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Abstract

The purpose of this study was to apply object detection within the field of open-
heart surgery. One goal was to retrain state-of-the-art deep neural networks to
detect surgical instruments, namely the Heart-Lung tube, forceps, diathermy,
scalpel, needle driver, retractor, and saw. The networks used in the evaluation
were YOLOv4, YOLOv5, Scaled-YOLOv4, retinaNet, Efficientdet, SSD, and
Faster-RCNN. We also studied the possibility of counting instrument changes
during a surgery, which could help the surgeons to evaluate their performance.
We investigated how incorrect predictions from a network could be used to gen-
erate more qualitative data. The data used to train and evaluate the networks
were manually retrieved from videos of real-life surgery and annotated during
this thesis. The networks were compared with mean average precision as the
main metric.

YOLOv5 had the highest mAP score when comparing all networks. Using YOLOv5,
we were able to predict instrument switches with promising results. The data
generated from incorrect predictions improved the results further. The final
model was evaluated on unseen real-life surgical videos, and the mAP50 was 88.5
%, which is a promising result for future applications.

Keywords: Artificial intelligence, Computer vision, Object detection, Deep learning,
Pediatric heart surgery
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Chapter 1

Introduction

In 2021, 457 pediatric heart surgeries were performed in Sweden [1]. After every surgery,
there is an opportunity for the surgeon to improve their skills by receiving feedback. The
most important metric is the recovery time of the patient and the quality of life the pa-
tient will have after the surgery. However, these metrics will only be available long after the
surgery is performed and can therefore not be used as immediate feedback. Several studies
have shown that a faster surgery generally leads to a faster recovery and higher quality of life
after surgery [[2],[3],[4]]. An additional way that surgeons can evaluate their work is to record
and review their own surgeries in order to identify ways to improve. However, the duration
of a video is often more than three hours, meaning there may not be enough time for the
surgeons to review all the footage. Creating a tool that can be applied on the videos to gen-
erate data from the surgeries could potentially be a valuable tool for feedback. In this thesis,
we compared seven different object detection networks and identified the best-performing
network. Using the highest performing network, we investigated the possibility of creating
a tool that can count instrument changes performed by the surgeon. According to Ganni et
al.[5], experienced surgeons have smaller average movements and fewer sudden movements if
compared to the more novice surgeons. Instrument changes could potentially be a factor and
that is why it was explored in this thesis. The networks were trained on images from surgery
videos to detect the surgical instruments that were used during surgery.

Object detection can be used for many other applications, for example in robotics. A long
term goal could be to train robots to sort instruments or assist during surgery.

Surgical Instrument Detection using Deep Learning 9



1. Introduction

1.1 Goals

Our main goal was to evaluate seven state-of-the-art networks retrained on surgical data.
The thesis investigated the following three research questions:

• Which object detector network performs best according to the metric mean average
precision (mAP)?

• How does the best network handle different instruments?

• How does the best model react to different amounts of training data?

Additionally, we evaluated if the best model can be used to detect instrument changes per-
formed in surgery.

• How well can the model detect instrument changes?

Finally, we evaluated how extending the dataset with new images retrieved from analyzing
incorrect detections affects the model.

• How does a model trained on this extended dataset compare to the best model?

1.2 Method

To evaluate the seven object detectors we extracted images from existing open-heart surgery
videos. These images were then annotated with the software labelImg [6]. Training and vali-
dation were performed using these images and annotations. The best performing model was
then used to identify surgical instruments in surgery videos.

In order to evaluate how the best model performed on different amounts of training data, the
dataset was randomly divided into smaller training datasets. A test set was used to measure
the performance for all training datasets.

To evaluate how well the best model could be used as a component in identifying instru-
ment changes, a definition of an instrument change was created. This definition was applied
within a python script that takes the output from the model and calculate changes. The eval-
uation was performed by comparing the output from the script to the ground truth which
was created by manually going through a video and annotating the instrument changes.

In order to evaluate how the performance of the best model was affected by adding new im-
ages found by analyzing incorrect detections of the best model, the predictions were passed
through a script that applied different rules for classifying frames as difficult or easy. A dif-
ficult frame would be manually annotated and then added to the dataset. This extended
dataset was used to train the model again.

10 Surgical Instrument Detection using Deep Learning



1. Introduction

1.3 Contribution

For this master’s thesis, Tobias Carlsson and André Svensson worked together and con-
tributed to each part of the final results.

Our work contributed to the field of pediatric heart surgery by showing that an evaluation
tool could be developed using an object detector. This benefits medical professionals, specif-
ically pediatric heart surgeons.

1.4 Structure of this thesis

The Introduction includes motivations and research goals. The Background provides the
theoretical background that the work is based on. The chapter contains, amongst others, an
introduction to artificial intelligence, convolutional neural networks, object detection and
the object detectors used in this thesis. The Approach includes the method, experiments and
computer setup. Evaluation presents all results related to the research questions. Discussion
and Future work discuss our approach such as network choices. This chapter also contains
thoughts on future work which could improve the network performance. Conclusion answers
the research questions presented in the introduction.

Surgical Instrument Detection using Deep Learning 11
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Chapter 2

Background

In this chapter, we introduce the concepts needed to understand the work done in this thesis.
The main focus will be on object detection, with an introduction to artificial intelligence,
deep learning and convolutional neural networks. We will also present evaluation metrics,
which object detection models we have evaluated and related work.

2.1 Artificial Intelligence

Artificial Intelligence, (AI), is a field in computer science focused on making machines per-
form cognitive tasks, where many approaches have been created over the years. The knowledge-
based approach to AI uses formal rules to determine what the system should do in a given
situation [7]. These rules are built by humans to infuse the system with knowledge for the
environment in which it will operate. Difficulties arise when these rules are hard to define,
which is generally the case with tasks that humans perform intuitively, e.g., image recogni-
tion. It is not easy to create rules that, for example, detect cars in an image because lighting
conditions, occlusion, angle, and multiple other factors will affect the appearance of a car,
making it non-trivial to design these rules.

Machine learning is a subfield of AI, in which data about a given task is collected, and then
this data is used to train a system, thereby giving it statistical knowledge about the task [7].
To illustrate the approach, assume that we want to design an AI system that can determine
if a person has a certain infection. We will need data from multiple persons, both infected
and not infected. Each patient will be represented as one data point. A data point consists
of multiple features, where a feature is some measurable quantity, some medical test for in-
stance. For every person, we also need to know if they actually have the infection. This type
of machine learning, where each data point has a corresponding label, i.e., the actual answer,
is known as supervised learning. To train the AI system, mathematical optimization is used
[7]. In this example, the task is classification, i.e., classify each person into the correct class,
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infected or not infected, see figure 2.1. The choice of features is up to the system designer
and will require knowledge of the application domain.

If we instead want an AI that can detect cars in an image, we need to somehow come up
with appropriate features that are useful for identifying cars. It is not obvious how to design
these features, as mentioned above in the section on knowledge-based systems and formal
rules. This issue can be avoided by letting the AI itself find good features. We use the whole
image as input and let the image be processed in multiple steps, so-called layers, where each
layer performs some computations and sends its results to the next layer. Machine learning
algorithms that use multiple layers to extract higher level features are known as deep learning
[7].

Figure 2.1: Demonstrates a simple classification example. Each blue dot represents a healthy
individual and each red triangle represents an infected individual. Only two features are used
for each data point. The AI system will use this data in its training, which has the goal of
finding a decision boundary that divides the data points into two groups. The black line is
the decision boundary which essentially is the AI model. This system will classify all data
points below the line as healthy and data points above it will be classified as infected. In
this example, the training data could be perfectly separated with a straight line. That does
not mean that any new data point from a healthy person cannot end up above the decision
boundary, or an infected person ends up below it, just that this particular training data has
that property.
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2. Background

2.1.1 Deep learning

Deep learning, see above, is a subfield of machine learning. A deep learning model processes
data in multiple layers chained together, where a layer can be seen as a function f(x,w), x is
the input and w are the trainable weight parameters for that layer [7]. A deep learning model
with three layers expressed as a function will be written as

f3

(
f2
(
f1(x,w1),w2

)
,w3

)
(2.1)

where f1 is the input layer, f3 the output layer and f2 is a so called hidden layer. The output
of one layer is the input to the next. The trainable weight parameters are the values of a deep
learning model that gets tuned during training. Hyper-parameters are another set of param-
eters that influence both the deep learning model itself and also how training is performed.
Many deep learning models are named neural networks because their original design was
inspired by the human brain [7].

Training a deep learning model

If we want a deep learning model that can detect the presence of cars in an image, we do the
following: collect many images, ones that contain cars and ones that do not. Each image will
be given a corresponding label, indicating if a car is present. The value 0 is used when no cars
are present and 1 is used otherwise. These labels are usually created by a human that looks
at each image and determines if any car is visible or not. These images will then be divided
into three sets named training, validation and test set. The training set is used to perform
the actual training of the model, while the validation set is used to evaluate the model during
training. When training is complete, the test set is used to get a final evaluation of the model
[7].

To train the model, the weight parameters must be initialised. There are multiple ways to
initialize the weights, and the use of transfer learning is one of them, see section 2.7. When
the weights are initialized we have an actual deep learning model that can take input and
generate a prediction, car or no car. The output will be a number between 0 − 1, where a
value close to zero means the model believes there is no car present. The model has not yet
been trained so these predictions will not be accurate. So to perform the actual training,
the model repeatedly performs predictions on images from the training set. Each prediction
is compared to the corresponding label. The error is computed with a loss function L(ŷ, y)
where ŷ is the prediction and y is the label. To reduce this error the weight parameters need
to be updated. The method of choice to update the weights is called gradient descent, which
computes the gradient of the loss function with respect to every weight wi and then updates
the weight values along the negative gradient direction [7]. A weight update does not occur
after every prediction but after a number of predictions. This number is called the batch size
and is a hyper-parameter.

2.2 Convolutional neural network

A convolutional neural network (CNN) is a type of neural network well suited for image pro-
cessing. It contains multiple layers where each layer performs some operation and sends its
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2. Background

output to the next layer. In its simplest form a CNN consists of three kinds of layers, filters,
non-linearity (activation) and pooling [8]. The output from a layer is called a feature map. [7].

A CNN takes an image as input. A color image is of size width × height × 3, where the last
dimension represents the color channels red, green, and blue. The feature maps outputted by
the layers inside the CNN will be of different sizes depending on where in the network they
reside. Layers deeper in the network generate feature maps with decreased width and height
while their depth usually increases. Figure 2.4 shows a feature map passing through a filter
layer, activation layer and a pooling layer.

Filters

A filter is a small matrix containing trainable weights [8]. A common size is 3× 3× d, where
d is the depth of the filter, which must match the image (or feature map) the filter is applied
to. The filter depth is usually not written as it follows from the image it is operating on. A
filter is applied across the entire image, multiplying image values that currently overlap with
the filter and summing them into one value. Figure 2.2a shows a 3 × 3 filter applied to a
5 × 5 × 2 feature map, generating a 3 × 3 × 1 feature map. A filter of the size 3 × 3 reduces
the size of the feature map by two pixels both in width and height. To preserve size, zero
padding can be used, as shown in Figure 2.2b. Here the depth of the input feature map is
1, but it works equally well with larger depth. Zero-padding adds zero-valued pixels around
the feature map, so when a 3 × 3 filter is applied, the generated feature map is of the same
size as the input feature map. Notice that larger filters would require more zero-padding to
preserve feature map size.

(a)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b)

Figure 2.2: (a) Shows a 3 × 3 filter applied to a 5 × 5 × 2 feature map. (b)
3 × 3 filter applied to a 5 × 5 × 1 feature map with zero-padding

The step size with which a filter is moved across a feature map is called the stride. In Figure
2.2, both filters use a stride of 1. A stride of 2 would in Figure 2.2 generate feature maps of
size 2 × 2 and 3 × 3 respectively.

A filter-layer in a CNN contains multiple filters, where each filter is responsible for detecting
different features. Each filter must output the same sized feature map. If a layer has n filters,
their combined output will be a feature map of size w × h× n, where w and h depend on the
input feature map, if zero-padding is used and the chosen stride.
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Non-linearity

Following the filters is a non-linearity function (activation function). The Rectified Linear
Unit (ReLU) is one example of such a function, ReLU(x) = max(0, x). This function is
applied to each of the elements in the feature map, where the variable x is an element from
the feature map. The function does not transform the size of the feature map, only the values
within it [8].

Pooling

Pooling is used to reduce the size of a feature map [8]. The reduction performed by the
pooling layer decreases the computational power needed because the remaining layers then
have fewer elements they need to operate on. Figure 2.3 shows the use of max pooling, where a
window slides over the input feature map and selects the largest element. The sliding window
has a depth of one, meaning the feature map depth is preserved, only width and height are
reduced.

2
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1
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4

1

2

2

3

4

1

3
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Figure 2.3: Max pooling with a 3 × 3 window, using stride 2. In this
image, only values on depth one are displayed in the feature maps.

Figure 2.4: Displays a small part of a CNN. To the left, a feature map is entering a filter
layer consisting of two 3 × 3 filters, stride 1, no padding used. Next, an activation layer
performs element-wise operations. Lastly, a pooling layer with a window size of 2 × 2,
stride 2. In this case, feature map depth is not increased.
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2.3 Object detection

Object detection refers to the task of both detecting and localizing objects in an image, where
localization refers to the task of identifying an object’s position in an image [9]. In contrast
to image classification, where an image only contains objects from one class, object detection
deals with images where multiple objects from multiple classes can occur in the same image.

An object detector takes an image as input and outputs a set of bounding boxes. For each
bounding box, there is an associated class. A bounding box defines a rectangular region in
the image that encapsulates an object. It is defined by four values, commonly they are the box
center: x- and y coordinates, and the width and height [10]. Figure 2.5 shows an example of
predicted bounding boxes and ground truth bounding boxes, where ground truth bounding
boxes are created by a human and used as training data.

Figure 2.5: Drawn on this image are ground truth bounding boxes in purple and bounding
box predictions made from an object detector. The prediction from the object detector also
contains class assignments for each bounding box and its confidence in each bounding box.

2.3.1 Model architecture for object detection

Object detection is a difficult task and there exist a plethora of models that have been devel-
oped over the years [9]. But in 2014, with the use of deep learning and convolutional neural
network, major advancements were made and the best-performing models are now based on
deep learning [9]. These deep learning models are commonly divided into two categories,
two-stage detectors and one-stage detectors. This classification distinguishes how different
models process an image to generate a prediction. A two-stage detector consists of a region
proposal step and a classification step. The region proposal tries to identify regions in the im-
age that potentially could contain an object. Then in the classification step, these proposed
regions are analyzed and the model tries to determine if they contain an object. A one-stage
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detector does not generate any regions, it instead tries to locate and classify objects directly
from the image [9].

We will present a generic architecture for an object detector based on the models presented
in section 2.8. All models evaluated in this thesis follow this architecture to some extent, al-
though there exist other object detectors based on deep learning that take other approaches
[11]. Using the same naming convention as Bochkovskiy et al. [12], an object detector con-
sists of three parts: a backbone, consisting of a CNN that extracts image features, a neck,
that combines various feature maps from the backbone to further refine the features, and
finally the head that performs predictions on these refined feature maps and outputs bound-
ing boxes with class assignments and confidence scores. Figure 2.6 displays a schematic for
the object detector design that is presented here.

Figure 2.6: Schematic for an object detector. The backbone can be any arbitrary CNN. Four
feature maps from the backbone are used as input to the neck, where they are combined and
sent to the head for detection. In the head, multiple filters are applied to each feature map
to generate all output values.

Backbone

The backbone can be any CNN. As mentioned in section 2.2, a CNN will apply filters to the
input image, generating so-called feature maps. More filters will again be applied to these
feature maps, generating new feature maps. This process is repeated multiple times, along
with other operations, depending on the specific CNN. This will generate a hierarchy of
feature maps, from large-sized ones in the early stages to smaller ones (but with greater depth)
in the later stages. The smaller ones will be more heavily processed, meaning they contain
more useful information for the network, but because their resolution has been reduced,
they cannot represent fine-grain details. The larger feature maps retain more details, but
because they have not been processed as much, they contain less useful information from
the network’s perspective. To remedy this, feature maps of different sizes are merged, this
happens in the next part of the object detector, the neck.

Neck

A subset of the feature maps generated by the backbone is sent as input to the neck, the
subset is determined by the model designer. There exist multiple different strategies to merge
feature maps, but many are inspired by Lin et al. [13]. In this paper, they use four feature maps
from the backbone. Before any feature maps can be combined they must be transformed to
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the same size, and initially, they vary in all three dimensions, width, height and depth. Lin
et al. [13] begin by converting all feature maps to be of depth 256. This can be achieved by
applying 256 filters of size 1×1×d to each of the feature maps, where d denotes the depth of
the feature map the filters are applied to. A 1×1 filter applied to a feature map of size w×h×d
will output a feature map of size w×h×1, 256 filters will then together create a feature map
of depth 256. Figure 2.6 demonstrates how the feature maps are merged, the smallest feature
map is upsampled to match the width and height of the previous feature map and then their
elements are added. This is repeated until all feature maps have been combined. The final
feature map and all intermediate ones are then sent to the head for detection.

Head

The head receives the refined feature maps and might apply some additional filters on them.
Then the final step is to generate predictions. To generate a bounding box prediction, four
values are needed because a bounding box is represented with four values, see the beginning
of section 2.3. The class assignment for a bounding box is created by an object detector by
generating c class probabilities, one for each class the object detector is designed to recognise.
The class with the largest probability-value then gets assigned to the bounding box and the
probability is used as confidence score.

All models in this thesis make use of anchor boxes in their predictions. An anchor box is
a predefined bounding box with a certain area and aspect ratio. These anchor boxes are used
as a starting point for the object detector when it generates bounding boxes. It modifies these
anchor boxes to generate bounding box predictions. For each anchor box, four offset values
are calculated, one for each value that defines a bounding box. The final outputs from the
model are these offset values to the anchor boxes, as well as class probabilities for every anchor
box. Anchor boxes are directly linked to feature maps. Each pixel in every feature map will
be the center for k anchor boxes, where k is chosen by the model designer. Figure 2.7 shows
an example where k=3. Pixels in the same feature map get an identical set of anchor boxes.
Anchor boxes in low-resolution feature maps usually have larger areas because these feature
maps mainly capture information about large objects. Likewise, high-resolution feature maps
contain anchor boxes with smaller areas because the higher resolution enables smaller objects
to be detected. Using this anchor box setup means they only need small tweaks to make them
enclose a nearby object, if any is present.

The total number of anchor boxes across all feature maps becomes
∑

s s2k, s ∈ S, where
S is the set of side lengths of the feature maps (assuming square feature maps). Because pixels
in the same feature map have identical anchor boxes, the number of unique anchor boxes−
meaning they have the same area and aspect ratio− becomes N · k, where N is the number of
feature maps.

To generate the output values, multiple filters are applied to the feature maps. Each an-
chor box needs four offset values, so four filters per anchor box are needed. There are N · k
unique anchor boxes, which means there needs to be 4 ·N · k filters to generate all offset val-
ues. This means that anchor boxes with the same area and aspect ratio share the same filters.
To generate class predictions, every unique anchor box gets a filter for every class, leading to
N · k · c filters, where c is the number of classes. In total Nk(4+ c) filters are used to generate
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all output values. Usually, the filters are of size 3 × 3.

(a) 4 × 4 feature map (b) 8 × 8 feature map

Figure 2.7: Two differently sized feature maps are overlaid on the input image to demonstrate
how the anchor boxes (in red) will appear on the image. Here, three anchor boxes per pixel
in the feature maps are used, where only the anchor boxes for one pixel are drawn. Both
feature maps use anchor boxes of the same aspect ratios, {1:1, 3:1, 1:3}, but the area for each
corresponding anchor box varies between the feature maps. In total there are 3 ·16+3 ·64 =
240 anchor boxes in these two feature maps, and 2 · 3 = 6 unique anchor boxes.

2.3.2 Training an object detector

To train an object detector, an image dataset with bounding box annotations is needed. Dur-
ing training, ground truth bounding boxes must be assigned to anchor boxes. Each bounding
box can be assigned to the anchor box with the greatest overlap, but usually, a bounding box
will be assigned to multiple anchor boxes because there will be significant overlap with many
of them. There will be a huge amount of anchor boxes not assigned to any bounding box be-
cause there are many more anchor boxes than bounding boxes in any given image. During
training, an image will be sent to the model as input, it is processed by the network which
outputs offset values and class predictions. The loss function will be a sum of the errors be-
tween the predicted bounding box coordinates, i.e, anchor boxes with their offsets applied,
and the ground truth bounding box coordinates, together with the errors for class probabil-
ities. A distinction in the loss function is made between anchor boxes that were assigned to
a bounding box and those that were not. Anchor boxes that have been assigned a ground
truth bounding box contribute to the loss function fully, meaning their errors in offsets and
class probabilities will be computed. Unassigned anchors will only contribute to their class
probabilities because their offset values have no real meaning, there is no object to detect so
there are not any values to compare them against.

2.4 Challenges with object detection

Objects of the same class can look very different depending on their angle, scale, lightning
conditions and amount of occlusion from other objects. An image classifier only needs to
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detect the presence of an object, while an object detector needs to learn how to find its
exact position, which is rather difficult when all these factors come into play [9]. Another
challenge, arising mainly for models using anchor boxes, is the abundance of anchor boxes
with no ground truth assignment. The model presented by Lin et al. [14] contains over a
hundred thousand anchor boxes. The errors these anchor boxes generate in the loss function
will overshadow the ones that have ground-truth assignments, leading to poor training results
as the model cannot focus on detecting actual objects. These challenges must be addressed
by a model designer to create a well performing model.

2.5 Evaluation metrics

Metrics are used to measure the performance of a neural network and allow for comparison
between different models. Padilla et al. [15] state that a building block for metrics used within
object detection is the intersection over union (IOU).

2.5.1 Intersection Over Union (IOU)

IOU calculates the overlap between two bounding boxes, namely a predicted bounding box
and a ground truth bounding box. The value is computed by dividing the intersection area
with the union area, as can be seen in the figure 2.8. IOU goes from 0, when there is no
overlap, to 1 when there is perfect overlap [15].

IOU=

Figure 2.8: The numerator represents the intersection between two
bounding boxes and the denominator represents the union of the
same two bounding boxes

2.5.2 True positive, False positive, False negative

True positives (TP), false positives (FP) and false negatives (FN) are computed using the
IOU value. Only bounding boxes representing the same class are compared. A predicted
bounding box is classified as a true positive when its IOU with a ground truth bounding
box is greater than a given threshold value. Choosing a threshold value close to 1 means that
the two bounding boxes must be very similar to be given a true positive classification. False
positive is assigned to a predicted bounding box that does not have an IOU greater than the
threshold value with any ground truth bounding box. Objects that are not detected, meaning
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their ground truth bounding boxes have no IOU value greater than the threshold value with
any predicted bounding box are represented as a false negative [15].

2.5.3 Precision

Precision is a ratio between the number of true positive predictions over the total number
of predictions [15]. It is calculated per class. A precision value equal to 1 means the object
detector was always correct when predicting for the given class. It does not mean that all
instances of the given class was detected since there could be false negatives.

Precision =
TP

TP + FP

2.5.4 Recall

Recall is a ratio between the number of true positive predictions over the total number of
ground truth bounding boxes [15]. The sum TP + FN equals the number of ground truth
bounding boxes and is therefore independent of how the model has predicted. A recall value
equal to 1 means the object detector managed to correctly predict all instances of a given
class. It might however also have predicted extra bounding boxes of this class, which does
not affect the recall value.

Recall =
TP

TP + FN

2.5.5 F1 Score

The F1 score is the harmonic mean of precision and recall. This can be used advantageously
in some situations, specifically when both recall and precision are equally important for the
application. F1 can be easier to work with since it only requires the user to observe one metric
instead of multiple. The formula for the F1 score is shown below [15].

F1 = 2 ·
Precision · Recall
Precision + Recall

2.5.6 Mean average precision (mAP)

Precision-Recall curve

For each class, the precision-recall curve shows the relationship between recall and precision.
The black solid curve in figure 2.9 displays the precision-recall curve for a class named scalpel.
This curve is generated based on an object detector’s predictions on thousands of images,
using a given IOU threshold to assign true positives, false positives and false negatives. To
generate the entire precision-recall curve, precision and recall are calculated for different con-
fidence score thresholds, where each bounding box prediction has its own confidence score,
see figure 2.5. For example, a confidence threshold of 0.35 means that all predictions with
confidence less than 0.35 will be ignored when precision and recall are calculated. Precision
and recall values are calculated for all confidence threshold values from 0 up to 1 [15].

A confidence threshold close to one will only include the best predictions, leading to high
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precision but low recall. The reason for a low recall is that many correct predictions will
be excluded because their confidence scores are to low. Increasing the confidence thresh-
old reduces precision as more predictions are included in the calculation, but recall is then
improved. The erratic appearance of the black curve in 2.9 indicates that low confidence
predictions can be true positives while higher confidence predictions can be false positives.
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Figure 2.9: The black solid curve is the precision-recall curve of
a class named scalpel. The red dotted curve is the interpolated
precision-recall curve.

Average precision (AP)

Average precision (AP) is a metric that combines precision and recall and is calculated as the
area under the interpolated precision-recall curve, shown in figure 2.9. Let P(r) represent the
precision-recall curve, where r represents recall and P(r) represents the precision value for
the given recall value r. The interpolated curve Pi(r) is given by equation 2.2. The precision at
recall r is calculated by taking the maximum precision observed for all recall values above the
current recall value. The area under Pi(r) can be calculated in different ways. Equation 2.3
shows the N-point interpolation method which is used by PASCAL VOC [16] and COCO
[17] with N = 11 and N = 101 respectively. Exact calculations of the area are another
method.

Pi(r) = max
x,x≥r

P(x) (2.2)
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AP =
1
N

∑
r

Pi(r), r =
N − n
N − 1

, n = 1, ..,N (2.3)

Mean average precision (mAP)

Average precision is calculated per class. To combine the AP scores for every class, mean aver-
age precision (mAP) is used which calculates the average over all classes. Equation 2.4 shows
the formula, where APc represents the average precision for a class and M is the number of
classes.

mAP =
1
M

M∑
c=1

APc (2.4)

mAP50 and mAP50:95

Mean average precision is highly dependent on the IOU threshold, therefore the choice of
IOU threshold is normally included when working with mAP. The notation mAP50 indi-
cates that an IOU threshold of 0.5 was used. There also exists a metric that computes the
average of mAP with different choices of IOU thresholds. mAP50:95 represents the average of
mAP50,mAP55, ...,mAP95 [15].

2.6 Preprocessing and data augmentation

A crucial part of any deep learning project is to have enough data [18]. This data should con-
form to a certain format, which is handled by a preprocessing stage. For image data, common
preprocessing steps are to rescale all pixel values to lie between [−1, 1] or [0, 1] and to resize
all images to the same size. [7].

Data augmentation refers to methods that artificially increase the amount of data by ma-
nipulating the data that already exists. Data augmentation can be implemented in many
different ways. One of the simplest approaches is to create several copies of each training
image and apply zooming effects, rotations, or other basic enhancements [18]. Mosaic is an-
other technique, where four images are tiled together [12]. Using these methods to increase
the data quantity can improve deep learning models [18].

2.7 Transfer learning

Training a model on data from a given task and then using that model to initiate the training
of another task is known as transfer learning [19]. The first training round can simply be used
as a weight initialization for the second training. It can also be the main part of the training
and the second stage only performs fine-tuning. This is useful when data for the actual task
is scarce, but there exists another similar task with much more data [20]. Publicly available
object detection models are usually pre-trained on large public datasets such as COCO and
PASCAL VOC, see section 2.7.1. It is then up to the user of these models to decide how they
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want to apply the transfer learning, either as weight initialization or fine-tune the already
trained model.

2.7.1 PASCAL VOC and COCO

Pascal VOC and COCO are two publicly available object detection datasets that can be used
to compare different object detection models. They both use their own implementation
of the mAP metric, where PASCAL VOC has implemented mAP50 with N = 11 point
interpolation [16] and COCO instead uses N = 101 point interpolation [17]. Later versions
of PASCAL VOC have switched over from N point interpolation to calculate the exact area
under the interpolated precision-recall curve [21].

2.8 Models

When designing an object detection model, there is a multitude of design choices to make
and each model brings its own novel ideas in an effort to increase model performance. We
will only give a short introduction to them here, more details can be found in their respective
publications.

2.8.1 YOLOv4

YOLOv4 (you only look once) is a one-stage detector developed in 2020. It is preceded by
YOLOv1-v3. The YOLO family has always focused on creating models capable of performing
predictions in real-time, and YOLOv4 is no exception. It introduces some new augmentation
methods not present in previous yolo models, among which mosaic is one. Its architecture
follows a similar design as described in section 2.3.1.

2.8.2 YOLOv4-scaled

YOLOv4-scaled is a family of models all deriving from yolov4. They were developed in 2020
and implement a scaling scheme, like EfficientDet, but with the addition of also making
tweaks to the architecture. YOLOv4-scaled both consist of larger and smaller models than
the original YOLOv4.

2.8.3 YOLOv5

YOLOv5 was developed in 2020 shortly after YOLOv4. No publication exists for this model,
but the implementation is publicly available on github [22].

2.8.4 retinaNet

retinaNet is a one-stage detector developed in 2017. Its architecture is similar to the one
presented in section 2.3.1. retinaNet tries to solve the issue concerning the overwhelming
majority of empty anchor boxes affecting the model performance by introducing a loss func-
tion called retina loss. This loss function reduces the loss for bounding boxes that are well
classified. An accurate prediction leads to low loss, and with retina loss, it is reduced even
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further. This should cause the weight updates to be more affected by the inputs that are not
classified well instead of being overwhelmed by many small errors from good predictions [14].

2.8.5 Single Shot Multibox Detector - SSD

SSD is a one stage detector developed in 2015. Its architecture has similar elements to the
one described in section 2.3.1. It consists of a backbone followed by a few extra layers to
create more feature maps. No neck is used in SSD, instead, the filters that usually reside in
the head are applied directly to these extra feature maps together with one feature map from
the backbone. Anchor boxes are used, in total 8732 [23].

2.8.6 EfficientDet

EfficientDet is a family of one-stage detectors developed in 2019 [24]. The models are pro-
duced by employing a scaling scheme over a network architecture that is very similar to the
one described in section 2.3.1. The scaling scheme makes it easy to increase the number of
parameters to gain better results, at the cost of computational power. There exist 7 models
in the family, named EfficientDet d0-d6, d0 is the smallest and d6 is the largest. The model
size is increased by scaling the three parameters input image resolution, the number of layers,
and the number of filters per layer. The neck in EfficientDet consists of blocks of weighted
Bi-directional Feature Pyramid Networks [13].

2.8.7 Faster R-CNN

Faster R-CNN is a two-stage detector developed in 2015 [25]. It precedes the models R-
CNN and Fast R-CNN. Because it is a two-stage detector, it differs from the architecture
in section 2.3.1, although Faster R-CNN can be extended to become more similar to the
approach followed by Lin et al. [13], where a neck is introduced. Faster R-CNN generates
region proposals with a CNN they name Region Proposal Network (RPN). It takes an image
as input and on its final feature map, anchor boxes are defined. Then, similar to how the head
operates in section 2.3.1, multiple filters are applied to this feature map to calculate offsets
to these anchor boxes. For each anchor box, an objectness score is calculated using a filter,
representing the network’s confidence for if there is an object there or only background.
Faster R-CNN also has a backbone which takes the same input image as RPN. The offset
anchor boxes RPN believes contained an object get projected onto the last feature map of
the backbone. These regions will be used to generate class predictions and further refinement
of the anchor box offsets to generate the final bounding boxes.

2.9 Related work

Deep learning is prevalent in the field of medical image analysis [26], and one of the tools
available is CNN based object detection. Multiple open-source medical datasets exist to train
these object detectors [27], but to the best of our knowledge, there are no public datasets with
images from open-heart surgery and no previous work exploring the use of object detection
in the setting of open-heart surgery. However, there exist numerous papers exploring the
performance of object detectors like YOLO, SSD and R-CNN, on different medical datasets.
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Zhao et al. [28] present an approach using an object detector designed to detect surgical in-
struments used in robot-assisted surgery. They compare its performance to other detectors,
such as Faster R-CNN, YOLOv3 and retinaNet. Surgical instrument detection in robot-
assisted surgery is also explored in the publishing from Bamba et al. [29], where the focus lies
on detecting different kinds of forceps. Another object detector comparison is made in Tan
et al. [30], where retinaNet, Yolov3 and SSD are used to perform pill identification.

Comparison of object detectors is performed on other datasets as well. Srivastava et al.
[31] compare the performance of three models, YOLOv3, SSD and Faster R-CNN using the
COCO dataset. In Sanchez et al. [32], a multitude of object detectors are compared using
both COCO and PascalVOC. A comparison of detectors is made by Groener et al. [33], using
a dataset consisting of overhead satellite imagery.
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Approach

This chapter contains the approach that was chosen for this thesis. The first section presents
general information about the surgery videos, which instruments we focused on and how
frames were retrieved from the videos. This is followed by a presentation of the datasets.
Additionally, we have sections for the research questions presented in the introduction. The
final sections will cover the computer setup.

Video documentation was used during this thesis and it is a standard procedure and did
not require any change of the workflow during surgery.

3.1 Material and methods

3.1.1 Videos

We have used videos from 23 surgeries, where a video can span from two hours to more than
five hours. Each video was recorded from a camera positioned above the patient. Figure 3.1
shows some images from various stages of the surgery. The lighting conditions and level of
zoom vary slightly between different videos, which can be seen in figure 3.1. Because the cam-
era was recording from above, the view could sometimes be obstructed by the heads of the
surgeons, making it impossible to detect any objects even if they were present. The videos
are in resolution 1920 × 1080 or 1280 × 720.

There are always two surgeons that perform a surgery, the lead surgeon and the assistant.
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Figure 3.1: Each row contains images from the same video. The leftmost images are from the
early stages of the surgery, when the sternum is opened. The center images depict surgical
repair, occurring in the middle of the surgery, and the rightmost images depict the final stage
where the wound is closed. The lower right corner in the images from the center row is
masked out because there were instruments there during the entire duration of the surgery.

3.1.2 Instruments used in evaluation

Different kinds of instruments are used throughout heart surgery and we focused on seven
of them in order to limit the scope of the thesis. We chose the instruments presented below
since they are widely used throughout a surgery and are considered important. Some of the
instruments can be used to represent events in a surgery, such as the retractor which marks
the start and end phase of a surgery or the tubes from the heart-lung bypass machine (HL-
tube). There are variations of the instruments presented below, so the instruments may not
always look identical to figure 3.2. The instruments that we focused on are presented below
and shown in figure 3.2.

• Diathermy - figure 3.2a

• Forceps - figure 3.2b

• Scalpel - figure 3.2c

• Needle driver - figure 3.2d

• Saw - figure 3.2e

• Retractor - figure 3.2f

• HL tube - figure 3.2g
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(a) Diathermy (b) Forceps (c) Scalpel (d) Needle driver

(e) Saw
(f) Retractor

(g) Heart-Lung tube

Figure 3.2: Surgical instruments that we choose to focus on.

3.1.3 Frame retrieval and annotation

The data preparation step consists of two steps: frame retrieval and annotation.

Frame retrieval

Frame retrieval is a manual process where video-sequences that contained the relevant in-
struments were selected and frames were extracted. Based on the video sequence’s properties,
including its length and what instruments it contained, the number of extracted frames was
adjusted to create a more balanced dataset. For instance, if the chosen sequence contained
a scalpel, more frames were extracted compared to if it only consisted of forceps because
scalpels are used much less frequently during surgery.

Annotation

In the annotation process, we created ground truth bounding boxes for each instrument in all
images that were extracted during the frame retrieval. We used the python-software labelImg
to create bounding boxes [6]. In figure 3.3, three similar images are displayed with annotations
for the retractor. When annotating, we aimed to cover the whole instrument even though it
was partially obscured, as can be seen in figure 3.3a and 3.3b. Figure 3.3c shows an exception
to this rule, as one visible part of it is very small and therefore disregarded.
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(a) (b)

(c)

Figure 3.3: Each image represents an annotation of a retractor.

3.2 Dataset

We used three different datasets throughout this thesis. The first dataset which is used in
section 3.3, referred to as the original dataset, ODS, was created from 14 different videos. A
second dataset referred to as the extended dataset, EDS, was created using data from ODS
and new data generated using the approach described in section 3.7 with 5 additional videos.
The third and smallest dataset was used as an independent test dataset and referred to as
ITDS, created from three separate videos not used in the creation of either ODS or EDS. The
data in ITDS was completely unseen from the perspective of the networks and was therefore
used to test how well the networks handled new data. One additional video, not used in any
of the datasets, was used together with one video from ITDS to count instrument changes,
see section 3.6

• ODS was divided into training, validation and test split.

• EDS was divided into training and validation split.

• ITDS was used as a test set and therefore not divided into different splits.

The dataset details of the three datasets are presented below in table 3.1 and 3.2. The total
number of instrument occurrences is shown below in table 3.3.

3.3 Network comparisons - mAP50

The networks presented in section 2.8 were selected because of their relevance and docu-
mented performance. There are multiple implementations of the networks used in this the-
sis. Our choice of implementation was based on how recently they were released and how
well documented they were, see appendix A.
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Dataset split- Percentage
Abbreviation Dataset (%)

Test 10 %
ODS Validation 10 %

Train 80 %
Test 0 %

EDS Validation 5 %
Train 95 %

Table 3.1: Dataset split - Percentage

Dataset split - Images - Videos
Abbreviation Dataset Images Videos

Test 810
ODS Validation 810 14

Train 6471
Test 0

EDS Validation 816 19
Train 15474

ITDS Independent test dataset 1278 3

Table 3.2: Dataset split - Quantity

Instrument occurrences
Instrument ODS EDS
Forceps 10181 23960
Retractor 4841 11309
Needle driver 2271 5545
HL-tube 2171 7026
Diathermy 2041 2585
Scalpel 1454 2392
Saw 390 434

Table 3.3: Instrument occurrences - Total number of occurrences
per instrument in all images from ODS and EDS.

3.3.1 Model training

To create a fair comparison, the networks were trained with similar settings, using the fol-
lowing below.

• Default parameters.

• No preprocessing of data.

• Maximized image size.

• The same memory limit, the batch size was reduced if the training could not run with
the original setting.
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• The same hardware, see section 3.8

Default settings were chosen because they have been tuned by the creator of the network
and are well adjusted to the network and further hyper-parameter optimization is challeng-
ing. Additional preprocessing was excluded since the networks handle input data in differ-
ent ways, they already apply preprocessing stages. So if we were to apply preprocessing, the
comparison would not have been fair since some would most probably handle it better than
others. Maximizing the input image size was done to be able to capture as much detail as
possible in the input images.

All networks were trained on the ODS train-split, validated on the ODS validation-split,
and tested on the ODS test-split. The evaluation was also carried out on ITDS to show how
well the models perform on unseen data.

3.3.2 Evaluation

We considered recall, precision, and mAP as evaluation metrics. Both the mAP metric and
the F1 score aim to provide a metric that combines the precision and recall score, see section
2.5.6. The mAP metric is widely used in this field. We use both mAP50 and mAP50:95. The
results were obtained by generating predictions on the ODS test-split and the ITDS. This
generated four scores, two mAP50 and two mAP50:95. These scores were then averaged. The
averaged score was used when comparing networks, since the score retrieved from the ODS
test-split represents how well the networks were trained on the data provided in training and
the score retrieved from ITDS represents how well the networks handled new data, both are
of equal interest. The averaged mAP50 score was used to select the best network. The mAP
metrics were calculated with the software object detection metrics, see Padilla et al. [15].

3.4 Instrument comparison

To find and evaluate detection efficiency for each instrument, both the ODS test-split and
ITDS were used. The detection outputs were used to compute AP50 and AP50:95 for each
instrument.

3.5 Data scalability

To evaluate the scalability of the best-performing network, we created 6 different training
sets. All training sets contained different amounts of images, the quantities are shown in
table 3.4. In order to evaluate the scalability, we trained our best-performing network on
these training sets separately and validated the performance, based on the mAP metric, using
both the ODS test-split and ITDS.
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Dataset split - number of images
Dataset Images
Train_200 200
Train_400 400
Train_800 800
Train_1600 1600
Train_3200 3200
Train_6400 6400

Table 3.4: Dataset split- Total number of images in the scalability
train datasets.

3.6 Instrument changes

The networks were trained to detect surgical tools in the videos but not to detect instru-
ment changes. To calculate instrument changes, we wrote a script that took the detection
output from an entire video, generated by the best network, and analyzed when instrument
changes occurred. Section 3.6.2 provides further specifics about the script. We chose to ex-
clude forceps when detecting instrument changes, as we mainly focused on the instruments
the lead surgeon uses in their main hand, and there were almost always at least two forceps
present, sometimes up to five, often held in the assistant’s hands. Two videos were used for
the evaluation, referred to as Video1 and Video2. Video1 and Video2 consisted of 70 changes
each when using definition1 presented in section 3.6.1 and focusing on the instruments men-
tioned above. Video1 consisted of 152 changes while Video2 consisted of 162 changes when
focusing on all instruments that occurred in the surgeries, without exclusion.

3.6.1 Defining an instrument change

We created two definitions of an instrument change, where definition 1 is the more natural
definition closely resembling the intuitive notion of changing something, whereas definition 2
represents a switch which our network will be able to detect, because our network, for in-
stance, cannot distinguish between an instrument that is being used and one that is placed
on the table. Definition 2 is based on how the composition of visible instruments changes
between frames, which is represented by something called an event-log, see section 3.6.2.

Definition 1

An instrument change is a pair of instruments (instrument1, instrument2), where the sur-
geon first lets go of instrument1 and then receives instrument2. This is defined for the lead
surgeons main hand.

Definition 2 of an instrument change is directly based on the sequences of entries in the event-
log. It is therefore defined after the event-log section.
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3.6.2 Event-log

We manually processed two videos and created an event-log by writing down the composition
of instrument changes. For example, assume that on frame number 24501, the visible set of
instruments changes from consisting of 1 retractor and 1 needle driver, to now also including
1 diathermy. Then 24501 together with all instruments currently in view would become one
entry in the event-log. The log would become very long if an entry was added every time the
composition of visible instruments change since they are periodically obscured from view by
the surgeon’s head. Because of this, we added entries to the log based on two rules. The first
rule was that an entry is added if an instrument becomes visible and was not a member of
the most recent entry. Secondly, an entry was added when an instrument was not viewable
anymore and does not return within one minute or if another, new instrument appears on
the screen while the previously visible instrument still was out. Each instrument class in
the event-log is represented as either visible or not visible. There was most often only one
instrument per class used at a time, so the number of visible instruments in each class was
not recorded. The forceps class was an exception but was not recorded in the event-log.

Definition 2

An instrument change is an instrument transitioning from active to either inactive or outside.
An active instrument refers to the instrument the lead surgeon is assumed to currently be
using, but it is not guaranteed that it perfectly corresponds to what the lead surgeon actually
used. When an instrument becomes visible, it is set to active. An inactive instrument refers
to an instrument the lead surgeon is not using but is still visible in the frame. A waiting
instrument refers to an instrument that has left the frame but has not been switched out to
another instrument. The outside instrument refers to an instrument that has left the frame
and has been switched to another or never entered the frame.

Example - Definition 2

It is not guaranteed that the inactive and active elements perfectly correspond to what the
surgeon actually used. An explanation of definition 2 is provided below, refer to table 3.5.

• Frame id:190. The scalpel entered the frame when nothing else is visible. Because
this is the first instrument in the event-log, it is counted as a change, even though no
instrument was replaced. The scalpel is set as active.

• Frame id:231. The scalpel left the frame. It is not interpreted as a change yet, another
element must enter the frame first. The scalpel is set as waiting

• Frame id:301. The diathermy entered the frame, this counts as a change with the scalpel
that was waiting. The diathermy is set as active and the scalpel to outside.

• Frame id:702. The needle driver entered the frame, this counts as a change because
it became visible. It is changed with the diathermy that is set to inactive− because it
remains visible− and the needle driver to active.

• Frame id:1302. The needle driver left the frame and is set to waiting. It is not inter-
preted as a change yet, another element has to enter the frame first. The diathermy
remains inactive and will do so until it is no longer visible.
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• Frame id:1532. A scalpel entered the frame, this counts as a change because it became
visible. It is changed with the needle driver that is set to outside and the scalpel to
active.

• Frame id:1905. The diathermy left the frame. This does not count as a change since
the status of the diathermy was inactive. The diathermy is set to outside.

At frame frame id:1302 when the needle driver disappears, only the diathermy is visible, yet
it remains inactive. It is possible that the surgeon starts using the diathermy, in which case
the change between needle driver and diathermy will not be noticed. It is also possible that
the diathermy will not be used again before it finally exits the video, because it happens that
the diathermy remains visible for more than a minute after it has been replaced, before being
removed from the video.

Frame id Visible instruments Accumulated changes Event
190 Scalpel 1 Nothing switched to scalpel
231 No elements 1 Scalpel not visible
301 Diathermy 2 Scalpel switched to Diathermy

702 Diathermy Needle driver 3 Diathermy switched to Needle driver

1302 Diathermy 3 Needle driver not visible

1532 Diathermy Scalpel 4 Needle driver switched to Scalpel

1905 Scalpel 4 Diathermy not visible

Table 3.5: Event-log. Active element corresponds to green text and inactive corresponds to
red text.

Interpreter script

This script was designed to interpret network output. It was intended to prevent false de-
tections while also attempting to fill in the gaps where the network failed to detect a specific
instrument. We accomplished this by passing the network’s detection output through this
script, which first processed the data using various rules designed to eliminate network fail-
ures, such as missing an instrument in a few frames but detecting it in all frames around that
time. After the data has been processed, it is passed through another section of the script
that splits the data into groups for each instrument, with each group representing an event.

The first step filtered the frames contained in the input data. For each frame, we followed
the steps presented below.

• Check for object overlap. If two objects existed at the same spot in the frame, the
instrument with the lowest detection confidence was removed.

• Check for flicker. If an object occurred in one frame but not in the surrounding frames,
it was interpreted as a flicker and removed.

• Check for duplicates. If there were multiple occurrences of objects that should only
occur once, at a time, the object with the lowest confidence was removed.
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We generated a list for every instrument describing when they are detected in the video. This
was done by iterating through the frames of the video and focusing on individual instruments.
The elements of each list were divided into groups, where the time difference of each group
had to be larger than one minute. A third step involved removing all groups that did not
follow a set of rules. This set of rules, specified how long an object had to be recognized be-
fore it could be considered a true detection. Finally, we compared all groups from different
instruments to check if any overlap existed. Our goal was to follow the principle presented
in Definition 2. These steps created an Event-log.

3.6.3 Evaluation -Instrument change

The evaluation was carried out in two steps. Firstly an evaluation was carried out on how well
the network in combination with the interpreter script could create an event-log. Secondly,
an evaluation was carried out regarding how well instrument changes could be counted using
the event-log.

A ground truth event-log was created manually by using two separate videos which did not
occur in training data. This was compared to the generated event-log. To calculate precision,
recall and F1-score the following definitions below were used.

• TP(true positives) How many detected instrument events occurred in reality as well.

• FP(false positives) How many detected instrument events did not occur in reality.

• FN(false negative) How many events occurred in reality but were not noticed by the
network.

Using the generated event-log and the ground truth event-log, instrument switches for both
event-logs were calculated using Definition 2. These were compared to each other in order
to see how well they matched.

3.7 Extended dataset- YOLOv5

The best network was further improved with the following steps.

3.7.1 Analysing incorrect detections on videos and retrieving frames

The goal was to improve the network and the approach followed was to use the trained net-
work and analyze predictions using the analysis script presented below. The output from the
analysis script was annotated and used to extend the ODS. This extended dataset is referred
to as the extended dataset, EDS.
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3.7.2 Weakness analysis script

The analysis script takes network predictions as input and outputs a log with difficult frames.
This is a modified version of the interpreter script, it follows the same steps as the interpreter
script presented in section 3.6.2. The only difference is that all modified frames were saved
to a log since they are interpreted as difficult.

3.7.3 Evaluation of the analysis script

To present the total improvement, the model trained on EDS was compared to the model
trained on ODS with respect to mAP evaluating on ITDS. The models were also compared
with a focus on how well they could detect instrument changes.

3.8 Computer setup

The hardware and software setup that was used in this thesis is displayed below.

Hardware Product name
Motherboard Asus PRIME Z690M-PLUS D4
CPU 12th Gen Intel(R) Core(TM) i9-12900K
GPU NVIDIA GeForce RTX 3090 24 GB

Software Version
CUDA 11.3
Cmake 3.20
OpenCV 4.2.0
cudNN 8.2.0
Ubuntu 20.04

The implementation of Efficientdet assumed eight powerful GPUs would be available. We
used one GPU which means Efficientdet most likely was limited by the available hardware.
The other models had no such requirements and they only needed minor changes, as de-
scribed in section 3.3.1.
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Chapter 4

Results

This chapter presents the result of the network evaluation, instrument switches and weakness
analysis.

4.1 Network comparisons - mAP50

In order to find the highest performing network, we evaluated on ITDS and the ODS test-
split. The results are displayed in table 4.1 as a mAP50 and mAP50:95 score. The mAP with
an IOU threshold set to 0.5 is represented as mAP50 and the mAP with an IOU threshold
from 0.5 to 0.95 is represented as mAP50:95. The table also includes the average of mAP50 and
mAP50..95.

YOLOv5 has the highest average mAP50 score of 89.23 % compared to the second-best per-
forming network, Scaled-YOLOv4 that has an average mAP50 of 88.0 %, see table 4.1. Ad-
ditionally, YOLOv5 has the highest average mAP50:95 score of 69.31 % compared to Scaled-
YOLOv4 which has an average mAP50:95 of 61.74 %, this corresponds to a difference of 7.57
percentage points.
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ODS - Test-split ITDS Average
Network mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

YOLOv5 94.5% 76.14 % 83.96 % 62.48 % 89.23 % 69.31 %
Scaled-YOLOv4 93.36 % 69.02% 82.79 % 54.46 % 88.0 % 61.74 %
FasterR-CNN 92.23 % 63.27% 81.39 % 55.31 % 86.81 % 59.29 %

YOLOv4 90.6 % 58.00 % 80.74 % 46.09 % 85.67 % 52.04 %
Efficientdet 85.11 % 59.0 % 70.24 % 46.06 % 77.67 % 52.71 %
retinaNet 78.43 % 54.8 % 65.55 % 44.20 % 71.99 % 49.5 %

SSD 78.22 % 43.43 % 63.80 % 32.83 % 71.01 % 38.63 %

Table 4.1: mAP scores for ODS test-split and ITDS

4.2 Instrument comparison

The results below show how well YOLOv5 can handle the instruments, measured with AP50
and AP50:95. Table 4.2 shows results using both ODS test-split and ITDS for evaluation.

The results in table 4.2 show that HL-tube has an AP50 score of 86.27 % when evaluated
on the ODS test-split and 52.33 % when evaluated on the ITDS. The scalpel show a decrease
from an AP50 score of 93.46 % when evaluated on the ODS test-split to 74.11 % when evalu-
ated on the ITDS. The retractor show a decline in AP50 score from 95.78 % when evaluated
on the ODS test-split to 79.75 % when evaluated on the ITDS. The diathermy, forceps, needle
driver and saw display similar results when comparing AP50 scores from the ODS test-split
as compared to the ITDS.

ODS test-split ITDS
Instrument AP50 AP50:95 AP50 AP50:95

Diathermy 97.42 % 79.1 % 95.58 % 70.7 %
Forceps 96.08 % 83.3 % 94.14 % 82.1 %
Scalpel 93.46 % 77.0 % 74.11 % 56.6 %

Needle driver 92.69 % 78.1 % 90.80 % 75.9 %
Retractor 95.78 % 83.6 % 79.75 % 63.2 %
HL tube 86.27 % 44.0 % 52.33 % 16.2 %

Saw 99.79 % 87.6 % 100 % 72.3 %

Table 4.2: mAP scores for all instruments, using ODS test-split and
ITDS

4.3 Data scalability

Figure 4.1 shows training results for YOLOv5, retrieved by training on multiple datasets of
different sizes (see section 3.5). mAP50 and mAP50:95 are shown for both ODS test-split and
ITDS.

All curves show an overall improvement which demonstrates that both mAP50 and mAP50:95
improve with more data. The red curve, representing the mAP50:95 score for ITDS show a
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decrease of 0.02 percentage points when trained on 1600 images compared to 800 images.
The green curve, representing the mAP50 score for ITDS show a decrease of 0.03 percentage
points when trained on 1600 images compared to 800 images. The reason for this decrease
is not entirely certain but one hypothesis is discussed in section 5.1.3
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Figure 4.1: Shows YOLOv5 performance in mAP on training-sets of
different sizes. The x-axis is the training-set size.

4.4 Instrument changes

Table 4.3 shows precision, recall and F1-score for two videos and the average for these metrics
when generated event-log is compared to the ground truth event-log. The main reason for
the high score of the Hl-tube and retractor is that they are just switched in once, which was
detected. The reason for the high score of the saw is that the network perform well on that
instrument and that it is only switched in a few times per video.
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Video ID Metric Diathermy Scalpel Needle driver Retractor Saw HL tube
Precision 83.3 % 100 % 65.5 % 100 % 100 % 100 %

Video 1 Recall 100 % 71.4 % 84 % 100 % 100 % 100 %
F1-score 90.9 % 83.3 % 73.6 % 100 % 100 % 100 %
Precision 94.7 % 93.7 % 84.8 % 100 % 100 % 100 %

Video 2 Recall 90 % 68.1 % 82.3 % 100 % 100 % 100 %
F1-score 92.3 % 78.9 % 83.5 % 100 % 100 % 100 %
Precision 89 % 96.8 % 75.1 % 100 % 100 % 100 %

Average Recall 95 % 69.7 % 83.1 % 100 % 100 % 100 %
F1-score 91.6 % 81.1 % 78.5 % 100 % 100 % 100 %

Table 4.3: Precision, recall and F1-score for two separate surgery videos.

Table 4.4 presents how many instrument switches that were detected in each video based
on the generated event-log and the ground truth event-log, see definition of these in section
3.6.3. One instrument switch corresponds to the case when an instrument is considered to
be switched out to another.

Video ID Generated event-log Ground truth event-log
Video 1 27 26
Video 2 36 43

Table 4.4: Number of calculated instrument switches for two separate surgery videos.

4.5 Extended dataset - YOLOv5

4.5.1 YOLOv5 improvements

The bottom row of table 4.5 shows results for YOLOv5 when trained on EDS and evaluated
on ITDS. The result shows an increase of 4.5 percentage points when comparing to YOLOv5
trained on ODS (see table 4.5 and 4.1), with respect to mAP50 on ITDS. It also shows an
increase in mAP50:95 of 2.5 percentage points. Figure 4.1 shows the effect training data size
has on mAP, where mAP50 on average increases with 3.5 percentage points when the training
set is doubled, evaluated on ITDS. The training set of EDS contains 139 percent more images
than the ODS training set, and with an increase of 4.5 percentage points, the extended dataset
upholds the trend we observe in figure 4.1.

4.5.2 Instrument comparison

Table 4.5 shows results from evaluating ITDS with the new model trained on EDS. The AP50
of the HL tube is 64.9% compared to 52.33% when trained on ODS while the score of the
retractor was increased to 88.3% from 79.75%. This correspond to an increase of 12.57 per-
centage points for the HL tube and 8.55 percentage points for the retractor.
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ITDS - YOLOv5
Instrument AP50 AP50:95
Diathermy 97.84 % 71.67 %
Forceps 96.12 % 82.49 %
Scalpel 77.2 % 57.34 %
Needle driver 95.14 % 78.8 %
Retractor 88.33 % 70.1 %
HL tube 64.9 % 21.5 %
Saw 100 % 72.5 %
Network mAP50 mAP50:95
YOLOv5 88.5% 64.93 %

Table 4.5: AP score for all instruments and mAP for YOLOv5.

4.5.3 Instrument changes

Table 4.6 shows the results for the event-log that the new model in cooperation with the
analysis script created, calculated based on the ground truth event-log. The results are gen-
erated by using the same videos as in section 4.4. The F1 score for the needle driver increased
from 78.5 % when evaluating YOLOv5 trained on ODS to 83.75 % when evaluating YOLOv5
trained on EDS. The scalpel increased from 81.1 % to 91.65 %. This would correspond to an
increase for the needle driver of 5.25 percentage points and 10.55 percentage points for the
scalpel.

Video ID Metric Diathermy Scalpel Needle driver Retractor Saw HL tube
Precision 100 % 87.5 % 67.7 % 100 % 100 % 100 %

Video 1 Recall 100 % 100 % 84 % 100 % 100 % 100 %
F1-score 100 % 93.3 % 75 % 100 % 100 % 100 %
Precision 100 % 100 % 93.3 % 100 % 100 % 100 %

Video 2 Recall 95 % 81.8 % 91.1 % 100 % 100 % 100 %
F1-score 97.4 % 90 % 92.5 % 100 % 100 % 100 %
Precision 100 % 93.75 % 80.5 % 100 % 100 % 100 %

Average Recall 97.5 % 90.9% 87.55 % 100 % 100 % 100 %
F1-score 98.7 % 91.65 % 83.75 % 100 % 100 % 100 %

Table 4.6: Precision, recall and F1-score for two separate surgery videos.

Table 4.7 presents how many instrument switches were counted in each video based on the
generated event-log and the ground truth event-log, see definition of these in section 3.6.3.
The results on Video1 show an difference of 5 switches compared to YOLOv5 trained on ODS
which had a difference of 1 switch. The results on Video2 show an difference of 4 switches
compared to YOLOv5 trained on ODS which had a difference of 7 switch.

Video ID Generated event-log Ground truth event-log
Video 1 31 26
Video 2 39 43

Table 4.7: Number of calculated instrument switches for two separate surgery videos.
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Chapter 5

Discussion and Future work

5.1 Results

5.1.1 Network comparisions - mAP50

When choosing the best network for instrument detection, the average mAP50 score is in
focus instead of mAP50:95, since mAP50 describes how well we can detect instruments while
mAP50:95 describes more how well the bounding boxes are fitted to the actual instrument.
In this application, it is more important to detect an instrument, than to detect it with a
well-fitted bounding box.

YOLOv5 is the best-performing model of the mAP comparison. It did not only have the
highest performance with respect to mAP50 for both ODS test-split and ITDS but also the
highest average mAP50:95 score. The difference between YOLOv5 and the other networks
when it comes to the average mAP50:95 score is bigger than when comparing mAP50. The
difference between YOLOv5 and Scaled-YOLOv4 in terms of average mAP50:95 score, is 7.57
percentage points. The difference of 7.57 percentage points could indicate that YOLOv5 is
much better at actually fitting the bounding boxes which may be important for future appli-
cations that focus more on following the exact location of the instruments. Since YOLOv5
has the best performance, it was further used to detect instrument changes and for iterative
improvement (see section 4.4 4.5.2).

5.1.2 Instrument comparison

The results presented in table 4.2 for the HL-tube are considered low when compared to the
other instruments. The bad results that the HL-tube demonstrates on the ITDS show that
the network seems to handle the instrument much worse on new unseen data. The reason for
this is most likely that, compared to the other instruments, the HL-tube does not have any
well-defined borders, causing a greater variability in the ground truth bounding boxes for
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similar-looking HL-tubes, because the process of annotation becomes more difficult. This
variability could mean that the network has difficulties detecting the HL-tube on unseen
data from ITDS as compared to data similar to training data from the ODS test-split.

As can be seen in table 4.2, the scalpel is more difficult for the network when evaluating on
ITDS as compared to the ODS test-split. One possible reason is that there are fewer scalpels
in the training dataset than other instruments, ODS contain 1454 scalpels, 10181 forceps and
2271 needle drivers, see table 3.3. It also has similar properties to both the forceps and the
needle driver, they all being long metallic objects. Another possible reason is that the scalpels
in the dataset do not have a good variation because they occur so rarely in surgery, many im-
ages with similar-looking scalpels exist in the dataset.

The decline that can be seen for the retractor in table 4.2 when comparing the AP50 score
of the ODS test-split, could be the result of the annotation variation, see section 5.4.2. The
saw shows great results, even though it only occurs 390 times in the ODS. The reason for this
could be the distinct shape that the saw has, as can be seen in figure 3.2e.

The diathermy, forceps, saw and needle driver display similar results when comparing AP50
score on the ODS-testsplit to the AP50 on ITDS. This is a promising result since the network
handles these instruments similarly on completely new data from ITDS as compared to data
similar to training data from the ODS.

5.1.3 Data scalability

As can be seen in figure 4.1, the x-axis grows with a factor 2, meaning each datapoint is
generated with twice the data size from the previous one. The curves have a more or less
constant slope, indicating diminishing returns when adding more images. To further increase
performance, more images could be added to the dataset and a possible way to do this in a
more effective manner is to use synthetic data, as discussed in section 5.5.2. Observing figure
4.1, there is a slight decrease when evaluating ITDS with YOLOv5 trained on 1600 images.
The reason for this is difficult to establish since the network is complex. One reason could
have been that the dataset containing 1600 images had less similarities to the ITDS than the
dataset containing 800 images.

5.1.4 Instrument changes

As can be seen in table 4.3, the combination of the interpreter script and the trained network
gave good results when the generated event-log was compared to the ground truth event-log,
even though there are flaws with the YOLOv5 predictions when evaluating unseen videos. It
shows good performance with all instruments, with the worst results on the scalpel and the
needle driver.

The results in table 4.4 indicate that the combination of the generated event-log and the
definition of an instrument switch, see section 3.6.1, yields a similar number of instrument
changes, as compared to the number of switches retrieved from the ground truth event-log.
The actual number of changes in each of the videos as presented in section 3.6 are 70 which
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is more than double the results in table 4.4. The reason for this difference is that we defined
an instrument change in a way that the network would be able to process. The results could
be improved if a more realistic instrument switch definition was possible to use.

It is not possible to detect all instrument switches with the network and interpreter script.
The reason for this is mostly that the network makes some errors on unseen videos which will
be registered as an instrument switch when running the output through the analysis script.
In new videos, there is a risk that it is a new angle, object, or different lightning that the net-
work has not seen before. For example, a pencil was confidently detected as a needle driver
even though it has no similarities, but we had no occurrences of any pencil throughout our
training data. The combination of the instrument changes script and network output would
of course perform better if the network improved. One additional reason for not being able
to notice all switches is that the event-log and our instrument switch definition does not
directly correspond to reality.

5.1.5 Extended dataset - YOLOv5

YOLOv5 improvements

The mAP50 score for YOLOv5, generated by training on EDS, follows the data scalability
trend which can be observed in figure 4.1. This shows that collecting more data by using
the network itself is a viable approach, especially as the annotation time is reduced because
frame retrieval is not used anymore.

Instrument comparison

Observing table 4.5 and table 4.1, wee see that AP50 and AP50:95 has increased for all instru-
ments. The instruments with the highest percentage point increase is the needle driver, HL
tube and retractor. This indicates that the new YOLOv5 model handles new, unseen data
better since the evaluation was performed on ITDS.

Instrument changes

The results displayed in table 4.6 show promising results for the improvement of the event-
log when compared to table 4.3. The improved ability to detect events was expected after
knowing that the new YOLOv5 model handles new data better with respect to mAP.

The number of calculated instrument switches for YOLOv5 trained on EDS was more off
than YOLOv5 trained on ODS. The reason for this could be the switch definition which was
created to cover flaws of the network. A better performing object detector might not work
as well with the interpreter script. It cannot be concluded that YOLOv5 trained on ODS
detect switches better since this is just a comparison on the total number of switches rather
than if the detected switches are correct.
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5.2 Model choice

There exist many object detection networks that we could have used for the comparison
in this project. We choose these seven networks since they had shown evidence of good
performance and since our time frame was limited so there was no time for a more complete
search. There are multiple implementations of each of the networks with both minor and
major differences. We choose one implementation of each network, the choice was based on
which appeared to be the most recently updated version and how straightforward it was to
use.

5.2.1 Ease of use

Some networks were easier to use than others, to get them running, and to adjust and un-
derstand the hyper-parameters. If the goal would have been to optimize a network for our
task, then some version of YOLO would have been preferred since these networks are well
documented.

5.3 Hardware limitations

Because the training takes place on the GPU, it is critical to have a GPU that can handle
the network’s complexity and volume of data efficiently. The GPU was limited by memory
shortage and computational power.

5.3.1 GPU memory shortage

To run a network on the GPU, a specific amount of GPU memory is required. In order to
reduce and fit the amount of GPU memory required to our hardware, two techniques were
used. First, one may reduce the input image resolution to reduce the GPU’s memory require-
ments, but this would degrade image quality. Another alternative is to reduce the batch size.
Increased GPU memory and/or the number of GPUs would have allowed the model to train
on high-resolution images while maintaining a well-adjusted batch size, which could have
improved the training of the networks reported in this thesis. Because the networks cannot
be completely utilized with the existing arrangement, the lack of GPU memory may have
had an impact on the network ranking presented in section 4.1, since some networks may
perform better with extended hardware than others.

5.4 Dataset

There are many things that could be tested regarding the dataset. For instance, annotation
techniques, dataset balance and variation.

5.4.1 Unbalanced data

A straightforward way to extract frames from a video is to extract one frame every other
second or one frame every ten seconds, for example. However, the danger of completely
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missing certain instruments that are not utilized very often is rather great with this method.
The scalpel, for example, is only used in short intervals. In addition, some instruments, such
as the forceps, appear in practically every frame. This would result in a very unbalanced
data set with many forceps and few scalpels. Our method of extracting frames, presented in
section 3.1.3 was therefore used to create a more balanced dataset.

5.4.2 Rules of annotation

Section 3.1.3 presents how annotations were conducted, where all clearly visible parts of an
object are included in a bounding box, even though it is partially obscured. This does, how-
ever, present an issue, since what is clearly visible is subjective. In figure 3.3c, the lower left
part of the retractor is still visible, but the bounding box excludes this region. A network de-
tection that includes this small part will receive a large error, even though it can be regarded
as correct because the retractor is still visible. The dataset contains many examples of these
difficult objects, where the size of the bounding box is affected by who annotated it. This
variation in annotation could cause the network to perform worse. Observing the results for
the retractor in table 4.2, it seems to handle unseen data from ITDS worse than data simi-
lar to the training data from ODS, one possible factor for this could be the variation in the
annotation. It is difficult to say how or how much it was affected by this. This could have
been improved at the outset by either establishing more stringent criteria for annotating all
of the various instruments or allowing only one person to annotate, which would, however,
have been inefficient.

5.5 Improvements

5.5.1 Annotation strategies

In this work we choose a specific strategy when annotating the frames retrieved from the
videos, specifically to only annotate the instrument itself. Other strategies could have been
chosen, like for example to include the hand when annotating the instruments.

We conducted such an experiment with a dataset of 2000 images, where the annotation in-
cluded both the instrument and the hand that held it. This showed convincing results. Due
to the fact that most instruments are held differently, this strategy might make it easier to
notice different instruments. It might also be easier to notice instrument switches because
an actual switch is made when the instrument is no longer in the hand and not when it is no
longer in the frame.

5.5.2 Synthetic data

Synthetic data has been used in many applications to improve performance, it can help with
data imbalance, data variation and data quantity. Kiyohito et al. used 3D models to generate
synthetic data to improve the dataset on which they trained their CNN network [34]. If
accurate and reliable 3D models of the instruments were acquired, it could be worth exploring
their approach to improve the dataset. Ekbatani and Pujol used synthetic data to train their
model on recognizing the number of pedestrians [35]. This approach could be used to further
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improve our model by improving the dataset balance, variation and to provide data quantity
in a more efficient way.

5.5.3 Hardware

The computational power of the GPU will affect the total time it takes to train the network.
If future goals are to add data and retrain the model for each newly recorded surgery, then
the training speed will be of significant importance. So if this is the future goal, it could be
worth considering adding another GPU or upgrading the current GPU. Another reason for
upgrading the hardware or choosing to test cloud services would have been to experiment
more with input parameters such as image size, network models, and batch size. We have
been forced to abstain from testing optimal settings due to hardware limitations.

5.6 Future work

This thesis presents results that can be used to develop AI and robotics applications. To do
this in practice, all instruments used during surgery must be included in the dataset. One
aspect that has to be improved is how to handle situations when, for example, a surgeon’s
head covers a part of the frame. One approach that could be investigated is to annotate
the head as a separate class and use its position to analyse which instruments may be under
it. Another approach is to use additional cameras from different angles to create a broader
picture of what is happening. Possible future applications include tools for automated video
annotation, a tool for automatic feedback and analysis for the surgeons and in the long run,
robot applications such as a robotic operating room nurse that hands over instruments to the
surgeon.
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Chapter 6

Conclusion

We begin this chapter by answering the research questions presented in section 1.1.

• Which object detector network performs best according to the metric mean average
precision (mAP)?

- YOLOv5

• How does the best network handle different instruments?

- It handles the forceps, needle driver, diathermy and saw well. The worst instruments
for the network is the scalpel and the HL tube.

• How does the best model react to different amounts of training data?

- The performance is increased by on average 3.5 percentage points when the dataset
doubled.

• How well can the model detect instrument changes?

- Our approach to detecting can be considered acceptable to detect instrument changes.
To get a more reliable detector for instrument changes, further development would be
required and a new more realistic switch definition should be introduced.

• How does a model trained on the extended dataset compare to the best model?

- YOLOv5 has an mAP50 score of 88.5 % which corresponds to an increase of 4.5 per-
centage points. It also showed better performance when detecting instrument events.
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6. Conclusion

We conclude that object detectors based on deep learning can be used to detect surgical
instruments in images retrieved from open-heart surgery videos. An evaluation tool that
counts instrument changes performed by the surgeon can be created based on the output
from such an object detector. Although the evaluation tool shows promising results, further
improvements would have to be made in order for surgeons to be able to trust the results. Two
ways to potentially improve the evaluation tool are to use a more realistic switch definition
and add additional classes for the object detector to recognize.
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Appendix A

Network implementations

All configuration files used for each network are provided on the drive linked below.

https://drive.google.com/drive/folders/1r5Aev3d2I3cOLCrLAqb83jIMOWbN-V3g?usp=sharing

A.1 YOLOv5

Download YOLOv5 from:
https://github.com/ultralytics/yolov5
Commit:7a2a118 (Mar 25, 2022)

A.2 YOLOv4

Download YOLOv4 from:
https://github.com/AlexeyAB/darknet
Commit:2c137d1 (Mar 3, 2022)

A.3 ScaledYOLOv4

Download ScaledYOLOv4 from:
https://github.com/WongKinYiu/ScaledYOLOv4
Commit:6768003 (Jun 16, 2021)
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A. Network implementations

A.4 SSD

Download SSD from:
https://github.com/uvipen/SSD-pytorch
Commit:a9bc7b8 (Feb 10, 2021)

A.5 Efficientdet

Download Efficientdet from:
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/Efficientdet
Commit:228277d (Feb 18, 2022)

A.6 retinaNet and Faster-RCNN

Follow guide from:
https://detectron2.readthedocs.io/en/latest/tutorials/install.html
Download RetinaNet and Faster-RCNN from:
https://github.com/facebookresearch/detectron2
Commit:6999554 (Feb 18, 2022)
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Kirurgisk instrumentdetektion med djup
maskininlärning
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Att använda mjukvara för att identifiera kirurgiska instrument under barnhjärtkirur-
giska ingrepp kan ge värdefull data om hur en kirurg använder sina instrument, ex-
empelvis för att ge kirurgen återkoppling i deras arbete.

Det finns ett behov hos kirurger att kunna utvärdera
sina egna prestationer för att utveckla de kirurgiska
förmågorna. Detta kan bland annat göras genom
att spela in operationer och titta igenom dessa. Det
manuella arbetet att gå igenom de inspelade filmerna
tar tid vilket är något som en kirurg inte har i överflöd.
Därför kan det vara fördelaktigt med en annan metod
att jämföra och utvärdera sin prestation, nämligen in-
strumentbyten.

Vetskapen om hur många byten som utförs under en
operation kan hjälpa på många sätt. Det kan bland
annat användas av erfarna kirurger, där kollegor kan
jämföra med varandra. Exempelvis skulle en kirurg
kunna ha 40 byten under en tidsperiod medan en an-
nan kirurg endast har 20. Kirurgerna kan då lokalisera
skillnader och jämföra operationsteknik.

För att räkna byten har vi evaluerat sju neurala
nätverk för objekt-igenkänning som kan identifiera
kirurgiska instrument under en barnhjärtoperation.
Det nätverket som presterade bäst var YOLOv5. Vi
använde sedan det bästa nätverket i kombination med
ett analysprogram för att räkna antalet instrument-
byten som kirurgen utförde under operationen. De
resultaten vi fått är lovande, och visar på att det är
möjligt att räkna instrumentbyten. Instrumentbyten
beräknas utifrån två steg. Det första steget är att en
video analyseras av vårt nätverk som predikterar ob-
jekten som förekommer på varje bild. Resultatet blir
en lista som beskriver vad som finns på varje bild. Det
andra steget består av ett program som analyserar lis-
tan för att beräkna antalet byten.

Mjukvaran som räknar instrumentbyten kan även
användas i utbildningssyfte då aspirerande kirurger
kan använda verktyget kontinuerligt för att få en siffra
som kan hjälpa till att beskriva deras prestation. För
närvarande så sker evaluering ofta genom att en erfaren
kirurg observerar utförandet och ger återkoppling. Det

kan vara fördelaktigt för studenten att också få data
på hur det gick för att lättare kunna hitta förbättring-
sområden. Om till exempel studenten får feedback att
operationen tog för lång tid eller att det var för stor
osäkerhet med vilka instrument som skulle användas så
kan studenten titta på antalet byten. Till exempel så
kunde det varit 100 byten och studenten kan då följa
sin utveckling ner mot färre byten. Denna minskn-
ing i instrumentbyten skulle kunna bero på förbättrad
förståelse för vilket instrument som är lämpligt vid en
given situation.

Vårt arbete kan komma till användning för att vi-
dareutveckla mjukvaran som räknar instrumentbyten.
Det kan också användas för att hitta andra evaluer-
ingsverktyg för kirurgerna. Ett exempel är tid med
aktiva instrument, alltså tid som kirurgen aktivt an-
vänder de instrument hen håller i. En hypotes är att
en erfaren kirurg bör vara mer effektiv och därför ha
mindre tid med ett aktivt instrument.

Neurala nätverk för objektigenkänning är vanligt
inom robotik. I framtiden kan nätverket användas som
byggsten i robotapplikationer inom sjukvården, t ex för
att räcka instrument till kirurgen eller sortera instru-
ment efter disken.
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