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1 Abstract

This essay introduces the sequential Good-Turing estimator and reviews the

Good-Turing, Good-Toulmin and smoothed Good-Toulmin estimators. Some

theoretical properties and drawbacks of the estimators are described. Monte-

Carlo simulation is then used to compare the performance of the sequential

Good-Turing estimator to the performance of the Good-Toulmin estimator

along with the smoothed Good-Toulmin estimator, on both real and simu-

lated data.

In certain scenarios the Monte-Carlo method outperforms the smoothed

Good-Toulmin estimator.
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3 Introduction

3.1 The basic problem

This essays concerns itself with two related estimation problems.

The first problem is this: You have been in a forest for a while and you

have taken notes of how many animals you have seen. You have seen a lot

of animals of some species and for some species you have only seen one or

two specimen. You might then sit down on a stump and ponder, what’s the

probability of finding a new species if I observe one more animal?

According to the empirical frequency estimate, p̂ = number of previous observations
n

(where n is the sample size), the probability would be zero.

It seems reasonable that the estimate should be larger than 0, so how do

we assign a positive probability to seeing something we have not observed

before? And how do we then shift the remaining probability mass for the

species that we have observed so that the normalization condition:∑
i

p̂i = 1

is satisfied?

Although we borrow terminology from biology, similar problems exist in other

fields where species are replaced by DNA-markers or words, for forensic sci-

ence and linguistics, respectively. The problem also has applications in cryp-

tography and one of the most common estimation methods was invented to

aid in solving the Enigma during WWII.

During the work on the Enigma Alan Turing and John Good needed a way
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to estimate the probability of encountering an unseen encryption key used

by the Axis powers. The estimator they came up with is known as the Good-

Turing estimator, cf. [5]. We will discuss this estimator more in depth in

Section 4.2

There are quantities related to the discovery of new species other than prob-

abilities that you might want to estimate, such as the number of new species

discovered during a second sampling round. This is known as the unseen

species problem and is the second problem this essay is concerned

with.

More rigorously we have one data set of n animals and would like to say

something about what number, U , of previously unseen species we would see

ifm additional animals have been appended to the original sample. Formally,

we define

U :=
∣∣{Xn+m

n+1

}
\ {Xn}

∣∣ ,

where

Xm+n
n+1 = [Xn+1, . . . , Xn+m]

Xn = [X1, . . . , Xn]

In other words, the multiset Xn is a data set of size n and the multiset Xn+m
n+1

is the data set when observing an additional m samples. Note that | | denotes

cardinality and { } denotes a set. Note that Xn+m
n+1 and Xn are a multisets

while {Xn+m
n+1 } and {Xn} are regular sets.

Usually, to estimate U an estimator called the Good-Toulmin estimator is

used, this estimator will be discussed in section 2.3.

7



3.2 Previous research

Good-Turing estimation as well as other estimators such as the Pattern Maxi-

mum Likelihood-estimator, cf. [1], have been used to estimate the probability

of drawing a previously unseen species.

Good-Toulmin estimation is used to estimate the number of new species

seen during a new sampling round. Depending on the scenario, sometimes

so called smoothing has to be used. There is little research that gives insight

into which smoothing method is optimal. However, some asymptotic results

exist, cf. [6].

3.3 Structure of essay

Section 4.1 describes the Good-Turing estimator, derives some theoreti-

cal properties and describes some drawbacks of the estimator together with

potential fixes.

Section 4.2 describes the Good-Toulmin estimator and describes a modifi-

cation (smoothing) of it that has to be used in certain scenarios.

Section 4.3 introduces an apparently novel sequential Good-Turing estima-

tor which is a Monte-Carlo method that estimates the number of species

discovered during a sampling round. This is the same entity that the Good-

Toulmin estimator estimates.

A theoretical comparison between the true probabilites and those of the

sequential Good-Turing estimator is then made.

Section 5 describes a simulation study which compares the performance of
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sequential Good-Turing and the Good-Toulmin estimator.

Section 6 describes the results of the simulation study.

Section 7 discusses the results of the study and some of the advantages and

disadvantages of sequential Good-Turing.

4 Theory

4.1 Probability of drawing an unseen species

We want to estimate Cr, the probability of drawing an animal that has been

seen r times before. This is a sum of probabilities for all the species that

have previously been seen r times.

Cr =
∑
x∈Sr

θx (1)

where θx is the probability of drawing species x, and the index set Sr is the

set of species that have been seen exactly r times before.

4.2 Good-Turing

One approach for estimating the probability of observing an unseen species

is number of singletons
n

, this is the estimate known as the Good-Turing estimate.

A singleton is a species that has been observed only once and n denotes the

size of the sample. A natural question that arises when using this estimate

is how the probability mass for the seen species should be readjusted so that

the probabilities sum to one. This is done by a generalization of the Good-

Turing estimator presented above. To generalize the Good-Turing estimator
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we must first introduce some notation. Let

Z = (z1, z2, ..., zn)

be the data we have collected, consisting of symbols (animals) that can be

classified into different species. In this data set there are likely symbols that

occur more than once.

Let Sr be the set of species that occur r times, and define

Ñr = |Sr|

the number of species with r animal observations, for r = 1, 2, .... Thus Ñ0

is the number of unseen species, Ñ1 is the number of singletons, Ñ2 is the

number of species with two observed animals, etc.

The Good-Turing estimator of observing a species that has previously been

observed r times is defined as

p̂r =
(r + 1)Ñr+1

n
(2)

Let x denote a species label and let θ = θ1, θ2, ... be the unknown population

frequencies in nature, i.e. θi is the probability of seeing an animal of species

i when sampling one animal from nature, for i = 1, 2, ...

As hinted at in Section 2.1 we would like to adjust the relative frequency

we saw in our data so that we shave off a little bit of probability from the

observed events and give it to the unobserved events. The Good-Turing

estimator does exactly this.

Now that we have introduced the Good-Turing estimator we will revisit the
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quantities we want to estimate and try to formulate the problem into a more

treatable form.

Recall that Sr is the set of species seen r times and define the total probability

of seeing those species seen r times as

Cr =
∑
x∈Sr

θx

=
∑
x

θx1r(x) , (3)

and with 1r(x) being the indicator for observing species x an r amount of

times.

What is particular about the types of problems dealt with in this thesis is

that we are interested in drawing inference about things related to S0, a set

that we have not observed.

Figure 1: All animals divided up into sets depending on how often they have

been observed.

We will use the sets S1 to draw inference about S0. This is the way we

have to go about things since by definition we cannot observe S0. In the

same fashion we will use S2 to draw inference about S1, S3 to draw inference

about S2 etc.
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This estimation problem is different from the typical case in that the quantity

we are trying to estimate is actually dependent on the sample, namely the

probability of seeing a species not previously observed.

We may compare the probability of seeing an unseen species with ordinary

parameter estimation where we only gain information about the parameter

when we get additional data but the parameter stays fixed. When estimating

the probability of seeing an unseen species the quantity we are trying to

estimate actually changes when we get new data.

4.2.1 Good-Turing Example

When sampling words from The Great Gatsby you might end up with data

that looks like Z, below.

Z = {the, green, light, Daisy, egg, west, the, and, jazz, the, and, a, a },

which would give the observed word labels

X = {the,green, light, Daisy, egg, west, and, jazz,a}.

The sample would give

S1 = {green, light,Daisy, egg, west, jazz}

S2 = {and, a}

S3 = {the}

Ñ1 = 6

Ñ2 = 2

Ñ3 = 1

12



We want to estimate the probability of seeing an unseen word if we look up

a word in the book at random. The Good-Turing estimate of observing a

previously unseen word when drawing one more would be:

p̂0 =
6

13

Similarly, the Good-Turing estimators of p1 and p2 are

p̂1 = (1+1)2
13

=
4

13

p̂2 = (1+2)1
13

=
3

13

Note in particular that p̂3 = 0 . This is a consequence of the sequential way

we estimate the probabilities. In some sense this is an undesirable outcome

since it seems sensible that the event that a word occurs three times should

have a non-zero probability, and especially since we have actually observed

the event before.

Peculiarities like this, as well as other problems are usually solved by smooth-

ing the data, which will be discussed in Section 2.2.3.

4.2.2 Good-Turing intuition

In order to illustrate the intuition behind the Good-Turing estimator, we

re-phrase the estimation problem slightly.

Given that you have collected data, what is the probability of seeing an

animal for the (r + 1)’th time?

One approach is to just say that it is the same as the relative frequency of

animals seen r + 1 times. Namely,

p̂r =
(r + 1)Ñr+1

n

13



Note that the estimate of seeing something unseen for the first time would

be given by the above formula with r = 0.

Judging from the formula for the Good-Turing estimator you can see that

when estimating pr we ”leak” some probability from those species that have

been observed one more time than those in Sr in a sequential fashion.

Figure 2: The probability of seeing something from Sr is estimated with the

help of Ñr+1.

4.2.3 Smoothing

There exists a potentially fatal flaw with the version of the Good-Turing

estimator presented above, if

Ñr+1 = 0 .

The estimator would then assign zero probability to the event of observing

a species (or word) r times, which may be undesirable since, we could very

14



well have data such that Ñr > 0. Of course Ñr > 0 means that the event of

observing a species r times has happened before.

In real data these gaps where some Ñr = 0 occur more often for large r

but it could also be that you have no observations of singletons, meaning

that the Good-Turing estimator fails in its original mission of estimating the

probability of observing an unseen species.

Another problem that is perhaps more relevant to this essay is that you can

end up in the situation that p̂r > 0 and Ñr−1 = 0 This means that if we

go out and collect one more data point, the estimator suggests that there

is a possibility that the new data point is an animal seen for the r’th time.

Clearly, this is impossible because we would have to have seen it r− 1 times

before collecting the additional data point, and obviously we have not since

Ñr−1 = 0. It seems like an undesirable property that the estimator assigns

positive probability to events that cannot happen. Note that this property is

not only undesirable from a logical point of view but also presents real issues

when doing e.g. Monte Carlo simulations.

Figure 3: Gaps in the Ñr’s lead to issues for the Good-Turing estimator.
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There seems to be two main solutions to the problems above: Smooth the

data or use different estimators on different parts of the data. Usually the

gaps in the Ñr’s occur for higher values of r. This implies that you can often

use the Good-Turing estimate when estimating θr for low r and e.g. a power

law for higher r, cf. [3]. To introduce smoothing, define

Zr =
Ñr

0.5(t− q)
,

where t, q and r are consecutive subscripts where Ñt,Ñq, Ñr are all non zero.

One suggested smoothing procedure is to do linear regression between some

quantities related to the Ñr’s and then use the regression line instead of

the observed values. The suggested quantities are Zr and r. In the linear

regression analysis log(Zr) is treated as the dependent variable and log(r) is

the explanatory variable.

For the purposes of this essay a different smoothing procedure will be used.

The reason for this is our use of a Monte-Carlo scheme that requires us to

sequentially change the Ñr’s and we want them to remain integers which the

above scheme does not guarantee.

4.2.4 Poisson sampling

Suppose xn
1 is the sample drawn from (θ1, θ2, ...), and suppose Nx is the

number of times that species x appears in xn
1 .

Poisson sampling means that we

1. Generate a random number N ∈ Po(n)
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2. Generate x1, ..., xn from the distribution (θ0, θ1, ....., θn)

Then a standard result is ,cf. [2], that if Nx is the number of times x appears

in the above sampling then

a) Nx ∈ Po(nθx)

b) The Nx are independent.

4.2.5 Unbiasedness of the Good-Turing estimator

In a later part of the essay we will use the unbiasedness of the Good-Turing

estimate to show some theoretical properties of our suggested scheme. The

proof below also gives some insight into why Good-Turing works.

In the following proof we will show unbiasedness for Poisson sampling. If we

make looser assumptions than Poisson sampling we can instead show that

the bias is small, cf. [4].

Consider the sum of probabilities of all species that appear r times:

Cr =
∑
x

θx1r(x) .

The Good-Turing estimate of seeing an animal of a species that has been

seen r times before is

p̂r =
r + 1

n
· Ñr+1

=
r + 1

n
·
∑
x

1{x ∈ Sr+1} .

17



Taking expectation one gets

E [p̂r] =
∑
x

r + 1

n
· E [1{x ∈ Sr+1}]

=
∑
x

r + 1

n
· P{species x appears r+1 times}

=
∑
x

r + 1

n
e−λx · (λx)

r+1

(r + 1)!
(λx = nθx)

=
∑
x

λx

n
· e−λx · (λx)

r

r!

=
∑
x

θx · E [1{x ∈ Sr}]

= E [Cr]

where the third equality follows by property a) in Section 4.2.4, and the last

equality follows by (3).

4.3 Good-Toulmin

As mentioned earlier one might be interested in knowing the number of new

species one would discover when going out into nature and sampling animals.

Clearly this is not only dependent on the pool of animals you are sampling

from but also how many samples you take.

The number of unseen species can be estimated by the Good-Toulmin esti-

mator, defined as

UGT =
∞∑
i=1

(−t)iÑi , (4)

where t = m
n
is the ratio between the sample size m of the new sample and

the sample size n of the old sample.

18



Thus we have a data set of size n and we would like to make inference about

how many new species we would see if we went out into nature and took a

sample of size m. Note that we do not actually go out and collect this second

data set. We make inference about what the outcome would be if we would

collect the second data set, and the inference is based on the first data set

and the fact that we know that the second data set would be of size m.

The Good-Toulmin estimator is not a good estimator in all situations. If

t > 1 then ti grows exponentially, while the actual U grows at most linearly

in t. The terms in the end of the sum in (3) grow very fast because of the

exponential growth of the factor t and this will increase the variance of the

estimator, cf. [6]. This effect is quite strong, meaning that most estimates

with the Good-Toulmin estimator where t > 1 are very bad.

One approach to try to correct this is to truncate the sum at some location.

The problem is that this gives a lot of weight to the last term in the sum and

the estimates will still be quite bad. A clever solution to this problem is to

use the smoothed Good Toulmin estimator, defined as

UL = EL

[
−

L∑
i=1

(−t)iÑi

]
.

Here L is some random truncation. One can think of this as generating a

bunch of stopping times, L, from some distribution and taking the theoretical

average of the truncated Good Toulmin estimator for these stopping times.

The alternating sign property of the sum ensures that the problem with the

high weight on the last term is mitigated.
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Simplifying the expression for the Good-Toulmin estimator

UL = EL

[
−
∑
i≥1

(−t)iÑi1i≤L

]
= −

∑
i≥1

(−t)i P(L ≥ i)Ñi .

Thus we end up with a weighted version of the Good-Toulmin estimator.

What distribution and parameters L should have is unclear. Previous results

state asymptotic error bounds for binomial and Poisson smoothing when

certain parameters are picked, cf. [6].

The version of the smoothed Good-Toulmin estimator that will be used in

this essay is the Binomial(k, q) distribution for L with parameters;

k =

⌊
1

2
log3

nt2

t− 1

⌋
, q =

2

t+ 2
,

where ⌊ ⌋ denotes the floor function.

With this choice one obtains the following asymptotic bound of the error:

En,t
(
UL
)

< n− log3(1+2/t) ,

En,t
(
UL
)

= U − UL ,

4.3.1 Derivation of Good-Toulmin

Let Nx denote the number of times that species x has been observed in the

first size n sample and let N ′
x denote the number of times species x has been

observed in the second size m sample. Then

U =
∑
x

1 {Nx = 0} · 1 {N ′
x > 0} .
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Then under Poisson sampling by property a) and since Nx and N ′
x are inde-

pendent (for the same species), we obtain

E(U) =
∑
x

E (1 {Nx = 0})E (1 {N ′
x > 0})

=
∑

e−λx

(
1− e−λ′

x

)
(λx = nθx, λ

′
x = mθx)

=
∑
x

e−λx
(
1− e−tλx

)
= −

∑
x

e−λx ·
∞∑
i=1

(−tλx)
i

i!
= −

∞∑
i=1

(−t)i ·
∑
x

e−λx
λi
x

i!

= −
∞∑
i=1

(−t)i · E
[
Ñi

]
= E

[
UGT

]
.

By the above argument we see that for Poisson sampling the Good Toulmin

estimator is an unbiased estimator of the expected number of new species

you will discover when taking another sample.

4.3.2 Good Toulmin Example

Using the same data as in the Good-Turing example and wanting to estimate

the number of new species when sampling four more data points: t = 4/13

Ñ1 = 6 ,

Ñ2 = 2 ,

Ñ3 = 1 , the Good-Toulmin estimator gives the following estimate of the

expected number of previously unseen species.

UGT = (
4

13
)6− (

4

13
)22 + (

4

13
)3 ≈ 1.7 .
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Note that if we want to sample 55 new data points then the estimator predicts

that we would find approximately 65 new species,

55

13
6− (

55

13
)22 + (

55

13
)3 ≈ 65 ,

which of course is not possible, this result is a consequence of t being quite

high. The effect is even more pronounced if you have more data since you

likely have ti terms with a large i.

4.4 Sequential Good-Turing

This essay has reviewed the Good-Toulmin estimator as a way to estimate

the number of discovered species during a new sampling round. One al-

ternative approach is to use Monte-Carlo methods in conjunction with the

Good-Turing probability estimate.

We use Fn to denote the information available at time step n. We use

superscripts to denote what different quantities are in time, e.g. Ñn
r and

Ñn+m
r . This notation is needed since we know what has happened during

the first n samples, and we are interested in estimating what will happen

during a second sample of size m.

The main idea of sequential Good-Turing is to simulate sampling one new

data point by simulating a data point using the Good-Turing estimate. Then

you can append this simulated data point to your real data and use all of

this data in your new Good-Turing estimates. By doing this repeatedly you

can estimate the number of new species you would discover during a second

sampling round.
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More concretely, the algorithm is as follows: Given as sample of size n

(i) Estimate the Good-Turing probabilities: p̂0, p̂1, ..., p̂k

(ii) Generate a new data point: Y ∼ multinomial(1, p̂0, p̂1, ..., p̂k)

(iii) Update the Ñi’s

(iv) Repeat.

If the species Y has been seen r− 1 times before and is now seen for the r’th

time Ñn+1
r is added to and one is added which is clear but at the same time

we have to keep in mind that a species previously seen r−1 times is now seen

r times and therefore we have to subtract one from Ñn
r−1. This subtraction

is however not needed when we see a species for the first time.

Thus, if Y has been seen r − 1 times before and is now seen again, for the

r’th time, the counts are updated according to

Ñn+1
r = Ñn

r + 1

Ñn+1
r−1 = Ñn

r−1 − 1

unless r = 1, then the Ñi’s are updated according to:

Ñn+1
1 = Ñn

1 + 1 .

When doing this the Ñi’s behave as if we are iteratively sampling from the

true data set. Of course, we are only estimating the true probabilities so this

algorithm only approximates what would happen if we went out and sampled

from the real population.

We can go through the algorithm m times and count the number of times a

23



previously unseen species comes up. If we do this a large number of times

and record the average outcome we have an alternative way to estimate the

quantity U .

The reason for adding one to zero counts is because of what was put forth

in the smoothing section. Traditionally other smoothing techniques are used

for Good-Turing but because of the discrete nature of our algorithm we need

smoothing that results in discrete data.

Note that in the sampling scheme we have counted new species in a sequential

way where we check for new species each step n, n + 1, n + 2.. until m.

Whereas in real life we count the number of new species after we have the

second data set of sizem. The two ways of counting previously unseen species

are equivalent.

The smoothing problem of Good-Turing estimation usually only concerns

itself with smoothing out the probabilities but here we change the Ñi’s and

need to make sure that the algorithm does not subtract one from an Ñi that

is equal to zero.

This Monte Carlo scheme could potentially be expanded to one where you

record the behaviour of each species. Such an expansion would require more

computational power and the smoothing problem is likely to be even more

worrisome for this setup. In this thesis, this more advanced sampling is not

performed.
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4.5 Drawing one more animal, expectation of sequen-

tial Good-Turing and the behaviour of the com-

bined probabilities

This section clarifies how the probability of drawing an animal that has been

seen r times behaves when sampling from the population. There is also

a derivation of the expectation of the Good-Turing estimate when using a

hybrid data set consisting of both real and simulated data. The main reason

for this is to check that the estimated probabilities do not deviate too much

from the true ones.

4.5.1 Behaviour of combined probability

I use the superscripts n+1 and n to denote quantities before and after adding

the data point X, where X is a species label for an animal drawn from the

population.

The quantity we are interested in estimating is:

Cn+1
r =

∑
x∈Sn+1

r

θx ,

where Sn+1
r might have one element more or less than Sn

r due to the addition

of X to the data.

After drawing a new species label we do not necessarily need to know the

name of the species to know how the sum of probabilities behave, we just

need to know that for some r we have that Sn+1
r ∋ X.

For this to happen we need to have that X ∈ Sn
r−1. If X is an arbitrary
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element in Sn
r−1 then the probability of drawing X is just the sum of proba-

bilities of every element in Sn
r−1, i.e.

P (X ∈ Sn+1
r ) =

∑
x∈Sn

r−1

θx

= Cn
r−1 ,

P (X ∈ Sn
r ) =

∑
x∈Sn

r

θx

= Cn
r .

How would drawing one more animal affect Cn
r ? Well, there are three sce-

narios but first let us go over some assumptions. The first assumption is

that drawing a new animal does not affect the values of any of the popu-

lation probabilities, θx. This is a reasonable assumption if the data set is

sufficiently large or if we return the sampled animals to the population. Let

us also assume that each individual animal of the same species has the same

probability of being drawn.

Scenario 1: We see an animal for the r’th time, i.e. we get one more

observation of one of the species previously seen r − 1 times. Then

X ∈ Sn+1
r ,

Cn
r =

∑
x

θx1{x ∈ Sr}

gets an additional term and is updated to

Cn+1
r = Cn

r + θx ,
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where θx is the probability of drawing X.

Scenario 2: We see something for the r + 1’th time and therefore one term

is subtracted from Cr

X ∈ Sn+1
r+1 .

Scenario 3: Nothing happens to Cr, when a new animal is drawn, i.e.

X /∈ Sn+1
r+1 ∪ Sn+1

r

This does not affect Cr.

4.5.2 Expectation of sequential Good-Turing.

We want to investigate the theoretical properties of the scheme described in

Section 4.4. We investigate the expectation of the sequential Good-Turing

estimator during addition of one simulated data point, to ascertain wether it

is a reasonable estimator.

The Good-Turing estimator is:

p̂nr =
(r + 1)Ñn

r+1

n
. (5)

After simulating one data point, Y , and appending it to our real data the

estimator turns into:

p̂n+1
r =

(r + 1)Ñn+1
r+1

n+ 1
.

Note that:

Ñn+1
r = Ñn

r + 1{Y ∈ Sn
r−1} − 1{Y ∈ Sn

r } . (6)
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The indicator functions are due to the fact that elements can both enter and

leave Sr depending on which index set, Sr or Sr−1, the simulated data point

Y belongs to. If we want to be strict about things we have not actually seen

the data points before since we are just simulating from a distribution that

is approximately how likely we are to draw and Y from the different Sr’s.

Note the difference in our Monte-Carlo scenario from how the Cr’s behave

when we draw another sample, from the real population. In our Monte-Carlo

scenario Y is drawn using the estimated probabilities.

From (7) and using that Y is simulated from the estimated Good-Turing

probabilities at time n we get

E
[
Ñn+1

r+1 | Fn

]
= Ñn

r+1 + p̂nr−1 − p̂nr . (7)

We will use this expression for the study of the sequential Good-Turing es-

timator. Taking the conditional expectation of (6), and with the use of (8),

we obtain

E
[
p̂n+1
r | Fn

]
=

(r + 1)

n+ 1
[Ñn+1

r+1 | Fn]

=
(r + 1)

n+ 1

(
Ñn

r+1 + p̂nr−1 − p̂nr

)
=

n

n

(r + 1)

n+ 1

(
Ñn

r+1 + p̂nr−1 − p̂nr

)
=

n

n+ 1
p̂r +

(r + 1)

n+ 1

(
p̂nr−1 − p̂nr

)
)

We have previously shown that under Poisson sampling the Good-Turing

estimate is unbiased.

We suggest the following conjecture
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Conjecture 4.1 Under Poisson sampling, sequential Good-Turing estimator

satisfies.

E
[
p̂n+1
r | Fn

]
= E[

n

n+ 1
Cn

r +
(r + 1)

n+ 1

(
Cn

r−1 − Cn
r

)
]

4.5.3 Expectation of Cr when adding data points

We now investigate the expectation how Cr behaves as we observe a new

data point.

Cn+1
r = Cn

r +
∑

g∈Sn
r−1

θg1[X = g]−
∑
g∈Sn

r

θg1[X = g] .

Then taking the conditional expectation of the expression we obtain

E[Cn+1
r | Fn] = Cn

r +
∑

g∈Sn
r−1

θgE[1[X = g]]−
∑
g∈Sn

r

θgE[1[X = g]

= Cn
r +

∑
g∈Sn

r−1

θgP [X = g]−
∑
g∈Sn

r

θgP [X = g]

= Cn
r +

∑
g∈Sn

r−1

θ2g −
∑
g∈Sn

r

θ2g

=
∑
g∈Sn

r

θg +
∑

g∈Sn
r−1

θ2g −
∑
g∈Sn

r

θ2g

=
∑
g∈Sn

r

(1− θg)θg +
∑

g∈Sn
r−1

θg · θg

The attentive reader might note that this ”proof of reasonableness” of the

sequential Good-Turing estimator does not take into consideration the special

case where r = 0.

The proof also only shows what happens when doing the first step in the

Monte Carlo scheme. It is possible that the error accumulates when one

takes several steps.
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5 Monte-Carlo simulation and real data anal-

ysis

5.1 Comparison and simulation

Now that we have described the different estimators and looked at some

theoretical properties we would like to see how the estimators perform on

data. I use word occurences from two different books as data as well as

simulated data from a Zipf distribution with a couple of different parameters.

The Zipf distribution has probability mass function:

f(x) =
1

xα
∑n

i=1(1/i)
α
, x = 1, 2, . . . , n

The reason for picking these data sets is that one relatively common use for

Good-Toulmin is drawing inference about linguistic data. Word occurences

in books and corpuses approximately follow a Zipf distribution, cf. [7]

This section explains where the data comes from and what sort of comparison

is used to evaluate the performance of the estimators.

There are three estimators used in this section: Sequential Good-Turing,

Good-Toulmin and Binomially Smoothed Good-Toulmin. The smoothing

parameters used are those given in Section 4.3.

5.1.1 True number of discovered species

For a general data set we do not have theoretical results for how many new

species we will see during the second sampling round. So how do we find a

quantity to compare the estimators with?
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Our approach is to use Monte-Carlo methods to estimate the quantity. The

method mimics what happens during real sampling. First a data set is gener-

ated and a first subsample is randomly picked out. Then a second subsample

is picked out from the data and the number of species is compared to that of

the first subsample. Each individual animal is sampled with equal weight.

An alternative approach is to let m be the number of remaining data points

in the original data set. In this case U can be computed without having to

resort to Monte Carlo.

5.1.2 About the data

All inflections and conjugations of words are treated as different words. This

means that two words only count as the same if they are lexicographically

identical, save for capital letters.

The following punctuations marks have been removed from the data: !,?,’,”.

.

5.1.3 Loss function and simulated data

The loss function used to compare the different estimators is:

L =

(
Û − U

m

)2

,

where U is the true number of previously unseen (now discovered) species

and Û is the estimated number of previously unseen (now discovered) species.

Note that the error is ”normalized” by the size m of the second sample. We

use this normalization because the maximum number of discovered species
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grows with the size of the second sample.

The reason for using the Zipf distribution is that this is a distribution of-

ten occuring for word occurences in quantitative linguistics. It is therefore

natural to use next to to real linguistic data.

The real linguistic data used in this thesis comes from F. Scott Fitzgerald’s

1925 book The Great Gatsby and Oscar Wilde’s 1891 book The Picture of

Dorian Gray. The Great Gatsby contains 46688 words and The Picture of

Dorian Gray contains 74869 words. The simulated data sets all contain 1000

data points.

5.2 Comparison Scheme

The estimators are compared as follows:

1. Generate some data or use real data.

2. Pick out a subsample from the data of length q.

3. Do a Monte-Carlo simulation and record how many new species you

will see if you sample m more data points, provided you have already

seen the subsample in the previous step.

4. Record the sequential Good-Turing estimate and the Good-Toulmin

estimate of how many unseen species you would see if you drew m

more samples, using the subsample already picked out.

5. Compare the estimates to the ”pure Monte-Carlo” result.

6. Repeat and record averages of the loss function.
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For all of the results in this essay we use 1000 Monte-Carlo samples for

sequential Good-Turing and 25 rounds for the Monte-Carlo Scheme which

compares the estimators to the true number of discovered species.

5.2.1 Comparison without using Monte-Carlo

It is possible to come up with a number of species you will discover when

sampling provided that you exhaust the data set. For computational reasons

I use data of size 100. Granted this is a situation very different from what

the estimators are used for I choose to include in my essay as an alternative

way to evaluate the performance of the estimators.

6 Results

6.1 Comparison with ordinary Good-Toulmin

For virtually all situations where Good-Toulmin was applicable, meaning

where t ≤ 1, it outperformed sequential Good-Turing. Recall that t = m
n

where n is the size of first sample and m is the size of the second sample.

Refer to the appendix for more details on the results.

6.2 Comparison with smoothed Good Toulmin

For situations where t > 1 and we therefore have to use a smoothed version

of the Good-Toulmin estimator, sequential Good-Turing seems to outper-

form the Good-Toulmin estimator. We used binomial smoothing and the

smoothing parameters suggested in Orlitsky et al. [6].
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Figure 4: Graph of loss for the two estimators.
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When using data simulated from a Zipf distribution the two estimators seem

to be more or less equally good although sequential Good-Turing might be

a little better.

7 Discussion

For the data used in this thesis sequential Good-Turing showed no increase

in performance compared to ordinary Good-Toulmin. If anything, it was a

little bit worse.

Where sequential Good-Turing shows promise is for real data when t > 1

and therefore smoothed Good-Toulmin has to be used. For some reason this

is not the case for simulated data.

It could be that the parameters we used for the smoothed Good-Toulmin are

suboptimal and therefore sequential Good-Turing outperforms. Possibly due

to outliers in the real data.

This in and of itself shows that there is an advantage in sequential Good-

Turing as there is no need to specify any parameters and the tools for deciding

parameters in the smoothed Good-Toulmin estimator are limited.

The smoothing method used for the sequential Good-Turing method was

based on practical considerations rather than theoretical justifications. An-

other smoothing method might very well improve the performance of the

Good-Turing estimator.

This essay only very briefly investigates the theoretical properties of the

sequential Good-Turing estimator. The expectation for the sequential Good-
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Turing is compared with the true probabilities. It would be valuable if there

was a theoretical comparison between sequential Good-Turing and the ex-

pected value of U .

Another point to consider is that the Good-Toulmin estimator requires vir-

tually no computational power while the sequential Good-Turing estimator

can be computationally costly if m is big.

Further research could involve Monte-Carlo methods with different estima-

tors than the Good-Turing one, such as pattern maximum likelihood.
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8 Appendix

The appendix contains tables for the results of the comparison schemes de-

scribed in Section 5.2. Note that sequential Good-Turing is compared with

both the ordinary and smoothed Good-Toulmin estimator. The smoothed

Good-Toulmin estimator is used whenever the ratio n
m

> 1. n denotes the

size of the first data sample andm denotes the size of the second data sample.

n m Turing loss Smoothed Toulmin loss

10 20 0.017 39 0.019 69

10 15 0.035 81 0.024 00

10 11 0.014 86 0.027 89

10 25 0.014 37 0.016 09

10 30 0.006 59 0.011 54

20 25 0.003 80 0.010 71

20 30 0.002 86 0.013 18

20 35 0.002 91 0.006 66

20 40 0.003 22 0.007 31

Table 1: Smoothed Good Toulmin and Sequential Good-Turing evaluated on

simulated Zipf(2) distributed data
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Figure 5: Graph of errors for the two estimators.

n m Turing loss Toulmin loss

10 20 0.005 27 0.005 08

10 15 0.007 89 0.008 21

10 11 0.008 79 0.009 33

10 25 0.007 42 0.007 98

10 30 0.006 82 0.007 40

20 25 0.004 87 0.003 85

20 30 0.003 86 0.003 15

20 35 0.002 86 0.002 38

20 40 0.002 79 0.002 29

Table 2: Smoothed Good Toulmin and sequential Good-Turing evaluated on

a Zipf(3)-distribution
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n m Turing loss Toulmin loss

10 20 0.039 33 0.085 96

10 15 0.024 86 0.050 74

10 11 0.017 05 0.014 47

10 25 0.029 50 0.077 70

10 30 0.044 13 0.119 62

20 25 0.031 90 0.025 89

20 30 0.029 61 0.016 13

20 35 0.024 64 0.027 14

20 40 0.031 01 0.041 16

Table 3: Smoothed Good Toulmin and Sequential Good-Turing evaluated on

the Great Gatsby.

n m Turing loss Toulmin loss

10 20 0.026 52 0.579 11

10 15 0.027 53 0.482 57

10 11 0.022 64 0.231 18

10 25 0.028 37 0.594 34

10 30 0.022 07 0.592 11

20 25 0.017 09 0.186 45

20 30 0.030 03 0.300 16

20 35 0.021 89 0.337 03

20 40 0.014 17 0.375 87

Table 4: Smoothed Good Toulmin and sequential Good-Turing evaluated on

The Picture of Dorian Gray.
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n m Turing loss Toulmin loss

60 20 0.004 01 0.003 76

60 30 0.006 81 0.005 21

60 40 0.011 21 0.003 33

60 50 0.007 75 0.002 82

30 10 0.006 56 0.007 37

30 15 0.008 68 0.007 65

30 20 0.010 90 0.010 26

30 25 0.010 85 0.009 81

Table 5: Good Toulmin and sequential Good-Turing on data generated from

a Zipf(2) distribution.

n m Turing loss Toulmin loss

60 20 0.001 08 0.001 09

60 30 0.000 61 0.001 10

60 40 0.000 70 0.000 67

60 50 0.000 71 0.001 19

30 10 0.001 52 0.001 96

30 15 0.001 04 0.000 71

30 20 0.000 83 0.001 95

30 25 0.001 27 0.001 62

Table 6: Good Toulmin and sequential Good-Turing evaluated on a Zipf(3)-

distribution
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n m Turing loss Toulmin loss

60 20 0.014 57 0.008 35

60 30 0.007 06 0.006 93

60 40 0.013 10 0.008 97

60 50 0.017 29 0.011 94

30 10 0.031 07 0.031 53

30 15 0.023 54 0.021 73

30 20 0.019 72 0.021 04

30 25 0.023 68 0.020 56

Table 7: Good Toulmin and sequential Good-Turing evaluated on the Great

Gatsby.

n m Turing loss Toulmin loss

30 10 0.014 23 0.006 61

30 15 0.007 30 0.007 09

30 20 0.024 10 0.022 95

30 25 0.018 91 0.019 15

60 20 0.012 44 0.007 49

60 30 0.012 41 0.002 55

60 40 0.008 60 0.007 01

60 50 0.007 20 0.006 31

Table 8: Good Toulmin and sequential Good-Turing evaluated on The Pic-

ture of Dorian Gray.
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n m Turing loss Toulmin loss

90 10 0.005 46 0.004 29

80 20 0.001 86 0.002 44

70 30 0.003 72 0.003 78

60 40 0.003 33 0.003 83

50 50 0.002 40 0.004 67

Table 9: Good Toulmin and sequential Good-Turing evaluated on Zipf(2)

distributed data. (without using Monte-Carlo)

n m Turing loss Toulmin loss

40 60 0.006 75 0.003 88

30 70 0.007 84 0.004 97

20 80 0.007 74 0.006 92

10 90 0.007 58 0.010 47

Table 10: Smoothed Good Toulmin and sequential Good-Turing evaluated

on Zipf(2) distributed data. (without using Monte-Carlo)

n m Turing loss Toulmin loss

40 60 0.000 82 0.000 67

30 70 0.000 99 0.000 60

20 80 0.001 22 0.001 11

10 90 0.001 18 0.001 48

Table 11: Smoothed Good Toulmin and sequential Good-Turing evaluated

on Zipf(3) distributed data. (without using Monte-Carlo)

43



n m Turing loss Toulmin loss

90 10 0.001 17 0.001 38

80 20 0.002 17 0.002 31

70 30 0.000 78 0.001 17

60 40 0.000 50 0.000 71

50 50 0.000 74 0.001 65

Table 12: Good Toulmin and sequential Good-Turing evaluated on Zipf(3)

distributed data. (without using Monte-Carlo)
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