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Abstract 
Over the past 200 years, the structure of forests in Sweden has changed drastically, with forestry 

becoming the dominant land use. This has led to the loss of primary forests, which has major 

impacts on different ecosystem services, including carbon storage. Primary forests are unique 

ecosystems that are untouched by humans and have been sequestering carbon for centuries.The 

effects of this shift from no land use to land use on the vegetation carbon storage is poorly 

understood. The difference in carbon storage between primary and managed forests could give 

an indication of the effects of land use. LPJ-GUESS is a dynamic vegetation model that can 

estimate both potential natural vegetation and managed ecosystems. However, the ability of 

LPJ-GUESS to simulate potential natural vegetation has not been evaluated. Here, a unique 

dataset on 11 primary forests in Sweden was used to evaluate the potential natural vegetation. 

The vegetation carbon storage and different aspects of primary forest structure were 

investigated using a regression analyis and compared with bootstrapped field data. 

The results showed that LPJ-GUESS overestimated carbon storage, but the adjustement of 

the bole height ratio to 0.25, the disturbance interval to 143 years and the leaf longevity to 7 

years improved the model performance. With these improvements, the model could accurately 

explain 40% of the variation in the field data. The improvements however negatively affected 

the maximum tree height and further overestimated carbon storage in spruce trees. Furthermore, 

the same postive results to the adjustments of the parameters were not found for primary forest 

data form the Swedish national forest inventory.  

The initial overestimation of the modelled vegetation carbon storage could be explained by 

the simulation of very thin trees and the inclusion of grass in the vegetation carbon storage.  

The improvements had a good effect on most investigated structural parameters, but the 

changes within parameters, especially the leaf longevity for pine, were found to impact the tree 

type composition.  

In conclusion, the results showed that LPJ-GUESS could simulate potential natural 

vegetation moderately well and that this method could thus be used to more efficiently estimate 

vegetation carbon storage in primary forests. This method could further be used to contrast 

carbon storage in primary forests with managed forests and the results have a general relevance 

when simulating natural vegetation in LPJ-GUESS.  
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1 Introduction 

 

Since the late 1800s, the structure of Swedish forests, including stand volume, tree age and 

species composition has changed drastically. Primary forests have largely been converted into 

managed forests by a combination of logging, the introduction of silviculture and fire-

elimination (Linder & Ostlund, 1998). This loss of primary forests has led to the loss of different 

ecosystem services such as the habitat for wildlife, including many red listed species, as well 

as sequestration of carbon and prevention of flood and erosion (Linder & Ostlund, 1998; Wirth 

et al., 2009). 

Nowadays, primary forests are relatively rare in Europe, only covering 0.7% of Europe’s 

forested area (Sabatini et al., 2018). Of which, the majority in the Northern hemisphere occurs 

in the boreal region (Luyssaert et al., 2008; Sabatini et al., 2018). In Sweden, 358 sites with a 

combined size of 16 565 km2 of primary ecosystems are known, of which 9 926 km2 is covered 

by forest. This is only 2% of the total forest cover in Sweden (Ahlström et al., 2020). 

Primary forests can be defined as “Naturally regenerated forest of native tree species, where 

there are no clearly visible indications of human activities and the ecological processes are not 

significantly disturbed” (FAO, 2018). These natural boreal forests are characterized by many 

large diameter living and standing dead trees and are dominated by trees with ages over 200 

years (Linder & Ostlund, 1998). In Sweden, primary forests generally consist of Pinus sylvestris 

(Scots pine) and Picea abies (Norway spruce) (Linder & Ostlund, 1998).  

 

1.1 Carbon uptake in primary forests 
 Until recently, primary forests were thought to be carbon neutral and were thus excluded 

from carbon budget estimations (Odum, 1969). However, Luyssaert et al. (2008) found a carbon 

sequestration of about 2.4 ± 0.8 Mg C ha-1 yr-1. Their finding thus suggests that the 15% of the 

global forest area which consists of primary forests provides at least 10% of the net ecosystem 

productivity (NEP). In contrast, Gundersen et al. (2021) estimate a 30% lower carbon uptake 

than Luysseart et al. (2008). Despite differences in the exact value, both sources thus suggest 

that primary forests act as a carbon sink globally. 

Primary forest can accumulate carbon for centuries and therefore form an important carbon 

sink (Jacob et al., 2013; Luyssaert et al., 2008). Temperate and boreal forests in the Northern 

hemisphere are estimated to have a total annual sink of 1.3 +/- 0.5 gigatonnes of carbon 

(Luyssaert et al., 2008). This is a significant portion of the global terrestrial carbon storage and 

thus highlights the importance of primary forests not just for biodiversity (Jacob et al., 2013; 

Luyssaert et al., 2008).  

Forest ecosystems absorb atmospheric CO2 through photosynthesis. A large part of the fixed 

carbon is emitted back to the atmosphere through auto- and heterotrophic respiration, but part 

of the fixed carbon is sequestered in above- and belowground biomass (Canadell et al., 2007; 

Zhou et al., 2006). It is expected that if these primary forest are disturbed, much of the carbon 

stored in these forests will be emitted back to the atmosphere (Luyssaert et al., 2008). 

Furthermore, logging turns forests into a carbon sources for at least 14 years, and the regrowth 

forests remain weaker sinks than primary forests for many years (Schulze et al., 1999).  

 

1.2 Primary forests as a baseline to understand land use impacts 
About 75% of land globally is used for agriculture, grazing or forestry (Erb et al., 2007). In 

Sweden, forestry is a dominant land use but its impacts on carbon storage are not well 

understood (Erb et al., 2016; Erb et al., 2018). Land use affects the carbon stock and turnover 
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significantly (Erb et al., 2016; Erb et al., 2007). Currently biomass stores about 450 petagrams 

of carbon globally, but with no land use this could be doubled to 916 petagrams according to 

Erb et al. (2018). One way to estimate long term impacts of land use on vegetation carbon 

storage is to contrast unmanaged ecosystems with managed ecosystems.  

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) is a dynamic 

vegetation model that incorporates both nitrogen (N) and carbon (C) cycling in ecosystems. 

LPJ-GUESS is a state-of-the-art model that can simulate both potential natural vegetation and 

managed ecosystems (Smith et al., 2014). By using such a model, it is thus possible to estimate 

the impact of historical and future land use on the carbon cycle and carbon storage. However, 

since little data exists on carbon storage in primary forests, it remains largely unknown if LPJ-

GUESS accurately simulates potential natural vegetation. In this study, the model is tested using 

a unique dataset of vegetation carbon from 11 primary forest in Sweden. Moreover, parameters 

within the model are modified to more accurately simulate these forests. This study therefore 

contributes to future studies investigating the impacts of land use using LPJ-GUESS.  

 

1.3 Aim of the study  

 

This research aims to evaluate how well LPJ-GUESS can estimate vegetation carbon storage 

by primary forests in Sweden. This will be achieved by answering the following research 

questions: 

1) How well does LPJ-GUESS estimate vegetation carbon storage in primary forests using 

the default set-up? 

2) How well does LPJ-GUESS estimate the forest structure of primary forests? 

3) How well could LPJ-GUESS estimate vegetation carbon storage when parameters are 

adjusted to more accurately represent primary forests in Sweden? 
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2  Methodology 

2.1 General overview 
A general overview of the methods used in this study are depicted in Figure 1. The steps shown 

in this figure will be further explained in the following sections. Two types of field data were 

used for the methods in this study. Most of the results are based on primary forest data, but data 

from the Swedish national forest (NFI) inventory are also used. 

 
Figure 1. Simplified flow chart depicting the methodology used in this study. When field data is 

mentioned, field data on primary forests is used and when NFI field data is mentioned, data from the 

Swedish national forest inventory is used. 

2.2 The LPJ-GUESS dynamic vegetation model 
In this section the dynamic vegetation model that was used in this study will be explained as 

well as the model set-up.  

2.2.1  Model description 

LPJ-GUESS (Smith et al., 2001) is a dynamic vegetation model that is suitable for studies on 

regional to global scale. The model uses plant functional types (PFTs) to represent different 

vegetation types. Each PFT is defined by several variables, as can be seen in Figure 2. Each 

parameter is expressed in carbon biomass per area (kg C m-2). For woody PFTs (trees), each 

average individual falls within an age class in which individuals have the same size and growth 

rate. The density of the individuals is a resulting parameter. For herbaceous PFTs (grasses), one 

average individual represents the whole population. Density is thus not taken into account here.  

The model simulates a number of patches. Patches are defined as 0.1ha, which is assumed 

to be the maximum area within which a single tree can have influence on its neighbours. Within 
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a patch, the composition of PFTs is dependent on bioclimatic limits. The establishment of 

individuals is further influenced by stand structure and crowding over the years. An overview 

of the different PFTs that were used within this study and their properties can be seen in Table 

1. The leaf duration and shade tolerance of the used PFTs influence amongst others the canopy 

conductance and the maximum establishment rate. The PFTs are simulated using a 500 years 

spin-up time to establish carbon, nutrient and water storage in the various pools that are in 

equilibrium with the climate at the start of the transient period, 1901. The model further 

simulates patch destroying disturbances at specific intervals and wild fires (Smith et al., 2014).  

 

 
Figure 2. Figure showing how vegetation is modelled in LPJ-GUESS (Smith et al., 2014). 

 
Table 1. The different PFTs used in this study and their properties 

PFT Climate zone Growth 

form 

Leaf 

type 

Leaf duration Shade 

tolerance 

BNE Boreal W Needle Evergreen Shade tolerant 

BINE Boreal W Needle Evergreen Shade intolerant 

TeBS Temperate W Broad Summer green Shade tolerant 

IBS Temperate W Broad Summer green  Shade intolerant 

C3G Boreal/temperate H Grass - - 

W= Woody, H=Herbaceous. BNE= Spruce and BINE=Pine 

2.2.2 Model set-up 

The model input consisted of climate forcing data with monthly time steps from CRU-NCEP 

(Climate Research Unit and National Centers for Environmental Prediction) between 1901 to 

2015 (Wei et al., 2014). This data was interpolated to daily timesteps using the Global Weather 
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generator (Sommer & Kaplan, 2017). The atmospheric nitrogen deposition data consisted of 

monthly averages from the ACCMIP (Atmospheric Chemistry and Climate Model 

Intercomparison Project) (Lamarque et al., 2010). The soil data originates from WISE 3.0 

(Wide-field Infrared Survey Explorer, version 3) (Batjes, 2005) with calculations on 

hydrological properties of the soil following Olin et al. (2015). Further input consisted of the 

coordinates for each primary forest. 

The model was run in cohort mode. In this setting, which is the most common setting used, 

the model simulates trees grouped in age classes (cohorts) with varying number of individuals. 

The individuals in the cohorts therefore have identical size and form. The model was set to use 

the average of 50 replicate patches to estimate each individual forest, as this resulted in a steady 

model output with less variability arising from disturbances and successions, see Figure A in 

Appendix A, and was thus deemed sufficient. Model estimations for the most recent year, 2015, 

were used in the model evaluations. 

2.3 The field data 
Two kinds of field data were used in this study. The main model evaluations were based on 

primary forest field data, described in 2.3.1 Primary forest field data. Further field data was 

used to evaluate the influence of the degree of naturalness and the model optimization, this field 

data is described in 2.3.2 Swedish inventory field data. 

2.3.1 Primary forest field data 

The primary forests field data that was used in this study consists of preliminary data that was 

stratified randomly sampled based on soil moisture data to represent the average Swedish forest. 

The data was based on a subset of 11 forests from the primary forest map from Ahlström et al. 

(2020), see Figure 3. This subset was chosen because these forest included the most natural 

forests and had  a wide spread over Sweden. The data was sampled in circles with a 7 m radius, 

within this area all trees with a diameter at breast height (DBH) over 5 cm were included. The 

field data consisted of 15 to 26 sample plots per forest. Each sampled forest had a relatively 

high naturalness on the Buchwald scale (Buchwald, 2005), with values of 7 and 8.  

The Buchwald scale is a way of defining the level of naturalness of a forest. This scale ranks 

natural forests from 0-10 based on how natural they are. Factors that separate the different levels 

include the dominance of native flora, the presence of key species, the presence of human 

modifications (e.g. logging), the continuity of forests, and the presence of management (e.g. 

hunting). The different degrees of naturalness are further explained in Buchwald (2005). 

The field data included the tree species, diameter and height of the measured trees. The dry 

weight of biomass was calculated using the NFI standard biomass functions based on Marklund 

(1988).  

The field data was processed before it could be used as input and comparison with the model. 

Firstly, the coordinates were converted into GCS WGS 1984 and transformed into WGS 1984 

World Mercator. The mean of the different coordinates for each forest was then computed to 

use as input for the model in order to find the closest 0.5 × 0.5 degree grid cell. Secondly, the 

total carbon stored in live biomass was calculated by taking 50% of the dry weight of live 

biomass (Sandström et al., 2007). Then, a bootstrap was performed on the field data. This was 

done to first of all give a better representation of the forest, as field samples were few, and 

secondly to give an indication of the accuracy of the used vegetation carbon storage means. The 

field data was resampled into 100 values per forest using the mean. The mean of all the 

bootstrapped means was then used to compare with the model output. The95% confidence 

interval of this mean was calculated using the 100 bootstrapped means and shown as error bars 

in the figure.  
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Figure 3. Map showing the locations of the centres of the 11 primary forests used in this study. 

 

2.3.2 Swedish national forest inventory field data 

The Swedish national forest inventory (NFI) field data was sampled based on grids and included 

all types of land use. The data included amongst others, age, height and the dry weight per area 

(Fridman et al., 2014; Ståhl et al., 2011). The naturalness for each forest according to the 

Buchwald scale (Buchwald, 2005) was also determined, by overlaying the data with the primary 

forest map by Ahlström et al. (2020). 

The data contained forest data from many different years, all data sampled before the year 

2000 was removed, since this was considered too far from the model estimations for 2015. 

Furthermore, data that had a Buchwald naturalness value below 5 was removed, as 5 and above 

represents primary forests according to the Buchwald scale (Buchwald, 2005). This resulted in 

the data points seen in Figure 4. Lastly, the carbon content was calculated by taking 50% of the 

dry weight and was then averaged over each forest (Sandström et al., 2007). 
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Figure 4. Map showing the locations of the data on primary forests from the Swedish national forest 

inventory. 

2.4 Parameter adjustment 
Four different model parameters were adjusted to evaluate their impact on the model fit. The 

specific parameters were chosen based on expectations by an expert (Stefan Olin), and on what 

properties are unique for primary forests, as well as what could be specific for the boreal region. 

In addition, a new parameter to the model was used, the bole height ratio. The values for the 

adjusted parameters were chosen from literature and the maximum and minimum value with 

two intermediate values were used. The different values were adjusted within the model input 

using a one-at-a-time approach, which means only one parameter differed from the default set-

up per model run. More information on each parameter can be found in the following sections. 

2.4.1 Disturbance interval 

Firstly, the parameter for the disturbance interval was adjusted. The disturbance interval refers 

to the time between stand replacing disturbances. These events can be for example windstorms 

and landslides. Disturbance events can remove trees from patches or completely destroy the 

patch, changing the disturbance interval could thus impact the amount of carbon stored in 

vegetation. 

Primary forests in Sweden potentially have a higher disturbance interval than the model 

default. The initial value for the disturbance interval in the model was set to be 100 years. 

However, in a study on primary forests in Eastern Europe, a higher average and maximum past 

disturbance interval were found. A maximum of 300 years was used in this study, as this was 

the maximum interval that was found by Rodrigo et al. (2022). An intermediate value of 200 

years, which was more common, and an intermediate value of 143 years, which was the average, 

were also used, with the minimum value being the model default (Rodrigo et al., 2022). 
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2.4.2 Leaf longevity and leaf turnover 

Secondly, the parameter for the leaf longevity was changed. The leaf longevity refers to the 

amount of time before a leaf is shed. When the leaf longevity is changed, the leaf turnover 

should also be adjusted. The leaf turnover value refers to the fraction of leaves that are shed 

each year. The turnover can be calculated using the following equation.  

 

Leaf turnover =  
1

Leaf longevity
 

 

Where leaf longevity is the duration of one leaf on the tree in years. For a leaf longevity of 7 

years, the turn-over would thus be roughly 0.14. Which means that each year 14% of the leaves 

are regenerated. 

Changing the leaf longevity and turnover would impact the specific leaf area (SLA), which 

in turn affects the photosynthetically active radiation (FPAR) taken up by the plant. 

Furthermore, the tree height is impacted by an increase in leaf longevity. When SLA (cm2 g-1) 

decreases, tree height will increase as they have an inverse relationship in LPJ-GUESS (Smith 

et al., 2014). Prolonging the leaf longevity will thus possibly reduce the carbon storage and 

increase the tree height.  

This parameter was only changed for the pine trees (PFT=BINE), because it was found that 

the model overestimates carbon storage in this tree type the most. Scots pine (Pinus sylvestris) 

is the most common type of pine in Swedish primary forests, leaf longevity values for this 

species were thus used (Linder & Ostlund, 1998). The default leaf longevity for pine was 3 

years in the model and was used as the minimum value for the parameter. Jankoski et al. (2017) 

found a leaf longevity of 3-7 years for Scots pine from the South to the North of Sweden. 7 

years was therefore chosen as the maximum value and 5 as the intermediate one. 6 years was 

further used as an intermediate value, because so many forests were located in the north. 

2.4.3 Respiration coefficient 

Thirdly, the value for the respiration coefficient for boreal vegetation was changed. The 

respiration is deducted from the gross primary productivity (GPP) to compute the net primary 

productivity (NPP) (Smith et al., 2014). Increasing the respiration might thus decrease the 

amount of carbon stored within vegetation by reducing growth. 

The respiration coefficient was originally set at 1 g-C g-N-1 day-1 °C-1 for boreal and 

temperate vegetation. According to Van Dijk & Dolman (2004) a maximum value of 2.5 g-C 

g-N-1 day-1 °C-1 could be used for the respiration rate, with values more commonly ranging 

between 1 g-C g-N-1 day-1 °C-1 and 2 g-C g-N-1 day-1 °C-1. A minimum of 1 g-C g-N-1 day-1 °C-

1, intermediate values of 1.5 and 2 g-C g-N-1 day-1 °C-1 and a maximum value of 2.5 g-C g-N-1 

day-1 °C-1 were thus used. 

2.4.4 Bole height ratio 

Lastly, the bole height ratio was adjusted. The bole height ratio refers to the fraction of the stem 

that is branchless. Originally, the bole height ratio was decided based on the PFT specific 

minimum photosynthetically active radiation. However, this value could now manually be 

adjusted. Increasing the bole height ratio would decrease the number of branches and therefore 

decrease vegetation carbon storage. 

A value of 0 was used for the minimum, because this would use the original way to calculate 

the bole height ratio. Some manually put in values were also used. An absolute maximum of 

0.5 was used and intermediate values 0.1 and 0.25 were also used.  
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2.5 Evaluation of naturalness influence on model fit 
The definition of primary forests can be quite broad, including many degrees of naturalness. 

According to the Buchwald scale, values above 5 are considered primary forest. But the scale 

goes all the way up to 10 (Buchwald, 2005). Therefore there is a broad range of what forests 

are considered primary forests. It was thus evaluated how the degree of naturalness impacts the 

model accuracy.  

For this, the NFI data was used, because this data contained many data points with a high 

variance in naturalness. The naturalness could be incorporated into the model by changing the 

input coordinates to only include forests with certain values on the Buchwald scale. The model 

was run using data on each Buchwald value over 5 that was available. The percentage that the 

model differs from the field data was then computed by calculating the difference between the 

observed and simulated vegetation carbon storage and then dividing it by the observed value. 

This was multiplied with 100% to give the percentage difference.  

2.6 Evaluation of forest structure 
Different aspects of the structure of primary forests were evaluated to see where the model 

performed well and where the model had difficulties in accurately simulating primary forests. 

Furthermore, the model optimization could be better evaluated with these factors.  

2.6.1 The tallest tree 

The size of the modelled trees was evaluated as an indicator of stand structure. To evaluate how 

well the model estimates the tall trees present in primary forests, the maximum tree height was 

calculated in two different ways. Firstly, the absolute maximum value over all patches and 

samples for each forest were used. This was compared with the maximum tree height over all 

samples that was found for each forest in the field.  

Secondly, the meanvalue of the maximum tree height for all patches in the model and 

samples in the field were used. Because the model had more patches the chances of getting a 

tall tree were higher, this way the odds were more equal. The average maximum tree height for 

the field data was then plotted against the average maximum simulated tree height. 

2.6.2 Tree density (>5 cm) 

The tree density of the simulated forests was compared with the field data. For this, trees with 

a diameter over 5 cm were used, as was done in the field data. The density was then calculated 

by dividing the number of trees by the patch or sample area and then averaging this per forest. 

The field density was then plotted against the simulated density.  

2.6.3 Individual tree species carbon storage 

The amount of carbon stored per tree species in the model simulations was also evaluated. The 

different PFTs present in the study areas are shown in Table 1. For these tree types, the average 

carbon stored per m2 was calculated. Since there was a low amount of broadleaf trees present 

(PFTs= IBS and TeBS) the carbon storage in these tree types were combined. For the field data, 

the sampling sites were averaged for each forest. These values were then compared with the 

model output. 

2.7 Statistical analysis 
The model output and the field data were compared using a regression analysis. The modelled 

values for the most recent year (2015) were plotted against the field data for the corresponding 

forest. A trendline was computed and the RMSE and R2 were calculated. The RMSE showed 

the difference between the observed data and the modelled date and the R2 indicated how well 
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the model represents the variability between primary forests in terms of vegetation carbon 

storage. A 1:1 line was also computed as this showed the ideal model fit. Average values for 

all forests were also plotted. 

2.8  Model optimization 
The results of the one-at-a-time approach were evaluated based on their influence on the R2 and 

RMSE values for the regression of the modelled vegetation carbon and the observed vegetation 

carbon. Based on these values, the 2 best parameters were selected and used in the model 

optimization, where all combinations were used for a model run. During this selection, the 

parameter values that gave the highest R2 values amongst the lowest RMSE values were chosen. 

This resulted in the following combinations for model runs as seen in Table 2. For each run, the 

R2 and RMSE were also computed, to evaluate which combination of parameters gives the 

highest model accuracy. 

 
Table 2. The different combinations of parameters for the model optimization attempts 

  Bole  0.1 Bole 0.25 DI 100 DI 143 LL 5 LL 7 R 1 R 1.5 

Run 1 x   x   x   x   

Run 2 x     x x   x   

Run 3 x   x     x x   

Run 4 x     x   x x   

Run 5   x x   x   x   

Run 6   x   x x   x   

Run 7   x x     x x   

Run 8   x   x   x x   

Run 9 x   x   x     x 

Run 10 x     x x     x 

Run 11 x   x     x   x 

Run 12 x     x   x   x 

Run 13   x x   x     x 

Run 14   x   x x     x 

Run 15   x x     x   x 

Run 16   x   x   x   x 

Where Bole is the bole height ratio, DI is the disturbance interval in years, LL is the leaf 

longevity in years and R is the respiration rate in g-C-1 g-N-1 day-1 °C-1. 

Note: The default run used a bole height ratio of 0, disturbance interval of 100 years, leaf 

longevity of 3 years and a respiration coefficient of 1 g-C-1 g-N-1 day-1 °C-1. 

 

2.9 Optimized model evaluation 
The optimized model was chosen based on the highest R2 amongst the lowest RMSE values. 

The results from this optimization were further evaluated using the same methods as described 

under 2.6 Evaluation of forest structure. The outcomes were then compared with the forest 

structure of the default model run. 

2.10 Optimized model with NFI data 
The optimized model was further used to evaluate how well the combination of parameters 

worked on a different dataset. For this, the default and optimized model were run with the NFI 

data. The R2 and RMSE were also computed to evaluate the impact of the optimization.    
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3 Results 
In this section, the results from the above described in section 2 Methodology will be presented 

and described.  
 

3.1 Default simulation evaluation 
The results from the default simulation, see Error! Reference source not found., showed that 

overall the model overestimates vegetation carbon storage. The average modelled vegetation 

carbon was 9.64 kg m-2, whereas the average observed carbon was 8.52 kg m-2. The values of 

the different forests were grouped together with only one clear outlier at observed: 15.7 kg m-2 

and simulated carbon: 9.2 kg m-2. This was one of the two more southern forests and had the 

highest observed vegetation carbon. This high carbon storage was clearly underestimated by 

the model. Overall, the data had a horizontal trendline and thus a low R2. The value for the 

RMSE was moderate.  

 
Figure 5. Results from the default simulation. Showing both the 11 primary forests and the average 

over all forests, as well as the trend. 

 

3.1.1 Bootstrapped field data 

The effect of the bootstrap on the average vegetation carbon for each forest was small, see Table 

3.The bootstrap eliminated the difference in sample number for the field data, with each forest 

now having 100 samples. The bootstrap further gave insight into the confidence of the used 

means. The 95% confidence interval for all used bootstrapped means can also be found in Table 

3, the average deviation from the mean was around 2 kg m-2. This deviation was small enough 

that an overall estimation of the field data was 95% certain as seen in Figure 6. A high 

underestimation of the southernmost forest was also certain.  
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Table 3. Results from the bootstrap on the mean vegetation carbon storage in primary forests field 

data 

Forest 
number 

Mean 
(kg m-2)  

Number of 
resamples  

Bootstrapped 
mean (kg m-2) 

95% Confidence interval of 
bootstrapped mean (kg m-2) 

1 8.55 100 8.61 (6.11, 11.03) 

2 6.26 100 6.31 (4.70, 7.90) 

3 6.07 100 6.2 (4.87, 7.65) 

4 5.81 100 5.82 (4.57, 7.39) 

5 9.31 100 9.3 (7.65, 11.86) 

6 9.79 100 9.75 (8.55, 11.24) 

7 7.53 100 7.57 (6.49, 8.55) 

8 6.26 100 6.35 (5.31, 7.71) 

9 10.23 100 10.2 (7.64, 13.76) 

10 15.68 100 15.7 (11.96, 19.56) 

11 7.81 100 7.94 (5.87, 10.13) 

 

 

 
Figure 6: Figure showing the confidence interval of the used means for the primary forests plotted 

against the modelled vegetation carbon. 

 

3.1.2 Primary forest structure evaluation 

LPJ-GUESS systematically underestimated the average maximum tree height, see Figure 7A. 

Although, there was one outlier where vegetation carbon was overestimated, at observed: 

21.8mand simulated: 26.6m, which was the most Southern forest. When the overall maximum 

tree height was considered on the other hand, the model actually overestimated the maximum 

tree height, see Figure 7B.  Both figures showed a relatively small spread in the data with a 

trendline that was almost parallel to the 1:1 line. This relatively good relationship was also 

reflected in the high R2 values.  
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The density of trees over 5 cm in diameter was underestimated by the model, see Figure 8. Of 

which, the most dense forests were the most underestimated. The statistics here showed a 

moderate to good trend with an R2 of 0.29. The RMSE showed a moderate spread in the data, 

with an average difference between the observed and modelled data of 306 trees ha-2. 

 
Figure 8. The tree density of the 11 primary forests. The modelled values were based on the default 

settings. 

 

Vegetation carbon storage in spruce trees, the most common tree species according to the field 

data, was both under- and overestimated by the model, see Figure 9A. In forests with higher 

amounts of carbon in spruce trees (>4 kg m-2) the carbon storage in spruce was underestimated, 

whereas in forests with lower carbon storage in spruce trees, the storage was overestimated. 

This resulted in a near horizontal trend in the data. The R2 value was close to 0, but the spread 

of the data was low, which was reflected in the RMSE.  

For pine trees, there was a general overestimation in vegetation carbon storage, see Figure 

9B. This was further reflected in the average over all forests. Also for this tree type there was a 

near horizontal trend in the data. There was a large spread between the data on carbon storage 

for pine trees, which is reflected in the high RMSE value. The R2 was again close to 0.  

Figure 7. Figures showing the observed and simulated maximum tree height for primary forests. Figure 

A shows the average maximum tree height and figure B the overall maximum tree height. The modelled 

values were based on the default settings. 
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Generally, broadleaf trees stored little carbon in the field data, see Figure 9C. LPJ-GUESS 

also simulated low values for vegetation carbon storage, but underestimated values above 0.5 

kg m-2. One value was hugely overestimated by the model, the observed value was 0 kg m-2 

whilst the simulated value was 8.1 kg m-2. This was the average vegetation carbon storage of 

the most southern primary forest. This one outlier had a massive impact on the average and 

trendline, leading to a R2 close to 0 and a high RMSE of 2.59 kg m-2. 

 

3.2 Influence of naturalness 
The results for vegetation carbon storage of forests with different levels of naturalness showed 

that the model estimated vegetation carbon storage better for forests with a higher level of 

naturalness, see Figure 10. Forests with a naturalness value of 9 were an exception, because 

here an increase in the overestimation of carbon storage in comparison with forests with the 

naturalness value 8 could be observed. The model performed the best for a Buchwald value of 

8 and the worst for a Buchwald value of 6. Overall, the model tended to overestimate the 

vegetation carbon storage with overestimations up to 84% over the observed value. 

 

Figure 9. The Vegetation carbon storage of the 11 primary forests for the three different tree types present, 

compared with the modelled values. In figure A the storage in spruce trees is shown, in figure B the storage in 

pine trees and in figure C the storage in broadleaf trees. 
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Figure 10. Bar chart showing the percentage difference between the simulated data and the observed 

data for vegetation carbon storage  for each naturalness value with available data on the Buchwald 

(B) scale that falls under the term primary forest. The overestimation of B=5 was based on 14 

observations, B=6 on 19, B=7 on 20, B=8 on 16 and B=9 on 6 observations. 

 

3.3 Parameter adjustments 
The parameter adjustments showed that the investigated parameters could improve the model 

accuracy both when it came to the R2 and RMSE (Table 4). Most chosen values (coloured in 

green) were neighbouring, leaf longevity for pine was an exception. A leaf longevity of 6 years, 

had a worse influence on the R2 and RMSE than a leaf longevity of 5 or 7 years. 

 
Table 4. The adjusted parameters and their influence on the R2 and RMSE values for Veg C. 

 
Values R2 RMSE (kg m-2) 

Bole height ratio 0 0.0037 3.11 

  0.1 0.1934 2.8 

  0.25 0.3294 2.93 

  0.5 0.1126 3.01 

Disturbance interval (years) 100 0.0037 3.11 

  143 0.1354 3.25 

  200 0.1386 4.11 

  300 0.0188 4.88 

Leaf longevity Pine (years) 3 0.0037 3.11 

  5 0.3373 2.21 

  6 0.0172 2.94 

  7 0.2417 2.5 

Respiration (g C g N-1 day-1 °C-1) 1 0.0037 3.11 

  1.5 0.0266 2.99 

  2 0.3095 3.39 

  2.5 0.2224 4.51 

In green: the chosen values for the parameters. 
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3.4 Model optimization 
The optimization of the model, as done according to the section 2.8 Model optimization, shows 

that the chosen parameters could improve the model accuracy, see Table 5. The highest 

improvement was achieved with Run 8, where the R2 was found to be 0.3928 and the RMSE 

2.26 kg m-2, which was a vast improvement from the default simulation which had a R2 of 

0.0037 and a RMSE of 3.11 kg m-2. Thereby, the spread and the percentages of forests that 

could be explained by the model improved with the optimization. 

Overall, all model runs except for run 6 and 13 contributed positively. Several model runs 

even gave almost as good an impact on the R2 and RMSE as Run 8, namely Run 3 and Run 7 

were really close in values. The results of all these optimized runs show there are two parameter 

values which gave good results, the leaf longevity of pine of 7 years and a respiration value of 

1 g C g N-1 day-1 °C-1. Additionally changing the disturbance interval to 143 or the bole height 

ratio to 0.25 gave the best model results. 

 
Table 5. The statistical results from the different model optimization attempts 

 

 

3.5 Optimized model evaluation 
The optimized model results show that the average vegetation carbon storage has not changed 

significantly from the default simulation, see Figure 11. However, the trendline has improved, 

it is now much closer to the 1:1 line. Furthermore, the optimized model performed a lot better 

when estimating carbon storage for high storage forests. The R2 and RMSE also improved 

significantly. 

 

 
R2 RMSE 

Run 1 0.112 2.54 

Run 2 0.0494 2.89 

Run 3 0.3501 2.27 

Run 4 0.1897 2.52 

Run 5 0.0004 2.94 

Run 6 0.0897 3.06 

Run 7 0.3657 2.28 

Run 8 0.3928 2.26 

Run 9 0.0411 3.48 

Run 10 0.1908 2.67 

Run 11 0.2424 3.32 

Run 12 0.3318 2.77 

Run 13 0.1486 3.52 

Run 14 0.0007 3.26 

Run 15 0.1265 3.68 

Run 16 0.1394 3.03 



17 

 

 

The  average maximum tree height improved greatly with the optimized model run, see Figure 

12A. The average value is now situated on the 1:1 line, with a trendline close to the 1:1 line, but 

a bit steeper. The R2 and RMSE have also improved compared to the default simulation.  

The maximum tree height worsened compared to the default simulation, see Figure 12B. 

The trendline and model values are further overestimated. On top of that, the data spread and 

RMSE have increased, whilst the R2 has decreased. 

 

 

For the tree density, the results were mixed, see Figure 13. The average has improved a bit as 

has the trendline, which is now closer and more parallel to the 1:1 line. On the contrary, the R2 

has decreased and the data spread and RMSE have increased. 

Figure 11. The simulated vegetation carbon storage of the optimized model compared with the field 

data.  

Figure 12. The average maximum tree height (A) and maximum tree height (B) based on the optimized 

model run, compared with the field data. 
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Figure 13. The tree density for the optimized model run. Only trees with a DBH over 5 cm were 

included. 

For spruce trees, the trendline improved compared to the default simulation, as well as the 

previous underestimation for high carbon storage, see Figure 14A. Although, the model now 

overestimated almost all forests and the average model value was a lot higher. The R2 improved, 

but the RMSE increased. 

For pine trees, the model is now instead of overestimating, underestimating the carbon 

storage, see Figure 14B. The trendline is less horizontal, but instead of positive, it is negative. 

The R2 improved moderately, as did the RMSE. 

There were little visible changes for broad leaf trees, except for the fact that the one outlier 

decreased slightly in value, see Figure 14C. Thus resulting in a lower RMSE.   
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3.6 Optimized model and  NFI data 
The default model simulation for the Swedish forest inventory data gave a relatively good 

result, see Figure 15A. The data was relatively close to the 1:1 line and the R2 was better than 

the R2 for the data from the primary forests. The model did have a hard time with the higher 

field vegetation carbon ( >11 kg m-2). Overall, the model also overestimated vegetation carbon 

storage for this dataset.  

The optimized model did not show improvements for the Swedish forest inventory data, see 

FigureB. The average and trendline were very similar to the default simulation. The R2 was 

also very similar, but the RMSE increased.  

Figure 14. The Vegetation carbon storage of the 11 primary forests for the three different tree types 

present, compared with the optimized modelled values. In figure ) the storage in spruce trees is 

shown, in figure B the storage in pine trees and in figure C the storage in broadleaf trees. 
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Figure 15. The vegetation carbon storage of the NFI field data compared with the model simulation. 

In figure A, the default simulation is shown, whilst in figure B the optimized model results are shown. 
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4 Discussion 
In the following section, the results will be discussed. The uncertainties within the field data 

and model will also be discussed, as well as suggestions for future studies.  

 

4.1 Evaluation of the default simulation 
 

The default simulation showed a good estimation of vegetation carbon storage by the model. 

However, the statistics, mainly the R2, did not reflect this. This was mainly because of a high 

underestimation of high carbon storage by the model, thus leading to a horizontal trendline. It 

can be concluded that the model had a harder time simulating a highly productive primary forest 

and performed better for a moderate carbon storage. 

Results for the investigation into the confidence interval of the used means showed that there 

is 95% likelihood that the used means are within 2 kg m-2 of the used values. Looking at the 

results for the default simulation, it was found that despite this uncertainty, the model still 

overestimated vegetation carbon storage in primary forests. Furthermore, the highly 

underestimated southern forest was with a 95% confidence underestimated.  

The overall overestimation that can be seen in the default simulation can be explained by the 

fact that LPJ-Guess was found to have many thin trees. In the model data there were on average 

1876 trees with a diameter below 0.05 m per hectare. Some of these thin trees were the result 

of disturbances, but the majority was not, as the rest of the patch contained old trees and the 

thin trees were present in almost all patches. This is unrealistic as primary forests are far into 

the development stage and new trees rarely occur, except after disturbances (Linder & Ostlund, 

1998). These trees still contribute to the carbon storage and might thus help explain why LPJ-

Guess overestimates carbon storage for primary forests in Sweden. The model thus simulates 

trees way too thin, making the vegetation carbon storage higher than it would be in reality. 

Another factor that might help explain the model overestimation is the fact that grass is also 

included in vegetation carbon storage, whereas this was not included in the field data. This is 

however only 0.037 kg m-2 and will have much less of an influence on the carbon storage than 

the presence of 1876 thin trees per hectare. 

It was found that on average the model simulated smaller trees than what was found in the 

field data. A similar result was found by Smith et al. (2014) when looking at average tree height 

for needle leaf trees. Unlike the average maximum tree height, the maximum tree height was 

overestimated by the model. This overestimation could be simply explained by the difference 

in patch size and amount between the model data which had a patch size of 0.1 ha and consisted 

of 50 patches and the field data which had a patch size of 0.0154 ha and consisted of 15 to 26 

patches, which made the likelihood of having taller trees much higher for the model.  

Furthermore, the density showed a good agreement between the model and field 

observations. This is in agreement with Smith et al. (2014) who found that the model accurately 

captures mean forest density in needle leaved forests. In the forest density calculations, the thin 

trees were excluded, which could mean that without these thin trees LPJ-GUESS might simulate 

values closer to the field data.  

For the different tree types, the model showed a similar storage for all forests. This was 

mainly seen in the almost horizontal trendline for all species. This was remarkable because the 

forests were spread all over Sweden. As a result, a difference between north and south was to 

be expected.  

The differences found between the model and field data might have been more pronounced 

if data with a different naturalness was used for the primary forests field data. The investigation 

into the model accuracy for different naturalness showed that the model performs better for 

higher naturalness, which the used field data had (B=7 or 8). Although, a higher overestimation 
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for forests with a naturalness value of 9 was found, thus breaking the trend. This is to be 

expected as these forests are often situated up in the mountains and thus have a low productivity 

and carbon storage. But, the estimated value for this naturalness class is also the most uncertain. 

To accurately estimate the overestimation for this class, further observations would be needed. 

The high overestimation for low naturalness forests is indicative of human influence and can 

thus point towards logging activities in the past, resulting in a lower carbon stock. The observed 

trend is indicative that perhaps the model has almost no bias for completely natural forests. 

4.2 Adjusted parameters 
For all chosen parameters, parameter changes gave better results when comparing observed 

and simulated vegetation carbon storage than the default. All of the used parameters thus seem 

to play a role in improving the estimations for the carbon storage of these boreal primary forests. 

Some parameters improved the model accuracy a lot more than others, mainly the leaf longevity 

and bole height ratio played important roles. Changing the respiration did not seem to have a 

large effect when combined with other parameters and could thus be disregarded in further 

studies. 

Changing the disturbance interval did not help reduce the overestimation by the model, but 

instead increased it. However, a larger disturbance interval than 100 years still gave better 

results when it came to data trend. It might be more realistic to increase the disturbance interval 

for primary forests, as resulted from field data by (Rodrigo et al., 2022), despite the model 

overestimation. 

The adjusted parameters showed some interesting results. The needle longevity for pine had 

good results for 5 and 7 years, but worse results for 6 years. This could be attributed to the 

location of the forests. As stated by Jankowski et al. (2017) the leaf longevity varies along the 

latitude of Sweden from 3 years in the South to 7 years in the North. It could thus be speculated 

that the latitude of the forests played a role in the worse results for 6 years. This seems relatively 

unlikely as the spread of the forests is quite uniform. However, the best way to represent the 

leaf longevity all over Sweden, might be to vary the needle longevity parameter north to south 

as suggested by Reich et al. (2014) and Jankowski et al. (2017). Furthermore, parameters for 

the respiration rate and disturbance interval were found to have a higher R2 when increased, 

but also a higher RMSE. Consequently, the trendline would improve, but estimations would be 

further from the field data. Higher respiration or disturbance interval values were thus not used 

in the model optimization. 

It was also found that changing these parameters adjusted the tree type composition. Similar 

results were found by Wramneby et al. (2008), where a shift in competitive balance was found 

when parameters were adjusted. The main influence on the shift in this study is assumed to be 

the leaf longevity for pine, as this impacted the pine trees, giving less storage in this tree type 

and thus more competition from the other tree types.  

 

4.3 Evaluation of the optimized model 
The best model results were found when the bole height ratio was adjusted to 0.25, the 

disturbance interval to 143 years and the leaf longevity to 7 years. The model optimization runs 

showed that it was overall best to keep the respiration at 1 g C g N-1 day-1 °C-1, as was the 

default in the model. Except for this parameter all other parameters could be varied and give 

good results. The resulting best R2 value of 0.3928 showed that LPJ-GUESS can explain about 

40% of the variance within the field data. Similar statistical values were found by Lindeskog et 

al. (2021) when evaluating vegetation carbon storage in managed forests. The model could thus 

estimate vegetation carbon storage well, with a few small adjustments.  
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However, the optimization did not give improvement for all investigated forest structural 

parameters. The accuracy of the model predictions for maximum tree height decreased and the 

carbon storage in spruce was more overestimated on average. However, the average maximum 

tree height did give a better estimation after the optimization. This is remarkable because the 

model was not optimized for this parameter. This result suggests that the model represents 

primary forests better after optimization when it comes to certain structural parameters. The 

choice of changing the suggested parameters thus depends on what parameters are of interest. 

The NFI data did not experience the same improvements seen in the primary forest data. The 

default simulation performed better statistically than the default simulation for the primary 

forests field data. However, it could not be improved using the same parameters. This could be 

explained by the differences between the two field datasets. Mainly that the NFI field data had 

less samples per forests, sometimes only one or two, and the used vegetation carbon storage 

values therefore had more uncertainties.  

4.4 Uncertainties in the field data 
The field data that was used brought several uncertainties. 

Firstly, the number of forests was relatively low, not all types of primary forests present in 

Sweden might thus be represented. Furthermore, the way that the vegetation carbon is 

calculated can give some uncertainties. The used functions have been found to underestimate 

belowground biomass and the dataset that the Marklund function was based on also had a 

slightly higher wood density than is found nowadays (Petersson & Ståhl, 2006). However, the 

method is considered the standard in Sweden and has been found to accurately represent carbon 

storage in trees all over Sweden (Finér, 1989; Fridman et al., 2014).  

The NFI field data used the same sampling strategy and biomass calculations as the primary 

forests field data, however it was not focused particularly on primary forests. Here, primary 

forests were only selected based on the Buchwald value. It is unknown how these values were 

determined in the field and their accuracy is thus unknown. Because of the sampling strategy 

used by the NFI, the amount of samples per forest can also differ vastly. Thus giving different 

levels of accuracy in forest averages.  

4.5 Uncertainties within the model 
Models are a simplification of reality and thus carry uncertainties. Firstly, the climate data 

brings large uncertainties. Findings presented by Wu et al. (2017) show that errors in climate 

datasets have a higher influence on model results than the model structure shortcomings or 

parameterizations. 

Secondly, the model does not use data on current forests, but instead estimates what trees 

can grow in certain areas and based on that constructs a forest. This means that little input data 

is necessary, but also that results can deviate from the actual forest that is being modelled. This 

was reflected in the difficulty that LPJ-GUESS had when estimating different values for the 

southernmost forests. It simulated an underestimation of carbon storage, overestimations for 

average tree height and carbon storage in broadleaf trees. Overall, the model seems to have 

difficulty in predicting forests based on latitudinal differences.  

 

4.6 Further studies 
The model contained many parameters that are of influence on the vegetation carbon storage 

and that could thus also be investigated. Furthermore, soil carbon storage and dead wood carbon 

storage could be evaluated, which are important carbon stores in primary forests (Luyssaert et 

al., 2008). Furthermore, the results of this study can be used to investigate the impact of land 

use on carbon storage or to determine the carbon storage of individual primary forests.   
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5  Conclusion 
It was found that the default set-up of LPJ-GUESS can estimate the vegetation carbon storage, 

but the trend in the data is off. There is also a general overestimation, which could be explained 

by an abundance of thin trees that were simulated in LPJ-GUESS, which should not be present 

in an actual primary forest. The model performed well for tree height and density, but has 

difficulties in the carbon storage per tree type. Particularly the carbon storage in pine trees was 

overestimated. The model also had difficulties with the north-south distribution in Sweden. 

Furthermore, the model was found to perform better for forests with a higher naturalness on the 

Buchwald scale. The investigated parameters, the disturbance interval, leaf longevity and 

turnover, respiration coefficient and bole height ratio, were all relevant for improving the model 

simulation of vegetation carbon storage in primary forests. For the used field data, a 

combination of the adjustment of the bole height ratio to 0.25, the disturbance interval to 143 

years and the leaf longevity to 7 years resulted in the best simulation of vegetation carbon 

storage. This resulted into the model being able to explain 40% of the variation in the field data. 

The same result was however not achieved when a different dataset (NFI) was used, thus the 

adjustments of parameters might need to be evaluated per dataset. Overall, LPJ-GUESS could 

be used to relatively accurately estimate carbon storage in primary forests, with a few small 

adjustments giving an even better result. The results have both a general relevance to users of 

natural vegetation within LPJ-Guess, as well as a relevance to help further our understanding 

of the effect of land use on carbon storage. 
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A Appendix – Justification of npatch (50) 

 

 
Figure A. Plot showing the vegetation carbon storage from 1900 to 2015 for different numbers of 

simulated patches (Npatch). 

 


