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Abstract

Fitting a model to a time-dependent ensemble average is a process repeated frequently
throughout biophysics. A selected ensemble-averaged observable (⟨y(t)⟩) for a given system
can be predicted through the use of an estimated ensemble average, where the estimated
ensemble average is created via simulated or experimental data sets. Fitting a model to
this estimated ensemble average allows for estimations of ⟨y(t)⟩.

Often, one tests the quality of a fitted model through the use of a ’goodness-of-fit’ (GOF)
procedure. The quality of the model is determined by the placement of a test statistic
(S) on its associated probability distribution (ϕ(S)). Traditional choices of S, such as
the normalised residual sum of squares (RSS), neglect correlations in fluctuations of the
ensemble average around the fitted model. Under this assumption, the normalised RSS
is distributed according to the χ2-distribution (ϕχ2(S)), with mean (µ) and variance (σ2)
proportional to the degree of freedom (υ) of the fitted model. The inability of the traditional
χ2-GOF procedure to account for these correlations can lead to less reliable evaluations of
the quality of a fitted model.

The thesis covers the derivation and validation of the correct form of ϕ(S) when correla-
tions are considered, for use in a new GOF procedure. The new GOF procedure was tested
under varying parameters, correlation types and ensemble make-ups. Testing environments
included three ensemble generating prototype models, and three movies of noisified sim-
ulations of vesicle movement. It is demonstrated that the new GOF procedure correctly
accepts and rejects well and poor fitting models respectively, and is a valid indicator of
model quality. Furthermore, it is shown that compared to the traditional χ2-GOF proce-
dure, the new GOF procedure is a more accurate measure of model quality under a variety
of correlation types, is reliable in a greater region of parameter space, and performs better
in all tested scenarios.
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Popular Science - No Correlation Left Behind

Studies of micro and nanoscopic particles and molecules have been of huge benefit to the
biophysics community. The ability to conduct experiments at the microscopic level has
generated new knowledge about once unseen biological processes from virus incubation to
the life cycle of bacteria.

At the microscopic level, the recorded trajectories of a given system of particles are often
grouped into what is referred to as a time dependent ensemble average. A time dependent
ensemble average describes a given system of particles as a single stream of time dependent
data, that data being a chosen metric by which to average over time. Time dependent
ensemble averages allow for easier and more reliable interpretation of a system of particles,
and for the extraction of certain system dependent parameters, such as how and the rate
at which certain particles move under a set of pre-defined conditions.

Fitting a model to the time dependent ensemble average allows for predictions further in
time to be made, and further parameters to be extracted, such as the rate of diffusion.

In practice, one often estimates a chosen ensemble-averaged observable (⟨y(t)⟩) through
the use of an estimated ensemble average made up of simulated or experimental data sets
containing ⟨y(t)⟩. Fitting a model to this estimated ensemble average then allows for the
extraction of a prediction of ⟨y(t)⟩.

For both predictions and extracted parameters to be accurate, one must make sure that the
model is well fitting. Goodness-of-fit (GOF) procedures are used frequently throughout
various scientific communities to ensure that models are well fitting to their ensemble
counterparts. Traditional GOF procedures, such as the χ2-GOF procedure, neglect any
correlation among the fluctuations of the ensemble average around the fitted model, leading
to less reliable determination of a fitted model’s quality.

This thesis fills this gap in traditional GOF procedures, developing a new GOF proce-
dure which includes the correlations in fluctuations of a ensemble average around a fitted
model. The new GOF procedure will allow scientists within the biophysics community to
make more reliable predictions and extract more accurate parameters from a given time
dependent ensemble average. The hope is that researchers will take to and use this new
GOF procedure to further the knowledge of intricate biological particles and processes, for
example, virus structure and transmission, or the diffusion of molecules through the lipid
membrane.
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1 Introduction

Time dependent ensemble averages are employed frequently throughout multiple fields of
physics, particularly within biophysics. Studies in which ensemble averages are common
place include virus tracking [1, 2, 3], membrane dynamics [4, 5, 6], fluorescent protein
tracking [7, 8, 9], and more generally, single particle tracking as a whole [10, 11, 12].

An ensemble-averaged observable (⟨y(t)⟩) is a theoretical value gained by averaging a given
y(t) over an infinite number of initially identical systems. For example, ⟨y(t)⟩, could be
the ensemble-averaged mean squared displacement (MSD) or mean velocity of a particular
system of particles. In practice, estimates of ⟨y(t)⟩ are obtained through averaging over
a finite number (M) of systems, either generated through simulation or experimentation.
From this point on, ’ensemble average’, is used to describe a estimated ensemble average
of a given system.

The next step is often to then fit a model to the ensemble average. The fitted model can
then be used as estimator of a given ⟨y(t)⟩ further in time, or used to extract subsequent
parameters related to ⟨y(t)⟩. Physicists in this position are often faced with the ’model
selection problem’ [13, 14], that problem being, which model does one fit to the ensemble
average that will yield the most reliable parameters. At this stage, one would often turn
to an aptly named ’Goodness-of-fit’ (GOF) procedure in order to gauge the quality of a
given model’s fit to an ensemble average. In general, the GOF procedure involves the
calculation of a test statistic (S), and the evaluation of its associated distribution (ϕ(S))
[15, 16, 17]. The calculated S for a given system can then be compared to its position on
the corresponding ϕ(S), and used to determine the quality of the fitted model. If S lands
in the upper (tail) end of ϕ(S), the model is deemed poor.

The method one uses to fit a function to a given ensemble average can be separated into
two main schools, regression (linear and non-linear), and Bayesian methods (Appendix
E). Popular regression approaches, such as weighted-least-squares (WLS), fit a model to a
given ensemble average by minimising a chosen cost function [13, 18]. Bayesian methods
offer an alternative, selecting a model by maximising the appropriate likelihood function
[14, 16, 19].

Oftentimes, GOF procedures for testing the quality of a fitted model assume the fluctu-
ations of an ensemble average around a fitted model (Λ) are independent and identically
distributed (i.i.d). Here, Λ is a vector with length equal to the number of sampling points
(N), with each entry equal to the residual at a given N , where a residual is defined as
the difference between the ensemble average and fitted model. It can be demonstrated
that the correlations among the components of Λ are in general not i.i.d (Section 5.1).
If a given position along the ensemble average is above the fitted model, then in practice
it is likely the position at the following time step will continue this trend [13]. The lack
of consideration of correlations among the components Λ in current GOF procedures can
lead to poor estimates of model fit quality.
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In cases where the number of trajectories (M) is large, the multivariate central limit
theorem (CLT) proposes that the distribution of Λ (ϱ(Λ)) can be represented by a mul-
tivariate distribution. Therefore, around a well fitting model, the distribution of residuals
ϱ(Λ) should conform to multivariate normality [13]. Many suitable approaches to test
for multivariate normality exist [15], in this thesis the approach is based on the χ2-GOF
procedure.

In the χ2-GOF procedure, an S calculated from the residuals is used to give a measure of
the GOF of a given model. In the case that the components of Λ are uncorrelated, one
would expect an S of approximately N [20], with an S greater than N denoting a poor
fitting model.

Formally, one uses an S referred to as the residual sum of squares (RSS). In this case,
S is a sum of Λ2/s, where s = σ/

√
M , with σ denoting the standard deviation of the

components of Λ. If the components of Λ are indeed i.i.d., one would expect Λ2/s to be
of the order one, and to be described by the χ2-distribution (ϕχ2(S)) with mean, µ, and
variance, σ2, where µ = N and σ2 = 2N respectively [20].

The GOF of a given model using this approach can be evaluated using ϕχ2(S), where ϕχ2(S)
has a µ and variance σ2 determined by the degree of freedom (υ), where υ = N . This
process is referred to as the χ2-GOF procedure [20]. Due to this, the χ2-GOF procedure
cannot account for any correlations among the components of Λ, which would alter σ2.
This inability of the χ2-GOF procedure to account for correlations in Λ can lead to poor
evaluations of model quality, which in turn leads to less accurate predictions of ⟨y(t)⟩.

In the correlated cases, current approaches, such as the Hotelling’s T-squared test statistic
(T 2) (Section 3.4) and it’s associated distribution, can prove problematic in their appli-
cation. The dimensionality of a given system can cause inaccurate T 2 to be calculated,
leading to poor, or in certain cases, totally unreliable estimates of the GOF of a given
model (Section 3.4) (Figure I).

This thesis concerns the development of a new GOF procedure which considers the corre-
lations among the components of Λ. This new GOF procedure employs methods demon-
strated by Gil-Pelaez, Imhof and Davies to evaluate a ϕ(S) which includes correlations in
the components of Λ [21, 22, 23]. The proposed GOF procedure aims to bring more accu-
rate and reliable GOF testing to scientific communities where fitting models to ensemble
averages is common practice, leading to more reliable modeling and parameter estimation.

In order to evaluate ϕ(S), one must invert the characteristic function (CF) (Fourier trans-
form of ϕ(S)) through the use of the inverse Fourier transform. Gil-Pelaez provides the
proof that the inversion theorem presented by Lévy is capable of inverting a given CF,
producing an evaluated ϕ for use as part of a GOF procedure [21]. Imhof demonstrated
the validity of Gil-Pelaez’s proof, by successfully using numerical methods to evaluate the
theorem and invert a given CF [22]. This is followed by work from Davies, who provides a
demonstration that the inversion theorem can be suitably applied to a χ2-CF and evalu-
ated to provide a stable ϕ [23]. Modern approaches have turned to approximate methods
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to evaluate a required ϕ. Approximate methods based on moment evaluation have been
demonstrated by Solomon et al [24], on cumulants by Lui et al [25], and using Fast Fourier
Transforms (FFTs) by Witkovsky [26]. Duchense et al provide a comprehensive review
of the method presented by Lui et al, and demonstrate its shortcomings when compared
to the exact methods demonstrated by Imhof and Davies [27]. Bodenham et al provide
further comparisons between approximate and exact methods, concluding that in offline
situations exact methods are more favourable for the evaluation of a given ϕ [28], with
particular emphasis on the approaches demonstrated by Imhof and Davies.

The primary testing and validation methods for the new GOF procedure employ the use
of trajectories generated from three prototype models (Appendix B). These prototype
models include Brownian motion (BM), fractal Brownian motion (FBM) and continuous
time random walks (CTRWs). These three prototype models are of particular importance
within the biophysics community, where BM is commonly used to describe diffusive cellular
processes [29,30], FBM crowding dynamics [31, 32], and both FBM and CTRWs have been
of use in describing motion within cell membranes [33, 34]. The three prototype models,
aside from generating test trajectories, allow for the creation of validation procedures,
through repeated simulation and manual evaluation of a given prototype model’s ’true’
ϕ(S) (ϕ(S)true). These three prototype models serve as appropriate examples of biophysical
processes, but the new GOF procedure can be applied to any given system, with a model
fit using an arbitrary choice of fitting method. On that note, the predominant fitting
method used throughout this thesis is the weighted-least-squares including correlation error
(WLS-ICE) procedure, developed and validated by Fogelmark et al [13]. The WLS-ICE
method is a regression based approach, fitting a model to a given ensemble average through
minimisation of a χ2 cost function.

In the following section, the scope of the thesis is highlighted. Section 3 defines the selected
S and details the underlying mechanisms used in the new GOF procedure. Section 4
describes the inversion and integration methods as well as the make-up of the estimate
ensembles used for testing throughout the thesis. Section 5 presents the results of the
testing of the new GOF procedure. Section 6 provides instruction on the use of ϕ(S) to
determine the GOF of a given model. Section 7 concludes the thesis. Additional tables,
images and detail can be found in the relevant Appendices.

2 Problem Outline

This section describes the problem outline, highlighting the scope of the thesis. The steps
of the new GOF procedure and their impact on the model selection problem are detailed.
The sequence diagram is depicted in Figure 1. An example of ⟨y(t)⟩, with a fitted model
(f(θ)), and associated Λ is presented in Figure 2. Here, f(θ) = θtθ, where θ is a fitting
parameter calculated via the WLS-ICE method and t = (1, ..., N).
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Figure 1: Problem Outline - Sequence Diagram Figure 1 provides a step-by-step
sequence of the fitting of a model to an ensemble average and subsequently determining its
GOF. The first stage (blue) concerns the collection of trajectories from experimental data,
and the creation of a suitable ensemble average. The second stage (green) denotes steps
that are associated with model fitting. The third section (red) lists the steps associated
with the model selection problem. The area sectioned off with red dashes covers the steps
included within the new GOF procedure.

In the steps prior to fitting (Figure 1, blue boxes), trajectories are extracted from experi-
mental or simulated data, compiled and transformed into an ensemble average of a selected
time dependent observable, ⟨y(t)⟩ (Figure 2) . Note, that throughout this thesis, all en-
semble averages used are estimates of an analytically exact ensemble average. This is done
by averaging over a finite number of M trajectories with N sampling points to create an
estimated ensemble average of N sampling points. Though crucial, this stage has no effect
on the outcome of the new GOF procedure, rather only the ensemble average to which the
model is fit.
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(a) Fitted model. Shaded Residuals. (b) Extracted Residuals

Figure 2: ⟨y(t)⟩ vs. N . Figure 2 provides an example of ⟨y(t)⟩ over N sampling points,
with f(θ) and associated Λ. Figure 2 (a) shows f(θ) fitted to ⟨y(t)⟩, with the shaded
area being the difference between ⟨y(t)⟩ and f(θ). Figure 2 (b) provides a plot of the
Λ extracted from the shaded area of Figure 2 (a). ⟨y(t)⟩ was generated using the BM
prototype model, with M = 100 trajectories and N = 100 sampling points. Note, that in
Figure 2 (b) µ(Λ) = 0.

After the creation of a suitable estimate ensemble average, the following step (Figure 1,
green boxes) is to fit a model (Figure 2). The outcome of this stage varies depending on
the fitting method used and amount of data modelled. Though choice of fitting method
will alter the model fit (Figure C), this thesis does not concern finding the optimal fit-
ting method, rather focusing on providing a more reliable solution to the model selection
problem.

On that note, the subsequent steps (Figure 1, red boxes) concern the model selection
problem. The new GOF procedure aims to solve this problem via calculation of a suitable
S and ϕ(S).

The region of Figure 1 outlined by red dashes provides an outlook of the GOF procedure
as a whole, concerning both the fitting of a model, and the solving of the model selection
problem.

To summarise, this thesis will aim to provide a new, more reliable solution to the model
selection problem through creation of a new χ2-based GOF procedure. In which a model
using an arbitrary choice of fitting method can be fit to an ensemble average, the GOF
procedure can then calculate S and evaluate its associated ϕ(S). S can then be used to
determine the acceptance or rejection of a model, given its position on ϕ(S). At this point
parameters can be extracted, or a new model fit, depending on acceptance or rejection of
the fitted model respectively.
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3 Theory

This section details the underlying mechanisms of the new GOF procedure. Firstly, the
multivariate CLT and ϱ(Λ) are defined. Next, covariance (Σ) and Pearson correlation (P)
matrix estimation and the selection of a suitable S is discussed. Finally, the use of CFs as
a method of evaluating ϕ(S), and the µ and σ2 of both ϕ(S) and ϕχ2(S) is detailed.

It is important to draw a distinction between analytically exact variables, meaning those
derived from an ensemble average, where the average is take over an infinite number of
systems, and those estimated via a finite number of simulated or experimental data sets.
Moving forward, (...)∗ represents an analytically exact variable or observable.

3.1 The Multivariate Central Limit Theorem

The new GOF procedure relies on the multivariate CLT to approximate ϱ(Λ). This section
first defines the multivariate CLT, with the following (Section 3.2) detailing its application
to approximating ϱ(Λ).

Let us define a sample vector of N sampling points,

Y(m) = (y
(m)
1 , ..., y

(m)
N ), (3.1)

where m denotes a given trajectory, and m = (1, ...,M). We can then define the mean at
a given n, with n = (1, ..., N),

ȳn =
1

M

M∑
m=0

y(m)
n , (3.2)

where ¯(...) denotes the mean of a given observable.

Let us now define a new sample vector containing N samples of ȳ,

Y = (ȳ1, ..., ȳN), (3.3)

where Y is from a random sample of a multivariate distribution. If we denote by γ the
mean of Y and by Q∗ the covariance matrix for the different components of Y, then,
according to the multivariate CLT,

√
M(Y − γ) −→ N [0,Q∗], (3.4)

as M −→ ∞. The multivariate CLT thus proposes that ϕ(Y) can be approximated by a
N-dimensional multivariate Gaussian [35, 36],

ϕ(Y) =
1

(2π)
N
2 | Σ∗ | 12

e

(
−
(Y−γ)′Σ∗−1(Y−γ)

2

)
, (3.5)
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where (...)′ denotes the transpose, | ... | the determinant of a given observable, and Σ∗ is
[35],

Σ∗ =
Q∗

M
. (3.6)

Note that Equation 3.5 only holds when M is sufficiently large.

3.2 The Distribution of Fluctuations

Following on from Section 3.1, the multivariate CLT can used to represent ϱ(Λ, θ). Rather
than a random sample vector, treating Y as Λ, where numerically,

Λ = (y − f(θ)), (3.7)

where y are points along the ensemble average and f(θ) the fitted model, with J free fitting
parameters θ = (θ1,...,θJ). One can then rewrite Equation 3.5 to describe ϱ(Λ, θ) , giving
an altered multivariate normal distribution,

ϱ(Λ, θ) =
1

(2π)
N
2 | Σ∗ | 12

e

(
−
(Λ−µ)′Σ∗−1(Λ−µ)

2

)
, (3.8)

where µ is the mean difference,
µ = ⟨y − f(θ)⟩. (3.9)

3.3 Covariance and Correlation Matrix Estimation

In certain systems, such as in the BM prototype model (Appendix B), Σ∗ can be derived
analytically [13, 37], in the general case however, Σ must be estimated.

The unbiased estimator of Q for a collection of Y(m) is given by multiplying by Y′(m) and
averaging over the sample [38],

Q =
1

M − 1

M∑
m=1

Y(m)Y′(m). (3.10)

Again exchanging Y for Λ gives,

Q =
1

M − 1

M∑
m=1

Λ(m)Λ′(m), (3.11)

where Σ = Q/M (Equation 3.6).

Estimation of Σ allows for the calculation of the associated P, which describes the corre-
lations among Λ, according to following quadratic,

P = R
1
2ΣR

1
2 , (3.12)
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where R is the taken as diagonalised counterpart of Σ [13],

Rij =
δij
Σij

, (3.13)

where δ is the Kronecker delta.

Dimensionality (N/M) has a notable effect on the reliability of the estimated Σ. In high
dimensional cases, the estimated Σ is prone to high levels of variation, as such in general
M ≫ N must be satisfied for reliable estimation of Σ [39].

3.4 Selection of a Suitable S

Let us now define the S used in the new GOF procedure.

T 2 is a common choice for testing sample vectors,

T 2 = (X̄− µ)Σ−1(X̄− µ), (3.14)

where theoretically T 2 is distributed according to ϕχ2(S) with υ = N . In practice however,
this is often not achievable. In the present setting, when M ≫ N is not satisfied, Σ−1 is
unstable. In cases such as these, the distribution of T 2 cannot be accurately described by
ϕχ2(S) (Figure I).

This problem extends past just T 2, any S which considers the full Σ can fall victim to
issues caused by dimensionality.

Hu et al. provide a suitable alternative, referred to as the Diagonalised T 2 (S) where Σ−1

is diagonalised along the leading diagonal [40],

S = ΛRΛ′, (3.15)

where ϕ(S) ≈ ϕχ2(S). Note, that in systems where no correlations among the components
of Λ exist, meaning when the components of Λ are i.i.d with σ2 = 1, ϕ(S) will approach
a ϕχ2(S).

3.5 The Characteristic Function

Now that both ϱ(Λ, θ) and S have been defined, one can begin to derive ϕ(S) for use in
the new GOF procedure.

ϕ(S) can be derived by integrating over all possible Λ for a given system [41],

ϕ(S) = ⟨δ(S −Λ′RΛ)⟩ =
∫
dΛ1...dΛNδ(S −Λ′RΛ)ϱ(Λ, θ), (3.16)
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where here δ denotes the Dirac delta function. One can evaluate Equation 3.16 by using
the integral representation of δ [41],

ϕ(S) =
1

2π

∫
dΛ1...dΛNe

−ikSeikΛ
′R∗Λϱ(Λ, θ)dk =

1

2π

∫
e−ikSCF (k)dk (3.17)

where k is a real-valued Fourier variable in the range [−∞,∞].

Let us now derive the CF used in the evaluation of ϕ(S). From Equation 3.17, the CF can
be defined as follows,

CF (k) =

∫
dΛ1...dΛNe

ikΛ′R∗Λϱ(Λ, θ). (3.18)

By plugging Equation 3.8 into Equation 3.18, one arrives at,

CF (k) =

∫
1

(2π)
n
2 |Σ∗| 12

(
e

(
ikΛ′R∗Λ−1

2
(Λ−µ)′Σ∗−1(Λ−µ)

))
. (3.19)

The multivariate Gaussian integral over all residuals in Equation 3.19 can be performed,
see Mathai et al [36], leading to,

CF (k) = |I− 2ikR∗Σ∗|−
1
2 e(−

1
2
µ′(I−(I−2ikR∗Σ∗)−1)Σ∗−1µ), (3.20)

where I is the identity matrix. One can simplify the above expression, first by expanding,

CF (k) = |I− 2ikR∗ 1
2Σ∗R∗ 1

2 |−
1
2 e

(
ikµ′Σ∗− 1

2 (R∗ 1
2Σ∗R∗− 1

2 )(I−2ikR∗ 1
2Σ∗R∗ 1

2 )−1Σ∗− 1
2µ
)
, (3.21)

and then by recalling P∗ = R∗ 1
2Σ∗R∗ 1

2 (Equation 3.12), Equation 3.21 can be rewritten
as follows,

CF (k) =| I− 2ikP∗ |−
1
2 e

(
ikµ′Σ∗− 1

2P∗(I−2ikP∗)−1Σ∗− 1
2µ
)
. (3.22)

A well fitting model would lead to µ ≈ 0, leaving only the leading term,

CF (k) =| I− 2ikP∗ |−
1
2 . (3.23)

In order to have the CF represented in a more usable format, Equation 3.22 can be deformed
from matrix notation and represented by its eigenvalues (λ) [36]. First, one can define an
orthogonal matrix, A, such that AIA−1 = I and A−1P∗A = D, where D is a diagonal
matrix containing the λ of P∗. Then, noting that both |I| and |D| are equal to the product
of their diagonal entries [36], one has,

CF (k) = |AIA−1 − 2ikA−1P∗A|−
1
2 = |I− 2ikD|−

1
2 =

N∏
i=1

(1− 2ikλi)
−1
2 , (3.24)
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where λ are the eigenvalues of P. Note, if one were to go through the above sequence in
the in the case that the correlations among the components of Λ where uncorrelated, one
would expect that λ = 1 for all λ. In this case the resulting CF is that associated with
ϕχ2(S), where if λ = 1,

CF (k) =
N∏
i=1

(1− 2ikλi)
−1
2 = (1− 2ik)−

N
2 . (3.25)

Applying the inverse Fourier transform to Equation 3.24 returns Equation 3.17 and yields
the required ϕ(S),

ϕ(S) =
1

2π

∫ ∞

−∞
e(−ikS)

N∏
i=1

(1− 2ikλi)
−1
2dk =

1

2π

∫ ∞

−∞
e(−ikS)CF (k)dk. (3.26)

The integral presented in Equation 3.26 provides a suitable ϕ(S) for use in the new GOF
procedure. Moving forward, simulated estimates of Σ∗, R∗ and P∗ are used in the evalua-
tion of ϕ(S).

3.6 The µ and σ2 of ϕ(S)

Following the deviation of ϕ(S), one can now look at both its µ(⟨S⟩) and σ2(⟨S2⟩ − ⟨S⟩2)
analytically, and draw a comparison to ϕχ2(S).

Formally, the CF is the expected value of the exponent presented in Equation 3.26 [36],

CF (k) = ⟨eikS⟩. (3.27)

Taylor expansion of Equation 3.27 allows for the identification of ⟨S⟩ and ⟨S2⟩,

CF (k) = 1 + ik⟨S⟩ − k2

2
⟨S2⟩, (3.28)

where ⟨S⟩ and ⟨S2⟩ are the first and second moments respectively.

Taylor expanding the CF presented in Equation 3.26 allows for the determination of ⟨S⟩
and ⟨S2⟩ in terms of the λ of P ,

CF (k) =
N∏
i=1

1 + ikλi −
3k2

2
λ2i , (3.29)

where by expanding out the product,

CF (k) = (1 + ikλ1 −
3k2

2
λ21)(1 + ikλ2 −

3k2

2
λ22)...(1 + ikλN − 3k2

2
λ2N). (3.30)
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Further expansion leads one to the following, where ⟨S⟩ and ⟨S2⟩ are readily identifiable,

CF (k) = 1 + ik
N∑
i=1

λi − k2(
N∑

1≤i<j≤N

λiλj)−
3k2

2

N∑
i=1

λ2i , (3.31)

where terms above O(k2) have been removed.

Equation 3.31 allows for the identification of ⟨S⟩ as the sum of λ,

⟨S⟩ =
N∑
i=1

λi = tr(P) = N. (3.32)

Comparing with the χ2-GOF procedure, one finds that both ϕ(S) and ϕχ2(S) have the
same µ, where ϕχ2(S) has µ = υ = N [20].

Equation 3.31 also allows for σ2 to be determined, where σ2 is equal to the second moment
minus µ2,

σ2 = ⟨S2⟩ − ⟨S⟩2, (3.33)

σ2 = 3
N∑
i=1

λ2i + 2(
N∑

1≤i<j≤N

λiλj)− (
N∑
i=1

λi)
2 = 2

N∑
i=1

λ2i . (3.34)

Again comparing with ϕχ2(S), where σ2 = 2υ [20], it is not possible to say σ2(ϕ(S)) =
σ2(ϕχ2(S)) is always true. Indeed, if N = 1, then the CF would describe the ϕχ2(S), with
µ = σ2 = 1, but this is cannot be said definitively for an arbitrary choice of N .

Solving for the minimum σ2(ϕ(S)) gives further insight into whether σ2(ϕ(S)) = σ2(ϕχ2(S))
for N > 1. On that note, let us set N = 2 and evaluate σ2(ϕ(S)) and µ(ϕ(S)),

µ(ϕ(S)) =
2∑

i=1

λi = λ1 + λ2 = 2, (3.35)

σ2(ϕ(S)) = 2
2∑

i=1

λ2i = 2λ1 + 2λ2 = 2λ21 + 2(2− λ1)
2. (3.36)

Solving dσ2

dλ1
= 0, allows for the smallest values of λ1 to be found,

dσ2

dλ1
= 4λ1 + 4(λ1 − 2) = 0, (3.37)

thus λ1 = 1. As λ1 + λ2 = 2 (Equation 3.32), it can be said λ1 = λ2 = 1, meaning
σ2 = 4 = 2N . Thus, σ2(ϕ(S)) = 2N is the minimum value σ2(ϕ(S)) can take, which is the
same as σ2(ϕχ2(S)).

If the assumption made by the χ2-GOF procedure that correlations among the components
of Λ are i.i.d is invalid, then one would expect the evaluated σ2(ϕ(S)) to differ from
σ2(ϕχ2(S)). Since σ2(ϕ(S)) can only increase relative to σ2(ϕχ2(S)), one would expect an
increased σ2 when correlations among the components of Λ are non i.i.d.
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3.7 The Marchenko-Pastur Law

This section defines the Marchenko-Pastur (MP) law (Appendix C).

The MP law describes a typical distribution of λ for a given random matrix made up of
the product of i.i.d sample vectors, with µ = 0 and σ2 = 1 [42]. Let us define,

ζ =
1

N
YYT , (3.38)

where as before Y is a sample vector of N length, with i.i.d entries. The MP law then
describes the distribution of the λ of ζ.

In the case that the correlations among the components of Λ are i.i.d, the MP law provides
a typical distribution of λ for P (ψ(λ)) [42],

ψ(λ) =


1

2πλ
√

N
M

√
(b− λ)(λ− a) a < λ < b

0 otherwise

, (3.39)

where a and b are defined as follows,

a = (1−
√
N

M
)2, (3.40)

b = (1 +

√
N

M
)2, (3.41)

where a and b also define the lower and upper bounds of ψ(λ) respectively. Here, when
M −→ 1, one would expect λ = 1 for all λ. In this case, evaluation of the CF presented in
Equation 3.25 would result in ϕχ2(S), with µ = σ2 = 1.

4 Methods

This section details the Gil-Pelaez theorem, its application to the evaluation of ϕ(S) and the
cumulative distribution function (F (S)), followed by integration methods and the contents
of the estimate ensembles averages generated by the prototype models.

4.1 The Gil-Pelaez Theorem

The Gil-Pelaez theorem allows for the evaluation of the integral presented in Equation
3.26. Gil-Pelaez demonstrates explicitly that if a given CF is of the form,

CF (k) =

∫ ∞

−∞
e(ikS)ϕ(S)dS, (4.42)
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then its associated ϕ(S) can be evaluated by applying the inversion theorem [21],

ϕ(S) =
1

π

∫ ∞

0

R{e(−ikS)CF (k)}dk, (4.43)

where R{...} refers to the real components of a given function.

On evaluating the integral presented in Equation 4.43, Imhof and Davies provide examples
of the use of numerical methods [22, 23]. This thesis takes a similar approach, using the
trapezoidal rule to approximate the integral presented.

4.2 Evaluation of ϕ(S)

Application of the trapezoidal rule allows for the approximation of Equation 4.43 [18],

ϕ(S) =
dk

π

(
1

2
+

n∑
j=1

wjR
(
eikjSCF (kj)

))
, (4.44)

where n is the number of points evaluated, w the quadrature weights, k is a real valued
Fourier variable in the range [−∞,∞], and,

dk =
2π

U − L
, (4.45)

where U and L define the upper and lower range of ϕ(S) respectively. For information on
the leading 1/2 and a full derivation of Equation 4.44, see the Appendix (Appendix A).

The six-sigma rule can be used to select U and L [26], such that U - L spans a range where
all possible S for a given system could fall. Using this approach,

U =
N∑
i=0

λi +
N∑
i=0

λ2i , (4.46)

and L = 0 by definition as S > 0 for all S.

In order to improve the reliability of the evaluated ϕ(S), Equation 4.44 is repeated a
number of times, with an increasing number of points per iteration. Romberg’s method is
then applied [18]. Romberg’s method is an iterative process, in which increasingly accurate
evaluations of a given integral can be used to generate a triangular array of increasingly
accurate estimates of said integral. Romberg’s method then stops when the results along
the diagonal of the triangular array begin to converge, demonstrating that the integral
has been approximated accordingly. Romberg’s method ensures that a suitable amount of
points have been used to approximate an integral evaluated from 0 to ∞, as in Equation
4.44. For further detail the reader is directed to Press et al [18].
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4.3 Evaluation of F (S)

This sections presents the method used to evaluate the cumulative distribution function
F (S). F (S) presents the probability that S takes a value less than or equal to a specified
value in evaluated space,

F (S) =

∫ S

0

ϕ(S)dS. (4.47)

In the evaluation of F (S), the Gil-Pelaez theorem is again applied. Imhof demonstrates
that any given F , with a CF of the form shown in Equation 4.42, can be evaluated using
the Gil-Pelaez theorem [21],

F (S) =
1

2
− 1

π

∫ ∞

0

k−1I{e(−ikS)CF (k)}dk, (4.48)

where I{...} refers to the imaginary components of a function. The trapezoidal rule can
again be applied,

F (S) =
1

2
− dk

π

(
N − k

2
+

n∑
j=0

wjI
(
eikjSCF (kj)

kj

))
. (4.49)

For information on the leading term, and a full derivation of Equation 4.49, the reader is
again directed to the Appendix (Appendix A). In the case of Equation 4.49, Romberg’s
method is again applied to ensure suitable approximate of an infinite integral.

4.4 Prototype Model Trajectories

This section describes the contents of the estimate ensemble averages generated via the
three prototype models.

The observable used in the estimate ensemble averages, unless otherwise stated, is the
squared displacement (SD),

y(m)(t) =| y(m)(t)− y(m)(0) |2, (4.50)

where y(m)(t) denotes the SD of a given trajectory at time, t, with t = (1, ..., N) [9]. The
ensemble at a given t is then the average position of the sample population at each sampling
point,

⟨y(t)⟩ = 1

M

M∑
m=1

y(m)(t), (4.51)

where ⟨...⟩ denotes the ensemble average of a given observable.

The choice of SD as the time-dependant observable is due to both its commonality in
literature [2, 4, 5, 8, 9, 10, 11, 12, 13], and ease of calculation in all selected prototype
models (Equation 4.50).
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5 Results and Discussion

This section presents the results of a series of tests validating the new GOF procedure. Each
result is preceded by a description of the testing procedure and followed by a discussion of
the outcome.

There are four different ϕ(S) used in the testing of the new GOF procedure. They are as
follows:

• ϕ(S) - Σ is estimated via Equation 3.6, ϕ(S) is then evaluated using the methods
presented in Section 4.2.

• ϕ(S)true - A histogram of z = 1000 calculated S is plotted, serving as the ’true’ ϕ(S)
for a given system, where is S calculated using Equation 3.15, with Σ estimated from
Equation 3.6.

• ϕ(S)∗ - Σ∗ is derived analytically for a specific system, ϕ(S) is then evaluated using
the methods presented in Section 4.2. ϕ(S) in this case is the analytically exact ϕ(S),
ϕ(S)∗.

• ϕ(S)∗true - A histogram of z = 1000 calculated S is plotted, where is S calculated
using Σ∗. This histogram then serves as the ’true’ and analytically exact ϕ(S) for a
given system.

• ϕχ2(S) - The χ2-distribution representing S for a given system.

5.1 Demonstrating Correlations Among the Components of Λ

This section sets out to demonstrate the existence of correlations among the components
of Λ, providing evidence that assumption made by the χ2-GOF procedure, in which the
correlations among the components of Λ are said to be i.i.d, is invalid.

If the assumption made by the χ2-GOF procedure was correct, one would expect P to be
a N ×N random matrix, with no visible correlation pattern among the components of Λ.

The prototype models are used to generate estimate ensembles made up of M trajectories
over N sampling points (Section 4.4), a model is then fit to each (Figure B) using the WLS-
ICE method (Appendix E) and the residuals calculated (Equation 3.7). Visualisation of the
correlations among the components of Λ can be achieved by plotting the P matrix. The P
matrix, by definition, defines the correlations among the components Λ and is calculated
as in Equation 3.12. Visualisation of P will allow for evaluation of the correlation type of
each system, determining whether, in the case of the four prototype models, the correlation
types are indeed, i.i.d, or otherwise as expected. The results are shown in Figure 3.
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(a) BM (b) FBM (H = 0.33)

(c) FBM (H = 0.66) (d) CTRW

Figure 3: Typical Correlation Conditions Among Prototype Models. Figures 3
(a) - (d) present the typical correlation conditions associated with the BM (M = 250, N =
500), FBM (H = 0.33,M = 250, N = 500), FBM (H = 0.66,M = 250, N = 500) and
CTRW (M = 250, N = 500) prototype models respectively. Note, in all cases the off-
diagonal components of P are non-zero.

In the four testing environments plotted, the correlations among Λ are non i.i.d (Figure
3). It can be observed in all cases that the off-diagonal components of P are non-zero,
meaning there are correlations among the components of Λ. Thus, it can be said that the
assumption taken by the χ2-GOF procedure that correlations among the components of Λ
are i.i.d, is invalid.
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5.2 Validation of the Inversion Method and Proposed ϕ(S)

This section presents proof-of-concept for the new GOF procedure. The method for gener-
ating ϕ(S) via numerical inversion of the characteristic function (Section 3.5) is validated,
as is the ability of the evaluated ϕ(S) to correctly represent the distribution of S.

In the case of the BM prototype model, one can derive Σ∗ analytically (Appendix B).
Removal of the random effects ofΣ estimation allows for only the inversion method (Section
4.2), and the ability of the evaluated ϕ(S)∗ to match ϕ(S)∗true to be tested. A close to exact
match between ϕ(S)∗ and ϕ(S)∗true will hence demonstrate the feasibility of the methods
used in the new GOF procedure.

The BM prototype model, with M = 1000 trajectories and N = 100 sampling points, is
used to generate ϕ(S)∗ and ϕ(S)∗true. The quality of match between ϕ(S)∗ and ϕ(S)∗true is
then evaluated. The result of the comparison between ϕ(S)∗ and ϕ(S)∗true is presented in
Figure 4.

Figure 4: Validation of the Inversion Method and Proposed ϕ(S) - ϕ(S)∗ vs.
ϕ(S)∗true. Figure 4 presents a comparison between ϕ(S)∗ vs. ϕ(S)∗true. The test ensembles
were generated using the BM prototype model, with M = 1000 trajectories and N = 100
sampling points. In comparing ϕ(S) and ϕχ2(S), notice ϕ(S) has an asymmetric and
broader distribution when compared to ϕχ2(S), and is a closer match to ϕ(S)true.

Whenever random contributions from the estimation of Σ are removed, ϕ(S)∗ is a near
exact match to ϕ(S)∗true (Figure 4). This validates the selected inversion method and
demonstrates proof-of-concept for the new GOF procedure.
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ϕ(S)∗ provides an improved prediction of ϕ(S)∗true when compared to ϕχ2(S), with both
distributions centered around N , but the asymmetric distribution of ϕ(S)∗ proving to be
a better prediction of ϕ(S)∗true (Figure 4).

The asymmetry and increased broadness of ϕ(S)∗ can be described by the increased σ2 of
ϕ(S)∗true relative to that of ϕχ2(S) (Section 3.6). The correlations among the components
of Λ cause σ2(ϕ(S)∗) to deviate from the theoretical, with values above the minimum
σ2(ϕ(S)∗) = 2N . The inability of the χ2-GOF procedure to account for changes in σ2

results in a poorer match , with ϕχ2(S) proving to be a poor predictor of ϕ(S)∗true.

5.3 Comparison of the µ and σ2 of ϕ(S) and ϕχ2(S)

This section aims to numerically demonstrate the driving factor causing the difference
between ϕ(S)∗ and ϕχ2(S) (Figure 4).

It has been demonstrated that ϕ(S) and ϕχ2(S) share the same µ (Section 3.6), though
when one looks at the σ2 of both ϕ, it can be shown that σ2(ϕ(S)) is likely always greater
then σ2(ϕχ2(S)) once N > 1 (Section 3.6). This can also be demonstrated numerically.

The BM prototype model is used to demonstrate how σ2(ϕ(S)) (Equation 3.34) changes
relative to σ2(ϕχ2(S)) as N is increased from N = 2 to N = 50 sampling points, where
σ2(ϕχ2(S)) = 2N . This is done at M = 10, M = 100 and M = 1000 trajectory counts.
The result can be found in Figure 5.
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Figure 5: Comparison of the µ and σ2 of ϕ(S) and ϕχ2(S) - σ2(ϕ(S)) and σ2(ϕχ2(S))
vs. N. Figure 5 shows σ2(ϕ(S)) and σ2(ϕχ2(S)) as a function of N . The BM prototype
model was used to generate all estimate ensemble averages, with M = 10, M = 100 and
M = 1000 trajectories and N = 50 sampling points. Notice, in all cases, once N > 1, one
can observe increasing deviations between σ2(ϕ(S)) and σ2(ϕχ2(S)).

As N increases, one can see an exponentially increasing deviation between σ2(ϕ(S)) and
σ2(ϕχ2(S)) (Figure 5). The increased σ2(ϕ(S)) results in a broader asymmetric ϕ(S) when
compared to ϕχ2(S), and indeed can be considered to be the primary driver of difference
between ϕ(S) and ϕχ2(S).

5.4 Investigation of the λ of P

This section further investigates the effects of increased σ2 on ϕ(S), in terms the of the
eigenvalues (λ) of the Pearson correlation matrix (P) (Equation 3.12).

Recall, that if one where to assume correlations among Λ where i.i.d, as is assumed in the
χ2-GOF procedure, one could consider P to be a N ×N random matrix (Section 5.1). In
this case one would expect the distribution of λ to tend towards the Marchenko-Pastur
(MP) law (Section 3.7), where the MP law proposes a typical distribution of λ (ψ(λ)) for
a given random matrix. The MP law proposes not only a typical ψ(λ), but also defines an
upper and lower boundary to λ, determined by 1+

√
N/M)2 and 1−

√
N/M)2 respectively

(Section 3.7).

If the correlations among Λ where i.i.d, one would expect ψ(λ), determined by the MP law,
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to accurately predict the λ distribution of P . In the optimal case, as M −→ ∞,
√
N/M

becomes infinitesimal, meaning one would expect λ = 1 for all λ. In this case, inversion of
the associated CF would produce ϕχ2(S) (Section 3.7).

Figure 6 presents a comparison between ψ(r)true, where r = lnλ, and ψ(r), where ψ(r) is
the distribution of r proposed by the MP law. Here, ψ(r)true has been evaluated through
z = 1000 repeated evaluations of P generated from BM prototype model estimate ensem-
bles of a fixed number of M trajectories and N sampling points, and the associated r
plotted on a histogram, serving as a measure of the ’true’ distribution of r. The choice to
use log spectrum was purely for readability purposes, see the appendix for further details
regarding the MP law and ψ(r) (Appendix C).

(a) M = 250, N = 25 (b) M = 500, N = 25

(c) M = 250, N = 50 (d) M = 500, N = 50

Figure 6: Investigation of the λ of P - ψ(r)true vs. ψ(r). Figures 6 (a) - (d) presents a
comparison between ψ(r)true and ψ(r) under different M and N settings. The test ensem-
bles were generated using the BM prototype model, with M and N defined in the relevant
subheading. Notice, in all cases one can see a much broader, asymmetric, distribution of r
than is predicted by ψ(r).
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In the tested scenarios, it is clear that ψ(r)true is not well approximated by ψ(r) (Figure
6). In all cases, one can see a much broader ψ(r)true than predicted by ψ(r), with only a
small portion of r contained within the analytical boundaries determined by 1+

√
N/M)2

and 1−
√
N/M)2.

The broadness of ψ(r)true is a indicator of the increased σ2 in ψ(r). This increased σ2

results in the observed difference between ϕ(S) and ϕχ2(S) (Figure 4).

5.5 The Evaluation of ϕ(S) in Varied Correlation Conditions

This section presents the testing of the new GOF procedure under varied correlation types,
using large scale ensembles generated from all three prototype models. Here, correlation
type defines different types of Pearson correlation matrix (P) (Figure 3), where P defines
the correlation among the components of Λ (Section 5.1).

If the new GOF procedure is valid regardless of the type of correlation among the com-
ponents of Λ, one would expect a valid match between ϕ(S) and ϕ(S)true in all testing
environments.

The BM, FBM (H = 0.33, H = 0.66) and the CTRW prototype models are used to generate
a series of estimate ensemble averages, with each model producing a estimate ensemble
average with different correlations among the components of Λ (Section 5.1), which can
then be used to generate suitable estimates of Σ for use in the evaluation of ϕ(S) (Sections
3.5, 4.2). ϕ(S) and ϕ(S)true are then compared for all four testing environments. In all
testing environments,M was selected to be large enough that the multivariate CLT is valid
(Section 3.2).

5.5.1 BM Prototype Model

The section presents the testing of the new GOF procedure using the BM prototype model.
The results can be found in Figure 7.
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(a) M = 250, N = 5000 (b) M = 500, N = 5000

Figure 7: The Evaluation of ϕ(S) in the BM Prototype Model - ϕ(S) vs. ϕ(S)true.
Figures 7 (a) and (b) present the comparisons between ϕ(S) and ϕ(S)true at varied M
using the BM prototype model. Here, ϕ(S) is an excellent predictor of ϕ(S)true, with an
almost exact match between ϕ(S) and ϕ(S)true in both cases.

In the BM prototype model, given M is large enough, the new GOF procedure evaluates a
ϕ(S) that is a close-to-exact match to ϕ(S)true (Figure 7). In both settings, ϕ(S) matches
ϕ(S) in terms of shape and numerical value in both the lower and tail ends of the distribu-
tion. Increasing M has a minimal effect on the match quality between ϕ(S) and ϕ(S)true,
as M is large enough for the multivariate CLT to be satisfied. Thus, when P is of the
typical form for BM (Figure 3 (a)), the new GOF procedure can evaluate a reliable ϕ(S).

5.5.2 FBM (H = 0.66)

The section presents the testing of the new GOF procedure using the FBM prototype
model with H = 0.66. The results can be found in Figure 8.
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(a) M = 250, N = 250 (b) M = 500, N = 250

Figure 8: The Evaluation of ϕ(S) in the FBM (H = 0.66) Prototype Model - ϕ(S)
vs. ϕ(S)true. Figures 8 (a) and (b) present the comparisons between ϕ(S) and ϕ(S)true
at varied M using the FBM (H = 0.66) prototype model. One can again observe a close
match between ϕ(S) and ϕ(S)true in all the tested cases.

In the FBM (H = 0.66), givenM is large enough, the new GOF procedure evaluates a ϕ(S)
that is a close-to-exact match to ϕ(S)true (Figure 8). In both settings, ϕ(S) matches ϕ(S)
in terms of shape and numerical value in both the lower and tail ends of the distribution,
particularly in the M = 250 and N = 250 case (Figure 8 (a)), with ϕ(S) being essentially
an exact match to ϕ(S)true. Again, increasingM has a minimal effect on the match quality
between ϕ(S) and ϕ(S)true. In conditions where correlations among Λ produce a P as seen
in Figure 3 (c), the evaluated ϕ(S) is a valid predictor of ϕ(S)true.

5.5.3 FBM (H = 0.33)

The section presents the testing of the new GOF procedure using the FBM prototype
model with H = 0.33. The results can be found in Figure 9.
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(a) M = 250, N = 500 (b) M = 500, N = 500

Figure 9: The Evaluation of ϕ(S) in the FBM (H = 0.33) Prototype Model - ϕ(S)
vs. ϕ(S)true. Figures 9 (a) and (b) present the comparisons between ϕ(S) and ϕ(S)true at
varied M using the FBM (H = 0.33) prototype model. Notice in this case, ϕ(S) is not as
accurate a predictor of ϕ(S)true relative to BM (Figure 7) and FBM (H = 0.66) (Figure 8)
cases.

In the FBM (H = 0.33), given M is large enough, the new GOF procedure evaluates a
ϕ(S) that is a valid match to ϕ(S)true (Figure 9). In comparison with the BM (Figure 7)
and FBM (H = 0.66) (Figure 8) cases, the matches between ϕ(S) and ϕ(S)true when P is
of the form shown in Figure 3 (b), are in general poorer. In the tested cases above, the
majority of ϕ(S)true is covered by ϕ(S), and the tail end is well estimated, but there is no
close match around the peak of ϕ(S)true. Increasing M again has a minimal effect as M is
large enough for the multivariate CLT to be satisfied.

5.5.4 CTRW

The section presents the testing of the new GOF procedure using the CTRW prototype
model. The results can be found in Figure 10.

24



(a) M = 250, N = 2500 (b) M = 500, N = 2500

Figure 10: The Evaluation of ϕ(S) in the CTRW Prototype Model - ϕ(S) vs.
ϕ(S)true. Figures 10 (a) and (b) present the comparisons between ϕ(S) and ϕ(S)true under
super-linear correlation conditions at varied M using the CTRW prototype model. Here,
notice although ϕ(S) covers most of ϕ(S)true, it fails to accurately predict the peak and
tail.

Within the CTRW prototype model, given M is large enough, the new GOF procedure
evaluates a ϕ(S) that is a valid, but not exact, match to ϕ(S)true (Figure 10). In cases
where the calculated P is of the form as in Figure 3 (d), ϕ(S) tends to cover the majority
of ϕ(S)true, but fails to correctly predict the peak and tail end of ϕ(S). Increasing M has
no effect in this case, with no improvement in match quality as M is increased.

5.5.5 Discussion

The new GOF procedure is applicable in varying correlation conditions (various forms of
P), producing a suitable ϕ(S) in all testing environments (Figures 7, 8, 9, 10). In the
BM prototype model, ϕ(S) produces a close-to-exact match to ϕ(S)true in all tested cases
(Figure 7). In the case of both FBM prototype models, ϕ(S) is almost exact match to
ϕ(S)true when H = 0.66 (Figures 8), and a valid match when H = 0.33 (Figures 9). In the
case of the CTRW (Figure 11), ϕ(S) is a reasonable match to ϕ(S)true, but is not a great
predictor of the peak and tail end of ϕ(S)true.

From the testing scenarios presented (Figures 7, 8, 9, 10), it is clear that the form of P
plays a role in quality of match between ϕ(S) and ϕ(S)true. It is clear from the almost
exact match between ϕ(S) and ϕ(S)true, that the typical form of P for both the BM and
FBM (H = 0.66) provide optimal conditions for the new GOF procedure. In the case that
the off-diagonals of P are as in Figures 3 (b) and (d), the difference between the evaluated
ϕ(S) and ϕ(S)true increases. One could perhaps say that when P is of the form shown in
Figures 3 (b) and (d), a much larger M in needed to for the multivariate CLT to be valid,
but this can’t be said definitively.
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Overall, given M is large enough for the multivariate CLT to be valid, the new GOF
procedure can produce a reliable ϕ(S) regardless of the form of P, and provides a more
accurate representation of ϕ(S)true than the traditional χ2-GOF procedure in all tested
scenarios.

5.6 Evaluation of ϕ(S) in ’Experimental’ Conditions

The section presents the results of a comparison between ϕ(S) and ϕ(S)true, in which the
ensembles where generated using ’experimental’ trajectories.

Chenouard et al in their paper ’Objective comparison of particle tracking methods’ pro-
vide supplementary videos of noisifed and pixelated particle motion simulations [43], rep-
resenting vesicle movement (BM), used for testing a given particle tracking method. The
trajectories have been extracted from each supplementary video using ImageJ [44], and the
’2D/3D Particle Tracker’ plug-in developed by the MOSAIC group [12, 43].

The ϕ(S) evaluated using the ’experimental’ trajectories is compared to the ϕ(S)true gen-
erated via the BM prototype model for a given system. The results are presented in Figure
11. Further detail regarding the specifications and parameters of the ’2D/3D Particle
Tracker’ plug-in can be found in the Supplementary Tables section of the Appendix (Table
A).

Supplementary Video Specifications

Supplementary
Video

Vesicle Density Trajectories Sampling
Points

S1 Medium M = 27 N = 6

S5 Low M = 283 N = 6

S6 High M = 7 N = 6

Table 1: Supplementary Video Specifications. The amount ofM captured trajectories
for each supplementary video is detailed. In all cases, all trajectories with a minimum
N = 6 sampling points where captured and used in ensemble generation.

Table 1 displays the specifications and number of captured trajectories for each of the
supplementary videos.
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(a) S1 - ϕ(S) vs. ϕ(S)true (b) S5 - ϕ(S) vs. ϕ(S)true (c) S6 - ϕ(S) vs. ϕ(S)true

Figure 11: Evaluation of ϕ(S) in ’Experimental’ Conditions - ϕ(S) vs. ϕ(S)true.
Figure 11 shows comparisons between ϕ(S) and ϕ(S)true for supplementary videos S1, S5
and S6. Figure 11 (a) shows the comparison between ϕ(S) and ϕ(S)true in a medium
vesicle density setting where M = 27, Figure 11 (b) shows the comparison between ϕ(S)
and ϕ(S)true in a low vesicle density setting where M = 283, and Figure 11 (c) shows the
comparison between ϕ(S) and ϕ(S)true in a high vesicle density setting where M = 7. In
all cases the captured trajectories have N = 6 sampling points. Note, one can notice an
decrease in match quality between ϕ(S) and ϕ(S)true as M decreases.

The new GOF procedure can correctly evaluate a ϕ(S) using ’experimental’ trajectories,
given M is large (Figure 11). In the case where M is large (Figure 11 (b)), almost exact
match between ϕ(S) and ϕ(S)true can be seen. As M decreases (Figures 11 (b), (c)),
particularly when M −→ 1, the match between ϕ(S) and ϕ(S)true significantly decreases.

The increased difference between ϕ(S) and ϕ(S)true as the number of M trajectories cap-
tured decreases suggests the breakdown of the new GOF procedure when M is not large
enough for the multivariate CLT to be valid. This is to be expected, as when the multivari-
ate CLT is not valid, ϱ(Λ, θ) cannot be properly approximated by Equation 3.8. Additional
comparisons between ϕ(S) and ϕ(S)true as M −→ 1 can be found in the Supplementary
Images section of the Appendix (Figure E).

For an explanation of why match quality decreases withM , one must recall the multivariate
CLT outlined in Section 3.1. For any given system, decreasingM will eventually lead to the
approximation of ϱ(Λ, θ) presented in Equation 3.8 to become invalid, as the multivariate
CLT is only valid as M −→ ∞. This suggests that there is likely a region of parameter
space in which M is too low for the new GOF procedure to be considered reliable (Section
5.7) .

5.7 Reliable Parameter Space of the New GOF Procedure

From Section 5.6 it is apparent that the reliability of the new GOF procedure decreases
with M . This section aims to demonstrate the region of reliable parameter space, in terms
of M , for the new GOF procedure.
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The combinations ofM and N where the new GOF procedure is reliable can be determined
by a phase-space plot. A phase-space plot, in this case, is an 100× 100 matrix where each
entry is given a colour dependant on its numerical value.

The Kolmogorov-Smirnov test statistic (Appendix D) is used to calculate a measure of

the match (K) between the F (S) and the cumulative distribution function of χ2( ˆFχ2(S))
relative to the empirical F (S) (EMPF (S)) generated from the ϕ(S)true of a given system
(Figure G), where K −→ 0 for a reliable match [45]. When F (S) is a close match to
EMPF (S), a low K will be calculated, determining that, at a given M , the new GOF
procedure is reliable.

The BM prototype model is used to evaluate F (S), ˆFχ2(S) and the associated EMPF (S)
for range of systems covering the parameter space M = 5 − 505, in steps of five, and
N = 5 − 105, in increments of one. K is then calculated for all systems throughout the
selected parameter space for both F (S) and ˆFχ2(S). The M × N matrix of K values is
then transformed into a phase-space plot. The results can be found in Figure 12.

(a) K(S) (b) Kχ2(S)

Figure 12: Reliable Parameter Space of the New GOF Procedure - Phase-space
Plots. Figure 12 presents phase-space plots. Figure 12 (a) displays the reliable and
unreliable regions of parameter space in terms of M and N for the new GOF procedure.
Figure 12 (b) displays the reliable and unreliable regions of parameter space in terms of
M and N for the traditional χ2-GOF procedure. Green and red represent reliable and
unreliable regions respectively. The cut-off value of K was set to K = 0.3, where if K(S)
or Kχ2(S) has a K > 0.3, then the match is deemed unreliable. The raw formats of
the phase-space plots presented can be found in the Supplementary Images section of the
Appendix (Figure F). Typical fluctuations of a evaluated ϕ(S) and differences in ϕ(S)
among function fitting methods can be found in Figure A and D respectively.

The phase space plot for the new GOF procedure shows a large region of reliable space,
as the number of trajectories pass M = 100 (Figure 12 (a)). It is apparent that when
M ≈ 100, the multivariate CLT ’kicks in’ and ϱ(Λ, θ) can be accurately approximated
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by Equation 3.8. This can be seen by the large region of reliable parameter space after
M = 100. Conversely, particularly so at high N, when trajectories decrease from M = 100
the regions of reliable parameter space rapidly disappear, with little to no reliable space
as the number of trajectories drops below M = 50.

The reliable regions of parameter space for the χ2-GOF procedure is much more narrow
relative to that of the new GOF procedure (Figure 12 (b)). The reliability of the χ2-GOF
procedure decreases as N increases. There is a particularly sharp drop of as the number of
sampling points passes N = 10. The small region of reliable space of ϕχ2(S) relative to that
of ϕ(S) is again due to the difference in σ2. As N increases, ϕχ2(S) becomes increasingly
inaccurate as it deforms towards a traditional Gaussian with µ = N , with no ability to
account for σ2 variations caused by the correlations among the components of Λ. This in
turn causes greater deviations between ϕ(S) and ϕχ2(S) as N increases.

Overall, it is apparent that ϕ(S) outperforms ϕχ2(S) in terms of reliability, with a larger
region of reliable space, and a smaller K value in areas of overlapping reliability.

6 On the Application of ϕ(S)

This thesis has primarily focused on the derivation and testing of ϕ(S). Here, how to use
ϕ(S) in practice to determine the GOF of a given model is detailed.

Let us first define a scenario. Say one has a system of simulated or experimental trajec-
tories, with which one can create an estimate ensemble average of some ⟨y(t)⟩, where the
estimate ensemble average is made up of M trajectories of N sampling points. Say one
has a model in mind with which to describe this estimate ensemble average, let us call this
model A, and wishes to determine how consistent model A is with the trajectories that
make-up the estimate ensemble average, i.e the GOF.

One could use the S (Equation 3.15) and ϕ(S) (Equation 3.26) defined in this thesis to
determine the GOF of model A. The procedure is as follows:

• Firstly, one fits model A, and estimates Σ (Equation 3.6), R (Equation 3.13) and P
(Equation 3.12).

• One can now extract the eigenvalues (λ) of P and evaluate the CF (Equation 3.24),
this process is detailed in Section 3.5.

• At this point, one has enough information to evaluate ϕ(S) using the methods pre-
sented in sections 3.5 and 4.2.

• Now one has a suitable ϕ(S), the next step is to calculate S. Extracting the residuals
around model A, i.e one must calculate Λ (Equation 3.7), allows for the calculation
of S, as in Section 3.4.
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• One now reviews where S falls on the associated ϕ(S), and makes a decision whether
the model is valid or not.

In determining whether model A is a good fit, one would expect an S in the lower end
of ϕ(S) in the case model A represents the data well, and an S in the tail end of the
distribution in the case model A is a poor representation of the data.

In general, one would do the above steps for a small selection of possible models, say models
A, B and C, using both S and ϕ(S) to determine the optimal model, solving the model
selection problem one typically faces when fitting a model to an ensemble average.

7 Summary

In this thesis a new GOF procedure for testing the quality of a fitted model to time
dependent ensemble averages has been presented. The new GOF procedure takes into
account the correlations among the residuals (Λ) of a fitted function around a ensemble
average over time, a concept generally neglected. In this new GOF procedure, a test
statistic (S) is calculated, where S is the normalised sum of square residuals (Equation
3.15), and its distribution (ϕ(S)) is evaluated (Equation 3.26), where ϕ(S) takes into
account the correlations among the components of Λ. The new GOF procedure was tested
under a variety of scenarios, Λ component correlation conditions and ensemble make-ups.
In general, it was found that if M is large, that the new GOF procedure can be considered
to be reliable, more so than the χ2-GOF procedure in all tested scenarios. It was found that
σ2(ϕ(S)) > σ2(ϕχ2(S)) for N > 1, which was found to be the driving factor in the increased
reliability of the the new GOF procedure when compared to the χ2-GOF procedure.

The tie between the reliability of the new GOF procedure andM is due to the multivariate
CLT. When M is large, the multivariate CLT is valid, and the correlations among the
components of Λ can be accurately approximated by the multivariate Gaussian presented
in Equation 3.8. This is crucial, as when M is not large enough, the evaluated ϕ(S) is not
an accurate estimation of ϕ(S)true. This can be seen in the phase-space plots (Figure 12),
in which the new GOF procedure can be considered reliable after M ≈ 100, past which
the multivariate CLT has become valid.

When compared to the χ2-GOF procedure, the new GOF procedure is a better estimate
of ϕ(S)true in all cases. This is down to the correlation among the components of Λ being
non i.i.d (Figure 3). These non i.i.d correlations cause σ2 to deviate from the theoretical
prediction held by ϕχ2(S). This is apparent when one looks at the log-distribution of
eigenvalues (r) of the Pearson correlation matrix (P), denoted ψ(r)true, where a much
broader distribution of r than predicted by ψ(r) can be observed (Figure 6). Where ψ(r)
is the typical distribution predicted by the Marchenko-Pastur law (Section 3.7), which is
valid when the correlations among the components of Λ are indeed i.i.d. This broader
distribution in turn suggests an increased σ2. This increase in σ2 causes the broadness
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and asymmetry observed in ϕ(S), and is the key factor behind the deviation of ϕ(S) from
ϕχ2(S), and its increased match quality when compared to ϕ(S)true. This difference can
be observed in the phase-space plots (Figure 12), in which when N > 10 the difference in
σ2 is too great for ϕχ2(S) to be considered reliable.

Comparing briefly with current approaches in measuring GOF that consider correlations
among the components of Λ (Section 3.4), it has been demonstrated that the new GOF pro-
cedure manages to avoid typical problems found in current approaches, producing suitable
S regardless of dimensionality, and ϕ(S) provided M > 100.

This thesis fills the gap in traditional GOF testing procedures, arming scientists with a
further approach to measure the GOF of a fitted model. The new GOF procedure considers
the correlations among the components of Λ, which are typically ignored, resulting in more
reliable evaluations of the quality of a model fitted to an ensemble average. In communities
where fitting models to ensemble averages is common practice, it is hoped the new GOF
procedure will be used to aid in more accurate model selection.

References

[1] Brandenburg, B. and Zhuang, X., 2007. Virus trafficking – learning from single-virus
tracking. Nature Reviews Microbiology, 5(3), pp.197-208.

[2] Liu, S., Wang, Z., Xie, H., Liu, A., Lamb, D. and Pang, D., 2020. Single-Virus Track-
ing: From Imaging Methodologies to Virological Applications. Chemical Reviews,
120(3), pp.1936-1979.

[3] Lakshmi, N. and Daniel, S., 2019. Physical Virology. Springer, Cham, pp.12-43.

[4] Saxton, M. and Jacobson, K., 1997. Single-particle Tracking:Applications to Mem-
brane Dynamics. Annual Review of Biophysics and Biomolecular Structure, 26(1),
pp.373-399.

[5] Notelaers, K., Smisdom, N., Rocha, S., Janssen, D., Meier, J., Rigo, J., Hofkens, J. and
Ameloot, M., 2012. Ensemble and single particle fluorimetric techniques in concerted
action to study the diffusion and aggregation of the glycine receptor 3 isoforms in
the cell plasma membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes,
1818(12), pp.3131-3140.

[6] Zelman-Femiak, M., 2022. Single Particle Tracking Membrane Receptor Dynamics.
PhD. Julius-Maximilians-Universität Würzburg.

[7] Rizzo, M., Davidson, M. and Piston, D., 2009. Fluorescent Protein Tracking and
Detection: Fluorescent Protein Structure and Color Variants. Cold Spring Harbor
Protocols, 2009(12), p.pdb.top63.

31



[8] Foldes-Papp, Z. and Baumann, G., 2011. Fluorescence Molecule Counting for Single-
Molecule Studies in Crowded Environment of Living Cells without and with Broken
Ergodicity. Current Pharmaceutical Biotechnology, 12(5), pp.824-833.

[9] Taylor, R., Holler, C., Mahmoodabadi, R., Küppers, M., Dastjerdi, H., Zaburdaev,
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Supplementary Tables

’MOSAIC’ 2D/3D Particle Tracker Specifications

Parameter S1 S5 S6

Radius 2 2 2

Cutoff 0 0.006 0

Percentile 0.1 0.1 0.1

Link-range 1 1 1

Link-Length 10 10 10

Displacement 10 10 10

Dynamics Brownian Brownian Brownian

Table A: ’MOSIAC’ 2D/3D Particle Tracker Specifications. The parameters used
in the ’MOSIAC’ 2D/3D particle tracker ImageJ plug-in when collecting trajectories in
each of the supplementary videos are detailed. All supplementary videos depict noisified
simulations of vesicle movement within membranes in a medium, low and high density
setting respectively, with a signal to noise ratio (SNR) of 4 in all cases.
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Supplementary Figures

Figure A: Typical Fluctuation Among ϕ(S) Evaluations. Figure A presents the
typical fluctuation in the evaluation of ϕ(S) for a given model. A series of ϕ(S) were
evaluated using the BM prototype model with M = 1000 trajectories and N = 100 sampling
points, ϕ(S)max is then plotted against evaluation number. Here, ϕ(S)max is taken as the
maximum ϕ(S) value over all values of ϕ(S) for a given evaluation of ϕ(S).
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(a) BM (b) FRW (H = 0.33)

(c) FRW (H = 0.66) (d) CTRW

Figure B: Typical Fits Among Prototype Models. Figures B (a) - (d) present the
typical fits associated with three different fit qualities for the BM (M = 250, N = 5000),
FBM (H = 0.33, M = 250, N = 500), FBM (H = 0.66, M = 250, N = 500) and CTRW (M
= 250, N = 5000) prototype models respectively. In case of the FBM and CTRW prototype
models, the function fit is of the form, f(θ) = f(θ1, θ2) = θ1t

θ2 , with t = (1, ..., N). In the
case of the BM prototype model, f(θ) = f(θ1) = θ1t. In all panels above, θ was estimated
using the WLS-ICE method. Here, t = (0, ..., N).
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Figure C: Comparison of Fitting Methods via Fitted Model. Figure C displays the
difference in fitted models among fitting methods. The test ensemble was generated using
the BM prototype model, with M = 1000 trajectories and N = 100 sampling points, with
t = (0, ...N).
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(a) Comparison of ϕ(S) relative to choice
of fitting method. M = 100.

(b) Comparison of ϕ(S) relative to choice
of fitting method. M = 10.

(c) Comparison of ϕ(S) as a function of N,
relative to choice of fitting method. M =
100.

(d) Comparison of ϕ(S) as a function of N,
relative to choice of fitting method. M =
10

Figure D: Fitting Method Bias Testing - ϕ(S) Evaluated Against Choice of Fitting
Method. Figure D presents ϕ(S) evaluated against fitting method under various scenarios.
Figure D (a) presents fully evaluated ϕ(S) with a model fit using three different model
fitting methods, WLS-ICE, Bayesian and UWLS-ECE, with the test ensemble generated
from the BM prototype model with M = 100 trajectories and N = 100 sampling points.
Figure D (b) presents a similar comparison, with the test ensemble in this case having M
= 10 trajectories and N = 100 trajectories. Figures D (c) and (d) present the maximum
ϕ(S) as a function of N for each model fitting method. In Figure D (c) the test ensemble
had M = 100 trajectories and N = 100 sampling points. In Figure D (d) the test ensemble
had M = 10 trajectories and N = 100 sampling points.
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(a) M = 96 (b) M = 48

(c) M = 24 (d) M = 12

(e) M = 6 (f) M = 3

Figure E: Supplementary Breakdown Analysis - ϕ(S) vs. ϕ(S)true. Figure E displays
supplementary test results comparing ϕ(S) and ϕ(S)true at varied M . Figures E (a) - (f)
compare ϕ(S) and phi(S)true when M = 96, M = 48, M = 24, M = 12, M = 6 and M =
3 respectively. In all cases the estimated ensemble was generated using the BM prototype
model, with N = 5 sampling points.
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(a) K(S) (b) K(χ2)

Figure F: Phase-space Plots - Raw Format. Figure F presents the raw data format of
the phase-space plots presented in Section 5.6 of the main text. Figure F (a) displays the
numerical values of the Kolmogorov-Smirnov Test Statistic (K) for the specified combina-
tions of M and N for the new GOF procedure. Figure F (b) displays the numerical values
of K for the specified combinations of M and N for the χ2-GOF procedure. In all cases
the EMPF (S) was generated with z = 500 calculated S. See Appendix D for further
information regarding the calculation of K. Figure G provides an example of a typical K
measurement.
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Figure G: Typical K Measurement. Figure G displays a typical measurement of the
Kolmogorov-Smirnov test statistic (K) for a given system via comparison between F (S)
and EMPF (S). The estimate ensemble was generated using the BM prototype model,
with M = 50 trajectories and N = 20 sampling points. The EMPF(S) was generated
through z = 500 calculated S.
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(a) σB vs. σ∗ (b) σDAGJK vs. σ∗

(c) σ̄B vs. σ̄∗ as a Function of N (d) ¯σDAGJK vs. σ̄∗ as a Function of N.

Figure H: Error Estimation Methods Comparison - σB vs. σDAGJK vs. σ∗. Figure
H presents the comparison between both σB and σDAGJK to σ∗ at three different trajectory
counts,M = 10, 100 and 1000. Figure H (a) displays the comparison of σB to σ∗. Figure H
(b) displays the comparison of σDAGJK to σ∗. Figure H (c) presents σ̄B vs σ̄∗ as a function
of N . Figure H (d) presents ¯σDAGJK vs σ̄∗ as a function of N . In all cases the estimate
ensembles where generated with the BM prototype model. Figures H (c) and (d) have
their x-axis in the log scale to aid with clarity. See Appendix F for detail on the estimation
of σB and σDAGJK .
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(a) ϕ(S)true (b) ϕ(T 2)true

Figure I: ϕ(S)true vs. ϕ(T 2)true. Figures I (a) and (b) present a typical evaluation of
ϕ(S)true and ϕ(T 2)true respectively. In both cases the estimate ensembles were generated
using the BM prototype model with M = 1000 and N = 100 sampling points. For a
definition of ϕ(S)true, see the preamble of Section 5.
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A Algorithm Derivations

In this section of the appendix, derivations of Equations 4.44 and 4.49 in the main text
are presented.

A.1 Evaluating ϕ(S) - Derivation of Equation 4.44

Evaluation of ϕ(S) is achieved by applying the trapezoidal rule to the integral shown in
Equation 4.43 [18, 20]. Gil-Pelaez provides,

ϕ(S) =
1

π

∫ ∞

0

R{e(−ikS)CF (k)}dk. (A.1)

where k is a real-valued Fourier variable in the range [−∞,∞]. Here, k = (1, ..., n), where
n is the selected number of points over which the integral is evaluated. Equation A.1 can
be evaluated through use of the trapezoidal rule.

Let us now define a maximum and minimum value to the space in which we evaluate ϕ(S),
noted as U and L respectively, where S ∈ [L,U ]. One now has an area over which to
evaluate, denoted by B, where B = (L, ...U) and is of length n. The six-sigma rule can
be used to select U and L, such that U - L spans a range where all possible S for a given
system could fall [26], as such,

U =
N∑
i=0

λi +
N∑
i=0

λ2i , (A.2)

and L = 0 by definition as S > 0 for all S.

Representing dk by, dk = 2π/B, one can evaluate Equation A.1 as follows,

ϕ(S) =
dk

π

(
1

2
+

n∑
j=1

wjR
(
e−ikjSCF (kj)

))
, (A.3)

where wj are the quadrature weights. In Equation A.3,

wj =


1

2
j = 0, j = N

1 otherwise
. (A.4)

The leading 1
2
in Equation A.3 arises as,

eikS = cos(kS) + isin(kS), (A.5)

where, when k = 0,
cos(0) + i sin(0) = 1, (A.6)
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thus as per the trapezoidal rule,

ϕ(S) =
cos(0) + i sin(0)

2
=

1

2
. (A.7)

Romberg’s method is then applied. See Press et al. for further details [18].

A.2 Evaluating F (S) - Derivation of Equation 4.49

Imhof provides an adaptation of the Gil-Pelaez theorem fit for numerical inversion and
evaluation of F (S) [20, 21],

F (S) =
1

2
− 1

π

∫ ∞

0

k−1I{e(−ikS)CF (k)}dk. (A.8)

Equation A.8 can the again be approximated using the trapezoidal rule (Appendix A.1),

F (S) =
1

2
− dk

π
(
N − k

2
+

n∑
j=0

wjI
(
eikjSCF (kj

kj

)
, (A.9)

The leading term in Equation A.9 is a consequence of the fact that

lim
k−→0

CF (k)

k
=< S > −B, (A.10)

where < S > = N . The proof of Equation A.10 is provided by Witkovsky [26].

In the case of Equation A.9 Romberg’s method is again applied [18].

B The Prototype Models

The theoretical background and implementation strategies of the three chosen prototype
models are detailed in this section of the Appendix.

B.1 Brownian Motion

B.1.1 Brownian Motion Model Theory

BM is represented by a simple random walk model. The random walk is a zero µ process,
with step sizes drawn from a Gaussian distribution, with the MSD being described by

y(ti) =| y(m)(ti)− y(m)(0) |2 . (B.11)
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Analytically the covariance among squared displacements is given by,

Q∗
ij = ⟨(y(ti)− ⟨y(ti)⟩) (y(tj)− ⟨y(tj)⟩)⟩ = 2 (Cij)

2 = 2× (2Dmin(titj))
2, (B.12)

or can be estimated via Equation 3.11.

B.1.2 Brownian Motion Model Implementation

Each M trajectory is generated by a cumulative sum of jumps drawn from a Gaussian
distribution, with zero µ and a chosen step length σ2 (a2). The number of jumps summed
is determined by the chosen number of N sampling points, with the step increment (ϵ).
This above is repeated M times and an ensemble generated according to Equation 4.51.

Unless otherwise stated, the BM prototype model has the following variables: a2 = 1,
µ = 0, ϵ = 1. The choices of M and N vary between simulations and are noted in text.

B.2 Fractal Brownian Motion

B.2.1 Fractal Brownian Motion Model Theory

FBM is a zero µ Gaussian process, in which the increments between steps are not inde-
pendent. Each step can be related via the auto-correlation function,

C∗
ij =

1

2
(t2Hi + t2Hj − |ti − tj|2H), (B.13)

where H is the Hurst parameter defining the type of dependence, that being linearly
(H = 1/2), positively (H > 1/2) or negatively correlated (H < 1/2) relative to time, with
H = 1/2 describing BM [13, 42]. Where, when H = 1

2
,

(t
2 1
2

i + t
2 1
2

j − |ti − tj|2
1
2 ) =

1

2
(ti + tj − |ti − tj|) = 2

1

2
min(titj) = 2Dmin(titj), (B.14)

which describes the covariance of trajectories in BM, given D = 1
2
.

B.2.2 Fractal Brownian Motion Implementation

The FBM prototype model follows the implementation method detailed by Hosking [46].
EachM trajectory is again a cumulative sum of jumps drawn from a Gaussian distribution,
though in the case of FBM, µ and a2 are updated at each increment using the auto-
correlation function defined in B.14. This update procedure is completed N times for M
given trajectories. The ensemble average is then given by Equation 4.51.

All variables within the FBM prototype model vary between simulation and are therefore
noted in text relative to each simulation detailed. This is with the exception of ϵ, where
ϵ = 1 throughout.
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B.3 Continuous Time Random Walk

B.3.1 Continuous Time Random Walk Theory

CTRW is a zero µ Gaussian process, with jump sizes drawn from a Gaussian distribution
with a chosen a2. Each M trajectory is a cumulative sum of N jumps, with random a
given wait time between each jump (tlag), with tlag generated through,

tlag = r
−1
α − 1. (B.15)

B.3.2 Continuous Time Random Walk Implementation

The implementation procedure for the CTRW prototype model is similar to that of the BM
prototype model, where a given trajectory is created via a cumulative sum of jumps drawn
from a Gaussian distribution with a chosen a2, though, in this case the time increment
between in jump is derived from Equation B.15. As such, if tlag > ϵ, then subsequent
jumps are are taken to be zeros, and the current position of the trajectory remains the
same until the next jump takes place following the expiry of the lag time, or until the
chosen number of N is exceeded.

The variable settings within the CTRW prototype model are as follows: α = 0.5, ϵ = 1
and a2 = 1. The number of N sampling points, as well as the total numberM trajectories,
varies between simulations, as such each simulation detailed in text has the associated N
and M noted.

C Marchenko-Pastur Law

The Marchenko-Pastur (MP) law gives a typical distribution of eigenvalues (ψ(λ)) for a
random matrix, where for the MP law to be valid, the random matrix must be made up
of i.i.d sample vectors (Equation 3.38). ψ(λ) is given by,

ψ(λ) =


1

2πλ
√

N
M

√
(b− λ)(λ− a) a < λ < b

0 otherwise

, (C.16)

where a and b are defined as follows,

a = (1−
√
N

M
)2, (C.17)

b = (1 +

√
N

M
)2, (C.18)
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where a and b also define the lower and upper bounds of ψ(λ) respectively.

In the main text (Figure 6), ψ(r), where r = ln(λ) is used in place for ψ(λ), ψ(r) is derived
as follows,

ψ(r) =

∫ b

a

δ(r − r′)ψ(λ′)dλ′. (C.19)

At this point, a change of coordinates is introduced,

λ′ = er
′
dλ′ = er

′
dr′. (C.20)

Continuing,

ψ(r) =

∫ ln(b)

ln(a)

δ(r − r′)ψ(er
′
)er

′
dr′ =

{
ψ(er)er ln(a) < λ < ln(b)

0 otherwise
, (C.21)

evaluating ψ(er)er leads to,

ψ(r) =


1

2π
√

N
M

√
(b− er)(er − a) ln(a) < λ < ln(b)

0 otherwise

. (C.22)

In the case where M −→ ∞,

a = (1−
√
N

M
)2 −→ 1, (C.23)

b = (1 +

√
N

M
)2 −→ 1. (C.24)

In this case one would expect λ = 1 for all λ, leading to

CF (k) = (1− 2ik)
N
2 , (C.25)

which is the CF associated with ϕχ2(S) (Equation 3.25).

D Kolmogorov-Smirnov Test

This section of the Appendix describes the Kolmogorov-Smirnov (KS) test statistic (K)
and it’s use in generating the phase-space plots of the reliability of the new GOF procedure
in parameter (M,N) space (Figure 13).

K is a measure of the statistical distance between two ϕ that span the same probability
space [45]. K can thus be used as measure of how well ϕ(S) matches ϕ(S)true in a given
setting,

K = max
1≤i≤n

{F (S)i − EMPF (S)i, EMPF (S)i − F (S)i}, (D.26)
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where EMPF (S) denotes the empirical F (S).

Generating a series of K for a variety of M and N combinations allows the generation of a
phase space plots of K values in (M,N) coordinates, allowing for a measure of reliability
in different scenarios, where K −→ 0 as reliability increases.

In all cases ϕ(S)true was generated with z = 500 S values using the BM prototype model.
The phase-space plots presented in text are 100×100 matrices of K values associated with
a selected M and N . Regions of low K represent regions of high reliability, and visa-versa.

E Function Fitting Methods

This section of the Appendix details the fitting methods referenced throughout the thesis.

E.1 Weighted-Least-Squares Including Correlation Error

The Weighted-Least-Squares Including Correlation Error (WLS-ICE) method is the pri-
mary fitting method used throughout the thesis.

In all cases presented a model based on a power law is fit, as such the WLS-ICE estimates
two parameters (θ1, θ2) in order to fit a time dependent power law,

f(θ, t)WLS−ICE = θ1t
θ2 , (E.27)

where t = (1, ..., N). The optimal parameters are achieved through minimisation of S
defined in Equation 3.16. Minimisation of S is achieved by solving δS

θa
= 0,

δS

θa
= 2

∑
i,j

δfi(θ)

δθa
Ri,j(fi(θ)− ȳj) = 0, (E.28)

where R is as defined in Equation 3.15 and a spans J free fitting parameters, a = (1, ..., J).

E.2 Bayesian Regression

Bayesian regression aims to maximise the likelihood function of a chosen parameter, in this
case fitting parameters.

Estimation of optimal fitting parameters can be achieved by maximising the probability,
via Bayes formula,

P (f(θ, t)|ŷ) = P (ŷ|f(θ, t))P (f(θ, t))
P (ŷ)

∝
N∏
i=1

P (y
(m)
i |f(θ, t)) (E.29)
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where ŷ defines the ensemble average, made up of y(m) = (y
(m)
1 , ..., y

(m)
N ) points along

a given m trajectory, where m = (1, ...,M). One can represent P (y
(m)
i |f(θ, t)) by the

following integral,

P (y
(m)
i |f(θ, t)) =

∫
f(θ,t)

P (y
(m)
i |p)(p|f(θ, t))dp (E.30)

where p is a point on the fitted model. The model that maximises Equation E.30 is the
optimal fit for a given ensemble.

F Error Estimation Methods

The section of the Appendix details the two methods used to estimate the standard de-
viation, σ, of an evaluated ϕ(S), this serves as the error on all ϕ(S) plots in the main
text.

F.1 Bootstrap Error Estimation

Bootstrap (B) sampling with replacement can be used to estimate the σ of a given param-
eter.

B sampling creates ’new’ trajectories via re-sampling already existing data. In a given
system, the M trajectories are sampled at random with replacement, meaning a given
trajectory can be selected more than once. This is doneM times creating a ’new’ ensemble.
This ’new’ ensemble can then be used to evaluate a ’new’ ϕ(S), noted ϕ(S)B.

Repetition of B sampling b = 100 times allows for b ϕ(S)B to be evaluated, leading to the
following estimation of σ for a given point on ϕ(S).

σB =

√∑b
i=0(ϕ(S)i − ¯ϕ(S))2

b
. (F.31)

Equation F.31 can be used to estimate σ at every point along a given ϕ(S). Unless otherwise
stated, σB was estimated using b = 100 evaluations of ϕ(S)B. σB then provides an suitable
estimate of σ∗ for a given system evaluated ϕ(S).

A comparison between σB and σ∗ can be found in Figure H.

F.2 Delete-a-Group-Jackknife Error Estimation

Delete-a-group-jackknife (DAGJK) sampling can be used to estimate σ of a given point of
ϕ(S).
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DAGJK sampling refers to the principle of splitting up a given data set into groups, sys-
tematically repeating a given procedure sequentially removing a given group from the data
set on each repetition of the procedure. DAGJK sampling provides an estimate of σ by
fist splitting the trajectories making up a given ensemble into g groups of h trajectories
(where M = g × h).

DAGJK sampling allows for g new estimates of ϕ(S), ϕ(S)DAGJK , leading to the following
estimator of σ for a given point on ϕ(S)

σDAGJK =

√√√√g − 1

g

g∑
i=0

(ϕ(S)i − ¯ϕ(S))2. (F.32)

Equation F.32 can be used to estimate σ at every point along a given ϕ(S). Unless otherwise
stated, σDAGJK was evaluated with g = 10 and h =M/10.

A comparison between σDAGJK and σ∗ can be found in Figure H.
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