaRank
In the previous sections, we introduced λi j which, given two documents, can be seen as forces
moving the documents di, d j up or down by increasing or decreasing their predicted rele-
vance. Here, λi j is computed for all possible pairs in the list di, d j ∈ D. Let I by the set of all
such pairs (di, d j) where i ̸= j . Since each pair only needs to be regarded once, we constrain
I to only include pairs where di ▷ d j . In the case where di and d j have the same relevancy,
we have that |∆NDCGi j

∣∣∣ = 0 and therefore does not need to be included in I . With this
restriction, for a pair (i, j) ∈ I we have that Si j = 1 and derive the following from Eq. (3.6):

λi j =
−σ

∣∣∣∣∆NDCGi j

∣∣∣∣
1 + exp

(
σ(si − s j)

) . (3.7)

For a given document di , we can accumulate the λi j ’s to get how much the document should
be “moved” in total:

λi =
∑

j:{i, j}∈I

λi j −
∑

j:{ j,i}∈I

λi j . (3.8)

The interpretation of Eq. (3.8) is thus the sum of Eq. (3.7) for swapping di with any docu-
ment d j that has a less relevant label minus the sum of Eq. (3.7) for every document d j that
has a more relevant label. As mentioned by Burges (2010), summing contributions from all
pairs, then doing the update leads to significant speedup in training since weight update is
expensive.

3.5 Multiple Additive Regression Trees (MART)
The gradient descent used so far can be interpreted as an arbitrary machine learning model.
However, LambdaMART combines LambdaRank with multiple additive regression trees (MART)
Burges (2010). It uses gradient boosted regression trees with a cost function derived from Lamb-
daRank to order any ranking situation.

44

3.5 Multiple Additive Regression Trees (MART)

3.5.1 Regression Trees
A regression tree is a directed tree graph that processes a data-point, consisting of a feature
vector xi and a label yi , until it is placed in a leaf node (a node without children) with the
purpose of predicting the label yi .

At each non-leaf node, the tree considers one feature xi j ∈ xi and compares it to a threshold
t j . If t j < xi j , the data-point is passed to the left child. Similarly, if t j ≥ xi j it is passed to the
right child. The process is repeated until the child is a leaf node. The value corresponding
to that leaf will be the predicted value of xi . What features and thresholds to use in the tree
are decided during training, where every data point is eventually assigned to a leaf node. An
example of a regression tree is provided in Figure 3.1. Note that trees, in general, have large
depths, but are kept small in this example for the sake of clarity.

Figure 3.1: Example of a regression tree. Let xi = (f 1 = xi1, f 2 =
xi2, .., f M = xiM), be a data-point passed is passed through the tree
from the root node. For example, let xi1 ≥ t1 t1 and xi4 < t4, then
the predicted value would be val2.

The trees are built different for XGBoost and LightGBM and there reader is encouraged to
read XGBoost (2021) and LightGBM (2021) for further detail. It is important that this is the
second notable difference between XGBoost and LightGBM, the first being the support of
categorical features. This further validate the need to investigate and compare the results
models of the two frameworks.

3.5.2 MART
MART is a class of algorithms that can be trained for a general loss functions using regression
trees. Similar to regular regression trees, it maps a feature vector xi ∈ RM to a score si ∈ R.
During training, MART builds many trees, where each new tree built improves upon the
previous ones. The goal is to minimize a differentiable loss-function L and with each tree,
the output takes a small step towards an optimal output value for the given input. The general

45

3. “Learning-to-Rank” Algorithms

structure for the output can be written as

FT (xi) =
T∑

n=1

αn fn(xi). (3.9)

Here fn(xi) andαi corresponds to the value produced by the ith regression tree and the weight
associated with it. But how does MART minimize L? First we initialize the model as

F0(xi) = arg min
γ

n∑
i=1

L(yi, γ) (3.10)

to some constant value. When F0(x) has been initialized, we start the iterative process of
building regression trees. This is done for m = 1 to T , where T is the number of trees to
build. In this rapport the number of trees built chosen are 100, as default for LightGBM
LightGBM (2021).

In each step, we first compute the pseudo residuals:

rim = −

[
∂L

(
yi, F(xi)

)
∂F(xi)

]
F(x)=Fm−1(x)

, for i = 1, . . . , n. (3.11)

Now the new tree is built using the pseudo-residuals i.e.the training set {(xi, rim)n
i=1}. Worth

noting is that the tree hence models gradients of the cost-function with respect to the model scores.
In particular, the model scores is that of the “latest model” e.g. for the first iteration F(x) =
Fm−1(x) = F0(x).
For each leaf l, in the new tree, we compute the multiplier γlm by solving:

γlm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi) + γ). (3.12)

The model is then updated as:

Fm(x) = Fm−1(x) + η
∑

l

γlmI(xi ∈ Rlm) (3.13)

where Rlm are all data-points attached to the lth leaf-node in the mth tree. Further I(xi ∈ Rlm)
is an indication function defined as:

I(xi ∈ Rlm) =
1, if xi is assigned to leaf Rlm,

0, if xi is not assigned to leaf Rlm.

An example of the MART algorithm is shown in Fig. 3.2.

3.6 LambdaMART
The final piece of the puzzle is combining LambdaRank and MART to produce LambdaMART
Burges (2010), the algorithm used by Yoganarasimhan (2020). The idea is to use MART, which

46

3.6 LambdaMART

Figure 3.2: Example of three Regression Trees. In MART multiple
trees are built, each trying to compensate for the mistake of the ear-
lier ensemble to reach the optimal solution. Each contributing tree
is scaled by the learning rate η (= 0.1), taking many small steps are
taken towards an optimal solution.

uses boosted regression trees to model the gradient of the cost with respect to model scores.
We first reconnect to Eq. (3.8). We simplify the notation and denote the operation as follows:

∑
{i, j}−⇀↽− I

λi j ≡
∑

j:{i, j}∈I

λi j −
∑

j:{ j,i}∈I

λi j (3.14)

We can hence formulate the utility function for which λi is the derivative:

C =
∑
{i, j}−⇀↽− I

∣∣∣∣∆NDCGi j

∣∣∣∣ log
(
1 + exp

(
− σ(si − s j)

))
(3.15)

such that

∂C
∂si
=

∑
{i, j}−⇀↽− I

−σ
∣∣∣∣∆NDCGi j

∣∣∣∣
1 + exp

(
σ(si − s j)

) = ∑
{i, j}−⇀↽− I

−σ
∣∣∣∣∆NDCGi j

∣∣∣∣ρi j , (3.16)

where we have defined ρi j as:

ρi j ≡
1

1 + exp(σ(si − s j))
=

−λi j

σ
∣∣∣∣∆NDCGi j

∣∣∣∣ .
Now we have everything we need to build the regression trees. From RankNet we have a
well defined cost (utility) function and from MART we have a way to model the gradient.
Reconnecting to Eq. (3.12), we still need a way to find the γ’s. This can be approximated by
using the newton step as xk+1 = xk + t with t = − f ′(x)

f ′′(x) .

and we hence get an expression for the second derivative by differentiating again:

47

3. “Learning-to-Rank” Algorithms

∂2C
∂s2

i
=

∑
{i, j}−⇀↽− I

σ2
∣∣∣∣∆NDCGi j

∣∣∣∣ρi j(1 − ρi j). (3.17)

Using Eq. (3.16) and Eq. (3.17) we finally arrive at the step size for the l:th leaf of the m:th
tree as:

γlm =

∑
xi∈Rlm

∂C
∂si∑

xi∈Rlm
∂2C
∂s2

i

=

∑
{i, j}−⇀↽− I −σ

∣∣∣∣∆NDCGi j

∣∣∣∣ρi j∑
{i, j}−⇀↽− I σ

2
∣∣∣∣∆NDCGi j

∣∣∣∣ρi j(1 − ρi j)
. (3.18)

In conclusion, we have now gathered all parts needed for LambdaMART. For any model Fk−1,
we build a new tree by calculating the pseudo-residuals rim defined in Eq. 3.11, and assign
new values to the leaves according to Eq. (3.18). The next iteration of the model is thus:

Fm(xi) = Fm−1 + η
∑

l

γlmI(xi ∈ Rlm)

where η once again is a user defined learning rate and I(xi ∈ Rlm) is the indication function.

48

Chapter 4

Evaluation

In the evaluation chapter, we present and discuss our results. Firstly, we present an analysis
of the datasets without using any found models to investigate how applicable personalization
is. This is important, to understand how much we can expect each dataset to benefit from
personalization. We proceed to discuss and present the results for the models on our chosen
metrics.

4.1 Model Free Analysis
When considering search personalization, it is important to analyze whether it will improve
the user experience or not. As discussed in Section 1.2, if for every query, users click the same
URL, personalization will not bring any improvements since all users expect the same result.
On the other hand, if users tend to click on many different URLs in response to the same
query there is much to gain from reranking.

To evaluate the potential of personalization on our data we analyze the following metrics:

• How large search histories do users have i.e. how many queries have been issued in the
past. This is used for ‘across session personalization’,

• If user behavior supports ‘within-session personalization’,

• If users have heterogeneous preferences i.e. do they click different URLs in response
to the same search query,

• If users are tenacious. i.e. how many clicks do they perform for the same search query?

49

4. Evaluation

4.1.1 IKEA datasets
In Fig. 4.1 we present how many queries users have been issued in the past. Since information
is collected on click, every user present in the dataset has at least one earlier search. Notably,
for EntryPoint ∼55% of users have issued two or fewer queries and ∼70% for IntraNet, in-
dicating that many users have a different amount of search history. This fact indicates less
support for across-session personalization for especially IntraNet, but also EntryPoint, when
compared to Yandex. As more users use the search engine performance might however im-
prove.

Figure 4.1: Number of queries issued by users.

Furthermore, in Fig. 4.2 we study the entropy of the datasets i.e. how many unique documents
are clicked in response to a search query. For EntryPoint ∼ 60% of queries leads to clicks on
one link or less. Similarly, for IntraNet, the number is ∼70%. These are called navigational
queries and do not benefit from personalization since user preferences are heterogeneous.
Since the datasets mainly consist of such queries, we might expect worse results if the single
relevant document is reranked to a lower position.

Figure 4.2: Entropy for the datasets i.e. how many unique documents
are clicked given a query.

50

4.1 Model Free Analysis

In Fig. 4.3 we study the support for within-session personalization i.e. how many queries
users issue within a session. For EntryPoint most sessions only consist of one query. Users are
either happy with their results, or they give up on the search. Only 11% of users issue mul-
tiple queries in the same session. Due to how sessions are reported in IntraNet, every session
consists of only one query. These findings motivate why within-session personalization, i.e.
reranking depending on earlier searches in the same session, is not explored in this report.

Figure 4.3: Number of search queries in sessions. Due to how data is
reported, every session in IntraNet contains of only one query.

Finally in Fig. 4.4 we can see that for EntryPoint ∼46% (∼33% for IntraNet) of users click
on multiple documents on average. This shows the tenacity among users and can be used to
indicate which labeling technique should be used. The more tenacity showed among users,
the more we can rely on labeling using dwell time. This is because dwell time assumes that
the user takes the time to consider a document, and clicks a new one if the first one was
deemed irrelevant. If users tend to just click one document, we can forego dwell time and
just determine relevancy based on clicks. This was our chosen approach.

Figure 4.4: Average number of clicks a user performs in response to
a search query.

51

4. Evaluation

4.1.2 Comparing to the Yandex Dataset
A similar evaluation for the Yandex dataset has already been done by others such as (Yoga-
narasimhan, 2020). The main findings are that the dataset supports both across-session and
within-session personalization and the data has reasonably high entropy.

For completeness, we provide a discussion about our red_yandex_dataset still concerning
Fig. 4.1, 4.2, 4.3 and 4.4.

In comparison to the two IKEA datasets, Yandex users have larger search histories. Users also
perform more clicks per query on average. We also have more data about users in general.
Due to this, we argue that we have more information about users, and as such we expect the
red_yandex_dataset to benefit more from personalization.

Concerning the IKEA datasets, there is still similar entropy and some users have large search
histories. As such we still expect a reranker to increase performance. Returning to Table 2.3,
we further note that the entrypoint_dataset is much larger than intranet_dataset. It
is thus reasonable to expect the EntryPoint model to perform better. As more data is collected,
the result are likely to continuously improve for both datasets.

52

4.2 Results

4.2 Results
In the following section, we will present the obtained results. The section will initially be
partitioned by dataset. Finally we present results by user history for all datasets. Since
we showed that the entrypoint_dataset is better suited for personalization than the
intranet_dataset in Section 4.1, we disregard the intranet_dataset results which in-
stead can be found in Appendix A. Feature importance for the different models are presented
in Appendix B.

We remind the reader that there are five models created by three machine learning frame-
works. The models are called:

XGBoost derived from the XGBoost framework,

Pruned XGBoost which is the pruned XGBoost model,

LightGBM derived from the LightGBM framework,

Pruned LightGBM which is the pruned LightGBM model,

Neural Network derived from the sklearn framework.

4.2.1 Dataset: EntryPoint
Table 4.1 shows the result when comparing model performance on the entrypoint_dataset.
We allow ourselves to rerank the list freely, disregarding the ‘Block Structure’ of EntryPoint,
explained in Section 2.1.3. Recall that NDCG is the metric that the XGBoost- and LightGBM-
models are trained to maximize, while MRR and AERC are complementary metrics. The
pruned models are the models where we have removed less important features according to
cumulative gain. The column with the head ‘original’ provides a baseline since it evaluates
the original ranking provided by the search engine. The column with the head ‘optimal’ in-
stead shows the optimal results for the dataset discussed in Section 2.3. Lastly, we present the
number of features used in each model.

Notably, all our models have merit since they improved NDCG after reranking. The full
(pruned) XGBoost yields an increase of 5.0967% (5.1678%) while the full (pruned) Light-
GBM yields 4.7275% (4.4174%). Finally, the neural network got 4.4112%. This should be
compared to the optimal increase of 15.6%.

It is important to note, that the models also have an improvement in the complementary
metrics MRR, DCG, and AERC. This is also true for the CTR. The results of ∆CTR@k,
defined in Section 2.3.1, for p = 0, ..., 9 are shown in Table 4.2. For the EntryPoint dataset,
we rarely have exactly 10 results. Sometimes the SERPs contains more results and sometimes
fewer. To be able to compare lists, we had to decide on a cutoff. This was chosen as 10 since
very few relevant documents are placed at position k > 9.

Similar to the other metrics, CTR at top positions are improved for all models at the expense
of CTR at lower positions. This indicates a well-ranked list since relevant documents are
placed at the top of the SERP.

53

4. Evaluation

Original Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
MRR 0.825 1.0 0.886 0.887 0.882 0.878 0.879
DCG 8405 9857 8859 8865 8826 8801 8796

NDCG 0.865 1.0 0.909 0.910 0.906 0.903 0.903
AERC 1.81 0.0 1.260 1.395 1.427 1.353 1.516

Num. features – – 589 206 596 26 589

Table 4.1: Model performance on EntryPoint dataset.

k Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
0 19.365 6.428 6.602 5.785 5.433 6.178
1 -0.811 0.216 0.320 0.197 0.218 0.293
2 -1.801 0.882 0.812 1.249 1.314 1.094
3 -6.926 -3.942 -3.897 -3.985 -3.804 -4.266
4 -4.264 -2.143 -2.159 -1.94 -1.771 -2.123
5 -2.548 -1.031 -0.979 -0.984 -1.031 -0.83
6 -1.141 -0.216 -0.205 -0.09 -0.069 -0.158
7 -0.734 -0.056 -0.192 -0.086 0.013 -0.01
8 -0.556 -0.064 -0.151 -0.045 -0.083 -0.089
9 -0.584 -0.074 -0.151 -0.103 -0.22 -0.089

Table 4.2: ∆CTR@k (%) for the Entry Point dataset.

The results of the models are similar, even though the full models perform a bit better one
should also consider the results in relation to the number of features. Pruned LightGBM uses
the least number of features, even comparing to Pruned XGBoost.

4.2.2 Dataset: Reduced Yandex

We are now presenting results for the red_yandex_dataset to verify our choice of models.

Table 4.3 shows results for the different models. Reranking with the XGBoost or LightGBM
models have improved NDCG for the red_yandex_dataset. The Neural Network failed
to converge and reduced the NDCG compared to the baseline.

The full (pruned) XGBoost model improved NDCG by 0.71% (0.95%) while the full (pruned)
LightGBM model yielded an improvement of 1.19% (1.3%). The LambdaRANK models
brought an improvement on MRR and AERC. Notably the pruned model got a better result,
despite using fewer features.

This is also true for the CTR, which is shown in Table 4.4. While the neural network did
not bring any improvement, XGBoost and LightGBM increased CTR at top positions, at the
expense of lower positions. In the red_yandex_dataset every SERP has exactly 10 results.
Thus no cutoff is needed.

54

4.2 Results

Original Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
MRR 0.801 1.0 0.809 0.8113 0.813 0.814 0.287
DCG 3072.051 3649.851 3089.074 3094.113 3100.947 3101.694 3649.850

NDCG 0.840 1.0 0.846 0.848 0.850 0.851 0.445
AERC 1.161 0.0 1.144 1.147 1.123 1.126 5.399

Num. features - - 249 161 249 79 249

Table 4.3: Model performance on the reduced Yandex dataset.

k Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
0 19.799 0.663 0.914 1.166 1.257 -35.025
1 2.629 0.229 0.274 0.114 -0.046 -10.837
2 -2.423 -0.526 -0.754 -0.709 -0.64 -6.104
3 -3.589 -0.206 -0.389 -0.503 -0.572 -2.743
4 -3.109 -0.046 -0.206 0.343 0.274 0.183
5 -3.292 -0.32 -0.137 -0.206 -0.091 2.012
6 -2.858 -0.023 -0.069 -0.114 -0.16 3.772
7 -2.424 0.389 0.183 0.137 0.274 6.838
8 -2.469 -0.297 0.183 -0.412 -0.457 11.637
9 -2.263 0.137 0.0 -2.263 0.16 30.27

Table 4.4: ∆CTR@k for the reduced Yandex dataset.

4.2.3 Result by user history
So far we have presented results for all users aggregated. Another approach is to divide users
by the size of their search history and investigate if a longer search history improves per-
sonalization, or if other features prove more important. Figure 4.5 shows such a plot for the
entrypoint_dataset. Due to the upper bound on the x-axis, we increase the number of
users, including users with longer search history, as we move to the right. Figure 4.7 visualizes
this. Thus we can see if the result improves when these users are added.

As we increase the upper bound, the average NDCG is initially increased for both models.
However, the average NDCG increase stagnates and is eventually lowered. As such, we got a
larger average NDCG increase when only considering users with smaller than average search
histories, rather than the entire dataset. It should be noted that the change in increase is only
∼0.8% for the XGBoost model and ∼0.5% for the LightGBM model.

For the red_yandex_dataset, users in general issue more queries. Fig. 4.6 presents the
average NDCG improvement as before. The negative values on the y-axis mean that NDCG
is reduced. Further Fig. 4.7 shows the number of users for each level of search history. For
this dataset, we instead find a larger average increase in NDCG-improvement when consid-
ering the entire dataset, rather than only considering users with smaller than average search
histories.

55

4. Evaluation

0 25 50 75 100 125 150 175
Upper Bound of past queries issued by user

4.4

4.6

4.8

5.0

5.2

5.4
Im

pr
ov

em
en

t i
n

ND
CG

 o
ve

r b
as

el
in

e
(%

)
Average NDCG Improvement for users with different search history

XGBoost
LightGBM

Figure 4.5: Average NDCG improvement on the EntryPoint dataset
for users with search history if length up to the specified bound.

0 25 50 75 100 125 150 175
Upper Bound of past queries issued by user

−0.5

0.0

0.5

1.0

I
pr
ov
e
en
t i
n
ND
CG
 o
ve
r b
as
el
in
e
(%
)

Average NDCG Improvement for users with different search history
XGBoost
LightGBM

Figure 4.6: Average NDCG improvement on the reduced Yandex
dataset for users with search history if length up to the specified
bound.

56

4.3 Discussion

0 25 50 75 100 125 150 175 200
Number of past queries issued by user

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n
of
 u
se

rs

Fraction of Users Present Given Upper Bound

EntryPoint
ReducedYandex

Figure 4.7: Fraction of users, of the entire dataset, for each value on
the upper bound.

4.3 Discussion
In this section we discuss the results presented in Sections 4.1 and 4.2. We will compare the
models using our different metrics and further analyze the long-term gain.

4.3.1 Performance and Features

Yandex

Table 4.3 shows that we managed to improve the NDCG of the red_yandex_dataset when
using XGBoost or LightGBM compared to the original list ordering. Further, we also improved
the AERC, MRR, and ∆CTR@0 metric. This is important since it validates our approach.

The red_yandex_dataset is seemingly more suitable for personalization than IKEA as was
discussed in Section 4.1. Since this is the case, we cannot conclude anything on the potential
improvements on the IKEA datasets from Yandex analysis alone.

We can compare our solution to the top Kaggle solutions. Yoganarasimhan (2020) achieved an
improvement in NDCG of 2.3%. Our best result was an improvement of 1.3% in NDCG.
We speculate, that a larger search history results in more sophisticated personalization i.e. a
larger increase in NDCG as motivated in 4.1. This is the case since the prediction, derived
from the features, is based on past data, aside from the influence of the original ranking.
Hence, we expect a higher accuracy in our prediction when considering more data.

Further, the gain in NDCG is relatively small. This is however reasonable since many queries
have resulted in a SERP with only one click at the top of the list. Such lists are already optimal
and dilute the increase in NDCG from the reranker. To further investigate the influence of

57

4. Evaluation

SERPs with single results, these could be removed and should be taken into consideration in
further work.

IKEA

If we instead consider the IKEA datasets, Tables 4.1 and 4.2 show that reranking with our
LambdaMART models yields an increase in NDCG on the entrypoint_dataset. Since
entrypoint_dataset is the larger dataset we will focus on its results. An increase in the
optimization metric NDCG indicates that our model works. With a reranked list, users tend
to click higher in the list. This is further supported by the managerially relevant metrics
AERC, MRR, and∆CTR@0 metrics upon which the models do not explicitly train. Notably,
reranking with all three models yields an increase on the entrypoint_dataset.

When comparing the LambdaMART models to the neural network, the NDCG gain is similar.
This is surprising since the neural network does not explicitly train on this metric.

Features – number and importance

When removing features to create the pruned model, one might think that the features with
low feature importance are bad, but this is not necessarily true. When creating the model, it
is not necessary to have two features containing the same information. Assume that we have
two features country and company. If there is only one company per country there is a 1-to-
1 correspondence, and the information of one feature will be redundant when having the
other. In essence, a feature need not be ‘bad’ if it has low feature importance, only redundant
in combination with other features i.e. the feature has a high correlation with another feature
with high importance. This is also true for linearly dependent features.

Another factor that influences the importance of features is the size of the dataset. Assume
that document d1, d2, ..., dM are resulting documents in response to a query. Assume that d1
is clicked almost every time and that d2 are clicked slightly more often than d3, ..., dM . If
that dataset is not large enough, it is likely that there is not enough history to support it is
more relevant than the other document. When this is the case, the variance will be large and
therefore the feature importance low. If the dataset is large, this feature might instead be
well documented and hence highly relevant for personalization.

Performance (accuracy and efficiency)

All three models (XGBoost, Neural Network and LightGBM) have seemingly similar perfor-
mance, when compared on the entrypoint_dataset. As the models are trained on rela-
tively small datasets, the split (i.e. into past/training/validation/test-data) might have a great
influence on the model performance which in turn makes it difficult to compare the accuracy
of models.

To compare model accuracy we mainly study the NDCG metric. For EntryPoint, there is an
overall larger improvement of NDCG when compared to Yandex. There could be multiple
reasons for this:

58

4.3 Discussion

1. More information: For the IKEA dataset, we have access to more information e.g.
country, company etc. which are not disclosed in the yandex_dataset. Having more
information translates to more features which in turn translates to a more detailed
model.

2. Performance of initial ranking: The red_yandex_dataset is produced from a pro-
fessional commercial search engine. It is reasonable to assume the initial ranking to
be better in this dataset than in the IKEA datasets. Thus there is less to rerank so the
overall improvement is less. It should be mentioned that the original NDCG is higher
in the entrypoint_dataset than the red_yandex_dataset. This does not con-
tradict the assumption that Yandex has a better initial ranking, but is probably a result
of more clicks being issued on SERPs.

4.3.2 Long Term Gain
Fig. 4.5 shows the average improvement in NDCG depending on the size of the user history
for the entrypoint_dataset. As mentioned, there is total difference in performance of
∼ 0.8% (max = 5.4%, min = 4.6%) for XGBoost and ∼ 0.5% (max = 4.9%, min = 4.4%). The
plots are similar and it is interesting to study the overall structure. We get the largest average
improvement when only including users with a search history of ∼15 past queries or less.
Including users with a larger search history does however reduce the overall improvement.

This is an interesting result since intuitively a user with a larger search history should benefit
more from personalization since we have more information about that specific user. We
thus expect the overall average increase to be larger when including users with larger search
history, but this was not the case.

Now consider the feature importances in Sections B.1 and B.2, where we notice that the most
important features are global and query-global. No user-related features are present among
the top features. We thus suspect that most of the improvement is due to gain in overall data,
rather than the search history of a single user. In contrast, studying the feature importances
for Yandex in Sections B.3 and B.4, the second most important features for the Yandex models
are user-related. We thus expect user search history to have a greater influence on the Yandex
data influence than for IKEA.

Now consider figure 4.1, where we recollect that users, in general, have smaller search his-
tories in the entrypoint_dataset compared to the red_yandex_dataset. This further
supports that EntryPoint gains less from user-search history since there are not enough past
queries to emphasize the user-related features. EntryPoint rather gains from features that
aggregate users, either in the global dataset or a subset e.g. users from the same country. For
Yandex, 4.6, we notice an increase in overall performance with user-search-history, which
further supports our speculations.

4.3.3 Click Bias
In Section 2.2.3 we introduced the concept of click bias. Users may not know what infor-
mation they are looking for, but rather click based on the position of the list. However, this

59

4. Evaluation

presents an important difference between evaluating the model on a test dataset and in de-
ployment. In a test dataset, user bias is introduced before reranking since we have gathered
data on clicks where users have interacted with the original order of the SERP. In deploy-
ment, user bias would be introduced after reranking because the reranked SERP is presented
to users. Since we were not allowed to deploy our model into production due to user in-
tegrity, it is difficult to say what the actual influence of index features will be. Considering
Appendix B, we see that in our offline training index related features are deemed very im-
portant. Notably, SERP-rank is a top feature for all models.

4.3.4 Ethical Considerations
Since personalization models are derived from user data, we need to consider some ethical
perspectives of our work to minimize the risk of harm to others.

First and foremost, to power our models we need to collect users’ data. According to the
European Convention on Human Rights, “Everyone has the right to respect for his private
and family life, his home and his correspondence”. This stands as background to the GDPR-
data regulation law being passed in the European Union. It protects citizens when their data
is being collected (Wolford, 2020). Should a personalization model be deployed, we need to
be careful when collecting and handling data. We should not collect data on users that have
not allowed us to do so, and we should be careful that this information is not leaked to any
third party since only the specific user should be allowed to share their own data. It is not
only against the law to not respect this, but also immoral since everyone has a right to their
privacy at work.

It is also important to consider that the model itself contains private information. Since it
learns at the user and group level, the model in combination with artificial (tailored to the
user or group one wants information about) input can disclose information about users and
groups. Providing input for a user from a specific country discloses what ranking is preferred
by such a user, which is private information. It is therefore important that any user-related
information is anonymized. Further, the model should not be public. Rather it should be
regulated and protected by Non-Disclosure Agreements for everyone working with it.

Lastly, one should consider the consequences of personalization. Personalizing what news
articles appear in a person’s feed can close people into small boxes, only presenting them
with conforming news. Similarly, news leading to many clicks can be prioritized over nu-
anced news that considers multiple aspects of an occurrence (Plattner, 2018). Since we mainly
work on internal files, this is less applicable to our work. However EntryPoint does present
(company-) news, so it is worth keeping in mind for future development.

A final comment is that we should recollect that we are working with search at work i.e. in-
ternal search. In other words, we are working with coworkers rather than private individuals.
The information is kept within company boundaries which makes it less sensitive. Also, the
reader is reminded that the users are anonymous.

60

Chapter 5

Conclusions

In the last chapter, we summarize our findings and discuss sources of errors as well as further
work.

5.1 Summary of Findings

Returning to Section 1.1.2, we posed some research questions for our work.

Initially, we have shown that the search experience can be improved using personalization.
We have created rerankers, using multiple machine learning frameworks, which has improved
our chosen metrics implying that relevant documents are placed higher in a reranked result
lists. We do however recognize that user bias is difficult to overcome, and that users may
click more based on position of the document, rather than which information each document
holds.

Further we have compared different models and frameworks. The LambdaMART implemen-
tations outperformed the Neural Network on the entrypoint_dataset and the red_yandex_dataset.
For the yandex_dataset the pruned LightGBM model proved the best since it yielded the
largest NDCG increase, while the pruned XGBoost model got the largest improvement on
the entrypoint_dataset. The training was computationally-efficient.

Finally, we have provided a scaleable implementation for IKEA, as explained in Section 2.4.
In addition, we provided an analysis of what information (which features) the models pri-
oritized. The models for the red_yandex_dataset prioritized user specific features, while
the models for the entrypoint_dataset instead emphasized aggregated user features.

61

5. Conclusions

5.2 Further work

5.2.1 Dwell-time
In Section 2.2.2, we introduced the notion of dwell time-based labeling. This can be an im-
provement on the click-based method since we introduce multiple levels of relevancy. To
label the documents using the dwell time method we introduce dwell time as the time a user
stays (dwells) on a document after clicking it before clicking another. We assume that if a
user is not happy with the information, he/she would click on a new document. If a user
dwells longer on a document, it is likely to be more relevant.

For yandex_dataset we can use the same relevancy labels as in the Kaggle competition.
Assume a document d has relevancy r, then:

r = 0 : A document is irrelevant if it has not been clicked or the click it receives has a dwell
time strictly less than 50 time units and is not the last click in the session,

r = 1 : A document is relevant if it receives a click with dwell time larger than 50 and less
than 400 time units and it is not the last click in a session,

r = 2 : A document is highly relevant if it is the last click in a session or the click has a dwell
time of 400 time units or more.

Yandex assumes the last click a user performs to indicate high relevancy since the user has
found a satisfying result.

For the entrypoint_dataset and intranet_dataset we use a similar definition. How-
ever, since sessions are reported differently we only consider result pages and different thresh-
olds for dwell time. Specifically, the following relevancy labels are used:

r = 0 : A document is irrelevant if it has not been clicked or the click it receives has a dwell
time strictly less than 500 milliseconds and is not the last click on the result page,

r = 1 : A document is relevant if it receives a click with a dwell time larger than 500 and less
than 20000 milliseconds and assuming that it is not the last click on a result page,

r = 2 : A document is highly relevant if it is the last click on a result page or the click has a
dwell time of 20000 milliseconds or more.

While the dwell-based method was attempted in this thesis, we could not verify the as-
sumption that users dwelling longer on documents found them more relevant for the IKEA
datasets. We thus settled for the simpler metric. A further study of user behavior in addi-
tion to metrics with more relevancy labels could improve the performance of the models. In
addition to Kaggle’s Personalized search competition (which was based on the search engine
Yandex) (Kaggle, 2013) providing three relevancy labels, Microsofts learning to rank dataset
MSLR-WEB30k introduced 5 relevancy labels (Qin and Liu, 2010). In other words, large com-
panies developing personalization models seem to favor non-binary relevancy labels.

62

5.2 Further work

Data

One of our limitations in this project was the data, or rather the lack thereof. Our computers
could not process the full red_yandex_dataset. While the entrypoint_dataset was
reasonably large, both IKEA datasets were tiny in comparison to the full yandex_dataset.
To get a further understanding of the of the effect of personalization we suggest:

1. The model is to be deployed to a server (or a more powerful machine) that can handle
large datasets,

2. More data from IKEA is to be collected, after which the models should be evaluated
again.

With more data, the result should naturally improve. In addition, we implemented many
features in this project. To avoid overfitting we had to scale down our model to fewer features.
With a larger dataset, we can use more features without causing the model to overfit. In this
case, we might find that some of the features we removed were in fact relevant.

5.2.2 Deployment to Evaluate Click Bias
We discussed earlier in Section 4.3.3 that user is introduced differently in offline training
and in deployment. It is therefore difficult to fully grasp the impact of index related features.
For future work, it would be interesiting to remove features related to the index and instead
rerank only based on the document (URL, domain, category, etc.). We will likely see a reduc-
tion in the NDCG score due to the user bias, but using a small number of users as “Guinea
Pigs” (deploying the model only for them) and evaluating their behavior e.g. click position
could provide a basis for proper evaluation.

5.2.3 Promoted links
Further analysis of the impact of promoted links could validate our model. We remind the
reader that ∼ 96% of SERPs containing a promoted link resulted in a click on a promoted link.
These are navigational queries and do not benefit from personalization. Since promoted links
are pinned to the top of a SERP they do not need reranking. One suggestion to battle these
problems is to over-sample data with clicks further down the SERP i.e. clicks at positions
> k, as introduced by Slack (2017). It would be interesting to study if this would improve the
results since the model could better learn if should the result should be reranked. Another
approach is to study the user behavior at IKEA. Understanding how users interact with the
EntryPoint and IntraNet search engines gives insight into which queries should be reranked.
From our understanding, there is a discrepancy between users’ attitudes toward search. Some
use search engines to find recently visited URLs and expect them to be ranked highly on the
SERP. Others use tools such as bookmarks to find recent documents and see search engines
as a ‘last resort’ when looking for information. Such users do not benefit from placing recent
documents towards the top of a SERP. A better understanding of user behavior could help
when selecting features and improving the model.

63

5. Conclusions

5.2.4 Neural Networks
In our thesis we have mainly focused on the LambdaMART algorithm and the two implemen-
tations XGBoost and LightGBM. We included a standard neural network as reference. However,
the implementation of the neural network could be improved.

A neural network is not a poor choice for learning to rank problems. RankNet, the predecessor
to LambdaMART, is based on a neural network. Further, neural networks generally perform well
on many machine learning problems. However, since users expect results in milliseconds in
real-time they may take too long. Ensembles of regression tree algorithms (e.g. LambdaMART)
rerank much faster and also have the advantage of training much faster too.

As mentioned in Section 1.2, Nardini et al. (2022) present an implementation of a learn-
ing to rank neural network. On the dataset MSN30K (Qin and Liu, 2013) the neural network
outperforms LightGBM and achieves 4.4x faster execution time when scoring than LightGBM
without losing accuracy. This is done by levering multiple cutting edge approaches such as

efficiency oriented pruning techniques and high-performance Dense and Sparse
Matrix Multiplication techniques.

The report by Nardini et al. (2022) was published during our project (2022-02-22) and a further
study of neural networks from this perspective would be an interesting addition to compare
with the evaluation of LambdaMART implementations.

64

Appendix A

IntraNet Results

Tab. A.1 and A.2 shows the result for the intranet_dataset. As in Section 4.2, the columns
with head ‘Original’ and ‘Optimal’ provide the results for the original result lists provided by
the search engine, and the optimally reranked list. Notably, the full XGBoost model gets the
best improvement on NDCG (0.93%). The model also improved the other metrics.

Curiously, the LightGBM model, in particular the pruned version, performs better than the
XGBoost model on the CTR@0 metric.

Original Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
MRR 0.815 1.0 0.825 0.822 0.82 0.824 0.72
DCG 980.975 1150.359 990.407 988.094 988.540 988.430 980.975

NDCG 0.856 1.0 0.864 0.862 0.863 0.863 0.782
AERC 0.965 0.0 0.829 0.853 0.872 0.893 1.89

Num. features – – 589 226 595 90 589

Table A.1: Model performance on the IntraNet dataset.

65

A. IntraNet Results

k Optimal XGBoost Pruned XGBoost LightGBM Pruned LightGBM Neural Network
0 24.728 0.24 0.24 0.559 0.889 -7.807
1 -5.028 1.827 0.921 0.634 -0.109 -4.271
2 -5.718 -1.102 -1.267 -0.343 - 0.508 -2.137
3 -4.054 -0.43 0.641 -0.09 -0.09 1.42
4 -2.317 0.155 0.237 -0.252 0.491 0.421
5 -1.489 0.241 0.57 0.823 0.328 2.077
6 -1.737 0.899 0.158 -0.333 -0.333 1.331
7 -1.654 -0.419 -0.501 -0.663 -0.168 1.414
8 -1.323 -0.829 -0.5 0.328 -0.085 2.657
9 -1.406 -0.582 -0.5 -0.663 -0.415 4.896

Table A.2: CTR@k for the IntraNet dataset.

66

Appendix B

Feature Importance

In this chapter, we provide the ∼95% most important features in our full models. These are
included to get an understanding of which features our models deemed important. Using the
EventListings(θ1, θ2, θ3) notation from Section 2.2.4, the features are in the form:

“θ2->θ3 : θ1”

67

B. Feature Importance

B.1 EntryPoint dataset XGBoost

Number Feature Importance Cumulative
173 Term1->url: WClicks/Shows 52.379 % 52.379 %
0 SERP-rank 9.427 % 61.806 %
171 Term1->url: Clicks/Shows 3.513 % 65.319 %
47 Query->url: WClicks/Shows 2.749 % 68.068 %
186 Term1->category: ClicksTrue/Shows 1.97 % 70.038 %
52 Query->url: WShows 1.211 % 71.249 %
43 Query->url: Shows 0.878 % 72.127 %
180 Term1->category: Shows 0.809 % 72.936 %
381 Company->url: Clicks/Shows 0.766 % 73.703 %
184 Term1->category: WClicks/Shows 0.759 % 74.462 %
518 BusinessUnit->category: Clicks/Shows 0.736 % 75.198 %
182 Term1->category: Clicks/Shows 0.706 % 75.904 %
149 Query+UserID->domain: Shows 0.644 % 76.548 %
228 Term2->category: ClicksTrue/Shows 0.573 % 77.122 %
10 Global->url: WShows 0.519 % 77.641 %
65 Query->domain: Shows 0.45 % 78.091 %
425 Site->url: WClicks/Shows 0.414 % 78.505 %
51 Query->url: Skips/Shows 0.38 % 78.885 %
169 Term1->url: Shows 0.374 % 79.259 %
45 Query->url: Clicks/Shows 0.365 % 79.623 %
49 Query->url: ClicksTrue/Shows 0.354 % 79.977 %
54 Query->category: Shows 0.335 % 80.312 %
343 Country->url: ClicksTrue/Shows 0.327 % 80.639 %
339 Country->url: Clicks/Shows 0.257 % 80.896 %
74 Query->domain: WShows 0.237 % 81.133 %
383 Company->url: WClicks/Shows 0.2 % 81.333 %
175 Term1->url: ClicksTrue/Shows 0.198 % 81.531 %
559 Day->category: Clicks 0.197 % 81.727 %
435 Site->category: WClicks 0.191 % 81.919 %
46 Query->url: WClicks 0.191 % 82.11 %
476 JobTitle->category: Clicks/Shows 0.182 % 82.292 %
224 Term2->category: Clicks/Shows 0.165 % 82.457 %
1 Global->url: Shows 0.165 % 82.622 %
157 Query+UserID->domain: Skips/Shows 0.164 % 82.786 %
213 Term2->url: Clicks/Shows 0.162 % 82.948 %
22 Global->category: WShows/Shows 0.161 % 83.109 %
60 Query->category: ClicksTrue/Shows 0.16 % 83.269 %
385 Company->url: ClicksTrue/Shows 0.156 % 83.425 %
129 Query+UserID->url: Clicks/Shows 0.155 % 83.58 %
158 Query+UserID->domain: WShows 0.153 % 83.733 %
63 Query->category: WShows 0.15 % 83.883 %

Continued on next page

68

B.1 EntryPoint dataset XGBoost

Table B.1 – continued from previous page
Number Feature Importance Cumulative
522 BusinessUnit->category: ClicksTrue/Shows 0.15 % 84.032 %
58 Query->category: WClicks/Shows 0.145 % 84.178 %
138 Query+UserID->category: Shows 0.142 % 84.319 %
341 Country->url: WClicks/Shows 0.137 % 84.456 %
7 Global->url: ClicksTrue/Shows 0.137 % 84.593 %
148 Query+UserID->category: WShows/Shows 0.137 % 84.729 %
131 Query+UserID->url: WClicks/Shows 0.135 % 84.865 %
509 BusinessUnit->url: WClicks/Shows 0.135 % 85.0 %
469 JobTitle->url: ClicksTrue/Shows 0.133 % 85.133 %
566 Day->category: Skips/Shows 0.132 % 85.265 %
571 Day->domain: Clicks/Shows 0.128 % 85.392 %
64 Query->category: WShows/Shows 0.127 % 85.519 %
423 Site->url: Clicks/Shows 0.121 % 85.639 %
89 UserID->url: WClicks/Shows 0.119 % 85.758 %
345 Country->url: Skips/Shows 0.116 % 85.875 %
142 Query+UserID->category: WClicks/Shows 0.116 % 85.991 %
24 Global->domain: Clicks 0.111 % 86.102 %
44 Query->url: Clicks 0.109 % 86.211 %
12 Global->category: Shows 0.107 % 86.318 %
511 BusinessUnit->url: ClicksTrue/Shows 0.104 % 86.422 %
436 Site->category: WClicks/Shows 0.102 % 86.524 %
492 JobTitle->domain: Skips 0.102 % 86.626 %
216 Term2->url: ClicksTrue 0.101 % 86.727 %
133 Query+UserID->url: ClicksTrue/Shows 0.101 % 86.828 %
480 JobTitle->category: ClicksTrue/Shows 0.095 % 86.923 %
468 JobTitle->url: ClicksTrue 0.095 % 87.018 %
530 BusinessUnit->domain: WClicks 0.095 % 87.113 %
130 Query+UserID->url: WClicks 0.092 % 87.205 %
59 Query->category: ClicksTrue 0.089 % 87.294 %
88 UserID->url: WClicks 0.086 % 87.38 %
3 Global->url: Clicks/Shows 0.084 % 87.464 %
9 Global->url: Skips/Shows 0.083 % 87.547 %
99 UserID->category: WClicks 0.082 % 87.629 %
494 JobTitle->domain: WShows 0.082 % 87.712 %
66 Query->domain: Clicks 0.082 % 87.793 %
53 Query->url: WShows/Shows 0.081 % 87.874 %
188 Term1->category: Skips/Shows 0.081 % 87.955 %
117 UserID->domain: WShows/Shows 0.081 % 88.036 %
100 UserID->category: WClicks/Shows 0.08 % 88.116 %
197 Term1->domain: ClicksTrue/Shows 0.08 % 88.196 %
177 Term1->url: Skips/Shows 0.08 % 88.276 %
102 UserID->category: ClicksTrue/Shows 0.079 % 88.355 %
170 Term1->url: Clicks 0.079 % 88.434 %

Continued on next page

69

B. Feature Importance

Table B.1 – continued from previous page
Number Feature Importance Cumulative
257 Term3->url: WClicks/Shows 0.079 % 88.513 %
520 BusinessUnit->category: WClicks/Shows 0.078 % 88.591 %
478 JobTitle->category: WClicks/Shows 0.078 % 88.669 %
199 Term1->domain: Skips/Shows 0.077 % 88.745 %
253 Term3->url: Shows 0.077 % 88.822 %
179 Term1->url: WShows/Shows 0.076 % 88.898 %
379 Company->url: Shows 0.076 % 88.974 %
135 Query+UserID->url: Skips/Shows 0.075 % 89.049 %
397 Company->category: Skips 0.075 % 89.124 %
134 Query+UserID->url: Skips 0.075 % 89.198 %
465 JobTitle->url: Clicks/Shows 0.074 % 89.273 %
198 Term1->domain: Skips 0.074 % 89.346 %
190 Term1->category: WShows/Shows 0.074 % 89.42 %
62 Query->category: Skips/Shows 0.073 % 89.493 %
387 Company->url: Skips/Shows 0.073 % 89.566 %
405 Company->domain: WClicks/Shows 0.072 % 89.638 %
30 Global->domain: Skips 0.072 % 89.71 %
172 Term1->url: WClicks 0.072 % 89.782 %
340 Country->url: WClicks 0.071 % 89.853 %
5 Global->url: WClicks/Shows 0.07 % 89.924 %
214 Term2->url: WClicks 0.07 % 89.993 %
346 Country->url: WShows 0.07 % 90.063 %
146 Query+UserID->category: Skips/Shows 0.068 % 90.131 %
481 JobTitle->category: Skips 0.067 % 90.199 %
178 Term1->url: WShows 0.064 % 90.262 %
388 Company->url: WShows 0.064 % 90.326 %
555 Day->url: Skips/Shows 0.063 % 90.389 %
75 Query->domain: WShows/Shows 0.063 % 90.452 %
11 Global->url: WShows/Shows 0.063 % 90.515 %
70 Query->domain: ClicksTrue 0.063 % 90.577 %
255 Term3->url: Clicks/Shows 0.062 % 90.639 %
411 Company->domain: WShows/Shows 0.062 % 90.701 %
429 Site->url: Skips/Shows 0.061 % 90.762 %
217 Term2->url: ClicksTrue/Shows 0.059 % 90.821 %
183 Term1->category: WClicks 0.059 % 90.88 %
356 Country->category: Skips/Shows 0.059 % 90.939 %
445 Site->domain: Clicks/Shows 0.058 % 90.997 %
260 Term3->url: Skips 0.058 % 91.055 %
191 Term1->domain: Shows 0.058 % 91.113 %
347 Country->url: WShows/Shows 0.057 % 91.17 %
153 Query+UserID->domain: WClicks/Shows 0.056 % 91.226 %
230 Term2->category: Skips/Shows 0.056 % 91.281 %
73 Query->domain: Skips/Shows 0.056 % 91.337 %

Continued on next page

70

B.1 EntryPoint dataset XGBoost

Table B.1 – continued from previous page
Number Feature Importance Cumulative
557 Day->url: WShows/Shows 0.055 % 91.392 %
513 BusinessUnit->url: Skips/Shows 0.055 % 91.447 %
97 UserID->category: Clicks 0.054 % 91.502 %
485 JobTitle->domain: Shows 0.054 % 91.556 %
8 Global->url: Skips 0.054 % 91.61 %
71 Query->domain: ClicksTrue/Shows 0.054 % 91.663 %
358 Country->category: WShows/Shows 0.053 % 91.717 %
380 Company->url: Clicks 0.053 % 91.77 %
181 Term1->category: Clicks 0.053 % 91.823 %
409 Company->domain: Skips/Shows 0.053 % 91.876 %
321 Term4->domain: WClicks/Shows 0.053 % 91.929 %
185 Term1->category: ClicksTrue 0.053 % 91.981 %
193 Term1->domain: Clicks/Shows 0.052 % 92.033 %
441 Site->category: WShows 0.052 % 92.085 %
349 Country->category: Clicks 0.051 % 92.136 %
219 Term2->url: Skips/Shows 0.051 % 92.187 %
221 Term2->url: WShows/Shows 0.05 % 92.237 %
72 Query->domain: Skips 0.05 % 92.288 %
239 Term2->domain: ClicksTrue/Shows 0.05 % 92.337 %
150 Query+UserID->domain: Clicks 0.05 % 92.387 %
91 UserID->url: ClicksTrue/Shows 0.049 % 92.436 %
232 Term2->category: WShows/Shows 0.049 % 92.485 %
526 BusinessUnit->category: WShows/Shows 0.049 % 92.534 %
495 JobTitle->domain: WShows/Shows 0.049 % 92.582 %
67 Query->domain: Clicks/Shows 0.049 % 92.631 %
337 Country->url: Shows 0.048 % 92.679 %
4 Global->url: WClicks 0.048 % 92.727 %
556 Day->url: WShows 0.048 % 92.775 %
115 UserID->domain: Skips/Shows 0.048 % 92.823 %
442 Site->category: WShows/Shows 0.048 % 92.871 %
515 BusinessUnit->url: WShows/Shows 0.047 % 92.918 %
189 Term1->category: WShows 0.047 % 92.965 %
533 BusinessUnit->domain: ClicksTrue/Shows 0.047 % 93.013 %
112 UserID->domain: ClicksTrue 0.047 % 93.06 %
443 Site->domain: Shows 0.047 % 93.107 %
98 UserID->category: Clicks/Shows 0.047 % 93.154 %
261 Term3->url: Skips/Shows 0.047 % 93.201 %
431 Site->url: WShows/Shows 0.046 % 93.246 %
519 BusinessUnit->category: WClicks 0.046 % 93.292 %
482 JobTitle->category: Skips/Shows 0.046 % 93.338 %
360 Country->domain: Clicks 0.046 % 93.383 %
367 Country->domain: Skips/Shows 0.045 % 93.429 %
144 Query+UserID->category: ClicksTrue/Shows 0.045 % 93.474 %

Continued on next page

71

B. Feature Importance

Table B.1 – continued from previous page
Number Feature Importance Cumulative
233 Term2->domain: Shows 0.045 % 93.518 %
242 Term2->domain: WShows 0.045 % 93.563 %
471 JobTitle->url: Skips/Shows 0.045 % 93.608 %
561 Day->category: WClicks 0.045 % 93.652 %
472 JobTitle->url: WShows 0.044 % 93.696 %
525 BusinessUnit->category: WShows 0.044 % 93.741 %
449 Site->domain: ClicksTrue/Shows 0.044 % 93.785 %
487 JobTitle->domain: Clicks/Shows 0.044 % 93.829 %
467 JobTitle->url: WClicks/Shows 0.044 % 93.873 %
222 Term2->category: Shows 0.044 % 93.917 %
432 Site->category: Shows 0.044 % 93.961 %
537 BusinessUnit->domain: WShows/Shows 0.044 % 94.005 %
241 Term2->domain: Skips/Shows 0.044 % 94.048 %
240 Term2->domain: Skips 0.044 % 94.092 %
399 Company->category: WShows 0.044 % 94.136 %
489 JobTitle->domain: WClicks/Shows 0.044 % 94.179 %
235 Term2->domain: Clicks/Shows 0.044 % 94.223 %
390 Company->category: Shows 0.044 % 94.266 %
55 Query->category: Clicks 0.043 % 94.31 %
355 Country->category: Skips 0.043 % 94.353 %
187 Term1->category: Skips 0.043 % 94.397 %
488 JobTitle->domain: WClicks 0.043 % 94.44 %
2 Global->url: Clicks 0.043 % 94.483 %
484 JobTitle->category: WShows/Shows 0.042 % 94.525 %
516 BusinessUnit->category: Shows 0.042 % 94.567 %
439 Site->category: Skips 0.042 % 94.609 %
510 BusinessUnit->url: ClicksTrue 0.042 % 94.651 %
192 Term1->domain: Clicks 0.042 % 94.693 %
92 UserID->url: Skips 0.042 % 94.734 %
493 JobTitle->domain: Skips/Shows 0.042 % 94.776 %
201 Term1->domain: WShows/Shows 0.042 % 94.817 %
475 JobTitle->category: Clicks 0.042 % 94.859 %
434 Site->category: Clicks/Shows 0.041 % 94.9 %
111 UserID->domain: WClicks/Shows 0.041 % 94.942 %
338 Country->url: Clicks 0.041 % 94.983 %
344 Country->url: Skips 0.041 % 95.024 %

72

B.2 EntryPoint dataset LightGBM

B.2 EntryPoint dataset LightGBM

Number Feature Importance Cumulative
173 Term1->url: WClicks/Shows 27.86 % 27.86 %
0 SERP-rank 18.415 % 46.275 %
175 Term1->url: ClicksTrue/Shows 8.75 % 55.025 %
171 Term1->url: Clicks/Shows 8.313 % 63.338 %
594 JobTitle 4.173 % 67.511 %
47 Query->url: WClicks/Shows 4.093 % 71.604 %
595 BusinessUnit 3.584 % 75.188 %
54 Query->category: Shows 3.348 % 78.537 %
593 Site 3.081 % 81.618 %
182 Term1->category: Clicks/Shows 2.395 % 84.013 %
49 Query->url: ClicksTrue/Shows 2.24 % 86.253 %
45 Query->url: Clicks/Shows 1.81 % 88.063 %
341 Country->url: WClicks/Shows 0.885 % 88.948 %
65 Query->domain: Shows 0.804 % 89.752 %
343 Country->url: ClicksTrue/Shows 0.725 % 90.477 %
339 Country->url: Clicks/Shows 0.605 % 91.083 %
186 Term1->category: ClicksTrue/Shows 0.522 % 91.605 %
184 Term1->category: WClicks/Shows 0.507 % 92.112 %
58 Query->category: WClicks/Shows 0.455 % 92.567 %
9 Global->url: Skips/Shows 0.44 % 93.008 %
180 Term1->category: Shows 0.432 % 93.439 %
385 Company->url: ClicksTrue/Shows 0.396 % 93.835 %
56 Query->category: Clicks/Shows 0.367 % 94.202 %
7 Global->url: ClicksTrue/Shows 0.272 % 94.475 %
590 Category 0.272 % 94.747 %
43 Query->url: Shows 0.258 % 95.005 %

B.3 Yandex dataset XGBoost

Number Feature Importance Cumulative
0 SERP-rank 44.18 % 44.18 %
67 UserID->url: WClicks/Shows 4.204 % 48.384 %
97 Query+UserID->url: WClicks 2.905 % 51.289 %
98 Query+UserID->url: WClicks/Shows 2.383 % 53.672 %
115 Query+UserID->domain: WShows/Shows 2.297 % 55.97 %
129 Term1->url: WClicks/Shows 1.653 % 57.623 %

Continued on next page

73

B. Feature Importance

Table B.3 – continued from previous page
Number Feature Importance Cumulative
100 Query+UserID->url: ClicksTrue/Shows 1.499 % 59.122 %
54 Query->index: Shows 1.187 % 60.309 %
36 Query->url: WClicks/Shows 1.05 % 61.36 %
101 Query+UserID->url: Skips 0.994 % 62.353 %
114 Query+UserID->domain: WShows 0.885 % 63.238 %
103 Query+UserID->url: WShows 0.863 % 64.101 %
52 Query->domain: WShows 0.703 % 64.804 %
80 UserID->domain: ClicksTrue/Shows 0.606 % 65.411 %
160 Term2->url: WClicks/Shows 0.543 % 65.953 %
105 Query+UserID->domain: Shows 0.528 % 66.481 %
32 Query->url: Shows 0.508 % 66.989 %
70 UserID->url: Skips 0.503 % 67.492 %
78 UserID->domain: WClicks/Shows 0.485 % 67.977 %
5 Global->url: WClicks/Shows 0.451 % 68.428 %
162 Term2->url: ClicksTrue/Shows 0.427 % 68.855 %
153 Term1->index: ClicksTrue/Shows 0.419 % 69.274 %
112 Query+UserID->domain: Skips 0.399 % 69.673 %
193 Term3->url: ClicksTrue/Shows 0.383 % 70.056 %
96 Query+UserID->url: Clicks/Shows 0.379 % 70.435 %
79 UserID->domain: ClicksTrue 0.375 % 70.81 %
7 Global->url: ClicksTrue/Shows 0.355 % 71.165 %
131 Term1->url: ClicksTrue/Shows 0.352 % 71.516 %
127 Term1->url: Clicks/Shows 0.319 % 71.835 %
68 UserID->url: ClicksTrue 0.296 % 72.131 %
66 UserID->url: WClicks 0.296 % 72.427 %
157 Term2->url: Clicks 0.294 % 72.721 %
120 Query+UserID->index: WClicks/Shows 0.291 % 73.012 %
77 UserID->domain: WClicks 0.271 % 73.283 %
233 Term4->domain: WClicks/Shows 0.268 % 73.551 %
113 Query+UserID->domain: Skips/Shows 0.266 % 73.817 %
158 Term2->url: Clicks/Shows 0.259 % 74.076 %
3 Global->url: Clicks/Shows 0.254 % 74.33 %
72 UserID->url: WShows 0.253 % 74.583 %
202 Term3->domain: WClicks/Shows 0.251 % 74.835 %
163 Term2->url: Skips 0.244 % 75.079 %
16 Global->domain: WClicks/Shows 0.244 % 75.323 %
38 Query->url: ClicksTrue/Shows 0.241 % 75.563 %
234 Term4->domain: ClicksTrue 0.235 % 75.799 %
130 Term1->url: ClicksTrue 0.235 % 76.034 %
238 Term4->domain: WShows 0.231 % 76.265 %
35 Query->url: WClicks 0.229 % 76.495 %
53 Query->domain: WShows/Shows 0.226 % 76.721 %
186 Term2->index: Skips/Shows 0.224 % 76.945 %

Continued on next page

74

B.3 Yandex dataset XGBoost

Table B.3 – continued from previous page
Number Feature Importance Cumulative
116 Query+UserID->index: Shows 0.22 % 77.164 %
14 Global->domain: Clicks/Shows 0.213 % 77.377 %
215 Term3->index: ClicksTrue/Shows 0.212 % 77.588 %
63 UserID->url: Shows 0.212 % 77.8 %
190 Term3->url: WClicks 0.211 % 78.011 %
168 Term2->domain: Clicks 0.211 % 78.222 %
203 Term3->domain: ClicksTrue 0.209 % 78.431 %
144 Term1->domain: Skips/Shows 0.206 % 78.637 %
149 Term1->index: Clicks/Shows 0.205 % 78.842 %
216 Term3->index: Skips 0.203 % 79.046 %
17 Global->domain: ClicksTrue 0.203 % 79.249 %
232 Term4->domain: WClicks 0.2 % 79.449 %
242 Term4->index: Clicks/Shows 0.199 % 79.648 %
21 Global->domain: WShows 0.199 % 79.847 %
155 Term1->index: Skips/Shows 0.196 % 80.042 %
156 Term2->url: Shows 0.195 % 80.237 %
244 Term4->index: WClicks/Shows 0.194 % 80.431 %
18 Global->domain: ClicksTrue/Shows 0.193 % 80.624 %
191 Term3->url: WClicks/Shows 0.192 % 80.815 %
61 Query->index: Skips 0.188 % 81.003 %
125 Term1->url: Shows 0.187 % 81.19 %
137 Term1->domain: Clicks 0.185 % 81.375 %
93 UserID->index: Skips/Shows 0.184 % 81.559 %
11 Global->url: WShows/Shows 0.184 % 81.743 %
159 Term2->url: WClicks 0.183 % 81.926 %
71 UserID->url: Skips/Shows 0.182 % 82.109 %
142 Term1->domain: ClicksTrue/Shows 0.182 % 82.291 %
12 Global->domain: Shows 0.182 % 82.473 %
172 Term2->domain: ClicksTrue 0.181 % 82.653 %
10 Global->url: WShows 0.18 % 82.833 %
184 Term2->index: ClicksTrue/Shows 0.178 % 83.012 %
212 Term3->index: WClicks 0.176 % 83.188 %
171 Term2->domain: WClicks/Shows 0.175 % 83.362 %
82 UserID->domain: Skips/Shows 0.174 % 83.536 %
239 Term4->domain: WShows/Shows 0.173 % 83.709 %
151 Term1->index: WClicks/Shows 0.172 % 83.881 %
196 Term3->url: WShows 0.17 % 84.052 %
147 Term1->index: Shows 0.168 % 84.219 %
76 UserID->domain: Clicks/Shows 0.167 % 84.386 %
152 Term1->index: ClicksTrue 0.167 % 84.553 %
211 Term3->index: Clicks/Shows 0.166 % 84.72 %
75 UserID->domain: Clicks 0.163 % 84.883 %
200 Term3->domain: Clicks/Shows 0.163 % 85.046 %

Continued on next page

75

B. Feature Importance

Table B.3 – continued from previous page
Number Feature Importance Cumulative
181 Term2->index: WClicks 0.163 % 85.209 %
207 Term3->domain: WShows 0.161 % 85.37 %
43 Query->domain: Shows 0.16 % 85.53 %
91 UserID->index: ClicksTrue/Shows 0.16 % 85.69 %
213 Term3->index: WClicks/Shows 0.16 % 85.85 %
42 Query->url: WShows/Shows 0.16 % 86.01 %
22 Global->domain: WShows/Shows 0.159 % 86.168 %
4 Global->url: WClicks 0.156 % 86.325 %
164 Term2->url: Skips/Shows 0.156 % 86.481 %
146 Term1->domain: WShows/Shows 0.156 % 86.637 %
85 UserID->index: Shows 0.153 % 86.79 %
140 Term1->domain: WClicks/Shows 0.153 % 86.944 %
210 Term3->index: Clicks 0.153 % 87.097 %
170 Term2->domain: WClicks 0.153 % 87.25 %
217 Term3->index: Skips/Shows 0.152 % 87.401 %
51 Query->domain: Skips/Shows 0.152 % 87.553 %
182 Term2->index: WClicks/Shows 0.152 % 87.705 %
177 Term2->domain: WShows/Shows 0.151 % 87.856 %
19 Global->domain: Skips 0.151 % 88.007 %
180 Term2->index: Clicks/Shows 0.151 % 88.157 %
55 Query->index: Clicks 0.15 % 88.307 %
58 Query->index: WClicks/Shows 0.149 % 88.456 %
237 Term4->domain: Skips/Shows 0.149 % 88.605 %
94 Query+UserID->url: Shows 0.149 % 88.754 %
206 Term3->domain: Skips/Shows 0.149 % 88.903 %
176 Term2->domain: WShows 0.149 % 89.052 %
135 Term1->url: WShows/Shows 0.148 % 89.2 %
87 UserID->index: Clicks/Shows 0.148 % 89.348 %
174 Term2->domain: Skips 0.148 % 89.496 %
208 Term3->domain: WShows/Shows 0.147 % 89.643 %
245 Term4->index: ClicksTrue 0.147 % 89.79 %
178 Term2->index: Shows 0.146 % 89.936 %
49 Query->domain: ClicksTrue/Shows 0.146 % 90.083 %
247 Term4->index: Skips 0.146 % 90.229 %
204 Term3->domain: ClicksTrue/Shows 0.145 % 90.373 %
167 Term2->domain: Shows 0.144 % 90.518 %
145 Term1->domain: WShows 0.144 % 90.662 %
83 UserID->domain: WShows 0.144 % 90.806 %
13 Global->domain: Clicks 0.142 % 90.948 %
86 UserID->index: Clicks 0.141 % 91.089 %
89 UserID->index: WClicks/Shows 0.141 % 91.23 %
74 UserID->domain: Shows 0.141 % 91.371 %
121 Query+UserID->index: ClicksTrue 0.14 % 91.511 %

Continued on next page

76

B.3 Yandex dataset XGBoost

Table B.3 – continued from previous page
Number Feature Importance Cumulative
24 Global->index: Clicks 0.139 % 91.65 %
209 Term3->index: Shows 0.139 % 91.789 %
138 Term1->domain: Clicks/Shows 0.138 % 91.927 %
195 Term3->url: Skips/Shows 0.138 % 92.066 %
56 Query->index: Clicks/Shows 0.138 % 92.204 %
9 Global->url: Skips/Shows 0.138 % 92.342 %
1 Global->url: Shows 0.138 % 92.479 %
185 Term2->index: Skips 0.137 % 92.617 %
240 Term4->index: Shows 0.136 % 92.753 %
148 Term1->index: Clicks 0.136 % 92.889 %
154 Term1->index: Skips 0.136 % 93.024 %
34 Query->url: Clicks/Shows 0.135 % 93.159 %
15 Global->domain: WClicks 0.134 % 93.294 %
62 Query->index: Skips/Shows 0.134 % 93.428 %
46 Query->domain: WClicks 0.134 % 93.562 %
109 Query+UserID->domain: WClicks/Shows 0.133 % 93.696 %
236 Term4->domain: Skips 0.133 % 93.829 %
248 Term4->index: Skips/Shows 0.133 % 93.962 %
246 Term4->index: ClicksTrue/Shows 0.132 % 94.095 %
92 UserID->index: Skips 0.132 % 94.227 %
235 Term4->domain: ClicksTrue/Shows 0.132 % 94.359 %
124 Query+UserID->index: Skips/Shows 0.131 % 94.49 %
221 Term4->url: WClicks 0.131 % 94.621 %
20 Global->domain: Skips/Shows 0.129 % 94.75 %
136 Term1->domain: Shows 0.129 % 94.879 %
6 Global->url: ClicksTrue 0.129 % 95.008 %

77

B. Feature Importance

B.4 Yandex dataset LightGBM

Number Feature Importance Cumulative
0 SERP-rank 77.736 % 77.736 %

78 UserID->domain: WClicks/Shows 0.937 % 78.674 %
222 Term4->url: WClicks/Shows 0.779 % 79.453 %
54 Query->index: Shows 0.629 % 80.082 %
80 UserID->domain: ClicksTrue/Shows 0.595 % 80.677 %
96 Query+UserID->url: Clicks/Shows 0.566 % 81.243 %
93 UserID->index: Skips/Shows 0.466 % 81.709 %
114 Query+UserID->domain: WShows 0.454 % 82.162 %
155 Term1->index: Skips/Shows 0.441 % 82.603 %
98 Query+UserID->url: WClicks/Shows 0.421 % 83.025 %
186 Term2->index: Skips/Shows 0.375 % 83.4 %
14 Global->domain: Clicks/Shows 0.371 % 83.77 %
82 UserID->domain: Skips/Shows 0.36 % 84.13 %
184 Term2->index: ClicksTrue/Shows 0.351 % 84.482 %
67 UserID->url: WClicks/Shows 0.347 % 84.829 %
153 Term1->index: ClicksTrue/Shows 0.316 % 85.145 %
160 Term2->url: WClicks/Shows 0.308 % 85.454 %
220 Term4->url: Clicks/Shows 0.302 % 85.756 %
77 UserID->domain: WClicks 0.299 % 86.054 %
16 Global->domain: WClicks/Shows 0.267 % 86.322 %
158 Term2->url: Clicks/Shows 0.236 % 86.557 %
213 Term3->index: WClicks/Shows 0.234 % 86.792 %
76 UserID->domain: Clicks/Shows 0.234 % 87.025 %
129 Term1->url: WClicks/Shows 0.219 % 87.244 %
22 Global->domain: WShows/Shows 0.214 % 87.458 %
3 Global->url: Clicks/Shows 0.208 % 87.666 %
36 Query->url: WClicks/Shows 0.198 % 87.864 %
32 Query->url: Shows 0.198 % 88.062 %
5 Global->url: WClicks/Shows 0.196 % 88.258 %
87 UserID->index: Clicks/Shows 0.196 % 88.454 %
92 UserID->index: Skips 0.191 % 88.645 %
178 Term2->index: Shows 0.183 % 88.828 %
11 Global->url: WShows/Shows 0.182 % 89.01 %
18 Global->domain: ClicksTrue/Shows 0.18 % 89.19 %
115 Query+UserID->domain: WShows/Shows 0.174 % 89.364 %
7 Global->url: ClicksTrue/Shows 0.171 % 89.535 %
85 UserID->index: Shows 0.17 % 89.705 %
149 Term1->index: Clicks/Shows 0.167 % 89.872 %
182 Term2->index: WClicks/Shows 0.167 % 90.039 %
151 Term1->index: WClicks/Shows 0.166 % 90.204 %
237 Term4->domain: Skips/Shows 0.162 % 90.366 %

Continued on next page

78

B.4 Yandex dataset LightGBM

Table B.4 – continued from previous page
Number Feature Importance Cumulative
229 Term4->domain: Shows 0.161 % 90.528 %
239 Term4->domain: WShows/Shows 0.159 % 90.686 %
89 UserID->index: WClicks/Shows 0.159 % 90.845 %
51 Query->domain: Skips/Shows 0.158 % 91.003 %
162 Term2->url: ClicksTrue/Shows 0.154 % 91.157 %
187 Term3->url: Shows 0.151 % 91.307 %
38 Query->url: ClicksTrue/Shows 0.148 % 91.455 %
52 Query->domain: WShows 0.147 % 91.603 %
166 Term2->url: WShows/Shows 0.146 % 91.748 %
175 Term2->domain: Skips/Shows 0.145 % 91.893 %
206 Term3->domain: Skips/Shows 0.144 % 92.037 %
20 Global->domain: Skips/Shows 0.138 % 92.176 %
217 Term3->index: Skips/Shows 0.138 % 92.314 %
72 UserID->url: WShows 0.135 % 92.449 %
71 UserID->url: Skips/Shows 0.13 % 92.578 %
112 Query+UserID->domain: Skips 0.128 % 92.706 %
248 Term4->index: Skips/Shows 0.122 % 92.828 %
116 Query+UserID->index: Shows 0.122 % 92.95 %
191 Term3->url: WClicks/Shows 0.12 % 93.069 %
180 Term2->index: Clicks/Shows 0.118 % 93.188 %
83 UserID->domain: WShows 0.117 % 93.305 %
198 Term3->domain: Shows 0.116 % 93.42 %
233 Term4->domain: WClicks/Shows 0.116 % 93.536 %
102 Query+UserID->url: Skips/Shows 0.111 % 93.646 %
91 UserID->index: ClicksTrue/Shows 0.11 % 93.756 %
146 Term1->domain: WShows/Shows 0.109 % 93.865 %
15 Global->domain: WClicks 0.101 % 93.966 %
144 Term1->domain: Skips/Shows 0.1 % 94.066 %
244 Term4->index: WClicks/Shows 0.099 % 94.165 %
228 Term4->url: WShows/Shows 0.099 % 94.264 %
70 UserID->url: Skips 0.098 % 94.362 %
236 Term4->domain: Skips 0.097 % 94.458 %
88 UserID->index: WClicks 0.096 % 94.554 %
231 Term4->domain: Clicks/Shows 0.096 % 94.65 %
179 Term2->index: Clicks 0.095 % 94.745 %
205 Term3->domain: Skips 0.094 % 94.839 %
13 Global->domain: Clicks 0.094 % 94.933 %
210 Term3->index: Clicks 0.089 % 95.022 %

79

B. Feature Importance

80

References

Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Learning,
11(23-581):81.

Chapelle, O. and Chang, Y. (2011). Yahoo! learning to rank challenge overview. In JMLR:
Workshop and Conference Proceedings 14, pages 1–24.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, page 785–794, New York, NY, USA. Association for Computing Machinery.

de Vrieze, P. T. (2006). Fundaments of Adaptive Personalisation. PhD thesis, Radboud Univer-
siteit, Nijmegen.

Dou, Z., Song, R., and Wen, J.-R. (2007). A large-scale evaluation and analysis of personal-
ized search strategies. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, page 581–590, New York, NY, USA. Association for Computing Machinery.

Kaggle (2013). Personalized web search challenge. https://www.kaggle.com/c/
yandex-personalized-web-search-challenge. Accessed: 2022-03-25.

Kaggle (2014). Personalized web search challenge. https://www.kaggle.com/
competitions/yandex-personalized-web-search-challenge/discussion/
6489. Acessed: 2022-06-09.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, page 3149–3157,
Red Hook, NY, USA. Curran Associates Inc.

LightGBM (2021). Lightgbm read the docs. https://lightgbm.readthedocs.io/en/
latest/. Acessed: 2022-05-13.

81

https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge/discussion/6489
https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge/discussion/6489
https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge/discussion/6489
https://lightgbm.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/

REFERENCES

Nardini, F. M., Rulli, C., Trani, S., and Venturini, R. (2022). Distilled neural networks for
efficient learning to rank. IEEE Transactions on Knowledge and Data Engineering, pages 1–1.

Plattner, T. (2018). Five risks of news personalization. https://medium.com/
jsk-class-of-2018/five-risks-of-news-personalizations-5bdc97fdbdcc.
Acessed: 2022-06-09.

Qin, T. and Liu, T. (2010). Microsoft learning to rank datasets. https://www.
microsoft.com/en-us/research/project/mslr/#:~:text=%20Microsoft%
20Learning%20to%20Rank%20Datasets%20%201,the%20datasets%2C%20you%
20must%20read%20and...%20More%20. Acessed: 2022-05-17.

Qin, T. and Liu, T. (2013). Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Systems Handbook.
Springer US, Boston, MA.

Russell, S. and Norvig, P. (2016). Artificial Intelligence: A Modern Apporach, 3rd ed. Pearson
Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England.

Slack (2017). Search at slack. https://slack.engineering/search-at-slack/. Ac-
cessed: 2022-05-04.

Ursu, R. M. (2018). The Power of Rankings: Quantifying the Effect of Rankings on Online
Consumer Search and Purchase Decisions. Marketing Science, 37(4):530–552.

Wolford, B. (2020). What is gdpr, the eu’s new data protection law? https://gdpr.eu/
what-is-gdpr/. Acessed: 2022-06-09.

XGBoost (2021). Xgboost documentation. https://xgboost.readthedocs.io/en/
stable/. Acessed: 2022-05-05.

Ye, A. (2020). Xgboost, lightgbm, and other kaggle compe-
tition favorites. https://medium.com/analytics-vidhya/
xgboost-lightgbm-and-other-kaggle-competition-favorites-6212e8b0e835.
Acessed: 2022-05-13.

Yoganarasimhan, H. (2020). Search personalization using machine learning. Management
Science, 66(3):1045–1070.

82

https://medium.com/jsk-class-of-2018/five-risks-of-news-personalizations-5bdc97fdbdcc
https://medium.com/jsk-class-of-2018/five-risks-of-news-personalizations-5bdc97fdbdcc
https://www.microsoft.com/en-us/research/project/mslr/#:~:text=%20Microsoft%20Learning%20to%20Rank%20Datasets%20%201,the%20datasets%2C%20you%20must%20read%20and...%20More%20
https://www.microsoft.com/en-us/research/project/mslr/#:~:text=%20Microsoft%20Learning%20to%20Rank%20Datasets%20%201,the%20datasets%2C%20you%20must%20read%20and...%20More%20
https://www.microsoft.com/en-us/research/project/mslr/#:~:text=%20Microsoft%20Learning%20to%20Rank%20Datasets%20%201,the%20datasets%2C%20you%20must%20read%20and...%20More%20
https://www.microsoft.com/en-us/research/project/mslr/#:~:text=%20Microsoft%20Learning%20to%20Rank%20Datasets%20%201,the%20datasets%2C%20you%20must%20read%20and...%20More%20
https://slack.engineering/search-at-slack/
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://medium.com/analytics-vidhya/xgboost-lightgbm-and-other-kaggle-competition-favorites-6212e8b0e835
https://medium.com/analytics-vidhya/xgboost-lightgbm-and-other-kaggle-competition-favorites-6212e8b0e835

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-03

EXAMENSARBETE Personalizing the Order of Search Results Using Machine Learning
STUDENTER Liam Fahlstad, Max Gustafson
HANDLEDARE Emelie Lundh (INGKA), Pierre Nugues (LTH)
EXAMINATOR Flavius Gruian (LTH)

Personaliserad företagssök genom
maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Liam Fahlstad, Max Gustafson

Dagens sökmotorer, inte minst ‘Google’, använder sig ofta av personalisering för att
producera relevanta resultat för användaren. Detta examensarbete har tagit fram en
’omrankingsmodell’ för IKEAs interna sökplatformar som placerar dokument relevanta
för användaren högre upp i den returnerade listan med träffar.

När en användare brukar en kommersiell sökmo-
tor beror den resulterande listan med träffar i stor
utsträckning på vem som är användare. En använ-
dare som befinner sig i Lund och söker på ‘restau-
ranger’ förväntar sig resultat på restauranger i
Lund, inte i Malmö. På stora företag, t.ex. med
många olika avdelningar, kan samma princip ap-
pliceras på deras interna företagssök. En använ-
dare från Sverige som jobbar på lager förväntar
sig annorlunda resultat på ‘Monthly Report’ än en
användare som jobbar med IT i Kananda. Tidi-
gare studier har visat att om relevanta resultat
hamnar för långt ner på resultatlistan är det san-
nolikt att användaren ger upp sin söksession.

När en användare utfärdar en sökning, in-
dexerar och returnerar sökmotorn en lista med
sökresultat. I detta examensarbete, har sökhis-
toriken på ett stort företag, IKEA, använts för
att bygga en omrankningsmodell. Innan en lista
med sökresultat presenteras, bearbetas den av om-
rankingsmodell som tar hänsyn till användarens
sökhistorik, samt sökhistorik från liknande an-
vändare. Modellen ger därefter en ny rankn-
ing till varje sökresultat och presenterar listan i
ny ordning där relevanta resultat för användaren

befinner sig högre upp. Omrankningsmodellen är
baserad på maskininlärning vilket betyder att den
lär sig att lösa problemet med hjälp av tidigare
data, i vårt fall sökhistorik.

Konceptuell beskrivning av en omrankingsmodell.

Flera olika modeller byggdes där samtliga ly-
ckades förflytta relevanta sökresultat högre upp
i listan dvs. att användare i större utsträckning
klickar högre upp i listan.

	Introduction
	Background
	General
	Problem formulation
	Findings

	Previous Work
	Specification of Contributions

	Approach
	Outline and Definitions
	Why both Yandex and IKEA
	The Yandex Dataset
	Datasets: IKEA
	Quantities

	Method
	Partitioning
	Labeling – Relevancy of a Document
	Features
	Feature Selection
	Model Outline
	Model Selection

	Evaluation Setup
	Evaluation Metrics

	Implementation
	Dictionaries
	Implementation steps

	``Learning-to-Rank'' Algorithms
	Introduction
	RankNet
	LambdaRank
	Introducing NDCG in RankNet

	Speeding up LambdaRank
	Multiple Additive Regression Trees (MART)
	Regression Trees
	MART

	LambdaMART

	Evaluation
	Model Free Analysis
	IKEA datasets
	Comparing to the Yandex Dataset

	Results
	Dataset: EntryPoint
	Dataset: Reduced Yandex
	Result by user history

	Discussion
	Performance and Features
	Long Term Gain
	Click Bias
	Ethical Considerations

	Conclusions
	Summary of Findings
	Further work
	Dwell-time
	Deployment to Evaluate Click Bias
	Promoted links
	Neural Networks

	IntraNet Results
	Feature Importance
	EntryPoint dataset XGBoost
	EntryPoint dataset LightGBM
	Yandex dataset XGBoost
	Yandex dataset LightGBM

	References
	Tom sida

