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Abstract

When we listen to human speech, one of the first characteristics we assess is the gender
of the speaker. For individuals who suffer from gender dysphoria, this may cause them
to be negatively impacted by their voice not matching their gender identity. Therefore,
some persons attempt to change their voices with a speech-language therapist. Differences
between the average female and male voice have been studied extensively, and the findings
are used in therapy to appropriately modify patients’ voices. By applying this knowledge
to digitally alter patients’ voice recordings to sound more like their respective target voices,
treatment could be made easier and more effective. This thesis explores the use of interpo-
lated all-pole filters and TD-PSOLA to transform voice recordings of the vowel /a/ to be
perceived as more feminine or masculine, while simultaneously attempting to preserve the
qualities that make voices sound natural. Additionally, methods of measuring the distance
between speech signals using the 2-Wasserstein metric are investigated. An online survey is
conducted to evaluate the perceived gender and naturalness of 15 transformations. Results
from the survey indicate that the gender attribution of the recordings changes when they are
transformed and that the average gender scores correlate with transformation goals. It is
found that five out of eleven transformed speech signals were rated as natural by more than
50% of listeners. Furthermore, the ratings imply that several of the transformed signals
were as natural sounding as unmodified ones. In conclusion, this method of voice trans-
formation shows promise, but additional research is required before real-world applications
can be made.
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1 Introduction

1.1 Background & Motivation

Speech is arguably one of the most important communication tools humans have and has had a major
impact on our evolution as a species. We use the information conveyed in voices to understand
more about the speaker’s physical characteristics, such as age, sex, and health status, as well as
their psychological and social characteristics [Laver, 2009]. For instance, listeners can learn about
the speaker’s personality, occupation, and social status. One attribute that is typically easy and
fast to asses from listening to a speaker is their gender [Kreiman and Sidtis, 2011]. When we are
born, we are assigned a gender based on our physical appearance: either female or male. However,
some people find that their own experience of their gender does not match their assigned gender
and therefore identify as transgender, trans for short. The American Psychology Association reports
that several transgender persons experience gender dysphoria before or during their transition. They
define gender dysphoria as the feeling of unhappiness arising from an inconsistency between how an
individual views their own gender and how it appears to others [Association, 2013]. A report by the
Swedish National Board of Health and Welfare from 2018 states that approximately 6000 people,
or 0.06 percent of the population, were diagnosed with gender dysphoria in Sweden and that the
number of diagnoses had increased consistently over the last decades [Socialstyrelsen, 2020].

Some studies have shown that having a voice that does not match the gender identity can
have a negative impact on quality of life and personal safety as well as attract unwanted societal
attention and potentially reveal birth-assigned gender [Oates and Dacakis, 2015]. For these reasons,
some people choose to seek treatment with a speech-language pathologist. Oates and Dackis report
that the majority of gender-nonconforming individuals who are seeking treatment are transgender
women. This could be because hormone treatments lower the pitch of transmen’s voices sufficiently
for them not to need further treatment. Nonetheless, even without physical alterations, a study
from 2004 found that transwomen were able to increase their fundamental frequency successfully
and in a healthy manner [Soderpalm et al., 2004]. There is not a lot of evidence for the effectiveness
of vocal treatment, most likely because of a lack of studies due to it being a recent field of research.
However, some small studies that have been conducted show promise [Oates and Dacakis, 2015].

Certain digital tools are recommended by therapists for at-home practice, such as pitch mea-
suring programs to use for controlling fundamental frequency [Davies et al., 2015]. One way to
make the treatment easier and more successful could be to create more advanced digital tools. For
instance, one that lets the patient make voice recordings and transform them in a manner such
that the perceived gender of the speaker changes, and have the patient use it to practice with.
By making gradual transformations from a source voice to a target voice, the transformations can
mimic the patients’ natural progress in therapy and serve as a guide for the voice realignment. The
method of using linear predictive speech coding, interpolated filters using line spectral frequencies,
and pitch-shifting algorithms needed to achieve such transformations of vowel sounds is the focus of
this paper.

1.1.1 Previous work

There is still research done on differences between female and male voices and what as well as
to what degree acoustic properties affect the gender attribution of speakers [Hardy et al., 2020}
Chen et al., 2021]. However, many available tools that change the gender of a speech recording,
for instance, Praat [Boersma and Weenink, 2022], modify only certain aspects of the speech sig-
nal, such as fundamental and formant frequencies. Hagelborn and Hulme Geber used machine
learning and interpolated filters in “Interpolation of perceived gender in speech signals” where two
voice signals were morphed using interpolated LPC filters and the pitch shifting algorithm PSOLA
[Hagelborn and Hulme Geber, 2020]. However, the resulting interpolations were perceived as un-



natural.

1.2 Goals & Purpose

This project aims to explore how transformed voice recordings can be made to sound like the natural
progression from a typically female to a typically male voice and vice versa. The overarching goals
were to gain a deeper understanding of which aspects that make morphed speech sound synthetic,
and use that knowledge to improve the naturalness of the transformations, as well as to define a
distance measurement between voiced speech signals to be used to quantify changes or improvements.
This was achieved by focusing on the following research questions:

e Can interpolated autoregressive filters together with PSOLA be used to transform voice record-
ings of the sound /a/ so that the perceived gender of the speaker changes (while maintaining
a natural sounding voice)?

e Can the distance between two voice recordings be measured to objectively gauge how the voice
progresses throughout treatment?

2 The Human Voice

The following section focuses on human speech — how it’s produced, perceived and what acoustic
properties it has. This will serve as a foundation for the modeling section ahead.

2.1 Speech Production & Perception

All sound is created by an energy source that generates waves in the surrounding material [Fry, 1979].
For human speech, that energy source is the lungs expelling air [Kreiman and Sidtis, 2011]. Some
of the sounds produced while speaking — called voiced sounds — are formed when the vocal folds in
the larynx open and close and thereby periodically interrupt and allow the airflow. The rate of the
vocal fold vibration depends on the size and stiffness of the vocal folds, where longer and thicker
ones naturally vibrate at a lower frequency than smaller ones. Other types of speech sounds are
created without vocal fold vibration and are therefore called voiceless or unvoiced. The airflow from
the larynx, either modulated by the vocal folds or not, is then passed through and shaped by the
acoustic properties of the vocal tract. The vocal tract is shown in Figure [l By changing the shape
of the mouth, for instance by protruding the lips or lowering the jaw, one changes the acoustics
of the vocal tract which in turn changes the sound. This is the process with which we can form
different vocal sounds known as phonemes.

[ asopharynx oropharynx [J] Larvmoopharynx

Figure 1: Illustration of the vocal tract |[Openstax, 2013]

One popular theory for speech production is the source-filter model [Fant, 1960]. It describes
how the vocal folds vibrating create a source signal which is passed through the vocal tract that
acts as a resonator, meaning that it naturally oscillates at some frequencies referred to as formant



frequencies. The collection of formant frequencies can be called the vocal tract transfer function as
it dictates how the energy from the source signal is transferred to the air. The final aspect of the
theory is a model for how the sound radiates from the mouth. This separation between the source
and filter is a simplification and therefore not a perfect representation of how sound is made, but it
is suitable for modeling and conceptual understanding. |Kreiman and Sidtis, 2011] Figure [2| shows
the relationship between the source and radiating output according to the model.

The Speech Production Process
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Figure 2: Source-filter decomposition [Hardcastle et al., 2010]

Three main aspects affect how speech sounds: fundamental frequency (F0), which is the vocal
fold vibration rate, loudness, and quality. Humans can hear sounds ranging approximately from
20 to 20 000 Hz but are better at hearing differences between low-frequency sounds. Most of
the important information for speech sounds has lower frequencies. For instance, FO generally
ranges from 80 to 260 Hz for adults and listeners can easily detect changes as small as 2% of
it. Sound intensity, amplitude, and loudness refer to the same thing but are measured differently,
where loudness means the subjective perception of the intensity and is commonly measured by
comparing intensity to standard thresholds. The concept of quality is discussed in more detail
below. |Kreiman and Sidtis, 2011]

2.2 Acoustic Properties

Speech signals can be analyzed both in the time and frequency domain, which can provide different
kinds of insights. In the time domain, the signal is depicted as a periodic wave representing the
pressure variation in the air over time. An example of this is shown in Figure [3} Therefore, time-
domain features are for example signal duration, F0, and variation of period length and amplitude of
the vocal fold vibration. On the other hand, the frequency domain focuses on the frequency contents
of the signal and can give information about the formants, relative energy in different parts of the
spectra, and harmonics. [Kreiman and Sidtis, 2011

In the frequency domain, the signal can be represented using a power spectrum or a spectrogram.
The spectrogram shows how the spectrum changes over time and gives insight into, for example, how
the pitch and formants move during the speech. In Figure [4] the spectrogram for the Swedish word
"munnen” (in English: ”the mouth”) is displayed, with visibly separated phonemes. The spectrum
gives more details about the frequency contents in each frame, including the finer structure present




in voices speech corresponding to the partials — the FO and its overtones. An example of a power
spectrum for the vowel /a/ is shown in Figure

Speech sound wave
0.2 T T T

1 I
314 3.145 3.15 3.155 3.16 3.165 317 3175 3.18 3.185
Time (s)

Figure 3: Speech sound wave of the vowel /a/
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Figure 4: Spectrogram of the Swedish word ”munnen”

2.3 Voice Quality

Depending on how tense or forcefully tight the vocal folds are, how symmetric their vibration is or
how much subglottal pressure there is, the voice can perceptually sound in different ways typically
called phonation types. The most common phonation used is modal, but there are other nonmodal
ones also used, such as falsetto, vocal fry, and breathy phonation. Vocal fry entails that the vocal
folds close quickly and remain closed for longer than normal and is commonly associated with creaky
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Figure 5: Spectrum of the vowel /a/

voice, while in breathy voices the vocal folds do not close completely allowing airflow to pass through
introducing noise into the voice. |[Kreiman and Sidtis, 2011]

Other common quality aspects are roughness — where the sound wave amplitude fluctuates, smooth-
ness, brightness, stillness, and vigor, which all can be seen as continuous scales |[Colton and Estill, 1981].
Furthermore, the formants, especially the high-frequency ones, contain much information about the
speaker and can be associated with so-called personal quality [Kreiman and Sidtis, 2011].

2.4 Difference Between Female and Male Voices

One of the most important factors in gender attribution from voices is the FO [Hardy et al., 2020]|.
The FO of female voices is on average 220 Hz and generally ranges from 150 to 260 Hz while for male
voices the average is 115 Hz and ranges from 80 to 170 Hz |Kreiman and Sidtis, 2011]. Another
factor that contributes to the perceived gender is vowel formant frequencies, which are commonly
lower for men than for women. Two spectrograms showing a comparison between a female and a
male voice are displayed in Figure[6] The fundamental formants are visibly lower in the male voice.
Additionally, qualitative measures and how they vary in female and male voices have been
studied. For instance, breathiness is commonly associated with female speakers while roughness or
vocal fry is usually linked to masculine voices. Intonation, rate of speech, and loudness have also
been proposed to differ between women and men. [Hardy et al., 2020]
Oates and Dacakis report that some common goals when trans persons are adjusting their voices
in therapy are changing the pitch, formant frequencies, and F0 variability together with adjusting
levels of breathiness, sound pressure level, and glottal closure [Oates and Dacakis, 2015|.
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Figure 6: Spectrogram of two speech signals

3 Speech Modeling & Processing

This section focuses on the speech recording transformation and what that process looks like. The
goal of the speech modification is to take two recordings and transform one of them to sound more
like the other. This is achieved by firstly modeling the resonance characteristics of both voices.
Afterward, the filters are interpolated to find a middle ground between the two voices dependent on
some interpolation factor between zero and one. Then, the source signal is inverse filtered using the
source filters to get a residual corresponding to a glottal source. Next, the residual is pitch-shifted
to reach a more similar FO as the target signal. Lastly, the pitch-corrected signal is filtered using the
interpolated filter to mimic the formant characteristics of the target voice. Each step is described
further below.

3.1 Speech as a Stationary Stochastic Process

The stationary stochastic process is a useful tool for analyzing and modeling time series. Stochas-
tic models describe processes that contain some degree of randomness, and stationary ones have
statistical properties that do not vary over time [Lindgren et al., 2013]. Speech signals are often
assumed to be piecewise stationary stochastic processes, meaning they are stationary during short
segments, approximately 20 to 30 ms long [Tyagi et al., 2006], and can therefore be processed as
such. The length during which the speech is stationary or quasi-stationary depends on what sound
it is. Vowels, for instance, can be stationary for 30 — 80 ms while plosives, such as “p”, only are for
less than 20 ms [T'yagi et al., 2006). Based on the source-filter model for speech production, speech
can be approximated by estimating the vocal tract resonance properties with linear filters.

3.2 Linear Predictive Coding

Linear predictive coding analysis (LPC) is a common method for modeling speech. The technique
encodes speech waves through several parameters forming an all-pole filter [Atal and Hanauer, 1971].
Poles of the transfer function represent resonances of the vocal tract and zeros represent anti-
resonances. As the poles are considered more perceptually important it is often not necessary to
include zeros in the filter. The goal of LPC for speech signals is to model the spectral envelope
— a smooth function encapsulating the peaks of the spectrum, and thereby separating the vocal
tract characteristics from the glottal source. There are some drawbacks of using LPC for envelope
estimation, such as difficulty defining the proper model order and distortion of the low-frequency part
of the spectrum [Villavicencio et al., 2006]. An alternative method is to first estimate an envelope,
using methods such as the True [Villavicencio et al., 2006] or CheapTrick Envelope [Morise, 2015],




and use that envelope to estimate a filter. Both of these envelope estimation methods are based on
cepstral smoothing of the amplitude spectrum. The cepstrum is the inverse Fourier transformation
of the log power spectrum [Noll, 1967] and can be used to identify periodicities in the frequency
domain, for instance, harmonics present in voiced speech. To retrieve a smoothed spectral shape
from the cepstrum, a window function, referred to as a lifter function, is applied to the cepstrum,
followed by a Fourier transform. The CheapTrick envelope uses a rectangular lifter function (in

the frequency domain), defined as Ly(n) = sinc(fon) = 20" [Norise, 2015]. Because the lifter

7 fon
function is valued at 0 at multiples of the FO, it cancels the harmonic component of the spectrum

and thereby smoothing it out.
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Because Hagelborn and Hulme Geber found that the CheapTrick envelope performed the best
of all tested smoothing-techniques [Hagelborn and Hulme Geber, 2020], it was applied here as well.

3.2.1 Estimating Filters

The speech signal is segmented into short overlapping windows, of circa 50-100 ms, assumed to be
quasi-stationary. For each segment, the CheapTrick Envelope is estimated as described above by
liftering the cepstrum using an F0-adaptive window function, i.e. a sinc function periodic with the
mean pitch period. By marking each pitch period in the speech signal, the FO can be estimated
using the average distance between the peaks. The inverse Fourier transform is then applied to the
spectral envelope to attain the biased autocorrelation function. This is later employed to estimate the
autoregressive filter coeflicients using Levinson-Durbin recursion. Figure [7] shows the comparison
between the power spectrum, CheapTrick envelope, and frequency response of filter for a signal
segment.

A model order of 50 is used for the filters because it returned the best results. The source signal
is inverse filtered and later regularly filtered in overlapping segments and added back together using
an overlap-add procedure with triangular window functions.

3.3 Interpolating Filters

Interpolation of LPC parameters is a practice commonly used for speech coding and transmission of
speech, where it enables the use of slower frame rates [Paliwal, 1995]. Since slow rates can lead to
large differences in LPC parameters in neighboring frames the technique is used to close the spectral
gaps by inserting short frames with interpolated parameters. The interpolation can be done for
LPC parameters in different representations, such as LPC coefficients, reflection coefficients, and
line spectral frequencies, LSF. A comparison between interpolations of eight such representations
found that LSF led to the least amount of spectral distortion [Paliwal, 1995]. Similar results were
established by Islam [Islam, 2000].

Line spectral frequencies, known also as line spectral pairs, are representations of LPC filter
parameters with properties, such as well-behaved filter stability preservation, that make them robust
for quantizations [Soong and Juang, 1984]. The representation is based on the m** order LPC filter:

Ap(z) =14a1z7 ' + ... Fapz™ (1)
The symmetric and anti-symmetric polynomials P(z) and Q(z) are defined as:

P(2) = A (2) + 27D A, (271
Q(Z) = Am(z) - Z_(m+1)Am(Z_l)
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where P
() = PR o)
This is done by extending it to a (m + 1) order filter and letting the (m + 1)th reflection
coefficients be 1 or -1. An interpretation of P(z) and Q(z) is that they represent the vocal tract
when the glottis is open versus closed (Sugamura & Itakura, 1986). All roots of P(z) and Q(z) are
on the unit circle and can therefore be expressed as frequencies by letting z = €7 where the angles
w,0 <w; <mVi=1,..,m/2, are known as line spectrum pair frequencies. Because P(z) and Q(z)
have real coefficients they have complex conjugate roots which makes the computations easier and
you only need to find roots in the upper half unit circle. If 1/A(z) is stable, meaning that all poles
lie within the unit circle, the line spectrum frequencies are ordered and alternate between being the
angle of pole of P(z) and Q(z). Two sets of line spectrum frequencies w® and w', representing the
LPC parameters of the source and target filters, can be interpolated using factor 7 € [0, 1] as:

O =(1—7)w® + 70’

This set of line spectral pair frequencies 2™ can then be converted back to updated polynomials

P(z) and Q(z) using

P(z)=(1-27") (1—22""cosQf +27%) (3)
k=24,....,p

Qz)=(1-27") H (1—22""cosQf +27%) (4)
k=1,3,....p—1

respectively, and thereafter to A(z) using (2).
In Figures [§] and [9] are examples of the poles and frequency responses of several interpolated
filters between a source and target filter.
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3.4 Time Domain Pitch Synchronous overlap-add

To shift the pitch of the speech signal, the time domain pitch synchronous overlap-add (TD-PSOLA)
method is applied. It is a popular and widely used algorithm because of its simplicity, quality and
computational efficiency [Toma et al., 2010]. The algorithm works by excising a sequence of pitch
synchronous overlapping frames from the waveform, then modifying this stream of short-term signals
and finally adding them back together using an overlap-add synthesis procedure [Hamon et al., 1989].
Since it operates on pitch periods, it is only performed on voiced sections of the speech signal.
If the method is executed correctly the pitch-shifting does not affect the spectral envelope and
can therefore maintain the original vocal characteristics. One drawback of TD-PSOLA is that
it can introduce perceptible distortion of the signal and that this distortion increases with the
level of pitch modification [Longster, 2003]. Some studies indicate that pitch shifting of up to 50%
can produce acceptable results without losing significant quality and naturalness [Longster, 2003].
Because the algorithm moves all frequency content when changing the pitch, it was found that
substantial intervals of the highest frequencies were lost when decreasing it. It was naturally most
noticeable when there was a large pitch difference.

3.4.1 Process

Firstly, each pitch period is marked by a pitch marker in the original speech signal waveform. Then
the signal is decomposed into short, overlapping segments centered around each pitch marker, and
these are subsequently modified to fit a set of target pitch markers, corresponding to the desired
pitch. A mapping function synchronizes the original and target pitch markers and resampling
is used to modify the length of each segment to fit in the synthetic signal. Additionally, some
window function is used in the overlap-add process, for example, Hamming or triangular windows.
[Hamon et al., 1989]

3.5 Filter and Interpolation Evaluation

To evaluate the performance and issues with the transformation pipeline, interpolated signals were
compared to both source and target speech signals using power spectrums and spectrograms. Fur-
thermore, the FO variance, shimmer - relating to variation of sound wave amplitude, jitter — re-
lating to variation of sound wave length, and harmonic-to-noise ratio, HNR, were used to ana-
lyze the signals. Local shimmer can be calculated as in [f] local jitter as in [f] and HNR as in [7]
[Teixeira et al., 2013]. Simple sine waves were transformed to identify problem areas with regards
to introducing artefacts such as buzz and ringing in both the filtering and PSOLA processes.

N-—1
T ey A — A

shimmer = x 100 (5)
N
% Zi:l A
L N
jitter = = ; |T; — T (6)
HNR(dB) = 10 x log,, —z Tmax) (7)
- 210 1— T{U (Tmax)

Two of the most significant findings were that the volume of the interpolations varied more than
natural recordings and that the F0O, as well as a few overtones, were suppressed in the synthetic
signals. These issues are discussed further below.
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3.5.1 Sound Wave Amplitude Variation

The signal was filtered in longer segments to reduce the “buzz” arising from the varying energy
levels of each filter, creating segments with varying amplitude. This variation of sound wave
amplitude of consecutive is called shimmer and is expected to a certain level in a healthy voice
|[Kreiman and Sidtis, 2011]. It is therefore also expected in the source or target speech recordings
which can influence the resulting synthetic signal.

Source signal signal

15 2 25 3 0 05 1 15
Time (ms) Time (ms)

(a) Original source signal (b) Transformed signal without modifications

signal signal

15 15
Time (ms) Time (ms)

(c) Transformed signal with unit gain normalisation (d) Transformed signal with maximal gain nor-
malisation

signal signal

2 25 3 05 1

15 15
Time (ms) Time (ms)

(e) Transformed signal with sound wave stan- (f) Transformed signal with sound wave stan-
dardisation dardisation and scaled volume

Figure 10: Source and transformed signal sound waves
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However, it was found that the volume then contained a perceptible amount of slow amplitude

variation exceeding the levels present in the original signals, causing the speech to sound ringing.
Figure 10| depicts such a transformed sound wave compared to the source signal. Several attempts
were made to combat this: unit gain at zero frequency, maximum peak height at the same power,
and sound wave standardization of each segment. First, each filter was normalized to have unit
gain at zero frequency, but this proved to have little to no effect. See Figure (b) for reference.
Normalizing the filter by max value of its frequency response had a similar, or worse, result. Finally,
each sound wave segment was standardized to have the same amplitude which gave the least volume
variation. However, some variation is required for a natural sound and the signal was therefore
reshaped to mimic the volume of the original speaker. This was done by comparing the standard
deviation of short segments of the signals and scaling the synthetic one accordingly. The resulting
transformations from all of the aforementioned methods are displayed in Figure The amplitude-
standardized transformation in (f) seems to have the volume variation closest to the original sound
wave.
Further investigations would be required to identify the underlying issue with the filters and why
they have varying gains to such a high degree. The problem could potentially be solved by altering
the filter estimation and spectrum smoothing processes. However, the ultimate goal of the transfor-
mation is to transform more complex speech sounds, such as complete words or phrases. In those
speech signals, each phoneme is only sustained for short periods and a variation might not be as
evident as in the case of long vowel sounds.

3.5.2 Low-Pass Filters and Augmentation of Partials

Additionally, it was found when comparing the transformed and target signals’ spectrums that the
first few partials were negatively impacted by the filtering, as seen in Figure[11|(b). Narrow bandpass
filters were used to amplify the first four harmonics individually to better match the target voice
signal. The difference is shown in Figure Also visible in Figure [11]is that, especially for male-to-
female voice transformations, the spectrum of the resulting signal had slightly higher intensities for
frequencies above 2 kHz. To combat this, two separate lowpass filters — one from approximately 2
kHz and one from 20 kHz — were used to decrease the high-frequency contents with a few decibels.
These values were chosen specifically to address each transformation and therefore varied slightly
for different signals. The spectrums for the filtered signal, using both narrow bandpass and lowpass
filters, and the target signal are compared in Figure

Comparison of power spectrums Comparison of power spectrums

Target —— Target
Interpolation 20 Interpolation ~

Power Spectrum (dB)
Power Spectrum (dB)

-100

-120

5 10 15 20 05 1 15 2 25
Frequency (kHz) Frequency (kHz)

(a) Spectrum comparison (b) Spectrum comparison for low frequen-
cies

Figure 11: Comparison between spectrum for transformed and target signal. Transforma-
tion done from a male to female voice using interpolation factor 7 = 0.9.
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Figure 12: Augmented partials of synthetic signal, before and after filtering with bandpass
filters.
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(a) Spectrum comparison for filtered sig- (b) Spectrum comparison for low frequen-
nals cies for filtered signals

Figure 13: Comparison between spectrum for transformed and target signal. Transforma-
tion done from a male to female voice using interpolation factor 7 = 0.9 and filtered using
bandpass and lowpass filters.

4 Spectral Distance Measurement

Previous sections have dealt with the first research question, regarding the speech transformation,
and the second, concerning the measurement of vocal differences, will be treated below. Several
acoustic aspects of the voice contribute to its characteristic sound. Some of the most important ones
are fundamental and formant frequencies, making it appropriate to compare the signals’ spectra
to measure their differences. However, simply comparing two spectra using a common distance
measurement, such as the Euclidean norm, does not produce meaningful results because it only
compares powers for the same frequencies. This does not translate well to the power spectrum since
the harmonics and energy bands are located in different positions for, and during, all speech sounds.
Therefore a different way of measuring distances must be implemented. As a basis for quantifying
the distance used here is the concept called optimal mass transport, with many previous applications
in signal processing and machine learning.
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4.1 Optimal Mass Transport

Also known as Earth Mover’s Distance, optimal mass transport is used to compare signals and
images in regards to both intensity and spatial information. The main purpose of OMT is to find
the most efficient transport plan or map, given a certain cost function, from one mass distribution
to another. Hence, the name earth mover’s distance, since it describes how one pile of earth can be
moved into another pile most efficiently. [Kolouri et al., 2017]

4.2 Wasserstein Distance

While OMT defines the best way to arrange one distribution to another, the p-Wasserstein metric
measures the distance between distributions [Kolouri et al., 2017].

The normalised power spectral densities, Iy and I, of two one-dimensional speech recordings,
Sp and S, are defined on Qg and ;. The cumulative densities for both of them, Fy(x) > 0 and
Fi(z) > 0, are defined on [0, 1]. The p-Wasserstein distance then has a closed form solution:

Wl 1) = (/01 |y () = Ffl(z)!”dz)l/p

Where F, '(z) = inf{x € Q: Fy(z) > 2}Vi is the pseudoinverse (inverse) to F;(x). In Figure
two power spectrums and cumulative densities corresponding to two different signals are shown.
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(a) Comparison of power spectral densities for (b) Comparison of cumulative spectral densities
signal A and B for signal A and B

Figure 14: The normalised PSD and CDF for two signals

The difference between measuring distances using the p-Wasserstein metric as compared to, for
example, the Euclidean norm is that it takes the spatial distance into account as well. This can
be demonstrated using a simple example of two Gaussian distributions where the mean values start
out being the same but one of them is shifted further and further to the right. For each step, the
distance between the distributions is measured using 2-Wasserstein and the Euclidean norm. The
plotted distributions and distance measurements are displayed in Figure As the distributions
move farther apart along the x-axis, the 2-Wasserstein metric increases linearly, because each mass
unit has to be moved further, while the Euclidean norm stabilizes as soon as the distributions no
longer have mass in the same x-coordinates.
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Figure 15: Distance comparison of mean-shifted Gaussian distributions between 2-
Wasserstein and Euclidean norm

4.3 2-Wasserstein for Speech Signals

To understand how the distance measurement works on speech signals, a few different examples
were tested. Figure shows a comparison of power spectrums for two segments from the same
speech signal. In (a), the segments are overlapping, and should therefore be very similar, while
the segments in (b) have no overlap and might be more different. This is reflected both visually
and in the 2-Wasserstein distance, which is larger for (b). Further, in Figure [17|two speech signals
from speakers of the same gender with similar fundamental frequencies are compared in the same
manner. For the two female voices in (a), the distance is quite small, which is not surprising given
the speakers are sisters of similar age. The two male speech signals in (b) have visibly different
spectrums and also have a larger 2-Wasserstein distance. Lastly, Figure [18| displays a comparison of
distances between vowels from the same speaker. In (a) speech recordings of the same vowel - a - are
compared, and the distance is evidently quite small. The plots in (b) on the other hand, compare
recordings of vowels a and e, and exhibit a larger spectral distance.

PSD & CDF for segments of same signals: W,=52.1 PSD & CDF for segments of same signals: W,=150.1
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(a) Comparison of PSD and CDF for two (b) Comparison of PSD and CDF for two
segments with overlap from the same sig- segments with no overlap from the same
nal signal

Figure 16: Power spectrum and cumulative density as well as 2-Wasserstein distance for
segments from same signal.
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PSD & CDF for two female signals: W,=165.0 PSD & CDF for two male signals: W,,=370.7
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Figure 17: Power spectrum and cumulative density as well as 2-Wasserstein distance be-
tween two female and two male voices.
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sounds /a/ from the same speaker vowel sounds /a/ and /e/ from the same
speaker

Figure 18: Power spectrum and cumulative density as well as 2-Wasserstein distance be-
tween two recordings from the same speaker.

4.4 Distance Between Interpolated Signals

One interesting application of this distance measurement for this project was the interpolated speech
signals. Since the ultimate goal of the distance metric is to track progress in speech-and-language
therapy, it was relevant to find out how the distance behaved for progressively transformed sig-
nals. Therefore, how the distance between the transformed signal and the source and target signals
changed for various interpolation factors was tracked.

First, the two main modifications — pitch-shifting and filtering — were tested in isolation. Figures
[[9]and 20]display the distances from a modified signal to the original signal, using both 2-Wasserstein
and Euclidean norm. The filters were achieved by interpolating the original signal’s filters with target
filters using increasing interpolation factors. Clearly, the 2-Wasserstein metric returns increasing
distances for both pitch-shifted and filtered signals, while the Euclidean norm does not provide
definite differences between signals. FO seems to influence the distance the most since the distances
increase more for each pitch shift compared to the filtering.
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Figure 19: Comparison of 2-Wasserstein metric and Euclidean norm for pitch-shifted speech
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Figure 20: Comparison of 2-Wasserstein metric and Euclidean norm for filtered speech
signals

Secondly, full transformations using increasing interpolation factors were compared to the source
and target speech signals. The resulting bar graphs showing distances to source and target signals
for three separate sets of interpolations are displayed in Figures and The distances do not
reflect interpolations linearly transforming from the source signal to the target signal, which would
entail decreasing distances from the target signal and increasing distances from the source signal.
On the contrary, the distance between the source and target signal is for all examples exceeded
by distances to some interpolations. As previously mentioned, the FO and first harmonics were
affected, in some cases distorted, by filters and pitch-shifting. Because the low-frequency content -
especially the first harmonics — is emphasized in the power spectrum for speech signals, it also has
the most effect on the distance measurement. Therefore, if the first harmonics are altered it could
have a significant impact on the measured distance, which could potentially be a reason for the large
distances.
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Figure 21: 2-Wasserstein distances from interpolations to source and target signals for
interpolation factors 0.2, 0.4, 0.6, 0.8 and 1.0
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Figure 22: 2-Wasserstein distances from interpolations to source and target signals for
interpolation factors 0.2, 0.4, 0.6, 0.8 and 1.0
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Figure 23: 2-Wasserstein distances from interpolations to source and target signals for
interpolation factors 0.2, 0.4, 0.6, 0.8 and 1.0
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5 Speech Transformation Evaluation: Survey

Because perception of gender in speech is complex and subjective the recordings needed to be
reviewed by listeners to evaluate the result of the transformations. Furthermore, listeners were also
able to evaluate the perceived naturalness of the recordings.

5.1 Survey Process

An online survey was conducted using the website Jotform [Jotform, 2022] featuring 15 speech
recordings derived from seven different speakers, three women, and four men. Some of them were
not modified, to serve as an anchor for the naturalness ratings. Furthermore, three of the recordings
were included twice to measure the internal consistency. All recordings included are displayed in
Table[l] The survey was directed at persons older than 18 and with self-proclaimed normal hearing.

Table 1: Original recordings used for transformations in survey

Source speaker Target speaker Interpolation factor

Female 1 Male 1 0.2
Female 1 Male 1 0.6
Female 1 Male 1 0.8
Male 2 Female 1 0.4
Male 2 Female 1 0.6
Male 2 Female 1 1.0
Male 3 Female 2 0.2
Male 3 Female 2 0.4
Male 3 Female 2 0.8
Female 3 - 0

Male 1 - 0

Male 4 - 0

For each recording, the listener was asked to rate the speaker on a digital VAS scale from female
to male with nine different levels, and to answer if they experienced the recording as synthetic or
natural. If they answered synthetic, they were prompted to describe the recording in words from a
list including robotic, ringing, nasal, noisy, and other, with an option to insert a word. A question
that checked whether the participant was wearing headphones and if they experienced any technical
issues were included to avoid erroneous replies. 55 people had answered the survey at the time of
collecting all responses.

Pa en skala fran kvinnlig till manlig, var skulle du placera talaren av inspelningen? / On a
scale from female to male, where would you place the speaker of the recording? *

Kvinnlig / Female (O O O O O O O O O Manlig / Male

Figure 24: Question prompting listener to rate gender attribution for each recording

5.2 Gender Score Distributions

The scale from female to male speaker corresponds to a scale of values from 0 to 8, where 0 represents
a female-sounding voice and 8 a male-sounding voice. The distributions of gender scores for all

20



(unique) recordings are shown in Figure where they are grouped by the voices that were used
as source and target signals. For (a) to (c¢), which are transformations from a female to a male
voice, it is clear that the distributions move from more female to more male which corresponds to
the interpolation factors increasing. In (d) to (f), the trend is not as evident but the variation is
larger for interpolation factors 0.4 and 0.6 than for 1.0 where most listeners rated it as on the female
spectrum. For the final transformation set, (g) to (i), which is also from a male to a female voice,
the distributions move towards the female end of the scale as the interpolation factor increases.
The average gender scores of the transformed speech recordings are shown in Figure For the
unmodified recordings in (j) to (1), listeners perceived them as similar to the true gender of the
speakers. However, the variation in ratings of the female and first male voice indicates that it could
have been difficult to assign gender in this setting.
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Figure 25: Gender scores for all recordings grouped by transformation set. 7 equates the
interpolation factor used in the transformation.
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Figure 26: Average gender scores for all recordings grouped by transformation set. T equates
the interpolation factor used in the transformation.

5.2.1 Interpolation target

To define a value based on the interpolation factor that is comparable to the gender scores, the
interpolation target is defined as:

T X8 if source signal is female

T, = (8)

(1 —7)x 8 if source signal is male

The average gender score is plotted against this variable in Figure 27 This plot indicates that
there may be a linear correlation between the two.
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Figure 27: Average gender score against interpolation target. Unmodified recordings
marked in red.

5.2.2 Normalised Gender Score

One interpretation of the interpolation factor is that it should — if assumed that the transformations
are linear interpolations between two voices — correspond to the degree of how female or male
a recording is perceived. Therefore, if the interpolation targets are used to normalize all gender
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scores you could expect them to be centered around zero. A histogram depicting the distribution
of normalized gender scores is shown in Figure The distribution appears to be slightly skewed
toward the right, indicating that the recordings were perceived as more male than required.

ion of ized gender scores
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Normalized gender score

Figure 28: Histogram depicting the distribution of normalised gender scores

5.3 Naturalness Score

The perceived naturalness for all recordings is displayed in Figure[29] Out of the eleven transformed
recordings, six were rated as synthetic and five were rated as natural by a majority of listeners. Not
even the unmodified recordings were perceived as natural by all listeners, and some transformed
recordings, such as number 5, have similar scores as them. A few of them stand out with very low
naturalness ratings, especially numbers 6, 12, and 14. These were explored further to identify which
aspects made them sound synthetic.

Shares of listeners rating recording as natural versus synthetic
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Figure 29: Bar graphs for each recording showing the share of listeners that perceived it as
natural and synthetic ordered by increasing interpolation factor.

Listeners had the opportunity to give descriptors for the recordings they perceived as synthetic,
and these offer some clues as to what the major issues were. The most common characterizations
of recording 6 were robotic and noisy. In the spectrogram and spectrum, showed in Figure [30] it
is revealed that the voice is lacking high-frequency contents and that the formants are faint and
uneven. It has an 8.2 % shimmer. Similarly, recording 12 was perceived as noisy, robotic, and nasal
and it had a 2.6 % shimmer. As evident from the spectrogram and spectrum, in Figure the
signal is also mostly comprised of low frequencies. The formants do not appear to be well-defined
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and stable. Lastly, recording 14 was described as noisy, breathy, monotonous, and reminiscent of
the sound of an engine. It has a shimmer of 7 %. Looking at the spectrogram, the formants appear
undefined and noisy. In the spectrum, it is clear that the formants have low energy and that the first
harmonics are the strongest frequency contents. The spectrogram and spectrum for recording 14
are displayed in Figure 32 In comparison, the spectrogram and spectrum of recording 5, showed in
Figure [33]— which was perceived as natural to the same extent as the unmodified voices — show that
the signal has distinct and even formants and more high-frequency contents in general. Recording
5 has a shimmer value of 0.0297.
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Figure 30: Spectrogram and spectrum for recording 6
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Figure 31: Spectrogram and spectrum for recording 12
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Figure 32: Spectrogram and spectrum for recording 14
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Figure 33: Spectrogram and spectrum for recording 5

Internal Consistency

Three recordings were repeated in the survey to measure the internal consistency of the questions.
By comparing the answers for different iterations of the questions, it can be studied how consistent
listeners were in their ratings. Figure [34] displays the distributions of gender scores and Figure
shows the naturalness ratings for each repeated recording. The histograms all look quite similar
for the same recordings and the type values are the same for both questions. As for the share of
listeners that perceived the recordings as natural, these values are also in the same range in both
iterations.
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Figure 34: Comparison of gender scores for the same recordings
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Figure 35: Comparison of naturalness ratings for the same recordings
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5.4.1 Cronbach’s Alpha

The internal consistency can be measured using Cronbach’s alpha [Cronbach, 1951]. This depends
on both the variance of each item, o7, and the total variance, o2,,, and is defined as:

2
(-2 o)
-1 Otot

where K is the number of test items. The score ranges from 0 to 1, and higher scores indicate better
internal consistency. It was calculated for all repeated questions and the results are displayed in
Table 2l The alpha values are clearly low for the questions rating perceived gender for transformed
voices, while it is rather high for the corresponding question for the unmodified voice. This may
imply that it is more difficult to be consistent in attributing gender for the transformed recordings.
Since both transformations are intended to sound androgynous, the alpha value might be indicative
that the speakers’ genders are indeed hard to specify. Moreover, the questions regarding naturalness
have similar, low alpha values for all recordings. Because the score is low for all recordings, including
the unmodified one, this could mean that listeners had a hard time assessing whether a voice sounded
synthetic or natural.

[ Tol

Table 2: Cronbach’s Alpha results for repeated recordings

Recording Type Question Cronbach’s Alpha
Transformed: female to male voice gender score 0.405
naturalness 0.547
Transformed: male to female voice gender score 0.421
naturalness 0.526
Original: male voice gender score 0.832
& ) naturalness 0.567

6 Discussion

6.1 Pitch-Changes in Interpolations

In the interpolated transformations from one perceived gender to another, the pitch and spectral
envelope are here assumed to change with the same interpolation factor. In speech therapy, this
corresponds to the patient making gradual changes to both FO and formants simultaneously. How-
ever, this may not reflect the treatment process accurately. Because pitch is so strongly associated
with gender attribution of speakers, it is an obvious starting point when changing one’s voice to
be more congruent with one’s gender identity. Furthermore, if the patient has undergone surgical
procedures or hormonal treatments that have affected the vocal fold vibration rate, the pitch would
need little to no adjustment. Therefore, it may be more appropriate to immediately change the
pitch to the target value and then make gradual changes to the formants. It depends on what is
deemed appropriate by the therapist to establish a healthy and functional voice.

6.2 Acoustic Aspects Not Applicable To Sustained Vowel Sounds

The low consistency scores in the survey revealed that listeners found it somewhat challenging to
identify the gender of speakers and gauge the naturalness of recordings. Several factors could have
contributed to this, for instance, the fact that the recordings did not contain all information naturally
found in spontaneous speech thought to be used to attribute genders, such as intonation and speech
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rate. The sustained vowel sound used in the survey is not naturally occurring which may have
affected listeners. Because the speech signals lacked some attributes used to make assessments this
might have made it more difficult, meaning that more meaningful results could be attained by using
full words or sentences.

Further, the assumed gender of the speaker can influence the perception of naturalness. Meaning
that if a voice is thought to come from a female speaker the listener expects to hear qualities
commonly associated with feminine voices, such as breathiness, and rates it as synthetic if they do
not. For recording 14, discussed in detail in section [5.3} it might have been perceived as unnatural
because it was breathy but thought to come from a male speaker.

Lastly, the importance of natural-sounding transformations, given the intended purpose, can be
questioned. Although a transformation should serve as a useful voice to mimic and practice with,
and that it, therefore, should sound realistic, it is not by definition necessary that it should be
indistinguishable from a human voice. It is therefore arguably acceptable that recordings contain
some artifacts such as buzzing because it does not affect the way a person could recreate the sound
of the recording when practicing.

6.3 Using Target Voices

The proposed method makes use of a target voice to modify the voice. This does not take the
patient’s physical limitation and personal goals into account, as opposed to being able to specify
desired values for properties such as FO and formant frequencies. Therefore, the therapist and
patient are responsible for finding a target voice that fulfills their wishes and can serve as a realistic
goal for the treatment.

6.4 Losing High-Frequency Energy From PSOLA

As discussed in section [3:4] downshifting speech signals with the TD-PSOLA algorithm causes
some loss of high-frequency energy. When testing the largest pitch decrease — a 50% reduction —
the highest frequency was reduced to approximately 10 kHz. Research has historically focused on
acoustic features of low-frequency energy in speech signals and studied how frequencies below 5-6 kHz
influence intelligibility [Vitela et al., 2015, [Monson et al., 2012]. This, together with the fact that
band-limited speech signals in telephones are recognizable for normal hearing persons, would suggest
that the energy loss exceeding 10 kHz is above the threshold for perceptual influence. However, two
of the recordings with the highest synthetic ratings had down-shifted pitches and were perceived
as nasal and monotonous, hinting that the lack of high-frequency contents affected the sound more
than anticipated. Furthermore, other phonemes — especially consonants — have more high-frequency
energy and may be impacted.

Increasing research on high-frequency energy in speech has revealed that it does in fact impact
the intelligibility of speech.

6.5 The Distance Metric

The 2-Wasserstein metric returned expected and reasonable distances between different unmodified
speech signals, such as larger distances between different vowels. When testing distances between
an original signal and pitch-shifted as well as filtered versions, the distance increased with the
degree of modification. This indicates that the metric was able to capture changes to both pitch
and spectral envelope. However, for the gradual transformations from source to target signals
the resulting distances did not indicate that they were interpolations of the speech spectrums. It
cannot be concluded here whether this occurred because the transformation method or the distance
measurement is not performing as intended.
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A selection of transformations was also reviewed by listeners in the survey to evaluate if they
fulfilled their purpose. It was then concluded that the transformations’ gender attributions moved
closer to the target voices’, but that the naturalness on average was lower compared to unmodified
recordings. Evidently, some aspects of the transformations’ spectrums were altered which made
them be perceived as unnatural. This difference could potentially be the underlying factor that
made the distances from transformed signal to target and source signal larger. Since the survey
only measured the perceived gender and naturalness of the recordings, while the distance metric
measured the total spectral difference, it is not surprising that the results did not coincide.

6.6 Future Improvements

In order to move forward with the transformation method presented in this thesis, improvements and
further work must be done. Firstly, the filter estimation process has to be re-evaluated to improve
the filter gain variance and avoid volume fluctuation. Furthermore, aspects found to negatively
affect the naturalness of transformations — such as undefined formants — should be investigated.
For instance, efforts could be made to make sure formants are always prominent throughout the
interpolated filters. Additionally, more attention could be paid to modifying other qualitative vocal
characteristics that influence gender perception in speech, such as breathiness and roughness.

As mentioned above, naturalness could potentially be more accurately gauged by transforming
full words or phrases, which would require a generalization of the method. To transform speech
signals containing multiple different phonemes, each frame needs to be mapped to a frame in the
other signal to ensure that correct filters are utilized. There are several ways to do this. Latsch and
Netto suggest a method for prosody transplantation incorporated in TD-PSOLA where pitch marks
in two signals are matched using dynamic time warping. Additionally, here the pitch is shifted to
the same FO for all frames in the signal. This would not be appropriate for more complex sounds
since the pitch naturally changes during speech and would have to be addressed as well.

Finally, the distance metric must be tested further to understand how well it works for the in-
tended purpose. By making distance comparisons on recordings from a successful treatment process,
more insight could be attained on how it performs. Furthermore, speech signals can be altered to
test the influence of different aspects more thoroughly by, for example, adjusting single formants
and shifting FO for several signals.

7 Conclusion

In this thesis, two main research questions were constructed regarding transforming voices and
measuring distances between them. The goal was to use these findings to assist patients in speech
therapy find a voice more congruent with their gender identity.

The first question was: is it possible to achieve natural transformations that progressively change
the perceived gender of a voice? From the survey, it was found that speech recordings could be
transformed in such a way that the perceived gender changed. Additionally, a few transformed
recordings were rated as equally natural as unmodified recordings, and 6 out of 11 transformations
were perceived as natural by the majority of listeners. However, the naturalness of the recordings
varied substantially and transformed signals were on average perceived as synthetic by more listeners
compared to natural speech recordings. Therefore, it was found that natural results are possible,
but that additional work is needed to achieve consistent results. Target gender scores, based on the
interpolation factor used for transformations, correlated with average gender scores, indicating that
the transformations fulfilled the requirements.

The second question dealt with measuring distances between speech signals. When testing the
2-Wasserstein metric on pitch-shifted and filtered signals, the results implied that it could measure
differences to FO and formant frequencies. The distance measurement did not perform as expected
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when comparing distances between transformations and the source and target signals. However,
this may not be a fault of the distance metric, since interpolations at this stage do not equate to
a natural progression from one voice to another. Therefore, it cannot be determined at this point
whether 2-Wasserstein can be used to measure voice progression throughout treatment because that
would require other data.

In conclusion, the methods for transforming speech signals in regards to their gender attribution
and quantifying the distance between speech signals show promise and may one day serve as useful
tools for transgender patients in speech therapy. Until then, they both need further development to
produce consistent and reliable results and handle more general speech signals.
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