
“output” — 2022/6/24 — 13:57 — page 1 — #1

High-Level Simulator of Federation Orchestration

Toon Keymeulen
to3286ke-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Emma Fitzgerald

Examiner: Christian Nyberg

June 24, 2022

“output” — 2022/6/24 — 13:57 — page 2 — #2

© 2022
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2022/6/24 — 13:57 — page i — #3

Abstract

The development of a new wireless access infrastructure can introduce some ex-
citing new applications that are impossible to deploy with the current generation
communication infrastructure. Therefore the REINDEER project presents a new
distributed cell-free network infrastructure called RadioWeaves (RW), that creates
favourable propagation and antenna array interaction. As part of the project’s
solution to a resource allocation problem, this thesis introduces and tests a High-
Level Discrete-Event Simulator, enabling the evaluation of various allocation algo-
rithms quickly. In this report, the RW infrastructure will be explained, together
with the concept of a utility function and Discrete Event Simulation. Additionally,
the structure of the newly implemented simulator will be elaborated, followed by
an explanation of the code and the test results.

i

“output” — 2022/6/24 — 13:57 — page ii — #4

ii

“output” — 2022/6/24 — 13:57 — page iii — #5

Acknowledgments

First and foremost, I would like to thank my supervisor Emma Fitzgerald for guid-
ing me through this project. She was always supportive and available to answer
my questions. Furthermore, I would like to thank Christian Nyberg for explaining
the concept of Discrete Event Simulation and Gilles Callebaut for introducing me
to the SimPy framework and assisting me with implementing the WPT and the
SIR utility. I am grateful to Liesbet Van der Perre for putting me in touch with
Lund University and organising this thesis. Also, I wish to express my gratitude to
Ove and his team for suggesting the used channel model and Aleksei Federov for
explaining basic concepts in wireless communication. Last but not least, I would
like to thank my family and friends for supporting me during this exchange and
ensuring my stay in Lund resulted in a fantastic experience.

iii

“output” — 2022/6/24 — 13:57 — page iv — #6

iv

“output” — 2022/6/24 — 13:57 — page v — #7

Popular Science Summary

Development of a Discrete Event Simulator as part of a next-
generation communication infrastructure

Imagine being able to inspect real-time processed data from your favourite
player in a sports event or receive location-based information in a mu-
seum or exposition. Those are two of the thirteen use-cases presented
by the REINDEER project, a project that intends to develop and even-
tually deploy the next generation of wireless communication infrastruc-
ture. With the establishment of this new technology, many challenges
come into play, one of which is the allocation of antennae to the differ-
ent connected devices. This thesis introduces a simulator that helps to
overcome this challenge.

A major problem within the REIN-
DEER project is deciding which allo-
cation algorithm can be used to coor-
dinate antennae attribution to differ-
ent devices and applications. As the
proposed communication infrastructure
will result in a distributed and cell-free
network, this decision is not straightfor-
ward and needs much attention. One
way to quickly evaluate proposed algo-
rithms is by implementing and using
them in a High-Level Simulator which
leaves out the computationally intensive
Ray Tracing but is still capable of rep-
resenting and simulating a realistic sce-
nario. This thesis introduces a simula-
tor in which small environments can be
configured as needed, and simulations

can be performed and monitored in time
and space. Different applications can be
initialized, users can move and appear
or disappear, all in the way that is de-
fined in the configuration.

Some major challenges needed to be
overcome to develop the simulation
mechanism. E.g., how the different en-
tities communicate with each other and
how to manage the movements of the
user devices in time and free space.
This, together with the complexity of
developing a model that allows fast allo-
cation of antennas, made this thesis an
exciting project.

The REINDEER group can use the sim-
ulator to quickly implement and test

v

“output” — 2022/6/24 — 13:57 — page vi — #8

new allocation algorithms and get a gen-
eral feeling of how the algorithm will
perform in real-life or more detailed sim-
ulators. Different kinds of statistics can
be recorded to evaluate performance,
such as the number of reconfigurations
and the amount of insufficiently con-
nected devices. There is also the pos-
sibility of getting a general intuition on
how changes in the configuration can af-
fect the results. It is possible to ana-

lyze some exciting questions, e.g., "How
does the antenna topology influence the
frequency of reconfigurations?" or "How
does the distribution of antennas affect
the service provided to a specified appli-
cation and its needs?" The simulator’s
design allows further additions, such as
coupling the simulator with a more low-
level simulator, after which more realis-
tic communication data can be used to
perform allocations.

vi

“output” — 2022/6/24 — 13:57 — page vii — #9

Table of Contents

1 Introduction 1
1.1 Role Inside REINDEER . 1
1.2 Objective . 1
1.3 Previous work and contributions . 2
1.4 Structure of the report . 3

2 RadioWeaves 5
2.1 Next Generation . 5
2.2 What is "RadioWeaves" . 5
2.3 Challenges . 8
2.4 Applicatons . 8
2.5 Structure and Federations . 9

3 The Simulator 13
3.1 Requirements . 13
3.2 Simulation . 13
3.3 Discrete Event Simulation . 15
3.4 Fair Allocation . 16
3.5 Utility Functions . 20
3.6 The idea . 21

4 The Code 23
4.1 Structure . 23
4.2 Utility Calculations . 27
4.3 SimPy . 32
4.4 Process communication . 34
4.5 Integration of Objects and Ray Tracing 37
4.6 A virtual run . 37
4.7 Conclusion . 39

5 Testing 41
5.1 The Discrete Event Simulation . 41
5.2 The Utilities . 45
5.3 Performance . 53

vii

“output” — 2022/6/24 — 13:57 — page viii — #10

5.4 Conclusion . 57

6 Future Work and Conclusion 59
6.1 Future Work . 59
6.2 Conclusion . 61

References 63

A Extra material 67
A.1 Used packages . 67
A.2 Configuration examples . 68
A.3 Experiment 1a and 1b . 69
A.4 Specifications . 70

viii

“output” — 2022/6/24 — 13:57 — page ix — #11

List of Figures

2.1 Figures demonstrating the difference between regular and cell-free net-
works . 8

2.2 Overview of RW infrastructure, created by William Tärneberg 10
2.3 Figure of some use cases, created by William Tärneberg 11

3.1 Illustration of model in the simulator 15

4.1 Examples of 3D visualization . 26
4.2 Spherical coordinate system [1] . 30
4.3 Topologies in simulator . 31
4.5 State diagram showing the different states of the simulator 39

5.1 Demo configuration . 42
5.2 User utility in time (a) and space (b) 43
5.3 Threshold demonstration . 43
5.4 Results optimisation . 44
5.5 . 45
5.6 WPT configuration . 46
5.7 Results of WPT testing . 46
5.8 Positioning setup . 47
5.9 Results of positioning testing . 47
5.10 Performance configuration . 48
5.11 Results of SIR experiments . 49
5.12 SIR in terms of location . 50
5.13 Resulting federations . 51
5.14 Visualisation topologies . 52
5.15 Latency results . 53
5.16 Performance results with Increasing UEs 55
5.17 Performance results with Increasing CSPs 56
5.18 Performance results with increasing interval 57

ix

“output” — 2022/6/24 — 13:57 — page x — #12

x

“output” — 2022/6/24 — 13:57 — page xi — #13

List of Tables

2.1 Use cases with their description . 9

4.1 Signal and interference notations 28
4.2 Notations latency . 31

5.1 User trajectory . 42
5.2 Parameters logarithmic equation . 48
5.3 Parameters quadratic equation . 55
5.4 Parameters linear equation . 56
5.5 Parameters logarithmic equation . 57

A.1 Libraries with their description . 67

xi

“output” — 2022/6/24 — 13:57 — page xii — #14

xii

“output” — 2022/6/24 — 13:57 — page xiii — #15

List of Acronyms

RW RadioWeaves

LIS Large Intelligent Surfaces

RIS Reconfigurable Intelligent Surfaces

DES Discrete Event Simulator

MIMO Multiple Input Multiple Output

LOS Line Of Sight

SDS Software Defined Surface

CSP Contact Service Point

ECSP Edge Computing Service Point

UE User Equipment

RW RadioWeaves

WPT Wireless Power Transfer

YAML Yet Another Markup Language or YAML Ain’t Markup Language

VR Virtual Reality

UV Unmanned Vehicle

AR Augmented Reality

SINR Signal to Interference plus Noise Ratio

SIR Signal to Interference

STU Simulation Time Unit

LOS Line-of-sight-

xiii

“output” — 2022/6/24 — 13:57 — page xiv — #16

xiv

“output” — 2022/6/24 — 13:57 — page 1 — #17

Chapter 1
Introduction

In this Chapter, the role of this thesis within the REINDEER project will be
explained (Section 1.1), together with the overall objective of this Master’s project
(Section 1.2). Previous work and the contributions are discussed in Section 1.3.
Section 1.4 concludes this Chapter with an overview and structure of the rest of
this report.

1.1 Role Inside REINDEER

This thesis is part of an EU Horizon 2020 project named REINDEER [2]. REIN-
DEER stands for REsilient INteractive applications through hyper Diversity in
Energy Efficient RadioWeaves technology. "The REINDEER project will develop
a new intelligent connect-compute platform with a capacity that is scalable to
quasi-infinite, that offers perceived zero latency and interaction with an extremely
high number of embedded devices. It will thereto develop RadioWeaves tech-
nology, a new wireless access infrastructure consisting of a fabric of distributed
radio, computing, and storage resources that function as a massive, distributed
antenna array" [2]. To get a feel for the allocation of resources within the RW
infrastructure, a study is proposed to test and implement a first solution. This
study consists of two phases, of which this degree project initiates the first phase,
creating a high-level simulator that enables a simulation study. The second phase
consists of experiments at the KU Leuven test-bed [3].

1.2 Objective

The main objective of this thesis is to develop a High-Level Discrete-Event Simula-
tor which allows the simulation of different allocation algorithms. These algorithms
manage the attribution of the different federations used in a specific RW configu-
ration. These so-called federations indicate a grouping of users and the antennas
that will serve them. Utility functions are introduced to achieve a fair allocation
of antennas to the different federations. Both federations and utility functions will
be elaborated in Section 2.5 and 3.5. The results of an allocation algorithm in

1

“output” — 2022/6/24 — 13:57 — page 2 — #18

2 Introduction

a certain configuration make it possible to compare its performance and decide
which one is more suitable for real-life deployment. The simulator also needs to
simulate configurable and dynamic scenarios in which users appear or disappear,
move, and change antenna requirements throughout time. This thesis aims not to
test different allocation algorithms but to provide a framework that enables this.

1.3 Previous work and contributions

The REINDEER project is an actual state-of-the-art project, and the development
of its next-generation communication technology is still in its infancy. That is
why no existing simulator exists that implements all the needed aspects to have
a realistic simulation of the federation orchestration. There is, however, already
software available that integrates similar technology (referred to as Reconfigurable
Intelligent Surfaces (RIS)) as RW into a system-level simulator. This RIS can be
seen as reflective panels that control the propagation environment of transmitted
signals.

To evaluate the potential benefits of deploying RIS into future wireless networks, a
study using the Coffee Grinder Simulator is presented in [4]. The presented study
aimed to assess the possible performance gains offered by RIS as a function of
different physical and technical properties (e.g. deployment density, size, frequency
of operation).

Additionally, another simulation software named SimRIS is presented. SimRis is
developed to perform simulations of RIS-assisted communication systems. The
software can be used for channel modelling of RIS-based communication systems
with the possibility to modify many parameters (e.g. operating frequency, terminal
and RIS locations, number of RIS elements, environments) [5]. This simulator is
designed for passive RIS, which are not used in RW (see Section 2.2.2). It is also
only possible to simulate static scenarios in which the allocation of resources is
not considered, but the channel model plays a more important role.

In both software projects, low-level channel data and ray-tracing are used. The
SimRIS simulator, for example, proposes an initial channel model that can be
used for RIS configurations. Unfortunately, these simulators are not tackling the
issue this thesis tries to solve; evaluating allocation algorithms in an online setting.
Currently existing allocation simulators are covered in Section 3.4.2, once the field
of fair allocation has been explored.

As mentioned in the previous Section, this simulator will only provide a high-
level simulation of the RW deployment. This means that this thesis aims not to
build a Ray-Tracer with the capability to perform accurate calculations regarding
communication data and channel models. These calculations would be too much
of a burden on the simulator, for which its only goal is to evaluate the coordination
algorithms. That is why previously calculated channel estimates are used to obtain
a more realistic simulation scenario within the simulator. The researchers within
the REINDEER project can quickly implement and test federation coordination
algorithms to obtain a general intuition on how they will perform in more low-level

“output” — 2022/6/24 — 13:57 — page 3 — #19

Introduction 3

simulations and the real world.

1.4 Structure of the report

The next chapter will present a more detailed clarification about the RW technol-
ogy. In Chapter 3 an overview of the simulator will be given, together with more
information about fair allocation and utility functions. The structure and func-
tioning of the code are covered in Chapter 4, followed by the tests and performance
measurements in Chapter 5. Additionally, possible future work is highlighted in
Chapter 6, completed with a conclusion of this Master’s thesis.

“output” — 2022/6/24 — 13:57 — page 4 — #20

4 Introduction

“output” — 2022/6/24 — 13:57 — page 5 — #21

Chapter 2
RadioWeaves

In this chapter, the RadioWeaves concept and its challenges and applications will
be elaborated on a bit more. On top of that, an explanation will be given about
the infrastructure, and the term federation will be introduced.

2.1 Next Generation

The next generation of wireless communication and its possible applications have
expressed its need to connect the physical and digital world closer and more sus-
tainably. Current networks cannot implement the needed distributed intelligent
networks because of the lack of control of the environment and the increasing power
consumption that comes with it [6]. This consumption of previous generation con-
ventional massive Multiple Input Multiple Output (MIMO) has several causes.
I.e., installed base stations are not optimized for energy consumption, and setting
up new base stations comes with significant complications. Also, the complexity
of digital processing, which now accounts for 50% of power consumption, has only
increased since the enrollment of the 5G network [6]. At the same time, some
newly introduced requirements for 6G are expressed, e.g., very high data rates,
low latency, supreme reliability, and great capacity [7]. A new trans-formative
wireless concept called RW is introduced to overcome these challenges and create
an intelligent radio environment.

2.2 What is "RadioWeaves"

The RadioWeaves technology is based on large-scale intelligent surfaces and cell-
free wireless access concepts and will provide favourable propagation and antenna
array interaction [8]. Large-scale intelligent surfaces in RW can be seen as a
constellation of radioactive panels equipped with antennas. Cell-free networks oc-
cur when the antennas are scattered over the coverage area and serve surrounding
users. This is in contrast with a cellular network where cell boundaries define what
antenna serves which user [9]. The concept of cell-free networks will be further
elaborated in Section 2.2.3. The name "RadioWeaves" has its origin in distributed

5

“output” — 2022/6/24 — 13:57 — page 6 — #22

6 RadioWeaves

radio and computing power that will be "weaved" into physical buildings and ob-
jects. Some of the services mentioned in the use cases and deployment scenarios
in REINDEER deliverable [10] have special requirements. Current networks are
not able to provide those access and intelligence needs.

The major innovation of the RW concept lies in the proximity of the devices
and the radio and computing resources, which offers excellent connectivity and
intelligence to the devices. The infrastructure consists of interconnected surfaces
with radiating elements, which will dynamically achieve the best performance with
the available resources. The probability of being close to specific antennas will be
maximized through appropriate placement and orientation of the antennas in the
environment. By doing so, each application connected to the RW system will be
provided sufficient resources to meet its desired service level.

Furthermore, experiments with massive MIMO [11] have shown that energy still
comes predominantly out of one direction, even in reflective environments. RW will
try to allocate resources most efficiently, keeping the dominant energy directions
in mind.

2.2.1 Distributed antenna arrays and LIS

Several key differences exist between the RW technology and currently deployed
networks. The first one is the use of distributed antennas. When we compare with
massive MIMO networks, in which cellular base Stations are equipped with a large
number of antennas [12], the RW technology will make use of antennas that are
spatially distributed around the area. The antennas can be mounted on the walls,
integrated into objects, or even ’weaved’ into surfaces. The user is then surrounded
by radiating interconnected panels. This brings a considerable complexity, e.g.,
interconnection and coordination become more challenging. The idea is to bring
these antennas as close to the user as possible. When a user is close to an area of
distributed antennas, beamforming can result in a small region (diameter is half a
wavelength) with significantly larger signal power and many other benefits. The
interconnected radiating panels are referred to as Large Intelligent Surfaces (LIS),
which will be further explained in the following section.

2.2.2 LIS and RIS

In contemporary literature [13][14], large intelligent surfaces are generally consid-
ered as reflective and nearly passive surfaces, also known as RIS. Those surfaces
can be reconfigured in a certain way to interact with incident signals to improve
wireless system performance [15]. In the RW technology, on the other hand, these
surfaces will fulfil a more active role and generate signals themselves.

RIS

By developing thin films of electromagnetic and re-configurable material, the pos-
sibility is created to apply customized transformations to radio waves, thereby
avoiding the increasing power consumption and lack of control ability [16]. These

“output” — 2022/6/24 — 13:57 — page 7 — #23

RadioWeaves 7

surfaces can be described as a two-dimensional array of sub-wavelength scattering
particles that transform the waves differently and are called RIS. These two-
dimensional arrays are re-configurable by connecting different scattering particles,
creating different physical reflection and refraction properties. It is vital to notice
the difference between RIS and relays used in MIMO as the primary purpose of
RIS is to reconfigure multi-paths in a favourable way for the receiver. The fo-
cus of a relay is to re-transmit the received signal, which comes with unwanted
self-interference and noise amplification effects. RIS is sometimes referred to as
Software Defined Surface (SDS), as the way the surface interacts with the incoming
waves is software-defined [17].

LIS in RadioWeaves

LIS as used in the RW architecture, is distinctively different compared to RIS.
The panels which form a LIS are now equipped with a variable amount of antenna
elements, which are able to transmit through space actively. A RadioWeaves LIS is
physically composed of different elements (sensing element, data storage element,
processing element, charging element, radio element, X-haul) [7]. It is demon-
strated that the information transfer capabilities of LIS show promising results
[18]. For every m2 of deployed surface, π

λ2 users can be spatially multiplexed. On
top of that, the same study indicated that a small intelligent surface can provide
a per-user capacity to around one hundred users in the medium room, virtually as
well as if only one user was present.

2.2.3 Cell-Free Networks

Another important difference between this new technology and regular cellular net-
works is the dense distribution of the different antennas. Usually, a large number
of antennas would be centralized in a single base station, and a user device on the
same geographical location would always connect to the same station, depending
on its connectivity requirements (see Figure 2.1a). With cell-free networks, the ta-
bles have turned, and the user is now surrounded by a large number of distributed
access points (see Figure 2.1b), which are theoretically able to serve every user
at different points in time, depending on the service requirements. In RW, this
cell-free concept is taken a step further, as the geographically distributed LIS are
now encapsulating the user, and all the antennas are able to provide services to all
users at different times. These access points use relatively low power compared to
the cellular base stations. These closely located access points open the door to a
whole new world of communicational possibilities, accompanied by challenges and
risks.

“output” — 2022/6/24 — 13:57 — page 8 — #24

8 RadioWeaves

(a) Network with clear distinction of dif-
ferent cells

(b) Cell-free network

Figure 2.1: Figures demonstrating the difference between regular
and cell-free networks

2.3 Challenges

Integrating the RW technology comes with several practical challenges. The in-
stallation of the infrastructure can cause significant overhead, and integration of
the technology might be accompanied by severe aesthetic consequences. As with
massive MIMO, the interconnection can lead to bandwidth restrictions, and long
connections might lead to significant delays and thereby processing problems. Fur-
thermore, the development of the network is very complex. Because of the different
service needs that need to be fulfilled and the many possible allocations, coordi-
nating which antennas serve what users is already a complex problem in a static
scenario. It becomes even more complicated when dynamic scenarios have to be
considered, users start to move, and requirements start to change.

2.4 Applicatons

The REINDEER project has several major Use-Cases in mind for which the
RW technology will intercept the shortcomings of previous network architectures.
These bring up many challenges, as they require providing the following aspects
[7]:

• wireless energy transfer

• precise position information

• connections to energy-neutral devices

• real-time and real-space interaction within the spatial and temporal refer-
ence frame

“output” — 2022/6/24 — 13:57 — page 9 — #25

RadioWeaves 9

All these use cases from [19] have their specified technical requirements, so the RW
network should be very adaptive and be able to dynamically change the allocation
settings depending on the requirements of the applications. Table 2.1 gives an
overview of the use cases targeted in the REINDEER project [10].

Use Case Description
Augmented reality for sport
events

The audience of an event, e.g., a sporting match, obtain real-time
processed data from the players gathered from sensors that can be
seen in AR over the real-time actions.

Real-time digital twins in manu-
facturing

A digital twin is a full digital representation of that entity, to which
data is continuously streamed from its physical counterpart.

Patient monitoring with in-body
and wearable sensors

Process and monitoring data derived from in-body and wear-able sen-
sors offers the opportunity to provide more efficient, better, and pos-
sibly remote healthcare.

Human and robot co-working In future factories and care environments, humans and robots will need
to cooperate to perform tasks or for robots to provide care to patients.

Tracking of goods and real-time
inventory

Tracking of goods allows for a holistic vision of the supply chain and
inventory status, enabling real-time decisions based on the information
collected from each single item present.

Electronic labelling Electronic shelf labels display dynamic information. Through WPT,
RadioWeaves enables the use of energy-neutral electronic labels, with
display information updated wirelessly and inventory located and
tracked with high precision.

Augmented reality for profes-
sional applications

AR glasses need high-resolution displays and cameras and high-
performance image processing while requiring lightweight and ultra-
low-power designs for wearability and usability.

Wander detection and patient
finding

Through patient finding and wander detection and prevention, pa-
tients, e.g., with dementia, get more freedom of movement in combi-
nation with a lower risk of accidents.

Contact tracing and people track-
ing in large venues

Contact tracing and people tracking could enable companies or events
to log unsafe contacts or give insights for safety measures in case of,
e.g., the Covid-19 outbreak.

Position tracking of robots and
UVs

The positioning of robots and unmanned vehicles can improve au-
tonomous driveability and productivity and reduce the loss of assets.

Location-based information
transfer

Active information can be given depending on the user’s location.

Virtual reality home gaming VR is a growing trend within video gaming, including in private homes
on consoles and personal computers with a connected headset.

Smart home automation Relatively dense arrays of energy-neutral sensors could be deployed
throughout the home to provide a three-dimensional map of environ-
mental quantities, thus allowing smarter home automation.

Table 2.1: Use cases with their description

2.5 Structure and Federations

This section briefly overviews the components that make up the RW architecture
and their functions. Secondly, the earlier concept of federations is explained in
more detail. Further information about RW terminology and structure can be
found in [6][7].

“output” — 2022/6/24 — 13:57 — page 10 — #26

10 RadioWeaves

2.5.1 Components

In Figure 2.2 an overview is given of the different network components present in
a typical RW setup [6]. We can see different Contact Service Points (CSPs) which
are responsible for WPT, sensing, and communicating with the User Equipments
(UEs) or devices on which different applications are running. These CSPs are
the equivalent of the antenna array, which, when placed together on a surface,
form a LIS. The Edge Computing Service Points (ECSPs) mentioned in the figure
serve as processing units that are spatially distributed over the area. Their primary
purpose is to offload processing power from the CSPs and coordinate and aggregate
data to and from the backhaul. Both CSP and ECSP are terms made up for
the REINDEER project. Cooperation of all the different CSPs will also require a
certain degree of synchronization for which synchronization anchors are introduced
[6]. In this thesis, only the CSPs and UEs are considered. By doing this, the system
is a lot more manageable, and the problem of allocating resources within RW is
relaxed.

Antenna array currently
serving the UE

Antenna array

UE

Baseband

Interconnects

Energy transferPrecise locationing

Figure 2.2: Overview of RW infrastructure, created by William
Tärneberg

2.5.2 Federations

As there might be a lot of different UEs, not all the resources in the system
will be able to contribute to the same service required by the applications on
the user devices. Therefore federations are introduced. As mentioned in [7];
"Dynamic federations consist of constellations of antennas, edge computing units,
data storage, and other resources, to serve a specific application". As the objective
of this thesis is the allocation of CSPs, a federation in this project is considered as
only a group of UEs and CSPs that are interconnected with each other to provide
the communication requirements. These federations can contain CSPs that are
positioned close to each other, but that is not a necessity, as some applications
might have other requirements, i.e., spatially distributed for accurate positioning
[6]. Depending on these requirements of the applications, different CSPs will be
assigned to the different federations.

“output” — 2022/6/24 — 13:57 — page 11 — #27

RadioWeaves 11

AR
federation

AR
application

UV
federation

UV
application

Goods tracking
federation

Goods tracking
application

Co-working
federation

Co-working
application

Figure 2.3: Figure of some use cases, created by William Tärneberg

Figure 2.3 shows four use cases mentioned in Table 2.1. Each of these use cases is
attributed a colour. The colour of the rectangular surfaces on the wall indicates
what application and federation they belong to. Because certain panels might
be desired by more than one federation, a mechanism is needed to manage this
difficulty. This is where allocation algorithms come into play. These algorithms
will each have their way of attributing panels to federations. It is the goal of this
thesis to enable the evaluation of each allocation algorithm.

“output” — 2022/6/24 — 13:57 — page 12 — #28

12 RadioWeaves

“output” — 2022/6/24 — 13:57 — page 13 — #29

Chapter 3
The Simulator

This chapter elaborates more on the different elements used to implement the
simulator. Section 3.1 and 3.6 give a brief recapitulation of what the explicit re-
quirements are for the project and how they will be fulfilled. Additionally, Section
3.2 provides an overall elaboration on simulation, as well as the necessary concepts
needed to understand the underlying base behind Discrete Event Simulation. Fair
allocation and utility functions also play a vital role in this Master’s thesis and
are discussed in the final Sections 3.4 and 3.5.

3.1 Requirements

The overall objective of this thesis is to create a simulator that enables to quickly
implement different federation coordination algorithms and compare the test re-
sults. Even though this remains a high-level simulator, several important aspects
need to be included in the program. First, there must be the opportunity to con-
figure a specific physical area and its associated CSPs. Furthermore, the different
users who need to be served by the different federations should be able to run
different applications with specific needs. These users should also be able to move
through the physical area. Another major part of the project is the actual allo-
cation of the CSPs and the ability to express a preference between them. This
should be done by using preference values configured in the configuration files.

3.2 Simulation

Simulation can be used as an analysis tool for predicting the effect of changes to
existing systems and a tool to predict the behaviour of new systems in diverse
configurations. In our case, the simulator is developed to analyse the behaviour of
different allocation algorithms in possible future circumstances.

13

“output” — 2022/6/24 — 13:57 — page 14 — #30

14 The Simulator

3.2.1 The system

To perform any simulation, it is required to define a system and a system bound-
ary. "A system is defined as a group of objects joined together in some regular
interaction or interdependence toward accomplishing some purpose" [20]. In our
case, the system generally consists of UEs and CSPs, which interact with each
other to let the different applications run their service. Changes outside the sys-
tem (system environment) can sometimes affect the system. However, in the
case of this project, the influence of these changes can be neglected, and the sys-
tem boundary can be clearly defined as everything that happens outside of the
configured environment.

Within the defined system, several important components can be defined:

• An attribute is a property of an entity.

• An activity represents a period of a specified length.

• The state of a system is defined as the collection of variables necessary to
describe the system at any time.

• An event is defined as an instantaneous occurrence that might change the
system’s state.

3.2.2 The model

To study a system, a model must be defined. This model represents the system
and only includes aspects that affect the problem under investigation. A simpli-
fication of the system is required to prevent the model from being unnecessarily
big. However, it is necessary to remember that the model needs to be sufficiently
detailed to draw any valid conclusion about the represented system [20].

Our model consists of a physical environment defined by three dimensions, as
shown in Figure 3.1. Within this area, three different entities can be defined;
UEs, CSPs and physical objects. These entities have a high number of at-
tributes; id, position (UE and CSP), direction(UE), ... The activities in the model
mainly consist of movements of the UEs and the sending of messages. As the name
of this thesis suggests, a discrete event simulator mainly focuses on the occurrence
of events. These events are explained in the following section.

“output” — 2022/6/24 — 13:57 — page 15 — #31

The Simulator 15

Figure 3.1: Illustration of model in the simulator

3.3 Discrete Event Simulation

Discrete event simulation distinguishes itself from other simulations by the fact
that state variables only change in a discrete set of points in time [20], which is
called next-event time progression. Thereby the system is in a static state
during the period between two consecutive events. The simulator enables the
different entities that make part of the system to choose the next time it will
change its state or that of the system. A clock is mainly used to keep track of
current simulation time and is only incremented by ’hops’ to the time the next
event occurs. This way of handling time in a simulation makes Discrete Event
Simulator (DES) in most cases faster than simulators using fixed-increment
time progression. Because with the fixed increments, the system has more
points in time where state changes need to be evaluated. The earlier mentioned
clock makes use of a unit called Simulation Time Units (STUs). What this unit
represents in the real world depends entirely on what is being simulated. According
to the system, the STU should be interpreted differently, e.g., the simulation of
a solar system will probably have a different STU (e.g., years) than a program
simulating crowd control (e.g., seconds). In the case of this project, the STU of
choice is seconds. Most of the UE movements inside the configuration will move
at a speed that can most easily be presented by m

s , and larger or smaller scaled
time units seem less convenient.

In opposition to DES, there is also continuous simulation in which systems are
analysed by analytical methods rather than the numerical method. Although the
system we are simulating is relatively more continuous than discrete because of
the continuous activities (f.i. the movements of the users in the environment), we
still decide that because of the study’s objective, the use of a discrete simulation
model is more appropriate. The use of DES is sufficient as there is no need to

“output” — 2022/6/24 — 13:57 — page 16 — #32

16 The Simulator

obtain very precise channel data, and the speed of DES ensures fast results.

3.4 Fair Allocation

An essential step in the process of federation orchestration is deciding how the
different CSPs will be assigned to the different federations. We seek to do this
by using fair allocation algorithms. Nevertheless, because different sectors have
interested in good allocation algorithms, being fair in terms of allocation can mean
many different things. This section tries to shed light on what fair allocation
entails.

3.4.1 What is Fair Allocation

Fair allocation refers to the general problem of fairly dividing a shared resource
among agents having different and sometimes antagonistic interests in the resource
[21]. To clarify this, let us take the example of distributing candy to many kids.
In this setting, the kids are the agents, and the shared resource is the collection
of different candies. As you are a good person, it makes sense to distribute the
candy as fairly as possible among the kids who might have different preferences.
If we assume the pieces of candy can not be divided into smaller pieces without
losing value, it is not hard to imagine this task can become quite hard.

The first distinction we have to make before diving deeper into the world of allo-
cating resources is between divisible and indivisible goods. The name indivisible
speaks for itself; these goods lose value when broken down into smaller parts. They
are classified as indivisible (f.i. a car or a bike). On the contrary, divisible goods
can always be divided into smaller parts without losing value (f.i. a cake, a field,
and money). The division of indivisible goods is often more difficult because cer-
tain fairness concepts like envy-freeness or proportionality can be unreachable
(see Section 3.5.1). As CSPs can not be subdivided into smaller elements, we con-
sider the resources in the RW concept as indivisible goods. We can present these
goods as a set of objects O = {o1, o2, ..., on} (indivisible). In the RadioWeaves
infrastructure, CSPs are seen as shareable. They can be part of a part of another
federation at a different point in time. With the correct scheduling mechanisms,
CSPs might even be part of different federations concurrently. The CSP would
then serve each federation a certain percentile of its time. However, in this thesis,
CSPs are only seen as non-shareable. They can only be part of one federation at
a time, but this federation can change over time.

As in the case of distributing candy, each agent can have different preferences
regarding the available goods. This feature of fair allocation can lead to a lot of
added complexity. As comparing the number of available shares is huge most of
the time, the explicit representation of the agents’ preferences becomes unrealistic.

From now on, the notation of [21] will be used. N = {1, 2, ..., n} represents a set
of agents. Apart from allocating individual objects it’s also possible to allocate a
bundle s = {o1, o1, o3} which represents a subset of O. An Allocation is a function

“output” — 2022/6/24 — 13:57 — page 17 — #33

The Simulator 17

π : N → 2O, mapping each agent to the bundle it receives, such that π(i)∩π(j) = ∅
when i ̸= j. This means that no goods can be part of bundles allocated to more
than one agent; the items can thus not be shared. An allocation is complete when
∪i∈Nπ(i) = O and the set of allocations or total allocation is denoted Π. The
utility of an allocation is defined as uΠ

Agents’ preferences for goods can be defined differently, being ordinal and by a
utility function. In the ordinal case, agents must be able to express an ordinal
preference between the different available goods and bundles. Agents must be
able to rank all the items, with not no items being equal. This thesis only focuses
on the utility function ui : O → F in which each object can be mapped to a score.
As different agents can have different preferences we can present the set of utility
functions as U = {u1, u2, ..., un}. To demonstrate the complexity of fair allocation,
some terms used in the context of fair allocation are introduced [22][21].

• Pareto efficient: A total allocation is Pareto efficient if no new total al-
location can be made in which the total utility of an agent rises without
decreasing the total utility of another.

Πx is pareto efficient if ∄ Πy : ui(πΠy
(i)) > ui(πΠx

(i)) and
uj(πΠy

(j)) ≥ uj(πΠx
(j)) for every i, j ∈ N

• Maxmin allocations: A set of allocations is maxmin when the utility of
the poorest agent is maximised [21]. This does not necessarily mean that
the allocation is also Pareto efficient. A MaxMin allocation only focuses
on maximising the utility of the poorest agent and does not consider the
allocations of the other agents.

maxπ∈Π

{
mini∈Uui(π(i))

}

• Envy-freeness: This criterion of fairness is full-filled when no agent feels
envy for any other agent. It means that when the resources are allocated to
the agent, every agent should prefer its partition over the allocated partitions
of the other agents.

ui(π(i)) ≥ ui(π(j)) for all agents i,j ∈ N

• Equitable: When a set of allocations is equitable it means that every agent
that is considered has the same utility.

ui(π(i)) = uj(π(j)) for all agents i,j ∈ N

• proportionality: When proportionality is used as a Fairness criterion,
each agent should receive a bundle of goods that they value at least as much
as 1/n of the entire allocation. Because the allocation of CSPs in our setting
is an allocation problem of indivisible goods, the property of proportionality
is not guaranteed.

“output” — 2022/6/24 — 13:57 — page 18 — #34

18 The Simulator

The existence of all these different notions of fairness emphasises the need for a
simulator that can evaluate algorithms. Depending on what notion of fairness is
the goal to pursue, a different allocation algorithm might be suitable.

3.4.2 Online vs. Offline

When allocating resources, it is vital to notice the difference between online and
offline situations. Agents are referred to as being online when their preferences
or presence varies over time. This is the case with RadioWeaves, as agents can
appear or disappear. Resources are online when the availability is not fixed but
can vary over time. The main difference between online and offline situations is
the assumption that all the items are available at any time in offline situations,
which does not hold for online situations.

Looking at the difference between online and offline situations, from now on, we
primarily consider the online variants as these seem to be most relevant regarding
allocating resources in the RW system. We can consider the different applications
and federations that serve them being the agents of the system and the panels
being the goods that need to be divided by the allocation algorithm.

We notice that agents in our deployment can change their requirements over time.
They will also move in the environment, which changes the different utility func-
tions. That will be explained in the next section. As these changes are dynamic
and happen over time, we should also consider allocation algorithms in a dynamic
setting.

In [23] two online allocation algorithms (OnlineMaxDelivered, OnlineMaxSatis-
fied) are presented, which take into account online agents. Agents can arrive and
depart, and the allocation of the resources is done without the knowledge of fu-
ture intervals. The downside of the allocation algorithm presented in this work is
that the allocation is performed based on requirements, and no valuation functions
come into play. This conflicts with our setting, which will be further elaborated in
section 3.5. Another big difference between both settings is the type of resources
used in the allocations. In [23] the resources are perishable. Perishable is defined
as not storable, and if not used directly, it is wasted. In our configuration, the
goods (CSPs) are considered permanent.

Another allocation procedure presented in [24] supposes additive utilities and full
independence agents, another two properties which are not applicable in our set-
ting. It is demonstrated in this paper that the expected utilitarian social welfare is
maximised when agents take alternate turns in picking items. Utilitarian welfare
exists when the sum of all agents’ utilities is maximised. This paper does not take
into account online agents, another reason why this allocation is not applicable to
our setting.

In [25] the "HOPE-ONLINE" algorithm is presented. Although the guarantee of
Pareto-efficiency, envy-freeness and proportionality seems to be an impossible task,
this algorithm guarantees approximately-fair allocations utilising distributional
knowledge of the system. Agents arrive sequentially, with unknown stochastic

“output” — 2022/6/24 — 13:57 — page 19 — #35

The Simulator 19

utilities. By accessing historical data, equitable access to a resource is strived
for. Using previously obtained data might be interesting to investigate in the
case of RadioWeaves. E.g., Large and similar events might always have the same
arrival distribution of users. An algorithm that makes use of this knowledge might
produce better results.

3.4.3 Information

[26] introduces another dimension of fair division. Additional to the online vs
offline situation, there is the informed vs uninformed setting. The system has
information about the items or agents yet to arrive in the informed setting. The
system presented in this thesis is focused on the algorithms which perform al-
locations from the uninformed perspective, i.e. no information about the future
presence of UEs or movements is available. Algorithms that rely on full informa-
tion are thus no longer applicable in this scenario.

Guaranteeing Pareto-efficiency, envy-freeness, and proportionality simultaneously
seems impossible in the uninformed setting; thus, the challenge is defining mean-
ingful notions of approximately-fair online allocations and developing algorithms
that utilise distributional knowledge to achieve such allocations.

3.4.4 Research

A reasonable amount of research has already been conducted on fair division.
In [27] Procaccia and Wang show that MaxMin allocations might not exist with
additive valuation functions. On the other hand, they prove that allocations always
exist where agents receive 2

3 of the valuation of the least desirable bundle (if all
items are divided between agents). This result is later improved [28] to a 3

4 factor in
the additive setting. Their results are also extended to some non-additive settings.

Additionally, [29] reaffirms that envy-free allocations are not always possible in
settings with indivisible items. In that case, the optimisation problem of achieving
minimum envy introduces itself. In the presented work, monotone, additive utility
functions are associated with each agent, and an algorithm is presented to minimise
the envy-free ratio.

In [30] Asadpour and Saberi present an approximation algorithm for Max-Min fair
allocation of indivisible goods. The algorithm assumes known linear utility func-
tions, and achieves Max-Min utility with an approximation ratio of Ω

(
1√

klog3k

)
.

The algorithm first guesses the optimal solution using a binary search tree. Sub-
sequently, matches between goods and agents are made, after which conflict res-
olution is used to allocate goods assigned to more than one person. A general
overview of fair allocation can be found in [26].

We can conclude that the world of fair allocation is an extensive and complicated
one. A wide variety of different settings make it very interesting to research. On
top of that, the different notions of fairness to strive for make it hard to generalise

“output” — 2022/6/24 — 13:57 — page 20 — #36

20 The Simulator

this field of interest and conclude an optimum algorithm. The introduction of the
RW brings another new setting that needs to be studied.

3.5 Utility Functions

When comparing agents’ preferences to bundles, one could say the utility of a
certain bundle can be determined by just adding the different utilities of objects
in that bundle, items are then unrelated, and this we call additive preferences.
However, this is not always the case, e.g. when objects of similar nature are
closely coupled. Imagine o1 being a plane ticket to Paris and o2 a plane ticket to
New York. Both these objects can be valued by an agent in terms of a certain
utility, but if these flights happen to be on the same day, the additive assumption
is not valid anymore. That is because there exists a certain dependency between
both objects. In the case of federation orchestration the utility functions also
express utilities and can be subjective, complementary and substitutable[31].

Subjective: "Different sets of UEs within a federation can have different utility
values for different CSPs or constellations of CSPs"

Complementary: "A group of CSPs can have synergistic value, e.g. multiple
CSPs close to each other (in terms of the CSP topology) for low latency"

Substitutable: "Having one of a group of CSPs has value, but more than one
is not needed, e.g. CSP located close to each other may give poor spatial
diversity for positioning"

The attribution of a utility or value of a bundle of CSPs to a federation is done
by a certain combinatorial utility function. This function varies depending on
the applications, and the requirements the federation and UEs are serving. We
can distinguish several main performance metrics that focus on different wireless
communication aspects. Even though these metrics focus on a different aspect
of wireless communication, applications will likely have a utility function that
combines these performance indicators. The performance metrics used to obtain
utility values are mentioned below, with some of the use cases (see 2.1) that value
these metrics the most.

Data rate: Virtual Reality (VR) home gaming, location-based information
transfer, ...

Latency: Augmented Reality (AR) for sport events, position tracking of robots
and Unmanned Vehicle (UV)s, ...

Positioning accuracy: Real-time digital twins in manufacturing, tracking of
goods and real-time inventory, ...

Received power for WPT: Smart home automation, AR for professional
applications, ...

Packet Error Rate: Real-time digital twins in manufacturing, Human and
robot co-working,...

“output” — 2022/6/24 — 13:57 — page 21 — #37

The Simulator 21

3.5.1 Utility Levels

There are several levels on which the utility of an allocation can be evaluated in
this project, and each level has some good reasons to be taken into account. The
lowest level is that of the users themselves. For each user, there is a normalised
utility value that expresses how satisfied the user is with the allocation of its
appointed panels. There can be a large variety in how certain allocations express
themself in a normalised utility value. As some users might not be more satisfied
when more panels are added to their federation, and some others might only have
a utility value different from 0 when a certain threshold has been met.

The second level of evaluation is the utility of a single federation. We can obtain
this utility in a few different ways; depending on what applications are run within
the federation, a different way of evaluating the utilities might be more significant.
Applications where all users should have secure performance, will be better off by
evaluating the minimum utility of all its users. In comparison, applications with
more flexible performance thresholds can be evaluated fairer by looking at the
mean of the utilities within the federations. Last but not least, we need a way of
expressing how good a total allocation is compared to others. This can be done
by combining the utilities of the different federations.

3.6 The idea

Different significant components will be needed in the simulator to fulfil the re-
quirements mentioned in Section in 3.1.

A first part of the simulator would consist of all the different entities needed to
represent an actual RW deployment. Classes like CSP, UE and federation seem
indispensable. Another crucial component will be a class that can calculate the
utility value for a certain UE, federation or deployment.

Additionally, a component will be needed to visualise the simulated deployment.
Preferably this visualisation will not only be able to show allocations but also
have a dynamic debugging function. This debugging mode would let the user step
through time to see what is happening clearly. This visualisation will need to be
done in 3D to maintain a clear view of how the UEs are moving.

The last component is responsible for the actual allocation of the CSPs The al-
location of a particular CSP to a federation will be done in two main steps. In
the first step, each federation calculates a certain utility value for each service
point. This value expresses how much the federation ’wants’ this service point to
be part of its federation regarding the service requirements of the application it
serves. In the next step, the allocation algorithm will decide what service points
will be distributed to the different federations. As mentioned earlier, a motivation
for this Master’s Thesis is to provide a platform to test these different allocation
algorithms and compare the results to see which way of allocating resources is
more favourable.

“output” — 2022/6/24 — 13:57 — page 22 — #38

22 The Simulator

“output” — 2022/6/24 — 13:57 — page 23 — #39

Chapter 4
The Code

This chapter will look at the different aspects of the source code that make up
the simulator. First of all, Section 4.1 gives an overview of the project’s struc-
ture. This overview can help in understanding the approach used to build the
simulator. This section is followed by an elaborate explanation of how the dif-
ferent utilities are determined in the project. Afterwards, Section 4.3 introduces
the SimPy framework, and Section 4.4 discusses the different SimPy processes
that are implemented. Section 4.5 illustrates the integration of objects in the sim-
ulated environment. Finally, the total simulation mechanism will become clear
with a virtual simulation run in Section 4.6.

4.1 Structure

The project is organised to make the code as structured as possible regarding
readability, reusability, and modularity. Therefore specific packages are created
so that each group of different files have components with a similar role. In the
following sections the most important packages and classes are discussed.

4.1.1 Entities

The entities used in the code are presented in this section. The following expla-
nation will briefly cover the most important attributes and methods.

• allocation: This class does not contain anything more than a list of fed-
erations. It is introduced to encapsulate a full allocation. It is easy to add
attributes to this object that can give interesting insights, for example, the
total number of ignored reconfiguration messages sent within the allocation.

• application: The application class is nothing more than an object which
holds much information used by the UEs and federations. E.g. Threshold
levels, utility valuations, the maximum number of users etc. This class does
not contain any operative code.

23

“output” — 2022/6/24 — 13:57 — page 24 — #40

24 The Code

• federation: A federation object holds a set of UE objects and a set of CSP
objects, together with an application object. On top of that, each federation
controls its events responsible for serving the federation process that will
be elaborated in Section 4.4.2.

• CSP and UE: The CSP class is a small class that holds its position in
the physical environment. The UE class, on the other hand, is a bit more
complicated. Just like the federation, it also holds a process (see Section
4.4.1). In addition, some attributes are stored from the configuration like
the speed of the UE, the time to appear and disappear, etc.

• ray, object and polygon: These three classes are introduced to perform
the ray tracing briefly explained in Section 4.5. If the ray tracing option is
configured to be "false", these two three are not used in the simulation.

• reallocation entity: The reallocation entity is the last class that contains
SimPy processes; the reallocation process (see Section 4.4.3) and a Logging
process that makes use of the Logger class mentioned in Section 4.1.5. This
entity initiates the reconfigurations through time and holds the allocator
object configured to hold the preferred allocation algorithm class.

• Vector and Waypoint: The last two entities are essential for the UE
movements. The calculations of speed and direction are based on the vector
class, and the trajectory of an UE is described by a list of waypoints. These
waypoints also keep track of the time the user should spend at that particular
waypoint.

4.1.2 Configuration

This package speaks for itself; it contains all the different configuration files which
make op a particular RW configuration. The different CSPs and UEs can be
defined here, together with some application files which give more information
about what utilities should be used and how the utility should be evaluated on
the different levels. Examples of these configuration files can be found in the
Appendix(A.2). Each mentioned entity is defined in a separate file to obtain a
more readable configuration. In the configuration package, we can also find a
script that can generate the different configuration files based on what type of
configuration needs to be simulated. This script was created by Emma Fitzgerald
to be used in a prototype and was later modified by myself to be compatible with
the final version of the simulator. New configurations can be set up by modifying
some parameters or defining a new generator function in the script. There is,
for example, a method that is able to deploy CSPs in an evenly spaced way or a
function that creates a trajectory for a user based on given parameters and objects
in the simulated environment. The language used for the configuration files is Yet
Another Markup Language or YAML Ain’t Markup Language (YAML) and will
be elaborated on in the next section.

“output” — 2022/6/24 — 13:57 — page 25 — #41

The Code 25

YAML

YAML is a compact form of XML, and it is used for defining the different configura-
tion files. It is carefully selected because of different criteria. As the configuration
of a RW deployment can become quite large and complicated, human readability
was an important selection criterion, as well as its flexibility and accessibility. On
top of that, YAML allows the user to use comments in the files, enabling in-file
documentation and the declaration of the different options. A downside of this
language is the absence of support for some programming languages. Fortunately,
Python has an additional library that can be used to parse these files.

4.1.3 Allocation

All the code related to the actual allocation of the CSPs to the federation is
grouped in the allocation package. The different currently implemented alloca-
tion algorithms are stored in this package, together with an interface that can be
used to implement future coordination algorithms. Some currently existing simu-
lator algorithms are the ordinary round_robin algorithm and a round-robin allo-
cation where a particular allocation pattern can be passed to. Besides that, there
is also the shrinking algorithm which is again implemented by Emma Fitzger-
ald. To compare the performance of allocation algorithms in terms of maximising
the utility of an allocation, there is also a more heuristic approach to solving the
coordination problem. The metaheuristic Simulated Annealing can be used to
benchmark the results of newly implemented allocation algorithms. Additionally,
a Steepest Descent approach is available to locally optimise a given configu-
ration. Ultimately there is also a Random Allocation algorithm that is used
to test the performance of the simulator without the computationally intensive
shrinking algorithm. It can also be used as a lower bound for any other algorithm,
as the algorithm’s performance should be in between that of the random allocation
and an optimum. Future research should determine if such an optimum may or
may not be possible to find.

Different allocation algorithms can be added to the simulator as long as they are
compatible with the allocation interface. A significant burden when defining
algorithms in this setting is the strange behaviour that can be unique to each
defined application. As mentioned in Section 3.5, this behaviour can consist of
utilities dropping to 0 when a certain threshold is not met or utilities not being
linear according to their correlated performance metric. A typical approach to
the allocation would be to start from a minimal assignment where all the feder-
ations have one or no CSP assigned to them and then iteratively add CSPs to
the federation according to the added utility to that federation. Unfortunately,
this approach would not work in our case as the threshold requirements might not
result in higher utilities for a single CSP addition case. This could result in cer-
tain federations suffering from starvation and not getting any new CSPs assigned
to them. To still perform meaningful allocations in the simulator, the shrinking
algorithm is used in the simulator. It was created by Emma Fitzgerald and Gilles
Callebaut and will be presented in [31].

“output” — 2022/6/24 — 13:57 — page 26 — #42

26 The Code

4.1.4 Visualisation

Another package is introduced to decouple the calculations and visualisation of the
deployment. This package contains a visualiser object whose only responsibility is
to convert a given allocation into a 3D representation of the environment in which
the different federations can be visible. To do so, new entities as csp_3D and
ue_3D have been introduced to keep the code for visualisation as separated as
possible from the rest.

(a) Angled view 3D visualisation (b) Top view 3D visualisation

Figure 4.1: Examples of 3D visualization

Figure 4.1a and Figure 4.1b shows an example of a simulator visualisation from
different angles. We can distinguish the different federations by colour. Different
symbols have been used to distinguish the CSPs and UEs from each other. The
CSPs are represented by squares, and the UEs are represented by dots. This way
of visualising has some significant advantages, with the first being the ability to
visualise the model at runtime. By switching back and forth between the UI loop
and loop of code, debugging of the code can be made a lot easier, as well as having
more transparent insight into how the model changes state over time. The next
event is taken from the event loop and processed by the simulator by pressing any
key on the keyboard. The effects can be shown directly at runtime. On top of the
visualisation, the time is shown to track what time the simulation is currently at.

The disadvantage of using this way of animation is that it is not very appealing
to the eye. The distinction between CSPs and UEs is sometimes hard to make,
and the capabilities of the matplotlib software to show realistic 3D environments
are limited as it is not the original purpose of the framework. Except for the fact
that the dimensions of the 3D graph can be changed, there is little flexibility: no
built-in 3D bodies, no textures available, and no complex environments.

4.1.5 Utils

This package contains three elementary classes; the Parser, the Oracle and the
Logger. The Parser uses the YAML library mentioned earlier in Section 4.1.2.

“output” — 2022/6/24 — 13:57 — page 27 — #43

The Code 27

The Oracle is probably one of the essential classes included in the simulator and
has a vital role in the functioning of the simulator. Additionally, there is also a
Logger class which can be used to log valuable data to CSV files. This data can
be analysed to gain insights (f.i. utility over time).

Oracle

The oracle class is the class responsible for calculating all the different utilities
used to make the allocations by the federation allocator. This class also contains
the methods to evaluate the utilities on the three different levels as mentioned in
Section 3.5.1. To evaluate the utility of a user within a federation, the different
utilities (WPT, data rate, packet error rate, latency, and positioning) are calcu-
lated and combined, taking into consideration the values of the utilities determined
by the application that is running on the UE. By combining all the utility values
of the users within a federation, a new value can be determined that expresses the
total utility of that federation. How these values are combined into a federation
utility also depends on what application is hosted by the users. At last, there is
also a method that can calculate the total utility of an allocation by joining the
federation values in a certain way.

The way that the utility calculations are implemented is very adaptive. It requires
minimal effort to change how, e.g., the WPT value is calculated as it would only
require changing the implementation of that specific method without bothering
the rest of the simulator. On top of that, it is essential to keep in mind that the
following utility functions do not determine the utilities by taking into account
real physical metrics. The methods to become a utility value are supposed to
be indicative and are designed to follow the same characteristics as real-world
behaviour. Following is a brief overview of how the different utilities are calculated.

4.2 Utility Calculations

4.2.1 Wireless Power Transfer

This utility is being measured by the energy of the signal the user receives in its
federation. Ove Edfors and his research group at Lund University suggested the
channel used to obtain the different signal data. These calculations are based on
the formula explained in [32] and given in Equation 4.1.

g =
√
β ∗ h (4.1)

In the formula above, the positive real number β represents the large-scale fad-
ing coefficient. This coefficient embodies range-dependent path-loss and shadow
fading. The small scale fading is represented by h and is a complex number that
makes up for constructive and destructive interference. Small-scale fading is as-
sumed in the simulator to be Rayleigh; that is h ∼ CN(0, 1). This model is chosen

“output” — 2022/6/24 — 13:57 — page 28 — #44

28 The Code

as it is widely used in the existing literature on wireless channel modelling, includ-
ing on massive MIMO. Additionally, it is tractable to use in theoretical analysis,
allowing results obtained by the simulator to be compared to analytical modelling.
At last, more realistic channel models are currently being worked on. This channel
model will then be connected to the simulator in the future. Therefore it is not
worth implementing another specific and complicated channel model. The noise
can be configured in the configuration files, and the exact calculations to obtain
the transferred power are given below.

Symbol Description
dk,l Distance between UE k and CSP l
λ Wavelength in meter
K Number of UEs in that federation
L Number of CSPs in that federation
N Number of configured antennas per CSP
βk,l Path loss for user k and CSP l
hk,l Channel vector for all antennas at CSP l for UE k
wk,l Precoding vector for all antennas at CSP l for UE k
rk,l Total received signal for for UE k and CSP
CN(0, 1) Rayleigh small scale fading
nk,l Noise in UE k from CSP l

Table 4.1: Signal and interference notations

hk,l =
√
βk,lCN(0, 1) (4.2)

wk,l =
h∗
k,l

||hk,l||
(4.3)

Pk,l =
Ptot,l

K
(4.4)

rk,l =
√
Pk,lwk,lskhk,l + nk,l +

K∑
k′ ̸=k

√
Pk′,lwk′,lsk′hk,l (4.5)

rk =

L∑
rk,l (4.6)

PdB = 10× log10

(
|rk|2

Pref

)
(4.7)

“output” — 2022/6/24 — 13:57 — page 29 — #45

The Code 29

The path loss values βk,l are obtained by taking the configured wavelength and the
distance between the UE and CSP. We consider only antennas that are isotropic
and have no directivity. Both distance and wavelength, together with Equation
4.8 then give the free space path loss.

βk,l =

(
λ

4 ∗ π ∗ dk,l

)2

(4.8)

The resulting value PdB from Equation 4.7 can then be normalised to a value in the
[0-1] interval by an equation adapted to the used configuration. Equation 4.9 shows
such an equation. max_power is the approximated maximum power value a UE
can obtain in a specific configuration. This value can be determined by assigning
all the CSPs in the configuration to the same federation as the UE. By placing
the UE close to a wall that is very densely covered by CSPs, an estimation can be
made of what the maximum power value should look like. user_power represents
the signal power of the UE of which the WPT_utility is being determined.

WPT_utility =
1

max_power
× user_power. (4.9)

4.2.2 Positioning

To obtain a positioning utility, a way to express how well an entity is surrounded by
CSPs must be introduced. One way to measure this is to look at the angles the user
makes with the different CSPs included in its federation. These angles are defined
in a spherical coordinate system shown in Figure 4.2. The polar angle, or the angle
from the vector with the z-axis, is denoted as θ. The other angle ϕ is called the
azimuth angle. The simulator calculates a utility value by obtaining the azimuth
and polar angles between the UE position and all the CSPs contained in the
federation. Subsequently, the biggest gap between all azimuth angles (respectively
polar angles) is calculated and mapped to a corresponding utility value in the
[0-1] interval. The interval for calculating the biggest angle gap is [0-360°] for the
azimuth angle and [0-180°] for the polar angle.

To clarify, we take a look at an example. Let us say the azimuth angles a UE
makes with four different CSPs are [20°, 40°, 80°, 240°]. The corresponding angle
gaps with the next angle in line become [20°, 40°, 160°, 140°]—the last angle
results from subtracting 20°(+360° interval) - 240°. The biggest value(160°) is
subsequently converted into a utility value in the [0-1] interval. The bigger the
biggest angle gap, the smaller the utility value. This can be explained by the
fact that a bigger angle gap indicates a larger spatial area uncovered by a CSPs.
Similar calculations for the polar angle with the [0-180°] interval can be obtained.

“output” — 2022/6/24 — 13:57 — page 30 — #46

30 The Code

Figure 4.2: Spherical coordinate system [1]

4.2.3 Latency

Latency is calculated by taking into account the topological distances between the
different CSPs concluded in the federation. Distances are expressed in the number
of hops in the topology. These CSPs can be interconnected in various ways, of
which three of these are implemented in the simulator and given below. How these
CSPs are interconnected greatly influences the amount of hops messages have to
take to reach their destination. In Figure 4.3a, we can see that all CSPs are
interconnected in a 1D array called a daisy chain. Figure 4.3b shows us that CSPs
are connected by their four neighbours. At last, the tree and hybrid topologies
introduce hierarchical levels (see 4.3d).

We will now briefly discuss the advantages and disadvantages of each available
topology[6].

• Daisy-chain: This topology has the advantage that the hardware design
can be reused, as the amount of input and output is the same for every
node. On top of that, this topology is easy to scale, and adding a node
to the existing ones is rather convenient. If a particular system needs fully
distributed processing, this topology allows this without any problem. On
the other side, the daisy chain topology can be an issue for applications with
tight latency requirements. The number of hops from source to destination
scales linearly (N) with the number of nodes.

• 2D-lattice This topology requires each node to have at least four input-
s/outputs, making the implementation and synchronisation harder. On top
of that, there is a need for a larger number of connections between the dif-
ferent nodes. The positive impact of the higher number of connections is
the scalability (

√
N) and the possible rerouting in case of any failure.

• multi-level tree: In terms of scalability, this topology scores better com-
pared to the lattice and daisy-chain. With the scalability of logN , this topol-
ogy is preferred for applications where latency is a critical factor. However,
the drawback is that there is a single node fusion node which can become a
bottleneck if traffic and the number of computations rise.

“output” — 2022/6/24 — 13:57 — page 31 — #47

The Code 31

(a) Daisy-chain topology (b) Lattice topology

(c) Tree topology (d) Hybrid topology

Figure 4.3: Topologies in simulator

• hybrid: This topology differs from the multi-level tree in the connection be-
tween nodes on the same level. This reduces the number of hops and makes
it a good candidate for many use cases as the processing is decentralised
and latency is minimised.

To have an idea of how well the CSPs of the federation are interconnected to each
other, the following procedure is followed. Notations are given in Table 4.2.

Symbol Description
S Set of all the CSPs in the federation
ti,j Topological distance from CSP i to CSP j
c Topological center of the federation
a Average distance from the center c to all CSPs
n Number of CSPs in the federation
si Sum of distances from CSP i to every CSP in a federation

Table 4.2: Notations latency

1. Calculate total sum of topological distances to every CSP, from every CSP

∀i ∈ S, si =

n∑
j=1

ti,j

“output” — 2022/6/24 — 13:57 — page 32 — #48

32 The Code

2. Select the corresponding CSP that has the smallest sum as the center c

min{s1, s2, ..., sn}

3. Determine the average distance a from this centre to the other CSPs

a =
sc
n

4. Normalise this average distance to a value between [0-1]
(a) Determine minimum and maximum average distance by worst and best

case scenario in particular configuration
(b) Find a normalisation function that contains the points (0, maximum_distance)

and (1, minimum_distance)

4.2.4 Data Rate and Packet Error Rate

Both data rate and packet error rate make use of the SINR metric. SINR is
calculated as in equation 4.10, P stands for the power of the incoming signal of
interest, I is the power of the interference, and N is the noise. Considering the
previous calculations for WPT in Section 4.2.1, the SINR in our case results in
Equation 4.11.

After obtaining the SINR, this value can again be normalised to a value between
[0,1] by an arbitrary normalisation function that fits the current configuration.
This mechanism will be demonstrated in Sections 5.2.1 and 5.2.2. As with real
communication, there is a trade-off between data and packet error rates. This
trade-off is mimicked by considering the values attributed to the utilities in the
application’s configuration files. The normalised SINR value is divided between
the data rate utility and the packet error rate according to the defined values in
the configuration files.

SINRdB = 10× log10

(
P

I +N

)
(4.10)

SINRk(dB) = 10× log10

(∣∣∣∣∣
∑L√

Pk,lwk,lskhk,l∑L
(nk,l +

∑K
k′ ̸=k

√
Pk′,lwk′,lsk′hk,l)

∣∣∣∣∣
)

(4.11)

4.3 SimPy

SimPy is a process-based discrete-event simulation framework based on standard
Python. The first version of this library was released on September 17th 2002, and
has been updated many times since then. It has an efficient implementation and
uses Python’s generator capability. In SimPy, various scenarios can be simulated

“output” — 2022/6/24 — 13:57 — page 33 — #49

The Code 33

by built-in components like resources, processes, and events. SimPy has a well-
developed API reference on its site accompanied by a view of topical guides and
some interesting examples [33].

In the initial phase of this Degree-Project, a quick simulator was built to get some
hands-on experience with discrete event simulation and understand the basics. The
use of SimPy was not considered because of the possible slowness of the simulation
and the consideration that later integration with other libraries would be needed.
The uncertainty that these libraries might not integrate with the SimPy library
led to the choice to leave SimPy as it was. The simulation part of the simulator
was expected not to be very complicated as the main difficulty would become
implementing the allocation structure.

In the later stages of the project, it became clear that collecting data for the
simulation and keeping an overview of the different components in the simulation
became more challenging than expected. The earlier choice to leave SimPy was
then reevaluated, and it soon became apparent that the SimPy library’s use sim-
plified many aspects that first caused some difficulties. New discussions with the
future users of the simulator led to the conclusion that the use of the library would
not end up in integration problems. The use of SimPy resulted in code that was
a lot more readable and organised.

This library enables the creation of events and, when triggered, puts them in the
main event queue at a specified time t. The entities that can regulate the behaviour
of the simulation are called processes. These processes are like functions that can
yield certain events. When an event is yielded is stored as an object in memory and
when triggered, it gets put into the event queue. This way of working is a lot more
intuitive as each UE and federation in our setup can be seen as a separate entity
with its own process. A certain process can, e.g., stop executing because of a yield
statement that yields two events, one timeout event, which simulates the time it
takes for the user to proceed to its next trajectory point, and one reconfiguration
event, which will be triggered on reconfiguration. Whatever event that will be
triggered first will continue the process where it last stopped, and different actions
can be taken depending on which event triggered it. That is because when an
event is yielded in a particular process, the processes _resume() will be added to
its callbacks. If a non-timeout event gets triggered in another process, the event
will be added to the event queue, and its callback will be executed when processed.
It is possible to define as many processes as required, and they can all interact
with each other through the shared event loop. The SimPy library has many more
options, such as interrupts, resource containers, preemptive resources, and shared
events. More information can be found on their well-designed website [33].

A wide variety of other packages and libraries have been used in the simulator to
ease the development and avoid ’reinventing the wheel’. An overview is given in
the Appendix A.1.

“output” — 2022/6/24 — 13:57 — page 34 — #50

34 The Code

4.4 Process communication

Whenever UEs move, appear or disappear, a change of utility might be perceived
by the rest of the UEs in the system. Sometimes these changes may lead to an
increase in utility for a specific UE. Other times, it results in a decrease. Whenever
the utility of a UE or a federation becomes critical, the current allocation needs
to be adapted to counteract the drop in utility. What critical means is defined by
the different thresholds and utility evaluation methods in the configuration file.
An adaptation of the allocation can be made in two ways, either by a dynamic
change of CSPs to a different federation or by making a whole new allocation
and "resetting" the system. Only the second option is considered in this project,
triggering a new configuration. This is mainly done to reduce complexity in this
simulator, as deciding when to make a dynamic change or perform a complete
reconfiguration is not straightforward. This decision opens up a bunch of new
research questions which might be studied with the help of this simulator in the
future. This reconfiguration mechanism is a first reason why different entities
within our system should be able to communicate with each other and therefore
need processes.

Additionally, to make the simulation as authentic as possible, it is trivial to mimic
the communication of the different entities in the configuration in a certain way.
Using the SimPy library eases how properties can be added to a specific communi-
cation link. When it comes to delays, the env.timeout function enables to yield a
process for a specified amount of time. Combining this function with a particular
probability distribution gives the user many possibilities to model a communica-
tion system in its preferred way. The most important functionality used in this
simulator is the earlier mentioned SimPy process. A small simplified code sample
is presented below to better understand how such a process works.

1

2 def reallocation_process(self , env):
3

4 while True:
5 realloc_done = False
6 check_event = env.timeout (10)
7 reconf_events = [f.reconfig_event for f in self.allocation.

federations]
8

9 result = yield AllOf(env , reconf_events) | check_event
10

11 if check_event in result:
12 possible_replacement = self.reallocate ()
13

14 if possible_replacement is not None:
15 self.reallocate(possible_replacement)
16 realloc_done = True
17

18 if check_event not in result or not realloc_done:
19 new_alloc = self.alloc.allocate(self.ues , self.csps , self

.env)
20 self.reallocate(new_alloc)

Listing 4.1: reallocation_process

“output” — 2022/6/24 — 13:57 — page 35 — #51

The Code 35

In Listing 4.4, we can see a simplified example process implemented in the real-
location entity. The code is responsible for performing reconfigurations whenever
necessary. We can see that the global event loop is passed as an argument to the
process. Whenever the method env.run() is called somewhere in the program,
each process connected to that env will start its execution. Within the while loop,
we can see the creation of the check_event which is a timeout event automat-
ically triggered and inserted in the queue at time (current time + 10). In the
reconf_events array, all the reconfiguration events from the current federations
are stored. The yield statement stops the execution of the process until either
the simulator has proceeded to time (current time + 10) or all of the events in
the array are triggered. Whenever the process resumes, the events that have been
triggered will be stored in the result dictionary that stores all the triggered events.
Depending on the results, this dictionary can later be questioned to modify the
system’s behaviour. The AllOf() expression only resumes the process if all the
events in the array are triggered. If the _resume() callback from check_event is
executed first, and only some of the events in the array are triggered, the result
dictionary will not contain any element from the array.

4.4.1 User Process

During the initialisation of the simulator, each UE object is created when the
configuration files are parsed. Whenever the simulation reaches the time where a
new UE has to appear online, the spawning process starts the process of the UE
(See Section 4.4.4). This simPy process is dependent on three kinds of events that
can be triggered. A different event handler function will be called depending on
what event is triggered. The events are the arrival_event, waiting_event, and
the utility_check_event. A utility_check_event is another timeout event that
gets triggered when created, and scheduled at a configured time from the current
time in the simulator. This event checks the UE’s utility and warns its federation
when it has lost utility; this will be elaborated in Section 4.4.2.

The arrival and waiting events take care of the movement of each user. In the
configuration files, each user can have a trajectory predefined which tells the user
where it has to go and how long it has to stay on that spot before leaving to its
following location.

Thresholds on the User Level

Different kinds of utility thresholds can be declared in the configuration files.
Every application can define a threshold on different levels. Minimal user utility
thresholds (WPT, latency, packet error rate, positioning, data rate) can be defined
to show when a user loses utility at a certain time. Another option is to define a
threshold of the combinatorial utility the user has to meet to get any functionality
called the User Threshold Level.

“output” — 2022/6/24 — 13:57 — page 36 — #52

36 The Code

4.4.2 Federation Process

Federation objects are created and destroyed each time a reconfiguration oc-
curs. The main events this process responds to are the utility_check, federa-
tion_reconfiguration and the ue_lost_utility. The utility_check event is
generated on a pre-determined frequency and lets the federation check its utility
to avoid letting the application lose its service requirements. On top of that, a user
can also let its federation know that it has lost utility through the ue_lost_utility
event, which gets triggered by a user checking its utility and noticing it has lost
utility. When this situation occurs, the federation checks its overall federation
requirements, and if it notices a reconfiguration is needed, it triggers its federa-
tion_reconfiguration event. The other active federations can detect when this
event is triggered and responds by triggering their federation_reconfiguration
event. This is important for the correct behaviour of the allocation process, which
is further explained in the following Section (4.4.3).

Thresholds on the Federation Level

A federation has the possibility to define a percentile of users that needs to meet
the overall user utility threshold. Suppose the percentage of UEs that do not
meet this threshold is lower than the percentile defined in the configuration file.
In that case, the total utility of the federation drops to zero. Another option
is that all the user level thresholds are met, but the overall threshold of the
federation is below the federation threshold level. This can happen when the
user level threshold is higher than the overall federation level threshold.
Keep in mind that the other way around is also possible. There is much flexibility
in the configuration of the thresholds. This is desired as the use cases of the
REINDEER project have diverse requirements.

4.4.3 Allocation Process

The allocation process monitors the reconfiguration events mentioned in the pre-
vious paragraph. When it notices that each active federation has triggered its
reconfiguration event, it is allowed to initiate a reallocation. The allocation object
does this reallocation, which uses the configured reallocation algorithm. This re-
allocation will result in several new federations and consequently the killing of the
previous ones. Apart from this mechanism, there is also another utility_check
event implemented, which is also triggered on a predefined frequency. The oc-
currence of these events provokes a utility check of each active federation. Based
on the utility results, the allocation process can decide to perform a supplemen-
tary reallocation. The point of this reallocation is to optimise the system’s overall
utility. As the system’s state has probably changed since the last reconfiguration,
these optimising utility checks will almost always result in a reconfiguration.

4.4.4 Spawning and Killing Process

These two processes are also implemented in the reallocation_entity, and they
are solely responsible for handling the spawning and killing of UEs. The times

“output” — 2022/6/24 — 13:57 — page 37 — #53

The Code 37

when the UEs can come online and go offline need to be configured in the user’s
configuration file. This functionality is added to the simulator to mimic real-time
behaviour in which specific devices can drop out for many different reasons e.g.,
a device out of battery, a user turning off the device, or the device being broken
and unable to function anymore.

4.5 Integration of Objects and Ray Tracing

As mentioned in the introduction, objects are integrated into the simulator, adding
a certain degree of complexity to the the code. The objects are defined in the
environment.yml file in the configuration folder by defining an anchor point
(x,y,z) and three dimensions (x,y,z), resulting in a rectangular volume. A simple
version of ray-tracing is implemented as it should be avoided that UE have a
trajectory that leads them through objects. The generated rays are checked if they
do not intersect with any existing surfaces in the environment. If no intersections
are found, the end-point of the ray can be seen as a valid waypoint in the trajectory.
A valid trajectory is seen in Figure 4.4a. In Figure 4.4b a visualization is shown of
the rays between a UE and the CSPs (red) on the wall. The rays that are coloured
red indicate an intersection with the object.

This ray-tracing is also used in the calculations of the users signals developed to
determine SINR and signal power. These two values than lead to the utility
values of WPT, data rate and packet error rate. By checking if a ray between
a UE and a CSP intersects with any object, shadowing can add an additional
attenuation factor to the path loss. In terms of channel modelling, this means
that if a ray does not intersect with an object, the UE has Line-of-sight (LOS) to
the CSP the ray goes to. LOS means that a sending antenna can directly "see"
the receiving antenna and vice versa.

(a) Objects with trajectory (b) Ray Tracing with Objects

4.6 A virtual run

This section gives an overview of how the mechanism of running the simulator
works. Many elements have been introduced, thus, going over the overall steps

“output” — 2022/6/24 — 13:57 — page 38 — #54

38 The Code

gives a better understanding of the total picture. To start the simulator from the
command line the following command is required:

1 python -m src.simulator False False "/ conf_directory"

The command contains three arguments. The first one indicates whether the
simulator is run with debugging or not. If this argument is "true", the visualiser
will display the configuration each time an event occurs. A "false" argument will
simulate until the configured simulation time is over, all in one go. The second
argument indicates whether the logger available in the project should be active or
not. The newly created log file can then be inspected to understand better what
happened in the simulation. The final argument must be the directory of the
configuration files. The next steps are given below, together with a state diagram
(Figure 4.5) for an overview.

1. Initialisation: The configuration files are parsed and converted into ob-
jects. When the User objects are created, their processes are not activated,
as this only happens when they appear online. An allocator object is cre-
ated and stored in the reallocation_entity object. This reallocation object
also activates the reallocation process and the spawning and killing
process.

2. Allocating: As soon as the spawning process spawns the first UE, the
simulator goes to its allocation state. After the allocation, the simulator
returns to the state where users move around.

3. Users Moving: When the simulator is running, this state is considered
the "normal" state. UEs move around the simulated environment using the
arrival and waiting for events (Section 4.4.1).

4. Checking User Utility: Whenever a user utility check event occurs, the
simulator checks the utility of that user using its current location. If the
user’s utility is above the configured user threshold level, nothing happens,
and the simulator goes back to state three (Section 4.4.1). If the user’s
utility has dropped, an additional utility check must be performed, and the
simulator goes to state six.

5. Checking Optimisation: The transition to this state occurs whenever an
optimisation event occurs. This is determined by the value given in the
configuration files and is explained in Section 4.4.3. If a reconfiguration is
decided, the simulator moves back to state 2.

6. Checking Federation Utility: The simulator can reach this state either
by the process mentioned in 4 or by the occurrence of a federation utility
check event explained in Section 4.4.2. If the federation finds out its utility
has dropped, it will trigger a reallocation, and the simulator moves back to
state 2.

7. Starting or Stopping User Processes: Whenever the spawning and
killing processes spawn or kill a UE process, the simulator moves to state 2
passing through this state.

“output” — 2022/6/24 — 13:57 — page 39 — #55

The Code 39

Figure 4.5: State diagram showing the different states of the simu-
lator

4.7 Conclusion

In this chapter, the most important features and how they are implemented were
highlighted;

• Channel model

• User mobility

• User arrival and departure

• Objects in the simulated environment

• Utilities

• Applications with utility preferences

These features form a good base for the simulator to perform some meaningful
initial experiments. On the other hand, plenty of additional features can be added.
These improvements to the simulator will be explained in Section 6.1.

“output” — 2022/6/24 — 13:57 — page 40 — #56

40 The Code

“output” — 2022/6/24 — 13:57 — page 41 — #57

Chapter 5
Testing

To verify the working of the simulator, it was tested in various ways. Combin-
ing the discrete event simulation and the utility calculations can produce results
that are not very interpretative or easy to verify. That is because a simple al-
location can already become hard to interpret in a configuration of even a few
CSPs and UEs with different applications. The applications have a high degree of
freedom in defining their utility preferences (WPT, latency, data rate, ...), leading
to an allocation that might seem random with the naked eye. When we add the
users’ movements, the utility checks, and federation communication, this problem
increases rapidly. That is why in this section, the proper functioning of the sim-
ulator is evaluated in two parts. In the first section, the event simulation will be
tested, which implies examining the correct movements of the users, the commu-
nication between the federation hierarchy, and the reconfiguration mechanism. In
the second section, the calculations of the utilities will be thoroughly tested.

5.1 The Discrete Event Simulation

The simulator needs to be tested in different scenarios to see if the system behaves
correctly in time. As explained in the previous paragraph, this section will mainly
focus on reviewing the correct scheduling and handling of the events. Therefore a
different utility is introduced, which simplifies the calculations and helps keeping
the allocation in the deployment manageable.

5.1.1 Simplified Utility

The simplified utility used in the following paragraphs is as follows; Suppose a
federation exists that contains several CSPs and UEs. The utility of this federation
can then be calculated by adding up the utility of each user. The utility for user
k is calculated as follows: ui =

∑L
j

1
dk,l

with dk,j being the distance from UE
k to CSP l. This measure for utility allows a more intuitive way of determining
the importance of a CSP to a federation or UE, as the distance between two
entities only determines it. It is essential to point out that the utility obtained

41

“output” — 2022/6/24 — 13:57 — page 42 — #58

42 Testing

by this definition does not return a normalised value between 0 and 1. This is in
strong contrast with the utilities used in the actual allocator. The normalisation
allows the highly combinatorial utilities to be manipulated as specified in the
configuration.

5.1.2 Testing of User Process

Figure 5.1: Demo configuration

y arrival wait utility
0 0 2 2,31
4 6 5 2,52
7 14 4 1,43
10 21 2 0.93

Table 5.1: User trajectory

In Table 5.1 we can see a possible trajectory from a user that is served by the red
federation in Figure 5.1. The user moves from the figure’s origin along the y-axis
to the point (x=0, y=10, z=0). The utility this user experiences is demonstrated
in time (Figure 5.2a) and space (Figure 5.2b).

Taking a closer look at the utility, it is clear that the users experience a rise in
utility when it first moves along the y-axis, followed by a drop to a utility level of
0.93. The UE first moves relatively faster towards the four CSPs located on the
(x=0)-surface than it moves away from the CSPs located on the (y=0)-surface.
This explains the initial rise in utility experienced in Figure 5.2b. When the UE
has reached y=2, the utility has reached its maximum. The UE then only keeps
losing utility from the four panels on the (y=0)-surface and experiences no more
gain in utility from the (x=0) panels. When y=4, the UE experiences a bigger
drop in utility as it now moves away from all the panels in its federation. The
same is shown in Figure 5.2a, but now the breaks of the UE result in a period of
constant utility, as the utility is expressed with time as the independent variable.

“output” — 2022/6/24 — 13:57 — page 43 — #59

Testing 43

(a) utility in time (b) utility in space

Figure 5.2: User utility in time (a) and space (b)

5.1.3 Testing of Federation Process

In Figure 5.3, we can see the utilities of four users who make part of the same
federation that they define and the same red CSPs of 5.1. Each users leaves
(x=0, y=0, z=0) to (x=0, y=10, z=0) on different time. The utility rises before
starting the descent, as shown in Figure 5.2a. When the user’s utility drops below
2.13 (defined in the configuration file), the user loses utility and tells this to its
federation. The percentile of users needing minimum user utility is 49%, also
defined in the configuration file. We can see that when three out of the four users
lose utility, the total utility of the federation drops below the required percentile
(25% < 49%) and goes to zero. This demonstration shows that even if a federation
still meets its average required federation utility (average of users utility), it could
lose functionality because of the additional requirements. This way of handling
utilities might be handy to configure in some use cases, e.g. if a group of sensors
is sending the same data to a database. It is acceptable that a few UEs lose
connection as long as a certain percentage of the devices are still available.

Figure 5.3: Threshold demonstration

“output” — 2022/6/24 — 13:57 — page 44 — #60

44 Testing

5.1.4 Testing of Allocation Process

(a) Federation utilities (b) Allocation utility

Figure 5.4: Results optimisation

A simple experiment with a configuration consisting of 32 CSPs, eight UEs and
four applications(=four federations) demonstrates the optimisation mechanism.
All the UEs have a random trajectory of 20 waypoints and a speed of 0.1 m

s .
There are no configured thresholds, making the optimisation the only possible
reason for reconfiguration. The simulation ran for 1000 STUs, and the allocation
was checked every 100 STUs. The reallocations are triggered every time. This is
visible in Figure 5.4b. This result confirms that every time the total utility was
checked and compared, a new allocation had a higher utility than the previous
one. This adds up because the movements of the UEs make them go to different
locations. In terms of utility, these locations are less favourable than their starting
location, wherefore the allocation was initially made. It is essential to know that
the used algorithm for the reconfigurations does not guarantee the highest overall
utility of all possible configurations. The reconfigurations are only decided when
the reconfiguration (if made at that point in time) has a higher utility than the
currently existing one.

5.1.5 Testing of communication mechanism

A new experiment is presented to test if the communication between a UE to the
reallocation entity is behaving as expected. The configuration now consists of 4
UEs, and each UE has their separate application. This results in the creation
of four federations each time a reconfiguration happens. The users randomly
move through the configured environment. The UEs are configured to check their
utility every STU. If the utility of the UE drops, it should notify the federation
object. This federation object would then notify the other federations, as it would
seem that the percentage of satisfied UEs is lower than the configured 100%. As
soon as every federation has been notified, the reallocation entity will perform a
reallocation. Figure 5.5 demonstrates this behaviour, UE zero, two and three all
lose utility at a given time. At the next point in time where the utility of the UEs
is measured, the utility has made a big jump. This significant jump indicates a

“output” — 2022/6/24 — 13:57 — page 45 — #61

Testing 45

reconfiguration. We can conclude that this part of the communication mechanism
works as intended.

Figure 5.5

5.2 The Utilities

The second major part of this thesis project is the actual allocation of the different
panels to the users and their application within a configuration. This allocation
is done by allocation algorithms that coordinate the whole process based on the
previously explained utilities. Several example configurations will be elaborated to
demonstrate the working of the different utilities and the effect on some allocation
scenarios.

5.2.1 WPT

To test the WPT calculations, we take a look at how the received signal power of
a UE varies in space as the UE moves away from a wall of 50 CSPs (16 antennas
per CSP), evenly spaced on the (y=0)-wall with heights of 1 and 3. The start
position of the UE is (x=5,y=0,z=2). This UE will move along the y-axis to
(x=5,y=10,z=1.5), and its signal strength will be measured along the way. The
demo configuration is shown in Figure 5.6. The experiment is done four times,
with a different CSP transmit power configured each time. The noise term from
Equation 4.5 has been neglected.

“output” — 2022/6/24 — 13:57 — page 46 — #62

46 Testing

Figure 5.6: WPT configuration

Figure 5.7: Results of WPT testing

In Figure 5.7, the received energy by the UE is shown. The received power de-
creases as the distance between the CSPs increases. The different coloured curves
show us the influence of the transmit power per CSP, the reference power in Equa-
tion 4.7 is 1 Watt. We can see a difference of 10 dB between the curves. This
corresponds to the expected 20log10(

√
10) = 10dB, derived from Equations 4.11

and 4.7. Calculations by hand have been conducted to see if the code explained
in Section 4 gives the expected results.

5.2.2 Positioning

The positioning is demonstrated by yet another configuration shown in figure 5.8.
There are 100 CSPs evenly placed on every wall at the height of 2.5; these CSPs
will be added incrementally to the configuration to see the influence on the largest
horizontal measured gap and the positioning utility, now only determined by the
azimuth angle. The CSPs are sorted and added by id, which means that a new

“output” — 2022/6/24 — 13:57 — page 47 — #63

Testing 47

CSP will be added right next to the previously added one. This results in the CSP
square being created edge by edge. The gap will be measured for a UE placed on
location (x=5,y=5,z=0).

Figure 5.8: Positioning setup

(a) Biggest horizontal gap in federation (b) Positioning utility

Figure 5.9: Results of positioning testing

The results show that the largest horizontal gap follows a linear downhill slope.
It decreases by the amount of CSPs that are added to the federation. The line is
not perfectly straight because adding a CSP in a corner does not have an equal
impact on the gap as adding one in the middle of a wall (geometry). Figure 5.9b
is added to show that the normalisation of the positioning utility, and actually
any other utility can be adapted in a preferred way. The orange curve shows a
linear normalisation as seen in Equation 5.1. That equation ensures that an angle
gap of 360◦ results in a utility of 0, and an angle gap that approximates 0 will
result in a utility of almost 1. The blue curve shows an exponential normalisation
that follows Equation 5.2. The corresponding parameters are given in Table 5.2
and are obtained by performing curve fitting with an exponential function, some
arbitrarily chosen (gap, utility) pairs, and the points (gap=1◦, utility=1) and
(gap=360◦, utility=0).

horizontal_utility = 1− 1

360
× hor_angle_gap (5.1)

“output” — 2022/6/24 — 13:57 — page 48 — #64

48 Testing

Parameter Value
a 1.005331
b 0.01776996
c 0.01756831
d -0.01756831

Table 5.2: Parameters logarithmic equation

horizontal_utility = a− b

c
(1− ed∗hor_angle_gap) (5.2)

5.2.3 Signal to Interference plus Noise Ratio (SINR)

Experiment 1a and 1b: Configuration

The next value of our simulator that will be tested is the SINR, a metric that is
used to obtain the data rate and packet error rate utility of a UE or federation
(see Section 4.2.4). Exact calculations to check if numeric results correspond to
the ones given by the calculations in Section 4.2.4 have been conducted.

This experiment should show us the influence of the number of entities in a federa-
tion on the Signal to Interference (SIR) experienced by a UE placed in the middle
of the environment (x=5,y=5,z=0). The SIR has the same characteristics as equa-
tions 4.10 and 4.11, except that the noise term is neglected. In both experiments,
the CSPs are equipped with 16 antennas and have a transmit power of 100 Watt
each.

Figure 5.10: Performance configuration

In a experiment 1a, CSPs are added to a federation that contains eight UEs (in-
cluding the monitored ue_0, locations in Appendix A.3.2). The addition of CSPs
happens by id, which means that first, the lower row of a wall will be added, CSP
by CSP. After that, the second row will be added to the configuration. This
happens to every wall only when the previous wall is completed. The final CSP

“output” — 2022/6/24 — 13:57 — page 49 — #65

Testing 49

configuration has a total of 48 CSPs, evenly spaced on the walls (12 per wall, two
rows per wall, six per row) on heights of 1.5 and 2.5.

A second experiment(1b) shows the influence of adding more UEs to a federation
that already contains 32 CSPs. The configuration is the same as in Figure 5.1.
The UEs are randomly placed on locations in the physical environment, increasing
from four to 48. Exact locations of the UEs can be found in Appendix A.3.2.

(a) SIR in terms of CSPs (b) SIR in terms of UEs

Figure 5.11: Results of SIR experiments

Both tests have been run ten times, producing an average curve with confidence
borders(95%) of the graph. The results are not identical for every test, as different
channel vectors are generated every time. Resulting in different SIR values.

Experiment 1a: Results

In Figure 5.11a we can see that the SIR, in general, improves when more CSPs
are added to the federation. This is a consequence of more CSPs transmitting
coherently to the monitored UE, using the precoding described in Section 4.2.

Experiment 1b: Results

Figure 5.11b shows us that more UEs in a federation with the same amount of
CSPs should in general give us a worse SIR. This can be explained by Equation
4.11, as the term in the denominator is now a sum with more terms. Another
interesting thing to notice in Figure 5.11b is the increasing variance of the SIR. The
interference caused by the new added UEs is highly dependent on the particular
channel vector and other UEs locations. This is one reason why it is important to
carefully select which CSPs and UEs are put into the same federation.

Both tests are conducted to demonstrate the general intuitions regarding SIR in
terms of adding CSPs and UEs to a federation. The exact results are hard to
interpret as the generation of random values highly influences the SIR results.
The demonstration of the SIR behaviour will have the same trend as the SINR,
as there is only a constant noise term introduced in the denominator of the SIR
equation.

“output” — 2022/6/24 — 13:57 — page 50 — #66

50 Testing

Experiment 2: Configuration

In the second experiment, 50 CSP are placed on a wall (y=0) (evenly spaced, in
two rows (z=1;z=3, see Figure 5.6). All CSPs have a transmit power of 100 Watt
and are equipped with 16 antennas. One UE (x=5,y=0,z=2) will move from this
particular wall to the other side of the room (x=5,y=10,z=0), while the other seven
randomly placed UEs will stay in the same position. To draw any valid conclusions
from this experiment, the Rayleigh random values (CN(0, 1)) are generated with
a fixed seed. Because of this, the generated values will always be the same, and
the movement only influences the SIR.

Experiment 2: Results

Figure 5.12: SIR in terms of location

As seen in Figure 5.12, the SIR is decreasing from approximately 15.5 dB to
13.5 dB. This is indeed the result we expected, as the SIR should go down in a
logarithmic way as the UE moves away from its attributed panels. Because the
distance to the CSPs increases a little slower in the beginning compared to the end
(UE is moving on height z=2, see Figure 5.6), the curve shows deviance in the start
of the curve. It is important to notice that changing the transmit power in the
configuration files will not affect the SIR experienced by a UE. Both the signal
and interference in Equation 4.11 would decrease with a lower reference power,
resulting in the same SIR. If the noise term of Equation 4.5 is not neglected, a
decrease in transmit power will result in a lower SINR. Both signal and interference
will still decrease, but the constant noise term would now make sure the SINR has
a lower value.

All the results from the previous experiments indicate that our channel model is
correctly implemented. The simulator now has WPT, data rate and packet error
rates that valuable characteristics that mimic real-world behaviour. The exact
channel models specific for RW are yet to be concluded.

“output” — 2022/6/24 — 13:57 — page 51 — #67

Testing 51

5.2.4 Wireless Power Transfer vs Positioning

A configuration designed to demonstrate the correct working of some utilities is
shown in Figure 5.13. At position (x=5, y=5, z=0) two UEs are placed in the
same position, that is why the red UE is not visible in Figure 5.13. Both UEs got
assigned different applications, resulting in creating two different federations (red
and blue). The application of the blue federation only values the WPT utility
and does not need any other kind of utility. The same goes for the red application,
but the only valued utility there is positioning. Additionally, 16 CSPs are placed
on the walls of the room in a way that it is clear which panels should be assigned
to what UE.

As WPT benefits from more panels to generate a strong signal, it would make
sense that this federation gets assigned as many panels as possible. For the po-
sitioning utility, spatial diversity results in the highest value. The distributed
panels would therefore be of higher value to that federation compared to the clus-
tered ones. The result (Figure 5.13) shows us that the shrinking algorithm has
done a good job assigning the right panels to the correct federation, considering
both utility functions.

Figure 5.13: Resulting federations

5.2.5 Topologies and Latency Utility

Another demo configuration is presented to see if the latency utility is correctly
implemented in the simulator. This demo contains a lot more CSPs compared
to previous configurations. That is because it is more convenient to demonstrate
the influence of the different configurations mentioned in 5.11. The experiment
will examine the average distance from a CSP to any other CSP following the
scaling presented in Section 4.2.3. The results will also show how the latency
utility behaves when different topologies are used in a federation.

“output” — 2022/6/24 — 13:57 — page 52 — #68

52 Testing

Configuration

(a) Lattice topology (b) Daisy-chain topology (c) Tree topology

Figure 5.14: Visualisation topologies

The configurations in Figure 5.14a are presented to test if the latency utility be-
haves as expected. In Figure 5.14a the lattice configuration is shown, as well the
daisy-chain in Figure 5.14b and the tree topology in Figure 5.14c. Notice that the
tree configuration looks very chaotic as the tree is built and sorted by id, resulting
in connections of CSPs that are far apart from each other. CSPs are namely added
by id, and only on the next wall when the previous one is completely filled. The
CSP zero is the tree’s root, and the highest id’s form the leaves. This tree im-
plementation is not realistic regarding real-life deployments of the RW structure.
However, it can confirm the correctness of the code in terms of latency calcula-
tions. To use a realistic tree configuration, a topological distance matrix should
be provided in the configuration files. No method is implemented to generate a
realistic tree topology, taking the physical locations of the CSPs into account.

80 CSPs are evenly spaced on the four different walls of a cubical environment with
dimensions 10x10x10. As the implementation of the latency utility is implemented
as being independent of the position of its UEs, the utility is only determined by
which CSPs are in the federation and how good their topological connection is.
The test consists of incrementing the amount of CSPs attributed to a virtual fed-
eration by ID. Subsequently the average distance, latency utility and utility
input (see Section 4.2) of the federation is calculated. The normalisation of the
utility input to an actual latency utility value should always be adapted to the
configuration used. The formula used to obtain this value in this configuration is
given below (Equation 5.3).

utility_value = 1− 0.05× utility_input (5.3)

Results

The results of the experiment are shown below in Figure 5.15. When the cor-
responding topology is used, the average distance follows the expected scaling
tendency. On top of that, we can see that the chosen utility input (Section 4.2.3),
combined with the conversion Equation 5.3 produces utility values that cover the
whole [0-1] range.

“output” — 2022/6/24 — 13:57 — page 53 — #69

Testing 53

(a) Latency utility (b) Average distance

Figure 5.15: Latency results

5.3 Performance

To evaluate the simulator’s performance, we will look at the impact of the number
of UEs, CSPs, and utility-check frequency on the execution time. The configura-
tion is specified for each criterion under examination, and the results are subse-
quently discussed. As this section aims to evaluate the simulator’s performance,
the shrinking algorithm is replaced with a random allocation of the CSPs. This
has been done because experiments have clarified that the shrinking algorithms’
execution time was too dominant with increasing entities. The prominent factor
that will determine the execution time is expected to be the amount UEs, as more
UEs will lead to equally more UE processes and consequently more UE utility
checks. These checks can also become more expensive as the amount of CSPs in
the federation increases (utility calculations).

The program was run on an Apple MacBook Air, equipped with an Apple M1
chip. The device had eight cores and 8 GB of memory, and no other applications
were running concurrently. The used version of Python was 3.10. A more detailed
overview of the hardware and software specifications of the machine on which
experiments were conducted is given in Appendix A.4.

Overall Configuration

This section evaluates the simulator’s performance by recording the program’s
execution time. Firstly, the overall configuration and the relevant parameters
used in this simulation run will be discussed. The start configuration serves as the
foundation for the following experiments. The start configuration will be altered
depending on what element is being investigated. These changes are mentioned
below.

• CSPs: There are 32 CSPs evenly placed inside the environment(x=10,
y=10, z=3). In figure 5.10 we can see their positions, together with the
corresponding ID’s of the CSPs.

“output” — 2022/6/24 — 13:57 — page 54 — #70

54 Testing

• UEs: The users have a speed of 0.1 and a random trajectory of 20 way-
points. The following procedure determines each user’s application; UE.id
% 4 (number of applications). The users will be online from time=0 till the
end of the simulation to decrease the influence of random generated spawn
and killing times (triggering a reconfiguration) on the execution time.

• Applications: There are four applications in the configuration, which
means a default of four federations will exist if all applications are used.
All the thresholds that can be configured are reduced to a level of 0.00.
That is to avoid a reconfiguration being triggered by one of the users or fed-
erations, as the goal of this test is to evaluate the simulator’s performance
and not that of the random allocation. The triggering of the reallocation
events can be evaluated in future tests.

• Objects: The standard configuration does not contain any objects, as the
ray-tracing would be too much of a burden on the simulator.

• Parameters: Other relevant parameters are mentioned below. The reallo-
cation_entity utility period is made very large to avoid reconfiguration by
optimization.

– Simulation time : 1000

– UE utility check period: 60

– federation utility check period: 180

– ray_tracing: False

– reallocation utility check period : infinite

5.3.1 Increasing UEs

Configuration

The UEs will be incrementally added to the configuration on a random location
within the following intervals (x=[0-10], y=[0-10],z=[0-1.5]). The test is run ten
times with an increasing number of UEs from 4 to 100, and the average execution
time in seconds together with a confidence interval of 95% is plotted.

“output” — 2022/6/24 — 13:57 — page 55 — #71

Testing 55

Results

Figure 5.16: Performance results with Increasing UEs

The results are shown in figure 5.16. It can be concluded that the execution time
of the simulation is not linear and has a quadratic gradient as specified in equation
5.4 with parameters given in table 5.3. This result can be explained by the fact
that apart from more movements and utility checks, the execution time of each
utility check also increases.

a ∗ num_ues2 + b ∗ num_ues+ c = execution_time (5.4)

Parameter Value
a 0.007708891643240179
b -0.1999845691162747
c 2.016100302243215

Table 5.3: Parameters quadratic equation

5.3.2 Increasing CSPs

Configuration

The same configuration is applied in this experiment as in the previous section,
except for the CSPs and the UEs. The CSPs are now incrementally added to the
walls in an evenly spaced way, with the number going from 4 to 104. The number
of UEs is now eight and will stay constant throughout the test. The configuration
of each UE stays unchanged, just as the approach of objects, ray tracing, and other
parameters. The test is run ten times with an increasing number of CSPs from 4
to 104. The resulting graph shows the average execution time, accompanied by a
confidence interval of 95%.

“output” — 2022/6/24 — 13:57 — page 56 — #72

56 Testing

Results

Figure 5.17: Performance results with Increasing CSPs

The results are shown in Figure 5.17. Here, the execution time (seconds) of the
simulator is linear with the amount of CSPs in the federation. This result confirms
that performing a utility check is linear to the configuration’s amount of CSPs.
The linear slope is described by Equation 5.5 with parameters given in table 5.4

Parameter Value
a 0.0112912...
b 0.0311562...

Table 5.4: Parameters linear equation

a ∗ num_csps+ b = execution_time (5.5)

5.3.3 Increasing Utility Check Interval

Configuration

The CSP are configured in the same way as mentioned in Section 5.3, the appli-
cations and the UEs are equivalent to those in Section 5.3.2. There are still no
objects in the environment and the paramaters remain unchanged from section
5.3.

“output” — 2022/6/24 — 13:57 — page 57 — #73

Testing 57

Results

Figure 5.18: Performance results with increasing interval

The last results show that the higher the UE utility check frequency, the higher the
execution time (seconds) for a certain simulation. This behaviour is expected as
a higher frequency leads to more utility checks; these are costly for the simulator
and determine the execution time. The approximated curve and equation is given
in figure 5.18 and equation 5.6, together with the corresponding parameters in
table 5.5. The confidence interval is created with a confidence of 95%.

Parameter Value
a 19.62027162

Table 5.5: Parameters logarithmic equation

execution_time = a× x (5.6)

5.4 Conclusion

In this chapter, the different parts that make up the simulator were tested. Section
5.1 demonstrated with simplified utilities that the scheduled events and SimPy
processes function as expected. On top of that, Section 5.2 provided results that
show the correct implementation of the used metrics and utilities. Although the
performance was not a vital factor of the simulator, Section 5.3 gave us some
interesting insights; Not all entities and parameters have the same influence on the
performance. The number of configured UEs has a bigger impact than the number
of CSPs on the simulation’s execution time. Configuring a larger utility check
interval results in fewer utility evaluations, which also influences the simulation

“output” — 2022/6/24 — 13:57 — page 58 — #74

58 Testing

performance in a non-negligible way. In all three tests, there is low variance. This
is good as the simulator’s performance is not very dependent on the placement of
the entities(UEs and CSPs), the movements and resting times of the UEs, or other
random generated values.

Looking at the overall execution time of the simulator for 100 UEs, it seems to
average out at around 90 seconds or 1.5 minutes. It is not yet entirely clear what
STU will be used in the simulator, as this highly depends on the distance metric
used in a specific configuration. Nevertheless, this execution time seems reasonable
to get some results for federation allocation.

“output” — 2022/6/24 — 13:57 — page 59 — #75

Chapter 6
Future Work and Conclusion

As this thesis presents a first version of the simulator and the implementation time
frame consisted of one semester, many improvements and additions can be made
in several ways. This Section will give an overview of the most important ones
together with a final conclusion on the Master’s project.

6.1 Future Work

6.1.1 Predicting Utility Drops

The current implementation of the simulator does not allow entities within the
system to predict when their utility drops. Utilities are evaluated, and reconfigu-
ration signals are only sent when the utility values are below a certain threshold.
However, this is often not the desired operation, especially not with critical appli-
cations on the devices. UEs and federations should be able to predict when their
utility will drop, allowing the system to anticipate and perform a reconfiguration
upfront.

6.1.2 REINDEER Use Cases

As this thesis is a part of the REINDEER project, it is relevant to keep in mind
the Use Cases presented in Section 2.4. After the extension with more low-level
communication data and ray tracing, it becomes interesting for the researchers
inside the REINDEER project to simulate the use cases they presented and see
the impact of different allocation algorithms in a more realistic scenario. To do
so, a few extra things will need to be added to the simulator.

Different Areas

Many of the Use Cases need a more complex physical environment; Augmented
reality for sport events, Patient monitoring with in-body and wearable sensors and
Wander detection and patient finding are a few examples of such. Currently, only
one simple room can be configured where users can move around. The physical

59

“output” — 2022/6/24 — 13:57 — page 60 — #76

60 Future Work and Conclusion

environment should be able to be configured such that different, preferably inter-
connected, areas can be simulated. These areas should also have the possibility to
possess different properties, e.g., open-air vs roofed, flat surface vs sloping ground,
or certain rooms with restricted access for specific UEs.

Realistic Movement Patterns

Closely related to Section 6.1.2 are the different movement patterns of the UEs
that will need to be added. These movement patterns are very Use-Case specific
and could significantly impact how the simulation behaves. The current configu-
ration generator only allows random movement patterns to be generated, with the
option to add rest-time when a UE arrives at a particular location. To obtain the
movement patterns, the configuration generator could be extended with a gener-
ator method for each use case that generates patterns that reflect the movements
of the concerned UEs.

Integration of Technical Requirements

It has already become clear that throughout this thesis, the approach to allocating
CSPs to federations is by using utilities. This term utility expresses how valued a
CSP is to a UE or federation. To connect the simulator more to the real world, it is
desired to introduce more low-level concepts. These concepts would allow a more
detailed understanding of the actual data communication between the entities in
the system. This is another way of integrating the proposed Use Cases in the
simulator, as more technical requirements could be configured such as Traffic
volume density, carrier frequency, end to end latency and much more.

6.1.3 Visualisation

The current visualization implemented in the simulator is mainly designed to ease
debugging and get a general overview of what is happening in the simulator. As
the 3D modelling capabilities of the matplotlib library are relatively limited, future
versions of the simulator should be able to represent the real world more realisti-
cally and lift the aesthetic level of the demos. This could be achieved by utilizing
game engines that have become very accessible.

6.1.4 Optimization

In terms of optimization, many improvements can be made. As the simulation
time of the simulator was not a critical requirement for this thesis, the focus
was mainly on the correct functioning of the code. Improvements in the utility
calculations and simulation processes can be made to speed up the execution time
and optimize performance. Also, data structures in the current code version were
mainly chosen because of convenience, as speed was not considered a critical factor.
These elements might be adapted in future releases if performance becomes a
bottleneck.

“output” — 2022/6/24 — 13:57 — page 61 — #77

Future Work and Conclusion 61

6.2 Conclusion

In this thesis, a high-level simulator was designed to simulate and evaluate fed-
eration orchestration algorithms. To do so, the RW technology that will be used
in the REINDEER project was explained, after which the simulator’s design was
elaborated. Additionally, the simulator was tested in different scenarios to verify
correct behaviour.

It is possible to simulate static as well as dynamic situations. Users can come
online and disappear again. Additionally, they can move around the configured
physical environment and occasionally take a rest at different waypoints. On top
of that, objects can be added to the simulator to represent the simulated environ-
ment better. To obtain more realistic allocations based on real-world behaviour,
utilities were introduced. These functions are designed to mimic the preferences
of the applications according to their technical requirements and express the pref-
erence of certain federations to the CSPs. They do this while avoiding heavy
calculations that would be introduced using ray-tracing and other more low-level
characteristics.

“output” — 2022/6/24 — 13:57 — page 62 — #78

62 Future Work and Conclusion

“output” — 2022/6/24 — 13:57 — page 63 — #79

References

[1] Wikipedia, “Spherical coordinate system — Wikipedia, the free encyclope-
dia,” http://en.wikipedia.org/w/index.php?title=Spherical\%20coordinate\
%20system&oldid=1084232641, 2022, "[Online; accessed 25-April-2022]".

[2] REINDEER. Resilient interactive applications through hyper diversity in
energy efficient radioweaves technology. WebPage. REINDEER consortium.
[Online]. Available: https://reindeer-project.eu

[3] G. Callebaut, J. Van Mulders, G. Ottoy, D. Delabie, B. Cox, N. Stevens,
and L. Van der Perre, “Techtile – open 6g r&d testbed for communication,
positioning, sensing, wpt and federated learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.04524

[4] B. Sihlbom, M. I. Poulakis, and D. Renzo, “Reconfigurable intelligent
surfaces: Performance assessment through a system-level simulator,” p. 7,
November 2021. [Online]. Available: https://arxiv.org/abs/2111.10791

[5] E. Basar and I. Yildirim, “Simris channel simulator for reconfigurable
intelligent surface-empowered communication systems,” Koç University.
IEEE, November 2020. [Online]. Available: https://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=9282349

[6] O. Edfors, R. Brazil, H. Petautschnig, G. Callebaut, T. Feys, L. V. der Perre,
E. G. Larsson, O. Edfors, E. Fitzgerald, L. Liu, J. R. Sanchez, W. Tärneberg,
P. Frenger, B. Deutschmann, T. Wilding, and K. Witrisal, “Initial assessment
of architectures and hardware resources for a RadioWeaves infrastructure,”
Jan. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.5938909

[7] G. Callebaut, W. Tärneberg, L. Van der Perre, and E. Fitzgerald, “Dynamic
federations for 6g cell-free networking: Concepts and terminology,” arXiv
preprint arXiv:2204.02102, 2022, to appear.

[8] L. V. D. Perre, E. G. Larsson, F. Tufvesson, L. D. Strycker, E. Bjornson,
and O. Edfors, “Radioweaves for efficient connectivity: Analysis and impact
of constraints in actual deployments,” vol. 2019-November, 2019.

63

“output” — 2022/6/24 — 13:57 — page 64 — #80

64 References

[9] “Home of rf and wireless vendors and resources,” webpage, Wireless World,
2012. [Online]. Available: https://www.rfwireless-world.com/Terminology/
Difference-between-cellular-network-and-cell-free-network.html

[10] EU H2020 REINDEER project. (2021) REsilient INteractive applications
through hyper Diversity in Energy Efficient RadioWeaves technology
(REINDEER) project - Deliverable 1.1: Use case-driven specifications and
technical requirements and initial channel model. Visited on 2021-07-26.
[Online]. Available: https://reindeer-project.eu/D1.1

[11] S. Gunnarsson, J. Flordelis, L. Van der Perre, and F. Tufvesson, “Channel
hardening in massive MIMO-a measurement based analysis,” in 2018 IEEE
19th International Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC). IEEE, 2018, pp. 1–5.

[12] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks: A
comprehensive survey,” IEEE Communications Surveys and Tutorials, vol. 18,
no. 3, pp. 1617–1655, 2016.

[13] J. Zhao, “A survey of intelligent reflecting surfaces (irss): Towards
6g wireless communication networks,” 2019. [Online]. Available: https:
//arxiv.org/abs/1907.04789

[14] R. Alghamdi, R. Alhadrami, D. Alhothali, H. Almorad, A. Faisal, S. Helal,
R. Shalabi, R. Asfour, N. Hammad, A. Shams et al., “Intelligent surfaces
for 6g wireless networks: A survey of optimization and performance analysis
techniques,” IEEE access, 2020.

[15] S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C. Liang,
“Toward smart wireless communications via intelligent reflecting surfaces: A
contemporary survey,” IEEE Communications Surveys and Tutorials, vol. 22,
no. 4, pp. 2283–2314, 2020.

[16] M. Di Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini,
C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin
et al., “Smart radio environments empowered by reconfigurable ai meta-
surfaces: An idea whose time has come,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, pp. 1–20, 2019.

[17] E. Basar, “Transmission through large intelligent surfaces: A new frontier in
wireless communications,” in EuCNC 2019, Koç University. IEEE, 2019,
pp. 112–117. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=8801961

[18] S. Hu, F. Rusek, and O. Edfors, “The potential of using large
antenna arrays on intelligent surfaces,” in 2017 IEEE 85th Vehicular
Technology Conference (VTC Spring), 2017, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8108330

[19] E. Fitzgerald, W. Tärneberg, F. Tufvesson, O. Edfors, L. V. der Perre, D. De-
labie, R. Sarvendranath, E. G. Larsson, K. Witrisal, B. J. B. Deutschmann,

“output” — 2022/6/24 — 13:57 — page 65 — #81

References 65

A. Reial, U. Muehlmann, M. Truskaller, and J. F. E. Rivas, “Interactive ap-
plications in need of 6g: Technical requirements facilitated by sub-10 ghz
radioweaves,” 2021.

[20] J. Banks, J. S. Carson, B. L. Nelson, and D. M.
Nicol, Discrete-Event System Simulation, 5th ed. PEARSON,
2014. [Online]. Available: https://www.scribd.com/document/529375972/
Jerry-Banks-Et-Al-Discrete-Event-System-Simulation-Pearson-2014

[21] S. Bouveret, Y. Chevaleyre, and N. Maudet, “Fair
allocation of indivisible goods,” 2016. [Online]. Avail-
able: https://web.archive.org/web/20150906224807id_/http://www-poleia.
lip6.fr/~maudetn/teaching/12-comsoc-main.pdf

[22] H. Aziz, B. Li, H. Moulin, and X. Wu, “Algorithmic fair allocation of
indivisible items: A survey and new questions,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.08713

[23] E. Gerding, A. Perez-Diaz, H. Aziz, S. Gaspers, A. Marcu, N. Mattei,
and T. Walsh, “Fair online allocation of perishable goods and its
application to electric vehicle charging,” May 2019. [Online]. Available:
https://eprints.soton.ac.uk/432204/

[24] T. Kalinowski, N. Narodytska, and T. Walsh, “A social welfare optimal
sequential allocation procedure,” vol. 13. Universität Rostock and NICTA
and UNSW, April 2013. [Online]. Available: https://arxiv.org/abs/1304.5892

[25] S. R. Sinclair, G. Jain, S. Banerjee, and C. L. Yu, “Sequential fair allocation
of limited resources under stochastic demands,” 2020. [Online]. Available:
https://arxiv.org/abs/2011.14382

[26] M. Aleksandrov and T. Walsh, “Online fair division: A survey,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 09, pp.
13 557–13 562, Apr. 2020. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/7081

[27] A. D. Procaccia and J. Wang, “Fair enough: Guaranteeing approximate
maximin shares.” New York, NY, USA: Association for Computing
Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2600057.
2602835

[28] M. Ghodsi, M. Hajiaghayi, M. Seddighin, S. Seddighin, and H. Yami, “Fair
allocation of indivisible goods: Improvements and generalizations.” New
York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3219166.3219238

[29] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi, “On approximately
fair allocations of indivisible goods.” New York, NY, USA: Association for
Computing Machinery, 2004. [Online]. Available: https://doi.org/10.1145/
988772.988792

[30] A. Asadpour and A. Saberi, “An approximation algorithm for max-min fair
allocation of indivisible goods,” SIAM Journal on Computing, vol. 39, no. 7,
pp. 2970–2989, 2010. [Online]. Available: https://doi.org/10.1137/080723491

“output” — 2022/6/24 — 13:57 — page 66 — #82

66 References

[31] R. Project, “future release : Reindeer deliverable 3.2,” https://
reindeer-project.eu/results-downloads/, 2022.

[32] T. Marzetta, E. Larsson, H. Yang, and H. Ngo, Fundamentals of Massive
MIMO, 1st ed. Cambridge University Press, 2016. [Online]. Available:
https://books.google.se/books?id=Be08DQAAQBAJ

[33] S. Team. (2022, march) Overview - simpy 4.0.2.dev1+g2973dbe documenta-
tion. webpage. [Online]. Available: https://simpy.readthedocs.io/en/latest/
index.html/

“output” — 2022/6/24 — 13:57 — page 67 — #83

Appendix A
Extra material

A.1 Used packages

Library Description
NumPy NumPy is a library for the Python programming language, adding

support for large, multi-dimensional arrays and matrices, along with
a large collection of high-level mathematical functions to operate on
these arrays.

math This module provides access to the mathematical functions defined by
the C standard.

random This module implements pseudo-random number generators for vari-
ous distributions.

sys This module provides access to some variables used or maintained
by the interpreter and to functions that interact strongly with the
interpreter.

time This module provides various time-related functions.

itertools This module implements several iterator building blocks inspired by
constructs from APL, Haskell, and SML.

glob The glob module finds all the pathnames matching a specified pattern
according to the rules used by the Unix shell, although results are
returned in arbitrary order.

unittest The unittest unit testing framework was originally inspired by JUnit
and had a similar flavor as major unit testing frameworks in other
languages. It supports test automation, sharing of setup and shutdown
code for tests, aggregation of tests into collections, and independence
of the tests from the reporting framework.

SciPy SciPy is a free and open-source Python library used for scientific com-
puting and technical computing.

Matplotlib Matplotlib is a cross-platform data visualization and graphical plot-
ting library for Python and its numerical extension NumPy. As such,
it offers a viable open-source alternative to MATLAB. Developers can
also use Matplotlib’s APIs (Application Programming Interfaces) to
embed plots in GUI applications.

Table A.1: Libraries with their description

67

“output” — 2022/6/24 — 13:57 — page 68 — #84

68 Extra material

A.2 Configuration examples

A.2.1 application_0.yml
1 id: 0
2 WPT:
3 value: 0.04
4 threshold: 0.00
5 POSITIONING:
6 value: 0.11
7 threshold: 0.00
8 LATENCY:
9 value: 0.67

10 threshold: 0.00
11 PACKET_ERROR_RATE:
12 value: 0.13
13 threshold: 0.00
14 DATA_RATE:
15 value: 0.05
16 threshold: 0.00
17 utility_evaluation: MEAN
18 threshold_user_level: 0.00
19 threshold_federation_level: 0.00
20 percentile_satisfied: 0.7364712141640124
21 max_num_users: 100
22 binary_evaluation: false
23 federation_check_interval

Listing A.1: application_0.yml

A.2.2 csp_0.yml
1 id: 0
2 coords: [2.0, 0, 1.4]

Listing A.2: csp_0.yml

A.2.3 ue_0.yml
1 id: 0
2 coords: [6.394267984578837 , 0.25010755222666936 , 0.4125439775536789]
3 application: application_0
4 speed: 0.1
5 online: 0
6 offline: 9999999999
7 utility_check_interval: 10
8 trajectory:
9 - [1.395379285251439 , 1.024951761715075 , 1.1110016170015138 , 8]

10 - [0.8693883262941615 , 4.2192181968527045 , 0.044695829157105516 ,
3]

11 - [2.326608933907396 , 6.020187290499804 , 0.8418675944079195 , 10]
12 - [7.01324973590236 , 4.195198209616588 , 0.6738135694257804 , 4]
13 - [8.094304566778266 , 0.06498759678061017 , 1.2087288777492118 , 6]
14 - [3.4025051651799187 , 1.5547949981178155 , 1.4358196083101717 , 5]
15 - [1.022102765198487 , 3.7992730063733737 , 0.5384690707269426 , 5]

Listing A.3: ue_0.yml

“output” — 2022/6/24 — 13:57 — page 69 — #85

Extra material 69

A.2.4 algorithm_configuration.yml
1 #general configuration

--

2 simulation_time: 1000
3 algorithm: "random"
4 csp_topology: "mesh"
5 ray_tracing: "false"
6 num_of_antennas_in_csp: 16
7 wavelength_constant: 20.0
8 random_seed: 42
9 transmit_power: 50

10 optimisation_interval: 10000
11

12 #simulated annealing parameter selection
--

13 SIMULATED_ANNEALING:
14 start_temperature: 100
15 iterations: 100
16 time_to_run: 10
17 alpha: 0.90

Listing A.4: algorithm_configuration.yml

A.2.5 environment.yml
1 x: 10
2 y: 10
3 z: 3
4 objects:
5 - [4, 4, 0, 3, 3, 3]
6 - [3, 3, 0, 3, 3,3]

Listing A.5: environment.yml

A.3 Experiment 1a and 1b

A.3.1 Location of UEs in 1a
1 ID: 0 POSITION: (x= 5, y= 5, z= 0)
2 ID: 1 POSITION: (x= 2.4663 , y= 5.6137 , z= 0.3941)
3 ID: 2 POSITION: (x= 0.7099 , y= 6.311, z= 0.3434)
4 ID: 3 POSITION: (x= 6.5737 , y= 5.6523 , z= 0.4746)
5 ID: 4 POSITION: (x= 1.7936 , y= 9.2449 , z= 1.1736)
6 ID: 5 POSITION: (x= 6.1926 , y= 0.9339 , z= 1.428)
7 ID: 6 POSITION: (x= 2.7294 , y= 4.8564 , z= 0.5833)
8 ID: 7 POSITION: (x= 5.2175 , y= 6.5046 , z= 0.9239)

Listing A.6: environment.yml

A.3.2 Location of UEs in 1b
1 ID: 0 POSITION: (x= 5, y= 5, z= 0)
2 ID: 1 POSITION: (x= 2.4663 , y= 5.6137 , z= 0.3941)
3 ID: 2 POSITION: (x= 0.7099 , y= 6.311, z= 0.3434)

“output” — 2022/6/24 — 13:57 — page 70 — #86

70 Extra material

4 ID: 3 POSITION: (x= 6.5737 , y= 5.6523 , z= 0.4746)
5 ID: 4 POSITION: (x= 1.7936 , y= 9.2449 , z= 1.1736)
6 ID: 5 POSITION: (x= 6.1926 , y= 0.9339 , z= 1.428)
7 ID: 6 POSITION: (x= 2.7294 , y= 4.8564 , z= 0.5833)
8 ID: 7 POSITION: (x= 5.2175 , y= 6.5046 , z= 0.9239)
9 ID: 8 POSITION: (x= 1.1409 , y= 0.6534 , z= 0.7376)

10 ID: 9 POSITION: (x= 1.8149 , y= 5.8533 , z= 0.9522)
11 ID: 10 POSITION: (x= 8.5601 , y= 4.1078 , z= 0.4773)
12 ID: 11 POSITION: (x= 1.0665 , y= 3.8136 , z= 0.5384)
13 ID: 12 POSITION: (x= 0.3721 , y= 9.9593 , z= 0.1742)
14 ID: 13 POSITION: (x= 1.0796 , y= 7.124 , z= 0.6653)
15 ID: 14 POSITION: (x= 7.4097 , y= 9.7181 , z= 0.1376)
16 ID: 15 POSITION: (x= 2.3627 , y= 1.4644 , z= 0.2959)
17 ID: 16 POSITION: (x= 3.0958 , y= 3.7668 , z= 1.1875)
18 ID: 17 POSITION: (x= 3.8617 , y= 0.8161 , z= 0.3368)
19 ID: 18 POSITION: (x= 6.469 , y= 2.8611 , z= 1.2932)
20 ID: 19 POSITION: (x= 6.6784 , y= 7.0954 , z= 0.825)
21 ID: 20 POSITION: (x= 8.0735 , y= 4.0609 , z= 0.6803)
22 ID: 21 POSITION: (x= 5.1933 , y= 1.4894 , z= 1.3397)
23 ID: 22 POSITION: (x= 2.8763 , y= 7.1414 , z= 0.5195)
24 ID: 23 POSITION: (x= 2.4805 , y= 2.6079 , z= 0.3533)
25 ID: 24 POSITION: (x= 8.9133 , y= 4.4854 , z= 1.3757)
26 ID: 25 POSITION: (x= 2.55, y= 3.3026 , z= 0.1186)
27 ID: 26 POSITION: (x= 7.0717 , y= 0.0914 , z= 0.7586)
28 ID: 27 POSITION: (x= 6.0517 , y= 6.1387 , z= 0.8934)
29 ID: 28 POSITION: (x= 3.9824 , y= 3.1914 , z= 1.1023)
30 ID: 29 POSITION: (x= 6.9676 , y= 3.1891 , z= 0.4504)
31 ID: 30 POSITION: (x= 7.1014 , y= 4.4385 , z= 0.2509)
32 ID: 31 POSITION: (x= 4.547 , y= 4.8804 , z= 0.8729)
33 ID: 32 POSITION: (x= 6.8657 , y= 8.5996 , z= 0.13)
34 ID: 33 POSITION: (x= 1.3721 , y= 0.1135 , z= 0.7446)
35 ID: 34 POSITION: (x= 7.5893 , y= 3.7627 , z= 1.1071)
36 ID: 35 POSITION: (x= 9.1743 , y= 0.7499 , z= 1.4957)
37 ID: 36 POSITION: (x= 0.9026 , y= 2.3262 , z= 0.3282)
38 ID: 37 POSITION: (x= 8.2881 , y= 7.8873 , z= 0.8671)
39 ID: 38 POSITION: (x= 5.7271 , y= 2.3564 , z= 0.4483)
40 ID: 39 POSITION: (x= 9.1343 , y= 4.0717 , z= 0.7267)
41 ID: 40 POSITION: (x= 6.5612 , y= 9.5219 , z= 0.9772)
42 ID: 41 POSITION: (x= 4.3371 , y= 4.2941 , z= 0.6435)
43 ID: 42 POSITION: (x= 1.6037 , y= 5.4814 , z= 1.3655)
44 ID: 43 POSITION: (x= 7.2665 , y= 4.8193 , z= 0.9956)
45 ID: 44 POSITION: (x= 5.8932 , y= 5.042 , z= 1.4458)
46 ID: 45 POSITION: (x= 6.9294 , y= 0.4698 , z= 0.5724)
47 ID: 46 POSITION: (x= 4.4556 , y= 0.4385 , z= 1.3474)
48 ID: 47 POSITION: (x= 8.3475 , y= 1.9433 , z= 0.272)

Listing A.7: environment.yml

A.4 Specifications

There were no other applications running on the system when the tests were
conducted.

A.4.1 Hardware

• Model Name: MacBook Air

“output” — 2022/6/24 — 13:57 — page 71 — #87

Extra material 71

• Model Identifier: MacBookAir10,1

• Chip: Apple M1

• Total Number of Cores: 8 (4 performance and 4 efficiency)

• Memory: 8 GB

• System Firmware Version: 7429.81.3

• OS Loader Version: 7429.81.3

A.4.2 Software

• System Version: macOS 12.2.1 (21D62)

• Kernel Version: Darwin 21.3.0

• Boot Volume: Macintosh HD

• Boot Mode: Normal

A.4.3 Python

• Interpreter: Python 3.10

