
1

Label-free cell tracking
Markeringsfri cellspårning

Jonathan Dahlberg (BME–19), Robin Öhrnberg (BME–19)

Abstract—Migrating cells under various force fields in mi-
crofluidic devices has been used as a tool to study the cell
properties. Cells respond to the same force field in different ways
depending on their properties, resulting in different migration
velocities and trajectories which are obtained by cell tracking.
The cells that are to be tracked are typically labelled with
fluorescent dyes to enhance the contrast between cells and
the medium. However,the staining process may change the cell
properties to be measured. This paper describes the development
of a cell tracking algorithm in MATLAB, which is able to track
cells in a label-free manner with the images obtained using phase-
contrast microscopy Dr. Wei Qiu. The algorithm operates on a set
of images where the cells enter from the left and migrate along
the microchannel until they exit the field of view on the right.
The code is divided into two parts. An image processing part
wherein the images are processed through thresholding, dilating
and eroding, which is able to locate the cells. Then a data analysis
part. By applying this part the cells on each image are connected
and coherent paths for the cells are created. The algorithm has
proven to be functional and manages to detect a vast majority
of the cells while filtering out noise and irrelevant particles.

I. INTRODUCTION

A. Cell tracking

In the study of cell behaviour, fluorescence microscopy is a
very useful method for obtaining visual information about the
cells. In fluorescence microscopy, cells are stained with a fluo-
rophore which can be excited by electromagnetic radiation of
a specific wavelength [1]. Once excited, the fluorophores emit
electromagnetic radiation with a typically longer wavelength
that can be detected by the camera [2] However, fluorescence
microscopy has some notable drawbacks. In some cases the
dyes and the staining process may alter the properties of the
object that is being studied [3] [4]. Changes in properties
might become an issue during studies of cell functions, either
using living cell imaging or taking measurements of the cell
properties based on the cell response in certain force fields.
In the latter case migrating cells are exposed to a force field,
e.g., an acoustic, an electric, or a magnetic field, etc. This
affects the velocity and the trajectory of the cells depending
on their acoustic, electric and magnetic properties. By tracking
the velocities and trajectories of the cells indications of the
respective properties in each cell can thus be obtained. The
refractive indices of the cells and the surrounding cell medium
are similar, leading to the use of fluorescence microscopy
for enhanced cell contrast in studies of cell functions like

Handed in June 4, 2022
Email:{jonathan.dahlberg.4237@student.lu.se,

robin.ohrnberg.433@student.lu.se}
Technical supervisor: Dr. Wei Qiu, Department of Biomedical Engineering

those mentioned above. Changes to cell properties caused
by the staining process in fluorescence microscopy remain
a concern. Continuous progress of phase-contrast microscopy
[5] and differential interference contrast microscopy [6] leads
to significant enhancements of contrast in cell images without
the need for staining. Making label-free cell tracking possible.
In this project, a cell tracking algorithm is developed based
on MATLAB, which enables automated label-free cell tracking
with the images obtained using phase-contrast microscopy.

B. Image analysis
To date, there are many existing image analysis algorithms that
enable label-free tracking. Image analysis is a very wide field
with many applications. Since digital images are simply sets
of information, this information can be manipulated in order
to change the characteristics of the images. This can be used
to for example heighten the contrast, change the colour scales,
adjust the brightness of different areas, smooth out sharp
edges and reducing noise. Thresholding is a useful method
for segmenting the image and separating useful information
from the background by introducing a certain limit value and
treating pixels differently depending on their relation to this
value. You could for example set all pixels that have value of
less than the threshold to zero to highlight the rest of the
pixels in the image. Besides intensity based methods such
as thresholding some methods are morphology based. This
means that the image is processed by applying some operation
within a structural element traversing the image. This could for
example be giving the pixel or the pixels at the center of the
element, called the origin of the structural element, the highest
or lowest value found in the pixels within structural elements
neighbourhood. The neighbourhood is the area defined by
the geometrical shape of the element. The neighbourhood is
populated by binary values, if the maximum or minimum falls
on a 0, no action is taken. The size and shape of the structural
element can be chosen in accordance with what works best in
a given situation [7]. Figure 1 shows an example of a structural
element.

Image analysis is a field of study that has seen rapid progress
in later years. Despite this it is difficult to develop an image
analysis algorithm that is applicable for every given situation.
Visual data is situation specific, it depends not only on what
information you are searching for but also on what kind of
image you are looking at [8]. This means that, at least for the
moment, a tracking algorithm must be somewhat specialized
to best fit the experimental data in question in order to yield
the most reliable end results. Developing such an algorithm
was the purpose of this project.

2

Figure 1. A structure element in the shape of a disc with the radius 5 pixels.
The pixels within the radius is called the neighbourhood, the pixel in the
middle i called the origin. If a maximum or minimum pixel value falls on a
binary 0 no action is taken and the origin keeps its current pixel value.

C. Aim and limitations

The goal was to write an algorithm in MATLAB that could
accurately track cells in the data sets that resulted from Dr. Wei
Qiu’s experiments in differential interference contrast imaging
and phase-contrast imaging at Lunds Tekniska Högskola. The
accuracy with which this algorithm can identify and track cells
is dependant on the time spent refining the algorithm, but there
is a point of diminishing returns. Diminishing returns on the
time spent optimizing the code comes when large amounts
of time is spent making the algorithm work in situations
which rarely occur. Because of this the point at which the
project can be considered definitively finished thus becomes
somewhat arbitrary and we decided to combat this by working
on optimizing the algorithm until a set deadline was reached
and then showcasing our results. Shortly summarized, the
objective was to: Develop a cell tracking algorithm within
the given time frame. This paper displays the algorithm in
full in the form of MATLAB code, as well as the resulting
identification and tracking of the given cells. A review of
potential further steps of optimization is also given.

D. Outset

MATLAB was used in this project since it contains many
useful image analysis tools that would aid the identification of
the cells. The original pictures from Dr. Wei Qiu’s experiment
were monochrome with the cells seen as white circles with
black interiors against a grey background. The cells migrate
from left to right in a microchannel with a width of 760 m
and a height of 370 m, and the pictures were taken with 0.007
seconds delay between each. The cells depicted in the images
are K562 cells, which are human myelogenous leukemia cell
lines. In the experiments, the majority of the cells sedimented
to the bottom of the microchannel and only the cells in focus
are of interest for the tracking.

II. METHOD

The majority of the project consisted of self-educating in
image processing in MATLAB. Theoretical knowledge was
gathered through various means of self study while practical
experience was gathered through MATLAB Image Processing
On-ramp. The On-ramp in particular was helpful in acquiring
a library of methods used for image analysis and processing.
Through trial and error the final code was produced by testing
the methods needed to extract specific information form the

images in different orders of application. The algorithm is
divided into two main parts. The first section focuses on
processing the images and identifying the cells. The second
focuses on sorting and combining the data that is produced by
the first part to track the cells from image to image.

Dr. Wei Qiu’s experiment resulted in four sets of TIF
images. Three of the sets contained 300 pictures and one
contained 301.

A. Image processing

ds= imageDatastore ("/ directory ");
ds. Files = natsort (ds. Files);
I= readimage (ds ,1);
imhist (I)
imtool
pause

The files are loaded using imageDatastore. imageDatastore
does not store the files according to alphabetical or numerical
order but instead by the value of the characters in the image
file name. Writing an algorithm to sort the files proved to
be time consuming and the pre-constructed algorithm natsort
was used in order to remedy this issue. Since the images are
very similar the first one is used as a template for gathering
parameters such as pixel values and spatial measurements. The
method imhist plots an intensity distribution of the pixels in
an image in the form of a histogram. This histogram is used
in conjunction with the function imtool, which is a function
that contains multiple useful tools when handling images. Here
imtool is firstly used to manually extract the pixel values inside
the cells, which together with the histogram gives a good
indication for possible thresholding values. Secondly imtool
is used to extract the approximate radii of the cells. Pause
causes MATLAB to pause the compilation of the code until
the user presses enter, this is done so that the user can extract
the pixel values and the radii.

SE= strel (" disk ",m);
cm ={};

A structural element in the form of a disc with radius m is
created with the method strel. In this case the radius of the
disc should be smaller than the cells in the image for optimal
results. The optimum value of m was found to be 5 pixels. A
cell array is created for future use.

for i =1: numel (ds. Files);
I= readimage (ds ,i);
I=I(: ,: ,i);
I= im2uint8 (I);
I= imadjust (I);
Idialate = imdilate (I,SE);
I(I<n)=255;
Idialate (I>250)=255;
Iclose = imerode (Idialate ,SE);
[centre , ˜]= imfindcircles (Iclose ,...

3

[a b]);
cm {i }= round (centre);
i
end

Each image is now run through a number of image processing
methods. Firstly the two matrices containing information about
the color scales in the image are removed. The remaining
matrix is then converted to an eight-bit image since compress-
ing layers of the grey scale makes thresholding easier. The
image contrast is enhanced through imadjust. A new image is
created by dilating the grey scale image using the previously
introduced structure element. Dilating is a morphological
operation where in the origin, the pixel in the middle of
the structural element, is given the maximum value from the
neighbourhood of the structural element. The original image
is thresholded at the n-value, which is the pixel value from
the cells interior extracted earlier with imtool. This serves
as a template when thresholding the new image. The dilated
image is then eroded with the structure element to reduce noise
in the image. Erosion is a morphological operation where in
the origin, is given the minimum value from the structural
elements neighbourhood. The image is now ready for cell
identification, see Figure 6. imfindcircles scans an image for
circular shapes with radii within a given span and returns their
center points in a matrix of coordinates. This method is applied
to the image with variable a set as the minimum value of the
radius and variable b as the maximum. Each cell center of
mass is stored in the cell array cm.

B. Data analysis

cm1 ={};
CM= insertSort (cm , cm1);

A new cell array is created. The cell array cm now contains
the coordinates of all the cells for each image. However, the
coordinates are not sorted in any particular order. The self-
written algorithm insertSort was implemented to address this.

function A= insertSort (cm , cm1)
cm1 ={ length (cm)};
a =1;
C= insertSort2 (cm ,cm1 ,a);
A=C;
return
end
function B= insertSort2 (cm ,cm1 ,a)
if a>length (cm)

B= cm1 ;
return

end
D=cm {a };
D= sortrows (D ,1);
cm1 {a }= D;
a=a +1;
B= insertSort2 (cm ,cm1 ,a);
end

insertSort is a version of a recursive insertion sorting algo-
rithm. Using the empty cell array cm1, insertSort works its
way through every image and extracts the coordinates before
inserting them in cm1 in order of magnitude based on the
x-coordinate. In this way, the coordinates in each image are
sorted from left to right in the picture. cm1 is then returned
and named CM.

same = cell (1 ,1000);
I=CM {1};
for i = 1: size (I ,1)
same {i }=[I(i ,:) 1];
end

An empty cell array named same is created. The coordinates
of the first image are copied and saved in variable I. A for-
loop is initiated and the newly created cell array is filled
with the coordinates of the cells in I, additionally, each set
of coordinates is labelled with 1, representing which image
they belong to. Thus the coordinates of each cell in the first
image is saved as separate cells in the cell array same.

same = connectCells (CM , same);

The self-written function connectCells was implemented.

function S= connectCells (CM , same)
a =1;
S2= connectCells2 (CM ,same ,a);
S=S2;
return
end

function S2= connectCells2 (CM ,same ,a)
A =[];
B =[];
if a== length (CM)

same = same (˜ cellfun (@isempty ,...
same));
S2= same ;
return

end
x= find (˜ cellfun (@isempty , same));
x=x(1 , end);
for i =1: x
A= same {i };
A=A(end ,1:2);
B=[B ;A];
end

D=CM {a +1};
for i =1: length (B)

C=B(i ,:);
E= pdist2 (C,D,’ euclidean ’);
[M,I]= min (E);
y=D(I ,1);
z= same {i };

4

z=z(end ,1);
if isempty (y) | | y<z | | M>20

continue
end
same {i }=[same {i }; D(I ,:)...
a +1];
D(I ,:)=[0 0];
D = D(˜ all (D == 0, 2) ,:);

end

if ˜ isempty (D)
same = wDMHAPCF (same ,D,a);
end
a=a +1;
S2= connectCells2 (CM ,same ,a);
return
end

connectCells is a recursive algorithm that pairs the last known
coordinates for a cell with the closest set of coordinates in
the following images. Since connectCells pairs up the last
known coordinates of each cell with the closest coordinates in
subsequent images this pairing can be done even if tracking
is lost for a few images. This is the reason each cell has an
image number index as well as coordinates, too identify if
there was a loss in detection even just for one image. Through
some conditions in the second for-loop the algorithm stops the
tracking at the edge of the screen an tries to prevent newly
detected cells from being confused with already detected ones.

function S= wDMHAPCF (same ,D,a)
if isempty (D)

S= same ;
return
end
x= find (˜ cellfun (@isempty , same));
x=x(1 , end);
same {x +1}=[D (1 ,:) a];
D (1 ,:)=[0 0];
D = D(˜ all (D == 0, 2) ,:);
S= wDMHAPCF (same ,D,a);
end

wDMHAPCF is a recursive algorithm that adds cell coordi-
nates that did not match in connectCells with any previous
ones at the end of the cell array same. Making them newly
detected cells.

C. Playback

j =1;
for i = 1: numel (CM)

A=CM {i };
B= same { cellnbr };
C=B (: ,1);
D=B (: ,2);

imshow (readimage (ds ,i))

hold on
plot (A(: ,1) , A(: ,2) , ’rx ’)
if j== size (B, 1) | | j<size (B ,1)...
&& i==B(j ,3)
plot (C (1: j), D (1: j), ’r’ ,...
’ LineWidth ’, 2)

j=j+1
end
hold off
pause (0.05)

i=i
end

All unnecessary variables are cleared and j is set to 1. The
remaining section of the code shows a playback of every image
in the given set while the cell cellnbr is being tracked.

III. RESULTS

The first image of the cells from Dr. Wei Qiu’s experiment is
shown in Figure 2.

Figure 2. Still image of cell migration from left to right. This is the image
that was used as a template for taking measurements. The blurred cells in the
background are cells that are out of focus.

All the images were taken against the same background and
thus the only thing that varies between them is the locations of
the cells as well as some visual noise. The ideal scenario would
be perfectly circular cells against a homogeneous background,
however, the reality involves smaller particles and cells that
are out of focus yet visible enough to interfere with the cells
in focus. The histogram of the intensity distribution from
this image can be viewed in Figure 3 and the pixel values
inside one of the cells can be seen in Figure 5. The resulting
thresholding value n and minimum and maximum radii can be
viewed in Table 1.

5

0 50 100 150 200 250

Grayscale value

0

1

2

3

4

5

6

7

In
te

n
s
it
y
 v

a
lu

e

10
4

Figure 3. The histogram of the intensity distribution from the image in Figure
2.

Figure 4. Zoomed in picture of a cell in Figure 2 using imtool. The
approximate radius of the cell is measured with the tool ”Measure distance”.
Note that this is only an example image and the value 11.51 was not used in
the code. It was however using this method that the minimum and maximum
cell radii were acquired.

The image in Figure 4 was acquired with imtool and resulted
in the measurements of minimum and maximum cell radii a
and b that can be viewed in Table 1.

97

99

98

97

101

103

99

106

100

101

102

109

106

107

99

106

106

101

97

107

95

95

106

96

94

93

96

100

93

95

102

104

104

102

98

104

102

95

100

98

95

97

98

98

95

91

96

100

96

100

97

96

95

99

99

96

99

97

100

94

98

97

102

100

105

99

104

113

109

107

102

107

104

107

111

110

103

108

106

101

103

103

104

107

110

111

112

104

114

106

111

106

108

110

107

105

106

101

108

110

110

106

112

107

115

111

109

110

113

113

114

110

113

119

114

111

111

113

115

105

111

106

106

111

110

116

114

120

119

116

117

116

118

109

117

112

114

113

110

107

110

106

107

117

111

113

119

125

127

122

122

118

120

116

120

121

116

120

109

115

111

105

108

118

125

126

124

132

127

128

132

124

130

130

129

126

120

115

121

123

113

111

113

125

126

136

137

136

150

142

141

148

149

150

138

134

136

129

120

122

121

108

122

123

141

143

151

160

172

173

180

185

184

190

176

167

164

141

138

130

119

115

126

138

147

160

178

195

204

214

225

236

239

233

232

219

198

167

148

142

131

124

137

155

172

196

218

224

234

248

243

255

255

255

255

248

231

200

193

155

146

125

151

175

200

212

238

223

223

213

205

216

233

235

239

220

227

236

225

185

160

136

171

204

211

203

209

182

158

152

142

154

158

155

173

174

191

232

245

234

193

156

205

226

202

168

160

129

127

114

106

101

104

101

120

135

141

194

239

247

226

184

231

242

181

138

134

116

104

104

94

93

86

89

95

116

118

134

181

232

243

210

253

255

167

133

136

105

79

83

81

92

86

80

94

104

103

109

135

188

242

242

255

241

141

143

122

90

70

75

77

76

88

76

81

85

89

102

106

139

193

248

255

191

133

140

130

91

64

65

69

76

82

73

73

70

81

106

104

118

151

231

255

152

126

132

116

76

55

57

65

79

86

78

67

68

86

108

125

111

120

211

233

125

114

115

102

71

52

63

80

80

87

73

69

73

91

112

114

107

101

176

225

126

110

108

102

76

62

79

87

79

73

62

62

71

85

94

96

91

100

169

225

126

104

105

86

83

68

83

95

78

54

45

52

54

63

71

77

89

110

166

241

132

98

77

86

82

67

80

86

71

50

45

39

41

49

63

72

100

121

183

250

143

90

75

77

72

66

62

72

67

56

45

39

46

48

65

84

120

140

210

255

192

118

92

84

71

69

62

61

69

60

56

49

51

56

79

116

144

170

249

255

215

134

94

75

69

63

55

51

58

61

62

53

56

69

92

140

163

203

255

255

241

161

99

73

63

57

52

49

60

63

66

65

68

84

107

145

189

247

255

235

255

220

138

85

65

53

55

57

77

72

80

86

87

94

122

162

224

255

255

212

255

255

196

128

82

67

65

73

88

92

100

108

111

115

134

195

255

255

232

181

224

255

244

209

145

104

93

92

97

106

120

132

143

154

187

234

255

250

192

155

176

225

255

247

214

185

151

147

131

144

170

183

215

227

240

239

231

198

158

136

149

180

210

251

249

235

233

219

206

221

245

255

255

255

250

224

192

167

153

125

139

151

169

204

214

238

231

234

242

243

252

253

237

228

200

173

157

146

130

114

115

138

142

151

169

181

195

201

196

218

217

200

185

180

157

152

136

126

114

104

108

121

129

139

146

146

160

155

160

163

155

160

149

136

132

127

113

110

110

105

105

114

113

116

123

124

138

137

135

138

136

135

127

123

119

121

109

106

106

102

99

106

109

118

118

124

119

119

121

123

116

113

112

112

106

102

102

104

104

98

102

97

104

109

107

108

110

110

114

111

105

106

109

103

100

105

98

101

108

108

108

102

105

107

108

106

102

111

109

103

105

102

102

102

104

102

104

Figure 5. Zoomed in picture of a cell in Figure 2 using imtool, showing the
pixel values for each pixel. Most of the values in the cell interior are below
90.

Figure 5 showcases a further zoomed in version of the image
in Figure 2. This time the tool ”Inspect pixel values” was used.

Table I
THE MANUALLY MEASURED VALUES OF THRESHOLDING VALUE N,

MINIMUM CELL RADIUS A AND MAXIMUM CELL RADIUS B

Variable Value

n 90
a 8
b 25

Application of the various image processing methods trans-
formed the original image (Figure 2) into what is shown
in Figure 6. This image was much better suited for cell
identification, as can be seen in Figure 7, where imfindcircles
has been executed.

Figure 6. The final version of the image in Figure 2 after every image
processing methods has been applied. The image is overall brighter and with
the darker parts of the cell interiors removed the circular shapes can more
easily be identified by the function imfindcircles.

The algorithm identifies almost all cells that are in focus in
the image. There are exceptions though, some three or four
cells are not identified, as can be seen in Figure 7.

Figure 7. The identified center of masses plotted as red crosses over the
image in Figure 2.

In Figure 8 the identification has been applied to the original
image shown in Figure 2 for reference.

6

Figure 8. Identification of the cells based on the original image in Figure 2
without any image processing.

Figure 9 shows the tracking in action, in this case it is the first
cell in the array that is being tracked across all 300 images
of an image set. The red line shows the cell migration path.
Although the cell encounters others in very close proximity
along the way, the tracking still follows the correct cell for
the whole duration.

Figure 9. The first cell in the array tracked across all 300 images.

Figure 10 and Figure 11 show one of the cells first at its
starting position in Figure 2 and then at its end point as the
tracking has followed it for the entire set of images.

Figure 10. Cell 30 identified and plotted over Figure 2.

Figure 11. Cell 30 tracked across all 300 images.

Figure 12 and Figure 13 show how the tracking works when a
cell migrates past the borders of the image. Cell 120 is tracked
accurately until its circular shape is broken by the edge.

Figure 12. Cell 120 tracked across 50 images.

Figure 13. Cell 120 tracked across all 300 images. When the cell reaches the
right edge of the screen the tracking stops. For showcasing purposes a green
line has been implemented to showing the path of the cell until it exits the
frame.

Figure 14 shows the tracked paths of all the cells that are
identified across the 300 images.

0 200 400 600 800 1000 1200 1400 1600 1800

0

100

200

300

400

500

600

700

Figure 14. The paths of all the 293 cells detected across the 300 images.

7

IV. DISCUSSION

The algorithm performs beyond our initial expectations, even
if there naturally is room for improvement. imfindcircles
finds 141 cells in the first image if it is left unprocessed, and
145 cells is found if the first image is processed. While the
difference is small the processing also removes visual noise
and out of focus cells that drift by in the image. By carefully
reviewing the Figure 7 and Figure 8 it becomes apparent that
after processing smaller and more irregularly shaped cells are
detected.

Ideally we would like to reduce the amount of user input
and completely automate the algorithm as a whole. Also we
would like to generalize the algorithm to work on most types
of images. For now the image processing works on images
which have the approximate appearance of the images above.
Gray background and black cells with a thick white brim. We
do have a version of the image processing code which can
find cells which are completely white. An improvement we
would like to implement is a method which can handle both
cases. From experience gained during this project we are
confident that we could write new code that would display
the cells even clearer.

The time required for identifying the cells is relatively short
in this case around 3 minutes. The time depends on the
amount of images as well as the amount of cells per image.
If one or both of these factors are dramatically increased
in other experiments, the amount of time needed could
potentially become bothersome. The most time consuming
part of the code is finding the cells. Most of the processing
is fairly quick but finding the cells is time consuming with
the current implementation of the code. Since the method
for finding the cells is a preexisting method in MATLAB
any further optimization would require an entirely new
approach. Initially the data analysis part of the code was
on par with the image processing for calculation time. But
with a combination of iterative and recursive algorithms the
computation time is now about 10 seconds, which we are
fairly pleased with. While faster computation time is to be
preferred the context in which this algorithm is used is not
time sensitive. So in the end computation is not a limiting
factor unless it becomes extreme which is unlikely in this case.

In the data analysis part of the code we mainly use recursion
based solutions supplemented with simpler iterative loops.
Everything done with a recursion based solution can be
done with an iterative loop. The reason we use recursions
so extensively is personal preference. If a task was a bit
more complex we found it easier to implement and more
perspicuous to read if recursion was used. It also felt more
elegant somehow. For simple tasks iterative loops were used.

The identification process relies upon the cells being circular,
imfindcircles uses a Circular Hugh Transform based algorithm
to find circles. This works well for this experiment but would
not be applicable if the cells had any other shape. It does not

work perfectly in this case either, since a small number of
cells are slightly deformed or not circular enough. Another
issue that affects this algorithm is that many cells encounter
other cells as they migrate, since they do not all travel with
the same velocity. If two cells are in very close proximity
of each other or they begin to overlap, their circular shapes
become entangled and thus the function imfindcircles starts
having difficulties finding the cells. The same problem arises
from disturbances in the image such as unwanted background
particles. Instances such as these are somewhat remedied by
our data analysis part of the code which can compensate for
lost or entangled tracking of the cells.

In spite of the problems, imfindcircles is very effective at
identifying the cells. The identification process was initially
based on a self-written function that would identify the
cells regardless of shape, but imfindcircles worked so well
for our purposes that it seemed unnecessary to solve a
problem which already had a finished solution. There are
nonetheless issues and shortcomings of imfindcircles and our
data analysis that we would like to address. In the rare case
that two cells overlap imfindcircles only finds one cell, and
thus we lose track of one cell. Our data analysis corrects
fairly well for this, but we believe that the implementation of
a Kalman filter would be even better. By using a state space
estimation of cells position and velocity vectors after initial
identification tacking could be enhanced. An implementation
of this was started but never finished due to time constraints.
imfindcircles requires an approximate radius for the cells
to work, this is the reason partly the reason for using the
imtool function in MATLAB. This is one of the user input
cases we would like to automate. While writing this report
a potential method for identifying circular cells without user
input was thought of, and will be explored in the near future.
This would remove the need for inputting an approximate
cell radius.

These potential improvements will hopefully be realised in the
near future, as we have been fortunate enough to be offered a
chance to continue working with Dr. Wei Qiu in a new project,
again focusing label free cell tracking.
Being so application specific, it is doubtful that this algorithm
could be used effectively for any other purpose than to track
circular objects against a low noise background. It is therefore
unlikely that the code itself could be used with malicious
intent. However, the identification is not perfect, and the
resulting data should be analyzed with this in mind. If the
proper considerations are not taken, wrongful conclusions
could be made which could potentially have harmful effects
depending on the experiment. On the other hand, by avoiding
the cell staining process the data more accurately represents
the true values of the cell properties, from which benefits in
development of drugs could hopefully be derived.

8

V. CONCLUSIONS

We did not have a clearly specified thesis for this project as
we from the start knew that this problem was solvable. The
questions was if we would be able to solve it, and we did. A
conclusion we can draw is that it is possible to gain sufficient
skills on your own in image processing to solve some fairly
complex tasks.

VI. EPILOGUE

Special thanks to Dr. Wei Qiu from the Department of Biomed-
ical Engineering at Lunds Tekniska Höskola for giving feed-
back through out the project, reviewing the report and helping
us with Introduction A (Cell tracking) and D (Outset), and
giving us the tremendous opportunity to continue developing
the algorithm for use in a upcoming project.
Credit goes out to the user Stephen23 at MathWorks for the
development of the Natural-Order Filename Sort algorithm
(natsort) used in the sorting of filenames.
The authors of this report contributed in equal parts to the
writing of this report and implementation of the algorithm.

REFERENCES

[1] Ettinger A, Wittmann T. Fluorescence live cell imaging. Meth-
ods Cell Biol. 2014;123:77-94. doi:10.1016/B978-0-12-420138-5.00005-
7[PubMed]

[2] Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence mi-
croscopy. Cold Spring Harb Protoc. 2014;2014(10):pdb.top071795. Pub-
lished 2014 Oct 1. doi:10.1101/pdb.top071795.,” [PubMed]

[3] Robson AL, Dastoor PC, Flynn J, et al. Advantages and Limita-
tions of Current Imaging Techniques for Characterizing Liposome
Morphology. Front Pharmacol. 2018;9:80. Published 2018 Feb 6.
doi:10.3389/fphar.2018.00080[PubMed]

[4] Pasternak MM, Strohm EM, Berndl ES, Kolios MC. Properties of cells
through life and death - an acoustic microscopy investigation. Cell Cycle.
2015;14(18):2891-2898. doi:10.1080/15384101.2015.1069925[PubMed]

[5] Nikon’s MicroscopyU. Introduction to Phase Contrast Microscopy.
https://www.microscopyu.com/techniques/phase-contrast/introduction-
to-phase-contrast-microscopy (Accessed 2022-05-29)

[6] Evident, Olympus. DIC Microscope Configuration and
Alignment. https://www.olympus-lifescience.com/en/microscope-
resource/primer/techniques/dic/dicconfiguration/ (Accessed 2022-05-29)

[7] MathWorks. 2022. Image Processing Onramp. Natick, Massachusetts:
MathWorks. https://matlabacademy.mathworks.com/details/image-
processing-onramp/imageprocessing (Loaded 2022-05-19).

[8] Chenouard, N., Smal, I., de Chaumont, F. et al. Objective compari-
son of particle tracking methods. Nat Methods 11, 281–289 (2014).
https://doi.org/10.1038/nmeth.2808[Nature methods]

	Introduction
	Cell tracking
	Image analysis
	Aim and limitations
	Outset

	Method
	Image processing
	Data analysis
	Playback

	Results
	Discussion
	Conclusions
	Epilogue
	References

