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Abstract

Title: After-Market Spare Parts Forecasting at Sandvik Stationary Crushing &
Screening.

Authors: Arian Marofkhani and Artur Jusopov

Supervisors: Professor Gudrun Kiesmüller, Lund University, Faculty of
Engineering, Division of Production Management.
Macarena Ribalta, Planning & Logistics Manager, Sandvik Stationary Crushing
& Screening.

Examiner: Professor Johan Marklund, Lund University, Faculty of
Engineering, Division of Production Management.

Background: Sandvik Stationary Crushing & Screening in Svedala is planning
to fully roll out a forecasting system called Voyager and needs guidance in their
forecasting process. Sandvik wants to explore how different forecasting
methods could help to improve forecast accuracy on a SKU level as well as on
a SKU/Stockroom/Customer Cluster level.

Purpose: The purpose of the master thesis is to identify and propose
quantitative forecasting methods with the aim to improve forecasting accuracy
on a SKU and SKU/Stockroom/Customer Cluster level.

Methodology: The research approach aims to fulfill the purpose of the study by
performing a single case study research. The study adopts an exploratory,
explanatory and a descriptive focus to gain deep insight into the research area
as well as to understand the current situation of the case company - Sandvik
SRP AB. The study incorporates an empirical, data driven approach to collect
and filter historical data as well as apply quantitative forecasting methods.
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Results: The best forecasting method was determined for all ABC-XYZ
classes. The best method for each ABC-XYZ class performed better than
Moving Average 12. Simple Exponential Smoothing yielded the best forecast
accuracy for classes AX, AY, BX, BY, CX and CY on both level 1- and 3 with
an exception of class CX on level 1. SBA and Croston’s method yielded the
best forecast accuracy for classes AZ, BZ and CZ on both level 1- and 3. The
reliability of point forecasts seems to increase with a lower coefficient of
variation in time-series.

Recommendations: It is recommended that Sandvik classifies their products
according to an ABC-XYZ classification, where Simple Exponential
Smoothing is the recommended forecasting method for classes AX, AY, BX,
BY and CY on both level 1 and 3. It is also recommended that Simple
Exponential Smoothing should be used for class CX on level 3. Furthermore, it
is recommended that SBA and Croston’s method should be used for classes AZ,
BZ and CZ on both level 1 and 3. Finally, it is recommended that the
forecasting accuracy is monitored with the help of a tracking signal to ensure
tolerable forecasting accuracy.
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Sammanfattning

Titel: Prognostisering av reservdelar på eftermarknaden hos Sandvik Stationary
Crushing & Screening

Författare: Arian Marofkhani and Artur Jusopov

Handledare: Professor Gudrun Kiesmüller, Lunds Universitet, Lunds Tekniska
Högskola (LTH), Avdelningen för Produktionsekonomi.
Macarena Ribalta, Planning & Logistics Manager, Sandvik Stationary Crushing
& Screening.

Examinator: Professor Johan Marklund, Lunds Universitet, Lunds Tekniska
Högskola (LTH), Avdelningen för Produktionsekonomi.

Bakgrund: Sandvik Stationary Crushing & Screening i Svedala ämnar att
implementera ett nytt  prognostiseringssystem som heter Voyager och
efterfrågar hjälp inom sin prognostiseringsprocess. Sandvik vill undersöka hur
olika prognostiseringsmetoder kan hjälpa till att förbättra prognosernas
noggrannhet på artikel- och artikel/varuhus/kundkluster nivå.

Syfte: Syftet med examensarbetet är att identifiera och föreslå kvantitativa
prognostiseringsmetoder med målet att förbättra prognosernas noggrannhet på
artikel- och artikel/varuhus/kundkluster nivå.

Metod: Forskningsmetodikens syfte är att uppfylla ändamålet med studien
genom att genomföra en fallstudie. Studien ansätter ett explorativt, deskriptivt
och förklarande fokus för att få en djupare insikt inom forskningsområdet samt
för att förstå den nuvarande situationen hos fallföretaget Sandvik SRP AB.
Studien integrerar en empirisk, datadriven metodik för att samla och filtrera
historisk data samt för att tillämpa kvantitativa prognosmetoder.
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Resultat: Den bästa prognostiseringsmetoden bestämdes för samtliga
ABC-XYZ klasser. Den bästa metoden för varje enskild ABC-XYZ klass
presterade bättre jämfört med 12 månaders glidande medelvärde. Enkel
exponentiell utjämning gav upphov till den bästa prognosnoggrannheten för
samtliga X och Y-klasser på både nivå 1 och 3 med klass CX som undantag.
SBA och Crostons metod gav upphov till den bästa prognosnoggrannheten för
samtliga Z-klasser på både nivå 1 och 3. Punktprognosernas pålitlighet verkar
öka med minskad variationskoefficient i tidsserierna.

Rekommendationer: Det är rekommenderat att Sandvik klassificerar sina
produkter enligt en ABC-XYZ klassifikation där Enkel Exponentiell Utjämning
är den rekommenderade prognosmetoden för AX, AY, BX, BY och CY på både
nivå 1 och 3. Enkel Exponentiell Utjämning är också den bästa
prognosmetoden för klass CX på nivå 3. Det är även rekommenderat att SBA
och Crostons metod används för klassifikationerna AZ, BZ och CZ på både
nivå 1 och 3. Vidare är det rekommenderat att prognosnoggrannheten övervakas
med hjälp av en styrsignal för att säkerställa acceptabel prognosnoggrannhet.
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1. Introduction

The following section aims to provide the reader with background information
to understand the driving forces behind this master thesis. Moreover, the case
company will be described and the purpose of this report will be outlined. The
scope and delimitations of the report will conclude the introduction chapter.

1.1 Background

Supply chain management described in its core is to plan, control and manage
the flow of physical goods from supplier to customer. Physical goods is an
umbrella term for raw materials, WIP and finished goods, which are also known
as inventories. For manufacturing companies, a considerable amount of capital
is tied into inventories. Therefore, managing inventories is one of the main
priorities for top management (Axsäter, 2006). Setting sufficient inventory
levels is one of the most critical tasks of an AM supply chain. Component
availability requirements in the AM are high as the effects of stock outs may be
financially harmful for a company (Hua, Zhang, Yang, Tan, 2007). SKUs in the
AM often experience volatile demand patterns. This imposes uncertainty in
terms of determining sufficient stock levels to keep at all nodes in a supply
chain. Companies struggle with the trade-off between keeping too much stock,
which imposes hefty inventory holding costs, and keeping too little stock,
which leads to insufficient fill rate levels, lost sales and unsatisfied customers.
(Pince, Turrini, Meissner, 2021; Axsäter, 2006). At the heart of the problem is
the difficulty of forecasting demand with high accuracy. Due to this difficulty,
efforts in the academic world are continuously being put into developing
quantitative forecasting methods that capture the nature of the actual demand
and foresee its size before arrival.
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To mitigate the challenge of demand forecasting, quantitative forecasting
methods are chosen based on demand patterns. Demand pattern classification is

commonly based on two parameters; the as well as The is𝐴𝐷𝐼 𝐶𝑉2. 𝐴𝐷𝐼

defined as the average inter-demand interval for a demand time series. The 𝐶𝑉2

is defined as the coefficient of variation squared for a demand series, excluding
the demand points in the series that equal zero (Johnston, Boylan, 1996;
Syntetos, Boylan, Croston, 2005; Costantino, Di Gravio, Patriarca, Petrella,
2017). Traditional threshold values of these parameters suggest whether a
demand pattern should be classified as Smooth, Erratic, Intermittent or Lumpy.
Given the classification, the search for an optimal forecasting method can be
narrowed down. Examples of traditional forecasting methods used for time
series that exhibit data points with few zero demands are Simple Exponential
Smoothing, Holt’s Linear method and Holt-Winters method. For data that is
considered lumpy or intermittent other methods are necessary. Methods such as
Croston’s method and Syntetos-Boylan approximation (SBA) are generally
used (Sanguri, Mukheerje, 2021; Pince, Turrini, Meissner, 2021).

When forecasts are to be used for different hierarchical levels, it is generally not
optimal to forecast on all levels independently. The problem arises when the
forecasted quantity is not consistent throughout the hierarchical levels, i.e., if
the forecasted end customer demand for different locations does not add up to
the total forecasted demand. One solution to the problem is to use Hierarchical
Forecasting. Hierarchical Forecasting allows for disaggregation of the
generated initial forecasts of the total demand. E.g., performing a forecast on
the total demand followed by disaggregating the forecasts down to specific
warehouses and end customers. This method is called a “Top-down” approach.
The main benefits with this approach is that demand patterns are usually easier
to identify on higher hierarchical levels. If one can find a way to measure
historical proportions of each node at the bottom level accurately, the
disaggregation will be accurate and yield satisfying results.

The “Bottom-up” approach is used when forecasts are performed at the bottom
level and then aggregated upwards. The strength of this approach is that no
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assumptions have to be made when aggregating. However, time series tend to
be quite noisy at the lowest level of the hierarchy which make them difficult to
forecast accurately.

There are also so-called “optimal” methods when forecasts on different
hierarchical levels are reconciled in the hope of obtaining smaller deviations on
each hierarchical level. The common theme for all hierarchical forecasting
techniques is that they are consistent, i.e, the forecasted sum has to be equal on
all hierarchical levels (Hyndman et al., 2011).

The mentioned methods will be used in order to distribute the forecast to all
hierarchical levels. Hopefully, insights regarding the feasibility of the different
techniques can be obtained.

1.2 Company Description

Sandvik Group is a Swedish multinational engineering company founded in
1862. Sandvik specializes in rock processing, metal cutting and materials
technology. It is a publicly traded company listed on the Stockholm stock
exchange and part of the prestigious index OMXS30, indicating that the stock is
one of the thirty most traded in Sweden. Sandvik had a revenue corresponding
to 86.4 billion SEK in 2020 and an operating profit of 11.18 billion SEK during
the same calendar year.

Sandviks division Stationary Crushing & Screening (SC&S) is part of the
business area Rock Processing Solutions (RPS). Industrial products such as
breakers, demolition tools as well as both stationary and mobile crushers and
screens are part of the product portfolio of RPS. The division of SC&S
innovates, produces, sells and distributes equipment used for size reduction and
compositional sorting of rocks. Whenever the original equipment is worn out,
customers order AM parts in order to keep their operations going on full
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capacity. The customers of SC&S are based in all corners of the world and
mainly operate within the mining and construction industry.

As Sandvik has a decentralized organization, each division within the RPS
business area has full control over their own supply chain. This implies that all
production and inventory related policies are determined within the SC&S
division. An organizational overview of Sandviks business areas, divisions and
AM product families is displayed in the figure below.

Figure 1. Sandviks organizational chart. The grey boxes are those in scope of this
master thesis.
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1.3 Problem Formulation

Currently, SC&S are using separate ERP systems for each entity in the supply
chain. All entities are only able to view the demand one step downstream in the
supply chain. The current information and material flow is illustrated below.

Figure 2. Illustration of the current material and information flow in the supply chain.

One crucial order winner for SC&S aftermarket is item availability for the end
customers, i.e service level measured in the proportion of demand satisfied
directly from stock on hand at the final echelon in the supply chain. Due to
insufficient integration of existing ERP systems, difficulties in predicting final
customer demand have emerged. All nodes function as isolated entities and
only plan to fulfill the demand one step downstream in the supply chain. This
adds to the famous bull-whip effect in each step upstream in the supply chain,
which leads to the production units producing more than needed in order to
fulfill the end customer demand. This is a common phenomena in supply chains
where full transparency is lacking (Syntetos, Babai, Boylan, Kolassa,
Nikolopoulos, 2016). The inaccurate forecasting of end customer demand has
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led to inadequate fill rate levels on important items, leading to lost sales in
some cases due to material shortages and excess inventory in cases of
overproduction.

SC&S has ambitions of fully rolling out a new forecasting software system
called Voyager. The benefits with this system is that all entities within the
supply chain will have full insight into the end customer demand. Therefore,
the possibilities to set adequate production- and inventory levels will increase
since the bull-whip effect will be reduced. The “to be” information and material
flow is illustrated below.

Figure 3. Illustration of the “to be” material and information flow in the supply chain.

C&S has currently chosen 30 test items for Voyager in order to validate the
usability of the software as a forecasting tool. The software forecasts the
demand for each month, 12 months in advance. By the end of a month, when
the total demand for a SKU is logged in the system, the forecast for the
upcoming 12 months will be updated in the system. However, as good as the
intentions are for the system, there is an intraorganizational lack of
understanding on what theoretical methods the demand forecasting is relying
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on. Also, the company does not seem to think that the software uses suitable
forecasting methods for a plurality of the SKUs in the test set. For example,
Moving Average 12 is the method that is currently being used when forecasting
the absolute majority of the SKUs. It is a simple method where the future
forecast is calculated using the average value of the last 12 historical
observations. Due to the forecast inaccuracy of Moving Average 12 in many
cases, extensive manual adjustments have been required for the forecasting of
the test items in the system.

Due to the difficulties related to the current forecasting process, it seems
meaningful to explore how the forecasting process within the organization
could be improved. Reducing the forecast error for AM SKUs has the potential
to yield improved operational efficiency.

1.4 Master Thesis Description and Purpose

1.4.1 Master Thesis Description

The ambition of this thesis is to investigate the potential in clustering on a SKU
level as well as SKU/Stockroom/Customer level according to historical demand
patterns. Then formulate a suitable quantitative forecasting method for each
cluster on both hierarchical levels in order to improve the forecasting accuracy
compared to Voyager. The formulated methods should then be used as guidance
on how to forecast on level 1 and 3 in Voyager henceforth. The level of
forecasting in the scope of the master thesis can be viewed below.
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Figure 4. Level of forecasting in the scope of this masters thesis.

The forecast on SKU level, i.e level 3, will be used as a foundation for
production planning for the external suppliers and the internal production units.
The forecast on SKU/Stockroom/Customer Cluster level, i.e level 1, will be
used as a foundation when C&S decides what to stock where and to whom, i.e
set adequate stock levels at the last echelon of the supply chain. The reason
behind why it is important to forecast on customer cluster level is due to
specific service level agreements between Sandvik and their customer clusters.
SKU A, stored in stockroom B, might have different service level agreements
with customer clusters X and Y. This is the rationale behind forecasting on this
disaggregated level.

1.4.2 Master Thesis Purpose

The purpose of the master thesis is to identify and propose quantitative
forecasting methods with the aim to improve forecasting accuracy on a SKU
and SKU/Stockroom/Customer Cluster level.
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1.5 Delimitations

The expected duration of this master thesis is 20 weeks of full time studies.
Hence, it is of high importance to point out delimitations and potential
constraints in early stages of the project in order to ensure completion of the
project in the given time frame.

This study was conducted at Sandvik, focusing on how to improve forecasting
accuracy for AM parts. The proposed forecasts should predict the demand size
for each individual month, five months ahead in time. In order to determine
sufficient forecasting methods, analysis in R had to be conducted. Out of the
four AM product families illustrated in figure 1, the focus will be on proposing
suitable forecasting methods for items within wear parts, spare parts and key
components. The reasoning behind leaving major components out of the
analysis is because they require lots of manual adjustments from top
management due to their hefty unit prices. Thus, it does not make sense to
create a baseline forecast for such items.

Furthermore, there are some limitations relating to the raw data that Sandvik is
able to provide us with. Their system cannot provide demand data that is older
than three years. Meaning that the provided data will contain no more than 36
data points for each SKU (One data point is equivalent to the monthly demand
of a SKU). Also, how one chooses to define demand radically impacts the raw
data that will serve as the cornerstone for the forecast. One could, and probably
should claim that demand occurs whenever a customer arrives and tries to place
an order, independent if this actually leads to a sale (Axsäter, 2006). However,
the raw demand data provided to us is equivalent to the historic sales data.
Consequently, there is an unknown amount of actual demand that has not been
registered in the raw data that has been given to us. Hence, there is a need to
understand the inherent uncertainty of the raw data that constitutes the
foundation of which the forecast relies upon.
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2. Methodology
The following section aims to describe the chosen research- methodology and
framework used to conduct the study. The research approach, the steps in the
chosen research framework and the reasoning behind the choices will be
motivated.

2.1 Research Approach

This master thesis can be considered to follow a deductive as well as an
inductive approach. According to Kim (2021), there exists two main approaches
for conducting research, namely the deductive and inductive methods. The
deductive approach is most often related to the collection and analysis of
quantitative data, whereas the inductive approach usually entails the handling
of qualitative data. Both the methods follow a different approach, and the
research study can vary significantly based on which of the two is chosen.
However, as Saunders et al. (2007) argues, the two approaches can be used
exclusively but also synchronously, as they can complement each other when
conducting a research study.

The deductive approach is explained by Saunders et al. (2007) as starting by
developing a theory and hypothesis followed by designing a research strategy to
test the hypothesis. In the inductive approach, the data collection and analysis
of the data comes first followed by developing a theory. Combining the
methods has proven to give a positive impact on observed studies, and the
nature of this research study has been deemed to necessitate the use of both.
Going back and forth between the two would serve the best interest of
conducting the study. To perform the statistical analysis, qualitative data
collection and analysis is necessary. As well as using relevant literature within
the field of demand forecasting to form a foundation in competence to be able
to properly conduct the study. This would in turn relate to the deductive
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approach, where a hypothesis and a theory is formed before the data collection
and analysis. However, there is a need to understand the current situation at the
company, to understand the processes in place before attempting to improve
them. This relates to an inductive approach, with qualitative data collection,
where investigation of the company software takes place to gain an
understanding of the current procedures.

2.2 Research Strategy

Building a theoretical foundation as well as knowing what type of data to
collect is an important part of the procedures within a study. Therefore it is
pivotal to have a research strategy in place to be able to answer the research
questions to full extent. In this research study, a single case study research
strategy will be adopted in order to gain the relevant information required to
conduct the study. According to Saunders et al. (2007), a case study is a
strategy that involves an empirical investigation of a specific contemporary
occurrence within its context by using numerous sources of evidence.
Eisenhardt (1989) further explains that case studies generally combine the
evidence in the form of data collection, e.g qualitative- and quantitative data.
To start off the case study research, it is required to have the research questions
set, in order to narrow down the focus of the study and search for relevant data.

Case study research allows for explanatory and exploratory studies. According
to Saunders et al. (2007), there exists three main purposes of a study, namely
the descriptive, explanatory and exploratory. An explanatory study puts the
focus on explaining the relationship between variables in a certain system or a
problem. Exploratory research puts emphasis on seeking insights into
phenomena by asking questions and reviewing them in a reconceptualizing
manner. The aim of descriptive research is defined as the research conducted to
describe a population; the persons, events or situations. Descriptive studies can
be used as a component in the explanatory and exploratory studies. This study
aims to understand the current procedures of demand forecasting at the
company and present improved alternative methods. Therefore a case study
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strategy with an explanatory, exploratory as well as a descriptive focus is
deemed to be the best fitting approach. For understanding the current situation,
the descriptive focus will be followed. The explanatory focus will be followed
to understand the relationship between each time series and their demand
patterns. Finally the exploratory focus will be adopted to revise and
conceptualize new solutions.

2.3 Research Framework

While conducting the master thesis, it is necessary to adopt a research
methodology. Having a clear path makes for more efficient research by finding
the most suitable way to perform the research. This is done by defining clear
steps that need to be taken from formulating research questions all the way to
developing a design for the study. This study will be conducted following the
five steps of the forecasting process described by Sanders (2017).

1. Decide what should be forecasted
2. Collect and filter demand data
3. Time-series classification
4. Choose forecasting method
5. Measurement of accuracy

The first step in Sanders' forecasting process is to decide what should and can
be forecasted. It is important to understand that some time-series simply can not
be forecasted due to the lack of data or has a low forecastability due to volatile
demand patterns. Following this, the necessary data needs to be prepared by
collecting and filtering based on criterias such as relevance, errors or
availability. When the data has been collected, it should then be classified based
on e.g. the historical patterns of the demand as a first step before a relevant
forecasting method is appointed. For this study, a categorization of the SKUs
based on the underlying demand patterns will be performed as a first step for
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deciding which forecasting methods would be suitable for each category. This is
done for a more efficient process by eliminating methods that are not
appropriate for certain categories. After the categorization has been made, the
forecasts are then produced and the performance is evaluated.

Each step in Sanders forecasting processes and their adaptation to this research
study will be further detailed in depth in section 3.1.

2.4 Data Collection

There are a myriad of suitable approaches for data collection and they all
contribute in different ways depending on what kind of information that is
desired from the researcher. There is often a correlation between the choice of
methodology and the optimal approach. One key feature for a good
methodology is that it has clear guidelines on how the research should be
conducted. Hence, by going through these guidelines the researcher gets a clear
view of what type of data is needed before proceeding with an approach.
(Björklund, Paulsson, 2012).

2.4.1 Primary and secondary data

Primary data refers to data that is collected explicitly for the purpose of
answering the research questions. An example of this could be raw data
provided by the case company. It could also be the exchange of information
through interviews or questionnaires. Secondary data on the other hand could
potentially support the research but is not necessarily intended to. It is data that
originated due to other reasons but could provide implicit support for the
conducted research (Björklund, Paulsson, 2012). Literature studies are good
examples of secondary data. They refer to every piece of written material that
could support the purpose of the research. However, literature studies come
with the risk of propagating some kind of agenda and therefore it is of high
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importance to complement key statements in books, research papers etc with
multiple sources.

2.5 Research Quality

Assuring research quality can be done by using four different logical tests. This
is due to the fact that any form of research design represents a set of logical
statements, case studies included. The four steps are defined below as according
to Yin (2008):

● Construct validity: identifying correct operational measures for the
concepts being studied.

● Internal validity: seeking to establish a causal relationship, whereby
certain conditions are believed to lead to other conditions, as
distinguished from spurious relationships.

● External validity: defining the domain to which a study’s findings can
be generalized.

● Reliability: demonstrating that the operations of a study, such as the
data collection procedures, can be repeated with the same results.

These four logical tests will be described in the following subsections as
described by Yin (2008).
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2.5.1 Construct Validity

The first step in assuring research quality is to identify the correct measures for
conducting the study. Yin (2008) proposes three tactics that are used to
construct validity. The first tactic is to use multiple sources of evidence in a
way that promotes convergent lines of inquiry. The second tactic is to establish
a chain of evidence. The last tactic is to have the draft of the report reviewed by
key informants. The first two steps are relevant during the data collection
whereas the third plays an important role further down near the end of the
study.

2.5.2 Internal Validity

The researchers should, with the study, be able to explain the relationship
between certain conditions and why certain events affect others. The issues that
arise when attempting to address internal validity surface when the researchers
infer an explanation to why unobservable events occur, based on evidence
collected beforehand. If the inferences are not thoroughly examined on whether
they actually represent reality then it might weaken the internal validity.
Questions like if all the possibilities or alternative explanations have been
addressed or if all the evidence converges into one explanation are typically the
beginning of addressing internal validity. Although it is difficult to state how to
build internal validity, there are some tactics that are noteworthy. The tactics are
patterns matching, explanation building, addressing rival explanations or using
logic models. It is important to note however that internal validity is only
applicable for explanatory research, which is one of the selected research
purposes for this study and therefore will be tested Yin (2008).
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2.5.3 External validity

Building external validity deals with the question on whether the results of the
study case are applicable on other similar cases. For case studies, the goal is to
generalize a set of results. This is called analytical generalization and has been
criticized to have major barriers when applying the results to other cases.
However, as Yin (2008) implies, it is generally a misinterpretation by critiques
done due to a flawed comparison between a survey research and a case study
research. To build external validity, Yin (2008) suggests that using theory and
replicating the study by applying the theory to other similar case studies is a
sufficient approach.

2.5.4 Reliability

The final logical test, reliability, is performed to minimize errors and the bias in
the conducted study. To test the reliability of a study, it must be done in such a
way that other researchers can follow the same processes and perform the same
case again. There is a clear distinction between this step and the previous.
Reliability is about doing the same case study again whereas external validity is
specifically about replicating the results on other, similar case studies.
Therefore it is important to document the procedures during the whole study, to
enable building reliability.
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3. Theoretical Framework
The following section will present the theoretical framework that this study
relies on. Generic clustering techniques will be presented to the reader.
Moreover, forecasting methods and models will be presented thoroughly as well
as common accuracy measurements. The fundamentals of hierarchical
forecasting will also be outlined. The theoretical frameworks are necessary for
the reader to understand in order to interpret the results of the study.

3.1 Forecasting

In a supply chain context forecasting can be viewed as an attempt to predict
future demand. With high forecasting accuracy an organization is enabling
higher operational efficiency when planning their production and inventory
levels. There are multiple forecasting methodologies that exist. However, there
is not a single forecasting methodology that is applicable for all situations due
to the different demand patterns that time series experience. There are
established forecasting processes that aim to clearly outline the different steps
for practitioners. One of those processes is described in (Sanders, 2017) and
illustrated in figure 5 below.

Figure 5. Sanders forecasting process.
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3.1.1 Decide What Should be Forecasted

The first step for an organization is to agree upon what should be forecasted.
An important part of this step of the process is to identify the purpose of the
forecast. The time horizon of the forecast and how often the forecast should be
updated are also crucial for the organization to fully understand before initiating
the process (Sanders, 2017).

Many organizations offer a wide range of SKUs to their customers.
Investigating optimal forecasting methods by going through each SKU
individually is rather time consuming. Therefore, this approach is not
considered to be particularly resource efficient. An alternative to this approach
would be to classify the SKUs to different clusters and assign appropriate
forecasting method(s) to each cluster.

Another important aspect to consider before initiating the forecasting process is
to have reasonable expectations on the forecasts. The forecastability of a
time-series is important to understand before having any expectations on
forecasting accuracy. Forecastability of a time-series is strongly correlated with
the variation it experiences. Some time-series have very low variation,
meaning that the probability mass of the distribution is compact around the
mean value of the series. In these cases, the forecastability is high and it is
reasonable to have high expectations on a deterministic point forecast. Other
time-series experience high variation with wide tails for the probability
distribution. In such cases, forecastability is low and a deterministic point
forecast is not reliable. Having a solid understanding of the forecastability of
the SKU assortment eases the decision of what should- and what should not be
forecasted.
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3.1.2 Collect and Filter Demand Data

According to Hyndman and Athanasopoulos (2018), there exists two types of
data. Statistical data and the expertise of the people that manage the data and
will be using the generated forecasts. The available data is often not enough to
fit a statistical model to yield forecasts with desirable accuracy. Generally, the
more data available the better the chances of fitting a good statistical model.
But old data can provide outdated information, then it can be more useful to use
more recent data. Armstrong (2003) highlights the effect of inaccurate data.
Errors, missing data or changes to the system that is to be forecasted can lead to
forecasting errors. These uncertainties can arise due to lost sales, when the
demand that has been documented only takes the actual sales into consideration
while the actual demand might have been higher.

3.1.3 Time-series Classification

Historical time-series data can exhibit different underlying demand patterns.
The various patterns can affect the forecastability in such a way that some
time-series can prove to be impossible to accurately forecast. Heinecke et al.
(2011) proposes a method for classification based on two coefficients, the
average interarrival time between demand points and the variation of demand
quantities. The classifications are made to get a better understanding of the
behavior of the demand patterns and as such provide an idea of which methods
and models are suitable for certain time-series. The four classes mentioned by
Heinecke et al. (2011) are as follows,

❖ Intermittent
❖ Lumpy
❖ Smooth
❖ Erratic
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Intermittent demand exhibits demand patterns where the quantities have little
variation but the intervals between each demand point shows a high variation.
Lumpy patterns are similar to intermittent patterns but differ in demand
quantities, where they display a high variation and the most difficult of the four
classifications when it comes to producing reliable forecasts. Erratic demand
patterns have relatively stable interdemand times, however the quantities show
a large variation. Smooth patterns make for the most forecastable time-series
where the interdemand times are commonly occuring and quantities show little
variation.

Figure 6. The four demand patterns based on their interrrival times and demand quantities.

As mentioned, the classification is done by determining two coefficients,

, the squared coefficient of variation which is the squared standard𝐶𝑉2 = σ2

μ2  

deviation divided by the squared mean . The measurement is a unitlessσ2( ) μ2( )
quantity that describes the dispersion of the data around the mean.
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, the average of the interval between two non zero demand points. This metric𝑝 
is a measure of the regularity of the demand in time.

Heinecke et al. (2011) further elaborates on the thresholds for each category,

❖ Smooth - ,𝑝 <  1. 32 𝐶𝑉2 <  0. 49

❖ Erratic - ,𝑝 <  1. 32 𝐶𝑉2 ≥  0. 49

❖ Lumpy - ,𝑝 ≥ 1. 32 𝐶𝑉2 ≥  0. 49

❖ Intermittent - ,𝑝 ≥  1. 32 𝐶𝑉2 <  0. 49

which can also be visualized in a graph as shown in figure 7.

Figure 7. The threshold values for the different classifications.
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3.1.3.1 ABC-Analysis

ABC-analysis is conducted to classify time-series according to the Pareto
principle, which is based on the observation that a small number of elements
make up the lion share of achieved results (Stojanovicm, Regodic, 2017). The
Pareto principle implies the same concept as the 80:20 rule, which means that
20% of sold articles contribute 80% to the revenue. The ABC-analysis in
combination with the Pareto rule establishes three groups. Group A contains
around 20% of the products that contribute to 80% of the total sales value.
Group B contains products that contribute to 15% of the total sales value.
Group C contains products that contribute to 5% of the total sales value
(Buliński, Waszkiewicz, Buraczewski, 2013 The graphic representation of this
classification is illustrated in figure 8 below.

Figure 8. Illustration of the ABC-classification.
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3.1.3.2 XYZ-Analysis

XYZ-analysis is conducted in order to classify time-series according to demand
variation. This is a necessary process for organizations that want to distinguish
time-series by demand uncertainty. The XYZ-analysis establishes three groups
according to the coefficient of variation for a time-series. Group X contains
time-series with continuous demand and are characterized with small demand
fluctuations over time. Group Y contains time-series with discontinuous
demand and are characterized to have intermediate demand fluctuations over
time. Group Z contains time-series where demand arrives very sporadically and
these are extremely difficult to forecast accurately. The threshold values for the
coefficient of variation are discussed in (D'Alessandro, Baveja, 2000;
Stojanovicm, Regodic, 2017). The authors suggest that elements are separated
with the help of a reference value of the coefficient of variation according to:

𝐺𝑟𝑜𝑢𝑝 𝑋 −  𝐶𝑜𝑓𝑉 < 0. 52
𝐺𝑟𝑜𝑢𝑝 𝑌 −  0. 52 ≤ 𝐶𝑜𝑓𝑉 ≤ 1. 0
𝐺𝑟𝑜𝑢𝑝 𝑍 −  𝐶𝑜𝑓𝑉 > 1. 0

The definition of follows below𝐶𝑜𝑓𝑉

(1)µ = 1
𝑇

𝑡=1

𝑇

∑ 𝐷
𝑡

(2)σ = 1
𝑇

𝑡=1

𝑇

∑ (𝐷
𝑡

− µ)2

(3)𝐶𝑜𝑓𝑉 = σ
µ

Where:
mean demand between periods 1 and T.µ −
standard deviation of demand between periods 1 and T.σ −
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Demand for period t.𝐷
𝑡

−

3.1.3.3 ABC/XYZ-Analysis

If the ABC and XYZ classifications are merged, 9 groups are created that
time-series can be classified as. It is useful to make this classification as it eases
the process to provide generic forecasting strategies for each group. For
example, if forecasting method(s) are significantly represented as the most
appropriate for a certain group, the organization just has to look at the
classification for a time-series in order to know what forecasting method(s) are
appropriate to use. Characteristics for each group are presented in the table 1
below.

Table 1. The characteristics for each group in an ABC/XYZ classification.

A B C

X High value.
High predictability.
Continuous demand.

Medium value.
High predictability.
Continuous demand.

Low value.
High
predictability.
Continuous
demand.

Y High value.
Medium predictability.
Fluctuating demand.

Medium value.
Medium
predictability.
Fluctuating demand.

Low value.
Medium
predictability.
Fluctuating
demand.

Z High value.
Low predictability.
Irregular demand.

Medium value.
Low predictability.
Irregular demand.

Low value.
Low
predictability.
Irregular demand.
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3.1.4 Choose Forecasting Method

Forecasting methodologies can be divided into two main categories, qualitative
and quantitative. It is therefore important to point out that this report will solely
focus on quantitative forecasting methods. In contrast to qualitative forecasting,
quantitative forecasting relies on mathematical statistics. Mathematics is the
necessary foundation to capture the nature of historical demand and henceforth
compute a forecast (Axsäter, 2006). By using a quantitative approach, a lot of
subjective assumptions can be eliminated from the forecasting process. In the
following section a selection of well known quantitative forecasting models and
methods will be presented.

3.1.4.1 Moving Average Methods

The moving average method is a common forecasting method for time-series
analysis. The common trait for all time-series methodologies is that they
account for what has happened in the past and try to give a prediction of the
future. However, the methodologies will yield different forecasts based on how
they weight the historical sequence in the time-series. The simple moving
average method creates a forecast by computing the average demand of the last
N periods in the time-series. Parameter N is chosen depending on the
smoothness of the historical demand. Many observations in the computation of
the forecast will yield a stable forecast. In contrast, less observations in the
computation of the forecast will yield a forecast that is more sensitive to
changes in demand (Axsäter, 2006). The benefits with having a moving average
is that old data will be filtered out as the forecast is updated on a periodic basis.
The equation of simple moving average and its associated definitions are
presented in table 2 below.
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Table 2.

(4)𝐹
𝑡+1 

=
𝐷

𝑡
+𝐷

𝑡−1
+𝐷

𝑡−2
+...+𝐷

𝑡−𝑁+1

𝑁

Where:
- Forecast for period t+1𝐹

𝑡+1 

- Observed demand for period t.𝐷
𝑡

N - Number of observations accounted for when computing the forecast for
period t+1.

3.1.4.2 Naive Methods

The naive forecasting method is commonly used in the industry due to its
simplicity. The method implies that the forecast for all upcoming periods is
equal to the last observed demand. Due to the low complexity of the method it
might come as a surprise that it has displayed higher forecasting accuracy for
one-step forecasts compared to forecasting methods with higher complexity.
Naturally, the method is well suited for time-series that experience low demand
volatility and randomness (Krajewski et al.,  2013).

There is also a customized version that is derived from the naive forecast. It is
well suited for time-series with strong seasonal patterns. This version is also
known as the seasonal naive method. The rationale behind this method is
similar to the naive method. The forecast for the next period is equal to the last
observed demand from the same period during last season. If the periodicity of
the time-series is monthly, the forecast for the next period will be equal to the
last observed demand for the same month from last year (Hyndman &
Athanasopoulos, 2018).
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3.1.4.3 Exponential Smoothing Methods

Exponential smoothing has proved to be a powerful method for forecasting
time-series. The method was formulated a couple of decades ago and has since
become a cornerstone method among practitioners (Hyndman & De Gooijer,
2006). There are three common variants of the exponential smoothing method;
simple exponential smoothing, Holt’s linear method and Holt-Winters method
(Hyndman et al., 2008).

The simple exponential smoothing method creates a forecast that relies on the
demand and forecast for the previous period. The value of the smoothing
parameter affects how sensitive the forecast is for changes in demand. Theα
value of the smoothing parameter has a fundamental impact on how the forecast
acts and assumes values in the range A value close to 0 is of stable0 ≤ α ≤ 1.
character and a value close to 1 is highly reactive to recent changes in the
demand.

One challenge when applying simple exponential smoothing is to find a suitable
optimization criterion to determine the value of the smoothing parameter .α
Usually it is determined by minimizing the average error between the forecasts
and observed values in a time-series. This error can be expressed in MAD,
MAPE, MASE and other accuracy measurement procedures that will be further
explained in chapter 3.1.5. The equation for simple exponential smoothing and
its associated definitions are presented in table 3 below.

Table 3.

(5)𝐹
𝑡+1

= α𝐷
𝑡

+ (1 − α)𝐹
𝑡

Where:
- Forecast for period t+1.𝐹

𝑡+1
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- Forecast for period t.𝐹
𝑡

- Observed demand for period t.𝐷
𝑡

0 ≤ α ≤ 1

Holt's linear method is originally derived from simple exponential smoothing
with the difference that it contains a trend component (Holt, C. E., 1957). The
method can be divided into two parts. Equation (7) computes a forecast
according to simple exponential smoothing but with a trend component 𝑏

𝑡−1

added to the last smoothed value of the demand. Equation (8) on the other hand
describes where the trend component emerges from. Trend component is𝑏

𝑡
𝑏

𝑡

updated periodically based on the trend parameter and the difference betweenβ
the last two smoothed values of the demand. The sum of these equations yield
Holt's linear one-step ahead forecast. There are cases where the trend
component might increase or decrease exponentially which might yield𝑏

𝑡

misleading forecasts on long-term horizons. In order to mitigate this issue, a
third smoothing parameter can be used to dampen the trend (Hyndman &
Athanasopoulos, 2018). Smoothing parameters , and assumes valuesα β ϕ
between 0 and 1.

The equations that describe Holt’s linear method and Holt’s damped linear
method and their associated definitions are presented in table 4 below.

Table 4.

Forecast equation: (6)𝐹
𝑡+1 

= 𝑙
𝑡

+ 𝑏
𝑡

Level Equation: (7)𝑙
𝑡

= α𝐷
𝑡

+ (1 − α)(𝑙
𝑡−1

+ 𝑏
𝑡−1

)

Trend Equation: (8)𝑏
𝑡

= β(𝑙
𝑡

− 𝑙
𝑡−1

) + (1 − β)𝑏
𝑡−1
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Where:
- One step ahead forecast from period t.𝐹

𝑡+1 

- Exponentially smoothed demand in period t.𝑙
𝑡

- Exponentially smoothed trend in period t.𝑏
𝑡

- Observed demand for period t.𝐷
𝑡

 0 ≤ α ≤ 1
 0 ≤ β ≤ 1

Forecast equation: (9)𝐹
𝑡+1 

= 𝑙
𝑡

+ ϕ𝑏
𝑡

Level Equation: (10)𝑙
𝑡

= α𝐷
𝑡

+ (1 − α)(𝑙
𝑡−1

+ ϕ𝑏
𝑡−1

)

Trend Equation: (11)𝑏
𝑡

= β(𝑙
𝑡

− 𝑙
𝑡−1

) + (1 − β)ϕ𝑏
𝑡−1

Where:
- One step ahead forecast from period t.𝐹

𝑡+1 

- Exponentially smoothed demand in period t.𝑙
𝑡

- Exponentially smoothed trend in period t.𝑏
𝑡

- Observed demand for period t.𝐷
𝑡

 0 ≤ α ≤ 1
 0 ≤ β ≤ 1
 0 ≤ ϕ ≤ 1

If there is a presence of both trend and seasonality in a time-series,
Holt-Winters method usually performs the best out of the exponential
smoothing methods. Holt-Winters method is an extension of Holt’s linear
method (Winters, P. R., 1960). In addition to a level- and trend equation there is
also a seasonal equation in Holt-Winters method. In this seasonal equation a
seasonal index is computed with the help of a seasonal smoothing parameter𝑠

𝑡
γ
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(Hyndman & Athanasopoulos, 2017). When applying this method one has to be
aware of what kind of seasonality the time-series is displaying. If the
seasonality is constant over time, an additive seasonality model is preferred and
the seasonal equation is added to the level- and trend equations. If the
seasonality displays variations over time, a multiplicative seasonality is
preferred and the seasonal equation is multiplied with the level- and trend
equations. Holt-Winters method with an additive seasonal component and its
associated definitions are presented in table 5.

Table 5.

Forecast Equation: (12)𝐹
𝑡+1 

= 𝑙
𝑡

+ 𝑏
𝑡

+ 𝑠
𝑡+1−𝑚(𝑘+1)

Level Equation: (13)𝑙
𝑡

= α(𝐷
𝑡

− 𝑠
𝑡−𝑚

) + (1 − α)(𝑙
𝑡−1

+ 𝑏
𝑡−1

)

Trend Equation: (14)𝑏
𝑡

= β(𝑙
𝑡

− 𝑙
𝑡−1

) + (1 − β)𝑏
𝑡−1

Seasonal Equation: (15)𝑠
𝑡

= γ(𝐷
𝑡

− 𝑏
𝑡−1

− 𝑙
𝑡−1

) + (1 − γ)𝑠
𝑡−𝑚

Where:
- One step ahead forecast from period t.𝐹

𝑡+1 

- Exponentially smoothed demand in period t.𝑙
𝑡

- Exponentially smoothed trend in period t.𝑏
𝑡

- Observed demand for period t.𝐷
𝑡

- Seasonal index for period t.𝑠
𝑡

- Frequency of seasonality. For example =12 for monthly data.𝑚 𝑚
- Integer part of Ensures that the estimates of the seasonal indices𝑘 ℎ−1

𝑚 .

used for forecasting come from the final year of the sample.
 0 ≤ α ≤ 1
 0 ≤ β ≤ 1
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 0 ≤ γ ≤ 1

3.1.4.4 Croston's Method

When a time-series contains consecutive periods without demand it is referred
to as intermittent. Exponential smoothing is not considered to be a useful
forecasting method for time-series like this. After a large demand size has
arrived the exponential smoothing method will overestimate the demand for the
upcoming periods and hence yield significant forecast errors. However, the
method is still used for intermittent time-series with a low value of smoothing
value making the forecast less reactive to recent changes in demand. Thisα,
still does not mitigate the issue properly and other methods such as Croston’s
method are usually preferred for intermittent time-series (Croston, 1972).
Croston’s method contains two separate time-series. The first time-series,
equation (17), forecasts the size of the demand for period t+1. The second
time-series, equation (18), forecasts the interarrival time between two non-zero
demand points. The final forecast (19) is equivalent to the ratio between the
forecast in equation (17 and 18). The equation for Croston's method and its
associated definitions are presented in table 6 below.

Table 6.

If then,𝐷
𝑡

≠ 0

(17)𝑑
𝑡+1

= (1 − β)𝐷
𝑡

+ β𝑑
𝑡

(18)𝑘
𝑡+1

= (1 − α)𝐾
𝑡

+ α𝑘
𝑡

(19)𝐹
𝑡+1

=
𝑑

𝑡+1

𝑘
𝑡+1

If then,𝐷
𝑡

= 0

𝑑
𝑡+1

= 𝑑
𝑡
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𝑘
𝑡+1

= 𝑘
𝑡

=𝐹
𝑡+1

𝐹
𝑡

Where:

- Forecast for period t+1.𝐹
𝑡+1

- Forecast of the size of demand for period t+1.𝑑
𝑡+1

- Forecast of the interarrival time for period t+1.𝑘
𝑡+1

- Demand observation for period t.𝐷
𝑡

- Interarrival observation for period t.𝐾
𝑡

0 ≤ α ≤ 1
0 ≤ β ≤ 1

3.1.4.5 SBA Method

The SBA method is closely tied to Crostons methodology. It contains two
separate time-series where one estimates the demand size and the other
estimates interarrival frequency. The method was proposed as an attempt to
remove the inherent bias in Crostons methodology (Syntetos, Boylan, 2005;
Doszyn, 2020). The bias in Croston's method arises if one assumes that the
demand size and interarrival time are independent of each other. In this case the
following relationship must hold,

(20)𝐸(
𝑑

𝑡+1

𝑘
𝑡+1

) = 𝐸(𝑑
𝑡+1

)𝐸( 1
𝑘

𝑡+1
)

But,

34



𝐸( 1
𝑘

𝑡+1
) ≠ 1

𝐸(𝑘
𝑡+1

)

And therefore, Croston's method is biased. To cope with this bias, Syntetos &
Boylan showed that by multiplying the forecast with the factor the(1 − β

2 ),  

bias is eliminated. Therefore they proposed this method that is named after
themselves. The equation for SBAs method and its associated definitions are
presented in table 7 below.

Table 7.

If then,𝐷
𝑡

≠ 0

(21)𝑑
𝑡+1

= (1 − β)𝐷
𝑡

+ β𝑑
𝑡

(22)𝑘
𝑡+1

= (1 − α)𝐾
𝑡

+ α𝑘
𝑡

(23)𝐹
𝑡+1

=
𝑑

𝑡+1

𝑘
𝑡+1

(1 − β
2 )

If then,𝐷
𝑡

= 0

𝑑
𝑡+1

= 𝑑
𝑡

𝑘
𝑡+1

= 𝑘
𝑡

=𝐹
𝑡+1

𝐹
𝑡

Where:

- Forecast for period t+1.𝐹
𝑡+1

- Forecast of the size of demand for period t+1.𝑑
𝑡+1

- Forecast of the interarrival time for period t+1.𝑘
𝑡+1

- Demand size for period t.𝐷
𝑡
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- Interarrival observation for period t.𝐾
𝑡

0 ≤ α ≤ 1
0 ≤ β ≤ 1

3.1.4.6 Exponential Smoothing - ETS State-Space Models

The different methods that rely on exponential smoothing have been stated
earlier in this chapter. What they all have in common is that they produce
deterministic point forecasts for upcoming periods. However, there are models
that take stochasticity into account when computing forecasts and these models
are known as ETS State-Space Models. An ETS state-space model computes a
point forecast the same way as the underlying exponential smoothing method
but also takes the forecast error distribution into account. Hence, prediction
intervals where the forecast is within are yielded when forecasting with these
models (Hyndman, Athanasopoulos, 2018).

Forecasts that use state-space models can be found in the ETS Package in R.
The package can be used in order to determine an optimal state-space model for
a particular time-series. As default, the package uses the Akaike Information
Criterion ( ) as an optimization criterion. is a corrected version of AIC𝐴𝐼𝐶

𝑐
𝐴𝐼𝐶

𝑐

that aims to avoid overfitting. Overfitting a model to a time-series is common
for small sample sizes. The formulas of AIC and are presented in table 8𝐴𝐼𝐶

𝑐

below.

Table 8.

(24)𝐴𝐼𝐶 =  − 2𝑙𝑜𝑔(𝐿) + 2𝑘

(25)𝐴𝐼𝐶
𝑐

= 𝐴𝐼𝐶 + 𝑘(𝑘 + 1)𝑇 − 𝑘 − 1

36



Where:

L - Likelihood function of the model. The Likelihood function describes the
joint probability of the observed data as a function of the parameters of the
chosen statistical model.
k - Number of parameters in the model.
T - Mean Absolute Deviation between point forecast and actual demand.

Low values are desired for both AIC and . Thus, we can see from the𝐴𝐼𝐶
𝑐

equations in (24) and (25) that goodness of fit is rewarded (assessed by the
likelihood function). It can also be noted that AIC and penalize an𝐴𝐼𝐶

𝑐

increasing amount of parameters in a model. The penalty discourages
overfitting, which is desirable since an increasing number of parameters almost
always improves the goodness of fit.

The forecast of the ETS state-space models relies on three different
components. These components are Error, Trend and Seasonality. The trend and
seasonality components can be none, additive, multiplicative and for the trend
component even damped. Depending on the trend and seasonality components,
the method is determined. The 12 possible methods are displayed in figure 9
below.
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Figure 9. The trend and seasonal component determines the 12 displayed methods.

However, for each method, there is an error component which is either additive
or multiplicative. This means that for each of the 12 methods, there are 2
possible models. In total, this yields 24 different models. For example, if the
ETS package suggests that a time-series has an additive trend component but no
seasonal component, Holt's linear method will be chosen. If an additive error
component is chosen, then the yielded model equates to (E,T,S)=(A,A,N)
(Hyndman et al., 2002).

3.1.5 Measurement of Accuracy

An integral part of the forecasting process is to evaluate forecasting accuracy.
Without measurement of the forecasting accuracy it is not possible to make
quantitative comparisons between methods. This quantitative comparison is
what enables one to draw a conclusion around a certain method's feasibility
(Sanders, 2017).

3.1.5.1 Point Forecast Measurements

There are a myriad of different measurements of point forecasting accuracy to
choose from depending on what information one wants to obtain from the
forecast. The most recognized and used accuracy measurement is the Mean
Absolute Deviation (MAD) (Axsäter, 2006; Armstrong, 2003). It is widely used
due to its intuitive definition as well as being regarded as the industry standard
way of measuring accuracy. However, there are drawbacks with using an
absolute scale because it makes comparisons of accuracy between time-series
less meaningful.

Accuracy measurements that are scale-dependent are suitable when comparing
different methods for time-series with the same scale. Mean Squared Error
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(MSE) have historically been the most recognized scale-dependent
measurements used in academic research and among industry practitioners.
However, there are also drawbacks with the scale-dependent measurements.
First and foremost, the interpretation of the values they yield are not
particularly intuitive. Also, these measurements are generally more sensitive to
outliers which increase the odds that strange values are obtained for a
significant number of time-series (Hyndman, De Gooijer, 2006).

Accuracy measurements that are expressed in percentage form are popular due
to the fact that they mitigate the issues tied to both absolute and scale
measurements. With the use of percentage based measurements, it is
meaningful to compare results between time-series and the definition of the
measurement is easy to interpret. Mean Absolute Percentage Error (MAPE) is
the most known percentage based measurement. However, the major drawback
with MAPE is that it is not suitable for a plurality of time-series, especially
those with high intermittency. If MAPE is used in cases with zero-demand
periods, the MAPE value either diverges towards infinity or is undefined
(Hyndman, De Gooijer, 2006).

In their publication (Hyndman, Koehler, 2006), the duo argues that scaled
measurements should be adopted as industry standard as they are compatible
with almost all types of time-series. It is common that the absolute- and
percentage-based measurements either yield uncomparable or undefined values,
a problem that is mitigated by the use of the Mean Absolute Scaled Error
(MASE). The MASE is equal to the ratio between the MAD and a scale factor.
Since the ratio is unit free, it is possible to compare the MASE value for
different time-series. The scale factor that is commonly used is the one-step
naive forecast error. The MASE value is hence computed as the ratio between
the MAD for the used forecasting method and the MAD for the naive method.
A MASE value larger than one implies that the naive method performs better
than the used forecasting method. A MASE value smaller than one implies that
the naive method performs worse than the used forecasting method.
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MASE was used as the accuracy measurement throughout this report. It is
therefore expressed in table 9 below.

Table 9.

(26)𝑀𝐴𝑆𝐸 =  
1
𝑇

𝑡=1

𝑇

∑ 𝐹
𝑡
−𝐷

𝑡| |
1

𝑇−1
𝑡=2

𝑇

∑ 𝐷
𝑡
−𝐷

𝑡−1| |
⎛

⎝

⎞

⎠

Where:
- Forecast for period t.𝐹

𝑡

- Observed demand for period t.𝐷
𝑡

- Length of time-series𝑇

3.1.5.2 Distributional Forecast Measurements

Forecasting methods presented in this thesis provide point forecasts. Usually,
point forecasts are convenient as a basis for organizations to measure forecast
accuracy due to its intuitive nature. However, a point forecast is just a
numerical value that is bound to be incorrect. In order to evaluate the
trustworthiness of a point forecast one has to evaluate the accuracy of its
associated distributional forecast (Gneiting, Katzfuss, 2014).

When using the ETS forecast models presented in chapter 3.1.4.6, point
forecasts equivalent to the models underlying method are yielded. However,
since there is an error component associated with a degree of stochasticity, a
95% prediction interval of the forecast is also generated.

In order to understand the concept of how a prediction interval is yielded for
distributional forecasts, one has to grasp the idea of residual diagnostics in a
time series. Each observation in the training set of a time series can naturally be
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forecasted using all previous observations. These forecasts are known as fitted
values. The residual is equivalent to what is left over after fitting a model, i.e
the difference between the observation and its corresponding fitted value.
Residual analysis is useful when evaluating how well a model has captured the
information in a data set. One crucial property of the residuals is that it has a
mean value equal to or in the close vicinity of zero, otherwise the forecast can
be considered to be biased. However, it is the standard deviation of the residuals
that is interesting when computing a prediction interval of the forecast. In this
thesis, only forecast models with additive error components were studied.
Henceforth, the residuals can be considered to be normally distributed around
the mean residual value of 0. A distributional forecast with normally distributed
residuals is expressed as viewed in table 10.

Table 10.

(27)𝐹
𝑡

± 𝑐σ
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

Where:
- Point Forecast for period t.𝐹

𝑡

- Factor of coverage probability. When talking about prediction intervals of𝑐
95%, is equal to 1.96.𝑐

- The standard deviation of the residuals after fitting the model in theσ
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

training data set.

The accuracy measurements presented thus far in this chapter only measure
point forecast accuracy. In order to evaluate the accuracy of distributional
forecasts, there is a need to use other measurements.

When computing a distributional forecast, a prediction interval which the
demand observation is expected to be within is created. The lower limit of this
prediction interval gives the 0.025 quantile of the forecast distribution.
Therefore, one should expect that the actual demand observation is below this
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limit 2.5% of the time and above it 97.5% of the time. Suppose one has an
interest to compute the quantile forecast with probability p at future time t, this
quantile forecast is denoted This means, the demand observation is𝑓

𝑝,𝑡
. 𝐷

𝑡

expected to be less than with probability p. If is a demand observation at𝑓
𝑝,𝑡

𝐷
𝑡

time t, the quantile score, , can be expressed as presented in equation *𝑄
𝑝,𝑡

below.

(28)

Generally there is an interest in the whole forecast distribution rather than a
specific quantile. For these cases, all quantile scores are averaged over all
possible values of p to yield the CRPS (Continuous Ranked Probability Score).
A low value of the CRPS implies that the prediction interval is narrow which in
turn implies that the reliability of the point forecast is high. Conversely, a high
value of the CRPS implicates a wide prediction interval with low
trustworthiness of the point forecast. Important to note is that the point forecast
is equivalent to the forecast of the 0.5 quantile ( ), which is the mean value𝑓

0.5,𝑡

of the forecast distribution. For instance, if one would like to compute the
quantile score for all percentiles within a 95% prediction interval forecast, the
CRPS formula would be expressed as in equation * below.

(29)𝐶𝑅𝑃𝑆 = 𝑝=2.5

97.5

∑ 𝑄
0.01𝑝,𝑡

95

However, CRPS is an absolute measurement. As with point forecasts, it is
useful to compare the accuracy of distributional forecasts in a scale-free
measurement. With point forecasts, the MASE measurement served this
purpose. For distributional forecasts, skill scores can be computed (Gneiting,
Katzfuss, 2014). With skill scores, a forecast accuracy measurement relative to
some benchmark method is computed. As with MASE, the naive method is
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used as the benchmark method. If method X would be used as the method, its
skill score would be expressed as displayed below.

(30)𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  
 𝐶𝑅𝑃𝑆

𝑀𝑜𝑑𝑒𝑙 𝑋

𝐶𝑅𝑃𝑆
𝑁𝑎𝑖𝑣𝑒

3.1.6 Monitoring Point Forecasts

The demand for a SKU can naturally shift over time and this has an effect on
the demand pattern. A method that is considered to be optimal at one point can
be obsolete at another point in the future. In order to mitigate the risk of using a
method that systematically generates inaccurate forecasts over time, it is
important to keep track of the generated forecasts with the help of a signal. The
function of the signal is that it relates the absolute forecast deviation of the
current period with the average historical forecast deviation (Axsäter, 2006;
Olhager, 2000). When the forecast error deviates from the tolerable ratios, the
practitioner should be notified and examine if the current forecasting method is
feasible or not. The monitoring equation is viewed below.

(31)𝑇𝑆𝐷
𝑡

=
𝐷

𝑡
−𝐹

𝑡| |
𝑀𝐴𝐷

𝑡

Where:
Tracking signal during period t.𝑇𝑆𝐷

𝑡
−

Mean absolute deviation during period t-1.𝑀𝐴𝐷
𝑡−1

−

- Point Forecast for period t .𝐹
𝑡

Demand observed during period t.𝐷
𝑡

−
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3.2 Hierarchical Forecasting

This report aims to forecast demand on both SKU level as well as on
SKU/Stockroom/Customer Cluster level. Therefore it is of high importance to
understand the interdependence between forecasts on these different levels. To
understand how forecasts can be translated to other hierarchical levels it is
essential to study the theory of hierarchical forecasting.

Compared to traditional univariate time-series forecasting it is more challenging
to forecast multivariate time-series, more known as hierarchical time-series.
The underlying reason is that hierarchical time-series impose aggregation
constraints that have to be accounted for when performing the forecast. The
implication of the aggregation constraints is that the generated forecasts have to
be consistent throughout the hierarchical structure. Coherency in the forecast
brings value to practitioners as it relates time-series on high and low levels.
(Mirectic, Rostami-Tabar, Nikolicic, Marinko, 2021; Hyndman,
Athanasopoulos, 2018). In an organization there are different functions with
forecasting scopes that vary. Where production planners focus on aggregated
forecasts at high levels, regional planners tend to zoom in on different
geographical areas and customers. For such purposes, disaggregated forecasts
on low levels are necessary in order to be valuable (Hyndman, Athanasopoulos,
2018).

3.2.1 Hierarchical Time Series

A hierarchical time-series is a nested time-series that can be disaggregated
based on different attributes. A simple example would be time-series that can
be divided into smaller categories depending on geographical locations. If the
total demand of a product is known; given that other attributes of the product
are also known, the total demand of the product can then be further split into
individual time-series with different attributes. To exemplify, If product A is
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sold in several countries, the total demand of A can be disaggregated into the
amount of demand that comes from each individual country. These can then be
further disaggregated into smaller categories such as customers or even smaller
locations. Starting from the bottom most level, each category is nested into
larger groups of categories, which defines the hierarchical structure of the
time-series.

Below, a figure of a simple two-level hierarchical structure is presented. In total
there are three types of nodes also distinguished as levels that range from 0-2,
where level 0 is the total aggregated values of the observations and level 2 is
the bottom disaggregated level. The aggregated top of the hierarchy, which is
level 0, is denoted as Dt where y is the observed value at any given period t. The
series at level 0 are then disaggregated into finer categories at level 1. The
nodes in level 1 are denoted as Di,t , where D is the value of the series in node i
at any given period t. Lastly, the bottom nodes at level 2 are the completely
disaggregated time-series. To exemplify, DA,t corresponds to the value of node
A on level 1 for any period t, while DAA,t corresponds to the value of node AA
on level 2 for any period t (Athanasopoulos et al. 2019). The categorization for
the bottom two levels can vary depending on the time-series. The top level
signifies the total aggregate series, whilst the bottom two levels are commonly
differentiated by geographical locations or other attributes pertaining to the
available data.
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Figure 10. An example of a two-level hierarchical structure.

The aggregation constraints rule that the sum of the values of the bottom series
(at level 2) add up to the sum of the series on level 1 which in turn add up to the
sum of the series at level 0. As such, for any given period t, the following
relationships must hold for a coherent structure:

(32)𝐷
𝑡

=  𝐷
𝐴𝐴,𝑡

+ 𝐷
𝐴𝐵,𝑡

+ 𝐷
𝐴𝐶,𝑡

+ 𝐷
𝐵𝐴,𝑡

+  𝐷
𝐵𝐵,𝑡

(33)𝐷
𝐴,𝑡

=  𝐷
𝐴𝐴,𝑡

+ 𝐷
𝐴𝐵,𝑡

+ 𝐷
𝐴𝐶,𝑡

(34)𝐷
𝐵,𝑡

=  𝐷
𝐵𝐴,𝑡

+ 𝐷
𝐵𝐵,𝑡

Substituting (33) and (34) into (32) also yields: 𝐷
𝑡

=  𝐷
𝐴,𝑡

+ 𝐷
𝐵,𝑡

Let n = 8 denote the total number of nodes in the hierarchy and m = 5 denote
the number of nodes at the bottom of the hierarchy. Then S is the n x m
summation matrix that explains the linear constraints when aggregating. With
the summation matrix, a relationship between the total observations and the𝐷

𝑡

total observed values at the bottom nodes can be achieved by the following
relationship:
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(35)𝐷
𝑡

= 𝑆𝐵
𝑡

which is also presented in its full form by figure 11.

Figure 11. The relationship between the total observations and the observed values at the
bottom of the hierarchy.

In (35), is a vector that contains all time-series in the hierarchy and is a𝐷
𝑡

𝐵
𝑡

vector that contains all time-series in the bottom nodes, at level 2:

𝐷
𝑡
 =  𝐷

𝑡
,  𝐷

𝐴,𝑡
,  𝐷

𝐵,𝑡
,  𝐷

𝐴𝐴,𝑡
,  𝐷

𝐴𝐵,𝑡
,  𝐷

𝐴𝐶,𝑡
,  𝐷

𝐵𝐴,𝑡
,  𝐷

𝐵𝐵,𝑡( )
𝐵

𝑡
 =  𝐷

𝐴𝐴,𝑡
,  𝐷

𝐴𝐵,𝑡
,  𝐷

𝐴𝐶,𝑡
,  𝐷

𝐵𝐴,𝑡
,  𝐷

𝐵𝐵,𝑡( )

3.2.2 Point Forecasting with Single-Level Approaches

The most common approaches for hierarchical forecasting begin by generating
base forecasts on either the top most aggregated level of the hierarchy or the
bottom most disaggregate level. When the base forecasts are generated, they are
then either aggregated upwards or downwards the hierarchy, depending on the
chosen method. There are two methods that are most widely used, these include
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the top-down and bottom-up approaches (Athanasopoulos et al. 2019).
However, Wickramasuriya et al. 2019 proposes an alternative method that,
according to their study, performs better than the conventional methods. These
three approaches will be explained in detail in the following subsections.

3.2.3 Bottom-Up Approach

The most simple way of producing coherent point forecasts is to generate base
forecasts on the bottom level of the hierarchy. The forecasts are then summed
up and aggregated upwards to the desired level in structure in a relatively
simple manner. The advantage of using the Bottom-up method is that no
information is lost and the absence of bias when aggregating the base forecast.
The available data on the bottom level of the hierarchy can however prove to be
very difficult to forecast due to its potential volatile nature (Athanasopoulos et
al. 2019). This would especially prove to be problematic in cases where the data
displays intermittency.

Let be a vector containing the one-step-ahead base forecasts generated𝑏
𝑇+1|𝑇

for the bottom nodes, where T signifies the latest observed time period. Then
the base forecasts for the bottom of the hierarchy in figure 10 would be:

, where each𝑏
𝑇+1|𝑇

 = 𝐹
𝐴𝐴,𝑇+1|𝑇

,  𝐹
𝐴𝐵,𝑇+1|𝑇

,  𝐹
𝐴𝐶,𝑇+1|𝑇

,  𝐹
𝐵𝐴,𝑇+1|𝑇

,  𝐹
𝐵𝐵,𝑇+1|𝑇( )

element in the vector corresponds to the forecasted value of all the nodes on
level 2. Given this, the forecasts for the entire hierarchy is:

, or in its full form:𝐹
𝑇+1|𝑇

 = 𝑆𝑏
𝑇+1|𝑇
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Figure 12. The forecasts for the entire hierarchy when using the Bottom-up approach.

3.2.4 Top-Down Approaches

The Top-down approaches begin at the opposite end of the hierarchy, that is, the
base forecasts are created on the top level of the total series . The forecasts𝐷

𝑡

are then disaggregated downwards in the hierarchy based on a series of
proportions for each node in the lowest level. The proportions represent the
share of the base forecast of the total series that will be distributed to each node
at level 2. According to Gross & Sohl (1990), one approach is by calculating
the average historical proportions. If is the forecasted value for the total𝐹

𝑡

series at level 0 at any given time period, then is the proportion of the𝑝
𝑖

forecast that each series at the bottom level 2 is appointed. Using the same𝐹
𝑡

hierarchical time-series as in figure 10, the forecasts for the bottom level series
can be represented as in table 10:
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Table 10.

Forecasts for the bottom level series

𝐹
𝐴𝐴,𝑡

= 𝑝
1
𝐹

𝑡
 

𝐹
𝐴𝐵,𝑡

= 𝑝
2
𝐹

𝑡
 

𝐹
𝐴𝐶,𝑡

= 𝑝
3
𝐹

𝑡
 

𝐹
𝐵𝐴,𝑡

= 𝑝
4
𝐹

𝑡
 

𝐹
𝐵𝐵,𝑡

= 𝑝
5
𝐹

𝑡
 

where the proportions are calculated with the following formula:𝑝
𝑖

,𝑝
𝑖
 = 1

𝑇
𝑡=1

𝑇

∑
𝐹

𝑖,𝑡

𝐹
𝑡

where is the mean of the proportions for the bottom series based on𝑝
𝑖

𝑖
historical data over all periods t and T is the latest observed period.

Following this, the Top-down forecast for the entire hierarchy can be
represented as:

, where S is the summing matrix used to aggregate the𝐹
𝑇+1|𝑇

=  𝑆𝑝 𝐹
𝑡,𝑇+1|𝑇

forecasts to the rest of the hierarchy, is the total aggregated forecast at𝐹
𝑡,𝑇+1|𝑇

level 0 and p is a vector containing all the mean historical proportions of all the
bottom level series .𝑝 =  𝑝

1
, 𝑝

2
,...., 𝑝

5( )( )

The advantage of using a Top-down approach is the data used to generate the
base forecasts. In its most aggregate form, the data generally displays less
volatile behavior and leads to increased forecastability. However, the
disadvantage is that there is a loss of information when disaggregating.
Information such as seasonality, special events etc. (Athanasopoulos et al.
2019).
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3.2.5 The Optimal Reconciliation Method

The Optimal Reconciliation Method is different from the previous two methods
in the sense that the point forecasts are not generated on any single level of the
hierarchy. Instead, forecasts are generated on every level of the hierarchy
independently, without taking the aggregation constraints found in the matrix S
into account. These forecasts are generally not coherent throughout the
hierarchy and the next step in the process is therefore to adjust the forecasts into
coherency (Athanasopoulos et al. 2019). Wickramasuriya et al. (2019) proposes
an approach for forecast reconciliation that, according to their studies, shows an
improvement of forecasting accuracy over the other existing methods.

Let denote a vector containing the one-step-ahead base forecasts for all𝐹
𝑇+1|𝑇

the series on all levels of the hierarchy. Let then these forecasts be assembled in
the same structure as figure 10. The forecasts on each level would then not be
coherent because they ignore any aggregation constraints and are produced
independently. This implies that generally the forecasts on level 2 would not
add up to the sum of the forecasts on level 1 and so on, unless a very simple
method is used such as the Naive method. The coherent forecasts for any
hierarchical structure can then be formulated as follows:

(36)𝐹
𝑇+1|𝑇

 ⋆
=  𝑆𝐺𝐹

𝑇+1|𝑇

Where corresponds to the coherent forecasts on all levels of the𝐹
𝑇+1|𝑇

⋆

hierarchy, S is the summing matrix that distributes the newly generated
forecasts to other levels in the hierarchy and G is a matrix that maps the base
forecasts to the lowest level in the hierarchy. In other words, G generates new
forecasts that are aggregated upwards with the summing matrix S which

transforms the independent forecasts into the coherent forecasts ,𝐹
𝑇+1|𝑇

𝐹
𝑇+1|𝑇

 ⋆
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across the hierarchy. To avoid bias when forecasting using the optimal method,
it is important that , which gives a constraint on the mapping matrix𝑆𝐺𝑆 = 𝑆
G.

The next step is to identify the G matrix that gives the least error in variances of
the forecasts. According to Wickramasuriya et al. (2019), the G matrix that
yields least variance in the errors of the forecast compared to the actual values
must follow the following structure:

, and thus the reconciled, coherent forecasts𝐺 =  𝑆′𝑊
𝑇+ℎ|𝑇
−1 𝑆( )−1

𝑆′𝑊
𝑇+ℎ|𝑇
−1

can then be written as following,

(37)𝐹
𝑇+1|𝑇

 ⋆
= 𝑆 𝑆′𝑊

𝑇+1|𝑇
−1 𝑆( )−1

𝑆′𝑊
𝑇+1|𝑇
−1 𝐹

𝑇+1|𝑇

Where is the variance-covariance matrix of the errors present in the𝑊
𝑇+1|𝑇

base forecasts. For the purposes of this thesis, the Minimum Trace (shrink)
method was chosen to identify , as it performed the best out of the four𝑊

𝑇+1|𝑇

according to Athanasopoulos et al. (2019). However, it is an exceptionally
challenging task, particularly when the forecasting horizon is larger than 1.
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4. Analysis
The following section will provide a deeper analysis on how the theoretical
framework was applied during this study. Moreover, results will be presented in
three different sections. The first  section deals with results associated with
forecasting accuracy on SKU level. The second section deals with results
associated with forecasting accuracy on SKU/Stockroom/Customer Cluster
level. Finally, the third section will deal with the findings of the hierarchical
forecasting analysis.

4.1 Procedures

Most of the calculations and data preparation steps were performed exclusively
in Excel and the programming software R. The historical data and the
characteristics of each time-series that formed the foundation for the analysis
was provided in the form of Excel sheets by the company.

4.1.1 Data Preparation

The available data consisted of 36 monthly historical data points for each
time-series. To prepare the data before performing a statistical analysis and
forecasting future demands, it was filtered based on certain criterias that were
deemed appropriate. One of the measures taken was to divide the data into
training and testing periods, 31 and 5 respectively, as recommended by
Hyndman & Athanasopoulos (2021). The reason being, after a forecast has
been made, the accuracy should be measured based on real data (test data).
Whereas the method parameters should be estimated using the training data.
The test data should not affect the estimation of the parameters, because by
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doing so would yield bias in the forecasts. To validate the generated forecasts, a
comparison has to be made between data that was not part of the training data
set and the forecasts that are based on the training set.

Another process in the filtering of the demand data was the exclusion of all
time-series that displayed less than four non-zero demand points during the
training period. This was done in order to remove the time-series with
insufficient amount of data points to fit a method. Another criterion used to
filter was the requirement of having at least one non-zero demand point during
the last five periods. This was decided together with the company
spokespersons with the reasoning that any series with only zero demand during
the last five months should be treated as outdated and no longer being sold.

4.1.2 Demand Classification

Before the forecasts were generated, all the time-series were placed into the
categories defined in section 3.1.3. This was done for two reasons; in order to
decide which forecasting methods to exclude for certain time-series and to
visualize the demand patterns that are present in the data. As Croston’s and
SBA’s methods are only fit for time-series that display lumpy and intermittent
demand patterns, they were not used to forecast the series that exhibit smooth
and erratic behaviors.

4.1.3 ABC-XYZ Classification

Another classification was made where the time-series were divided into nine
categories as defined in section 3.1.3.3. This was done in order to illustrate the
most impactful categories with regards to total historical revenue and the
number of time-series present. The simplicity of performing an ABC-XYZ
analysis makes for an appropriate method for classifying the time-series. As
such, this was chosen as the approach for cataloging and assigning a suitable
forecasting method for each series.
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4.1.4 Point Forecasting

After the demand classification was made, and all the time-series were allocated
to four different clusters, the forecasting methods described in section 3.1 were
used to produce point forecasts for each series. It was decided that for the
smooth and erratic time-series, only Simple Exponential Smoothing, Holt’s
Linear, Holt’s Linear Damped, Naive and Seasonal Naive methods would be
used as Croston’s and SBA are not suitable for time-series within these two
clusters. For the lumpy and intermittent clusters, Croston’s, SBA, and Simple
Exponential Smoothing methods were used. The forecasts were generated by
first using the software R to fit the methods for each time-series and producing
a table in which the method parameters were calculated. As pointed out in
section 3.1.4.6, the ETS State-Space models used the criterion to choose𝐴𝐼𝐶

𝑐

the best fit model. However, to optimize the ingoing parameters the methods
were optimized based on minimizing the MAD during the training period. With
the given optimized parameters, the one-step-ahead forecasts were then
produced for the test period.

Several methods were used to produce forecasts for each time-series. Therefore,
after obtaining the forecasts, the MASE values were calculated as described in
section 3.1.5.1. The method that yielded the lowest MASE value was therefore
chosen as the most suitable forecasting method for each individual time-series.

4.1.5 State-Space Models and Their Use-Case

Beyond producing point forecasts for each time-series, the statistical models
that have an underlying Exponential Smoothing method were investigated. As
mentioned in section 3.1.4.6, the ETS state-space models generate the same
point forecasts as the methods but offer further insight into the reliability of the
forecasts. For all the time-series that were appointed an Exponential smoothing
method as the best fit, a best fit ETS model was also studied. The statistical
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models generate a prediction interval that enables measuring the reliability of
the point forecast. The models are then evaluated using the CRPS values
calculated based on the forecast distribution. The CRPS values can in turn be
used to compute the corresponding Skill Scores.

4.1.6 Hierarchical Forecasting

Exploring the possibility of using hierarchical forecasting methods is one of the
objectives of the study. As the forecasting packages in the programming tool R
only allows for one point forecasting method at a time when using hierarchical
forecasting, SES was chosen as the method to examine. Moreover, the available
methods are limited and as such reinforced the decision making for limiting the
investigation to only one method.

The data was filtered on the most disaggregated level, namely,
SKU/Stockroom/Customer Cluster level. The filtering was done by only
keeping the time-series which were appointed SES as the most suitable method
from section 4.1.4. Thereafter, the hierarchical forecasting methods described in
section 3.2 were used to generate and aggregate/disaggregate the point forecasts
on all levels. The accuracy of the forecasts were then measured using MASE.
As hierarchical forecasting produces forecasts on both level 1 and 3, the MASE
values were compared to the independant point forecasts from section 4.1.4 that
used SES.

4.2 Results on Level 3

After training the methods during the training period, one-step ahead forecasts
were produced five consecutive times during the test period. Point forecast
accuracy expressed in MASE was computed for the 1632 examined SKUs.
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4.2.1 Point Forecast Accuracy of Methods on Level 3

An overview of the best and worst performing methods based on the MASE
values are presented in table 11 below.

Table 11. Overview of method performance on level 3.

Best Method Percentage of SKUs

Naive Method 10.3%

Seasonal Naive Method 12.8%

Simple Exponential Smoothing 33.3%

Holt’s Linear Method 10.8%

Holt’s Linear Damped Method 9.7%

Croston's Method 11.8%

SBA Method 11.3%

The absolute distribution of the SKUs amongst the best methods is also
illustrated in figure 13 below.
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Figure 13. The absolute distribution of the SKUs amongst the best methods on level 3.

Exponential Smoothing was the method that yielded the best forecast accuracy
for most SKUs, roughly 33.3% of them.

It is of high interest to visualize the distribution of the MASE values for each
method. Therefore, a box plot of the MASE values was created for all methods.
The black line within each box is equivalent to the median MASE value for the
method. The lower- and upper bound of the boxes represent the 25th and 75th
percentile of the distribution, meaning that 50% of the MASE values exist
within this interval. The lower- and upper spikes could possibly deviate ± 50%
from the median value of the distribution. Values that deviate by more than

from the median are considered to be outliers and are denoted with a± 50%
black dot. The boxplots are illustrated in figure 14 below.
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Figure 14. Box plot visualization of MASE distribution for all methods on level 3.

The box plot reveals some interesting findings. The Seasonal Naive method has
the lowest average MASE value for those SKUs where it was deemed to be the
best method. This is interesting as it yielded the worst MASE value for the
largest number of SKUs amongst all methods. Hence, its performance seems to
be very sensitive to the specific nature of the time series it is forecasting. The
MASE value for Croston seems to have the largest spread around its mean
value, indicating that its values are not particularly compact around the mean
MASE value. The boxplot also reveals other findings. The methods that were
only considered suitable for the smooth and erratic demand patterns are; Naive,
Holt’s Linear, Holt’s Linear Damped and Seasonal Naive. What these methods
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have in common is that they do not display any MASE values greater than 1.
For the Naive method the reason is clear, the definition of MASE implies that
its value is equal to 1. For the remaining methods it is also clear why they don’t
display MASE values greater than 1. Had they done so, they would not be
considered as the best method due to their inferiority to the Naive method. The
methods that were only suitable for the lumpy and intermittent time-series were
Croston’s and SBA. The reason why these methods display MASE values
greater than 1 is because they were not compared to the Naive methods which
they probably should have been. Approximately 15% of the time-series were
SBA and Croston’s method was deemed the optimal would have performed
better with the Naive forecast. Since Simple Exponential Smoothing was used
to forecast time-series in all four demand patterns, which is the reason why the
boxplot shows MASE values greater than 1 as well.

As stated in chapter 1.3, Sandvik is currently using MA12 as the forecasting
method for all of their 30 test SKUs in Voyager. Therefore, it is of high interest
to compare forecast accuracy performance between MA12 and the identified
best methods. What would the distribution of the MASE values look like if
MA12 would have been used instead of the identified best methods? The
boxplots are illustrated in figure 15 below.
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Figure 15. Box plot visualization of MASE distribution if MA12 would have been used
instead of the identified best methods on level 3.

The box plot in figure 15 reveals that the MASE value for all methods, except
the Naive method, performs better on both in terms of the mean and median
value compared to if MA12 would have been used. This is naturally a good sign
since it indicates that appointing suitable methods yields better point forecast
accuracy on an average compared to using MA12 for all time series. Below in
table 12, the mean and median value of the MASE distribution is displayed
both for the best method and for MA12.
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Table 12. Mean and median MASE values for best method and MA12 on level 3.

Best
Method

Numb
er of
SKUs

Mean
MASE
Value
Using
Best
Method

Mean
MASE
Value
Using
MA12

Mean
MASE
Value
Improvem
ent Using
the Best
Method

Median
MASE
Value
Using
Best
Method

Median
MASE
Value
Using
MA12

Median
Value
Improve
ment
Using the
Best
Method

Croston 192 0.87 1.18 +0.31 0.69 0.85 +0.16

SBA 184 0.80 1.05 +0.25 0.70 0.84 +0.14

SES 545 0.77 0.84 +0.07 0.67 0.73 +0.06

Holt’s
Linear

176 0.74 0.85 +0.11 0.65 0.72 +0.07

Holt’s
Linear
Damped

158 0.73 0.82 +0.09 0.65 0.73 +0.08

Naive 168 1.00 0.92 -0.08 1.00 0.85 -0.15

Seasonal
Naive

209 0.67 0.91 +0.24 0.58 0.70 +0.12

Total 1632

4.2.2 Point Forecast Accuracy of Methods Across ABC-XYZ
Classes on Level 3

The 1632 SKUs that were examined in this project were also classified
according to an ABC-XYZ-analysis. Two types of ABC-XYZ charts were
created. The first chart displays the distribution of SKUs across the ABC-XYZ
classes. The second chart displays the historic revenue distribution of these
SKUs across the ABC-XYZ classes.
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The distribution of the SKUs across the ABC-XYZ classes is illustrated in
figure 16 below.

Figure 16. The distribution of the SKUs across the ABC-XYZ classes.

The distribution of the historic revenue across the ABC-XYZ classes is
illustrated in figure 17 below.
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Figure 17. The distribution of the historic revenue generated from SKUs across the
ABC-XYZ classes.

Figure 16 and 17 gives interesting insights into how skewed the distribution of
revenue driving SKUs is. Merely 17.28% of the SKUs are part of the A-class
that is generating 80% of the total revenue. Moreover, 62.19% of the SKUs are
part of the C-class that only generates 5% of the total revenue. The insights that
these numbers provide are valuable to have when evaluating the impact of
improved point forecast accuracy for each class.

How the different forecasting methods performed within each ABC-XYZ class
was also examined. An overview of the result for each class is presented in
table 13 below.
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Table 13. The two best forecasting methods for each ABC-XYZ class on level 3.

Classes Number of
SKUs

Best Method (% of
SKUs)

Second Best
Method (% of
SKUs)

AX 100 Simple Exponential
Smoothing (48%)

Holt’s Linear
Damped (26%)

AY 132 Simple Exponential
Smoothing (36%)

Seasonal Naive
(25%)

AZ 45 Croston (32%) SBA (30%)

BX 55 Simple Exponential
Smoothing (37%)

Naive (22%)

BY 160 Simple Exponential
Smoothing (30%)

Seasonal Naive
(18%)

BZ 116 Croston (31%) SBA (29%)

CX 98 Simple Exponential
Smoothing (33%)

Naive (18%)

CY 391 Simple Exponential
Smoothing (28%)

Seasonal Naive
(20%)

CZ 535 Croston (27%) SBA (26%)

Total 1632

The results show that the Exponential Smoothing method generates the most
accurate point forecast for class AX, AY, BX, BY, CX and CY. It should also be
noted that the naive and seasonal naive method performed quite well for the X
and Y classes. Moreover, it can be ascertained that Croston’s and SBAs
methods are dominant within class AZ, BZ and CZ where the forecastability is
lower compared to the other classes.
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Within class X, simple exponential smoothing was deemed to be the best
method for 39% of the SKUs. In class X, the smoothing parameter assumedα
values in a range between 0.00 and 0.21. 20% of the SKUs displayed some kind
of trend where one of Holt’s methods was deemed to be the best fit. In the cases
where a trend component was found, trend parameter only assumed valuesβ
between 0.00 and 0.06, indicating that the trend slope was very flat and that
simple exponential smoothing would work just fine as an alternative method. In
cases when Holt’s Linear Damped method was deemed to be the best, the
damping parameter assumed values between 0.88 and 0.98. This implies thatγ
the influence of the damping parameter is not particularly impactful and that it
would yield similar results as Holt’s Linear Method, which in turn yielded
similar results as simple exponential smoothing.

Within class Y, simple exponential smoothing was deemed to be the best
method for 30% of the SKUs. In class Y, the smoothing parameter assumedα
values in a range between 0.00 and 0.39. The wider range of compared toα
class X indicates that there are more time-series which have higher reactivity to
recent demand occurrences. In other words, some forecasts in this class are not
as smooth as they are in class X. 13% of the SKUs displayed some kind of
trend where one of Holt’s methods was deemed to be the best fit. In the cases
where a trend component was found, trend parameter assumed valuesβ
between 0.00 and 0.11. Even in this case, the trend slope is quite flat and simple
exponential smoothing would yield a similar forecast. In cases when Holt’s
Linear Damped method was deemed to be the best, the damping parameter γ
assumed values between 0.83 and 0.98.

Within class Z, Croston and SBAs methods constituted the best method for 55%
of the SKUs. For Croston's method in class Z, the smoothing parameter α
assumed values in a range between 0.00 and 0.29 and smoothing parameter β
assumed values in a range between 0.00 and 0.23. For SBAs method in class Z,
the smoothing parameter assumed values in a range between 0.00 and 0.32α
and smoothing parameter assumed values in a range between 0.00 and 0.23.β
The fact that these two methods performed the best within class Z is not
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surprising. All time series within class Z show a coefficient of variation greater
than 1. SBA and Croston are two methods that seem to capture variability in
time-series in a better way compared to the other examined methods.

It is of interest to visualize the distribution of the MASE values for each class.
Therefore, a box plot of the MASE values was created for all classes. The black
line within each box is equivalent to the median MASE value for the class. The
lower- and upper bound of the boxes represent the 25th and 75th percentile of
the distribution, meaning that 50% of the MASE values exist within this
interval. The lower- and upper spikes could possibly deviate from the± 50%
median value of the distribution. Values that deviate by more than from± 50%
the median are considered to be outliers and are denoted with a black dot. The
boxplots are illustrated in figure 18 below.
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Figure 18. Box plot visualization of MASE distribution for all ABC-XYZ classes on
level 3.

Some interesting insights are provided when looking at the box plot in figure
18. It seems like the median MASE value is the lowest for X-classes and
highest for the Z-classes. Also, the X-classes seem to have MASE values that
are more compact around their median value compared to the Z-classes. Finally,
the outliers seem to be more extreme for the Y and particularly Z-classes
compared to class X. This could be explained by the fact that class Y and Z
make out a larger portion of the SKUs and hence the probability for extreme
outliers increase. However, it could also be explained by the fact that
forecastability is lower for the Y and Z-classes and therefore extreme MASE
values are yielded in some instances. Generally, it seems like there is some
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correlation between MASE values and the XYZ-classification whereas the
MASE-values seem indifferent to the ABC-classification. This insight is
intuitive. Forecastability of a SKU has an impact on point forecast accuracy
whereas the monetary value contribution of an SKU does not.

4.2.3 Distributional Forecast Accuracy of ETS State-Space
Models Across XYZ Classes on Level 3

As mentioned in chapter 3.1.5.2, it is also interesting to examine the accuracy
of the distributional forecasts. For the three methods in the ETS State-Space
models; Simple Exponential Smoothing, Holt’s Linear and Holt’s Linear
Damped, point forecasts equivalent to the underlying methods were yielded.
However, since these models also incorporated additive errors, a distributional
forecast with 95% prediction intervals was created. A boxplot for the X, Y and
Z classes was created to investigate the distribution of the skill scores for each
class. The boxplot can be viewed in figure 19 below.
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Figure 19. Boxplot of Skill Score for XYZ classes on Level 3.

It is interesting to see the discrepancy in the skill score distributions between
the classes. Judging from figure 19 it looks like the median skill scores across
the classes are similar. However, the increase of outliers as the coefficient of
variation increases must be considered. This phenomena strengthens the notion
that time-series with low coefficient of variation yield relatively compact
distributional forecasts and hence produce low skill scores. The interpretation
of a low skill score is that it strengthens the reliability of the point forecast.

70



4.2.4 Benefits of Improved Forecast Accuracy on Level 3

Improved forecasting accuracy on level 3 enables Sandvik to plan their
production in a more cost efficient manner. The provided ABC-XYZ
classification of Sandviks SKUs provide a solid overview of which classes that
have constituted the lion share of the revenue. Class AX and AY only make up
14.28% of the SKUs but make out 68.70% of the revenue. Simple Exponential
Smoothing was deemed to be the best method for 41% of the SKUs in these
classes. For SKUs where Simple Exponential Smoothing was the best method,
it yielded an average MASE value of 0.77. For the same SKUs, Moving
Average 12 yielded an average MASE value of 0.84. Hence, with an
implementation of Simple Exponential smoothing, there is potential in
improving forecasting accuracy slightly. Even if the relative forecasting
accuracy improvements are small, it has the potential to achieve noticeable
monetary effects. The takeaway is that small forecasting improvements in
important classes could have significant impacts on efficiency in production
planning.

The most potential in improving relative forecasting accuracy is within the
Z-classes where Croston and SBAs methods are dominant. The SKUs in the
Z-classes have a coefficient of variance greater than 1, which implies
difficulties in forecasting demand accurately. The Skill scores presented in
chapter 4.2.3 also cemented this notion. It is also within these classes where
most of the SKUs are allocated, mainly in the CZ category. However, the
historical revenue within this class is, due to the C classification, significantly
lower relative to the other categories. Therefore, the monetary impact of
improving forecast accuracy within class CZ would be small. Under the
condition that there is enough capacity in production, it would be a good idea to
produce large batches of SKUs within class CZ and push the finished goods
downstream close to the customers in order to ensure high product availability.
The takeaway is that forecasting improvements in less important classes don’t
have significant impacts on efficiency in production planning.
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4.3 Results on Level 1

The same procedure that was carried out for time-series on level 3 was also
conducted for time-series on level 1. After training the methods, one-step ahead
forecasts were produced five consecutive times. Point forecast accuracy
expressed in MASE was computed for the 5668 SKU/Stockroom/Customer
Cluster time-series.

4.3.1 Point Forecast Accuracy of Methods on Level 1

An overview of the best and worst performing methods based on the MASE
values are presented in table 14 below.

Table 14. Overview of method performance on level 1.

Best Method Percentage of SKUs

Naive Method 2.0%

Seasonal Naive Method 2.1%

Simple Exponential Smoothing 28.1%

Holt’s Linear Method 2.0%

Holt’s Linear Damped Method 1.7%

Croston's Method 31.3%

SBA Method 32.8%

The absolute distribution of the SKU/Stockroom/Customer Cluster time-series
amongst the best methods is also illustrated in figure 20 below.
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Figure 20. The absolute distribution of the SKU/Stockroom/Customer Clusters amongst
the best methods on level 1.

SBA was the method that yielded the best forecast accuracy for most
time-series, roughly 32.8% of them.

Moreover, the MASE distribution for each method was computed in the same
way as in chapter 4.1 where level 3 time-series was analyzed. The boxplot of
MASE-values for each forecasting method on level 1 is displayed in figure 21
below.
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Figure 21. Box plot visualization of MASE distribution for all methods on level 1.

The boxplot does reveal some interesting findings. Croston, SBA and simple
exponential smoothing is deemed to be the best method for an overwhelming
majority of the time-series on level 1. However, the boxplot of these methods
imply that they fail to forecast demand with high accuracy for a plurality of the
time-series. This is evident due to the significant amount of outliers displayed
in the plot. What this indicates is that the forecastability is generally lower for
time-series on level 1 compared to level 3. Even if a method is deemed to be the
best available it does not necessarily imply that it will do a good job predicting
future demand. The mean MASE values as well as the spread around the mean
MASE values are generally greater on level 1 compared to level 3. This further
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strengthens the notion that forecastability is lower on level 1 compared to level
3.

As stated in chapter 1.3, Sandvik is currently using MA12 as the forecasting
method for all of their 30 test SKUs in Voyager on a disaggregated level as
well. Therefore, it is of high interest to compare forecast accuracy performance
between MA12 and the identified best methods. What would the distribution of
the MASE values look like if MA12 would have been used instead of the
identified best methods? The boxplots are illustrated in figure 22 below.

Figure 22. Box plot visualization of MASE distribution if MA12 would have been used
instead of the identified best methods on level 1.
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Similarly to the results on level 3, the box plot in figure 22 reveals that the
MASE value for all methods, except the naive method, performs better on mean
and median compared to if MA12 would have been used. Below in table 15, the
mean and median value of the MASE distribution is displayed both for the best
method and for MA12.

Table 15. Mean and median MASE values for best method and MA12 on level 1.

Best
Method

Numbe
r of
Time-S
eries

Mean
MASE
Value
Using
Best
Method

Mean
MASE
Value
Using
MA12

Mean
MASE
Value
Improvem
ent Using
the Best
Method

Median
MASE
Value
Using
Best
Method

Median
MASE
Value
Using
MA12

Median
Value
Improve
ment
Using
the Best
Method

Croston 1775 0.87 1.20 +0.33 0.71 0.87 +0.16

SBA 1859 0.86 1.18 +0.32 0.71 0.87 +0.16

SES 1592 0.85 0.95 +0.10 0.71 0.74 +0.03

Holt’s
Linear

114 0.72 0.85 +0.13 0.62 0.71 +0.09

Holt’s
Linear
Damped

96 0.71 0.79 +0.08 0.61 0.68 +0.07

Naive 113 1.00 0.98 -0.02 1.00 0.87 -0.13

Seasona
l Naive

119 0.68 0.90 +0.22 0.52 0.67 +0.15

Total 5668
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4.3.2 Point Forecast Accuracy of Methods Across ABC-XYZ
Classes on Level 1

The time-series on level 1 were also classified according to an
ABC-XYZ-analysis. Two types of ABC-XYZ charts were created. The first
chart displays the distribution of SKU/Stockroom/Customer Cluster time-series
across the ABC-XYZ classes. The second chart displays the historic revenue
distribution of these time-series across the ABC-XYZ classes.

The distribution of SKU/Stockroom/Customer Cluster time-series across the
ABC-XYZ classes is illustrated in figure 23 below.

Figure 23. The distribution of SKU/Stockroom/Customer Cluster time-series across the
ABC-XYZ classes.
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The distribution of the historic revenue across the ABC-XYZ classes is
illustrated in figure 24 below.

Figure 24. The distribution of the historic revenue generated from
SKU/Stockroom/Customer Cluster time-series across the ABC-XYZ classes.

Figure 23 and 24 gives interesting insights into how skewed the distribution of
revenue driving SKUs is. Merely 15.96% of the time-series are part of the
A-class that is generating 80% of the total revenue. Moreover, 64.20% of the
time-series are part of the C-class that only generates 5% of the total revenue.
The insights that these numbers provide are valuable to have when evaluating
the impact of improved point forecast accuracy for each class.

How the different forecasting methods performed within each ABC-XYZ class
was also examined. An overview of the result for each class is presented in
table 16 below.
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Table 16. The two best forecasting methods for each ABC-XYZ class on  level 1.

Classes Number of
SKU/Stockroom/
Customer
Cluster
time-series

Best Method (% of
SKU/Stockroom/C
ustomer Cluster
time-series)

Second Best Method
(% of
SKU/Stockroom/Cus
tomer Cluster
time-series)

AX 33 Simple Exponential
Smoothing (57 %)

Seasonal Naive (27
%)

AY 264 Simple Exponential
Smoothing (36 %)

Seasonal Naive (15
%)

AZ 608 SBA (35 %) Croston (30 %)

BX 9 Simple Exponential
Smoothing (33 %)

Seasonal Naive (33
%)

BY 135 Simple Exponential
Smoothing (38 %)

Naive (13 %)

BZ 980 SBA (35 %) Croston (34 %)

CX 14 Holt’s Damped
Linear (29 %)

Seasonal Naive (29
%)

CY 278 Simple Exponential
Smoothing (35 %)

Holt’s Linear (16%)

CZ 3347 SBA (38 %) Croston (36 %)

Total 5668

The displayed results in table 16 convey that there are three methods that are
noticeably prominent among classes on level 1; Simple exponential smoothing,
Croston and SBA.
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With the clear dominance from this trinity in mind, it should still be noted that
seasonal naive is the second best method for class X. Within class X, simple
exponential smoothing was deemed to be the best method for 47% of the
time-series. Smoothing parameter assumed values in a range between 0.00α
and 0.26. Low demand fluctuations is a characteristic trait for the time-series in
class X, hence it does not come as a surprise that simple exponential smoothing
performs consistently well in this class.

Within class Y, simple exponential smoothing also yields the best forecast
accuracy. It is the best method for 36 % of the time-series. The methods
associated smoothing parameter assumed values in a range between 0.00 andα
0.46. Methods with any kind of trend are nowhere to be found in this class. The
naive method seemed to perform quite well as it ended up as the runner-up
method in all Y-classes.

Within class Z, an overwhelming majority of the time-series are to be found.
The historic revenue from the time-series on level 1 is heavily concentrated in
this class, mainly in class AZ. Croston and SBAs methods constituted the best
method for 72% of the time-series. For Croston’s method in class Z, the
associated smoothing parameter assumed values in a range between 0.00 andα
0.42. Its associated smoothing parameter assumed values in a range betweenβ
0.00 and 0.35. For SBAs method in class Z, the associated smoothing parameter

assumed values in a range between 0.00 and 0.41. It’s associated smoothingα
parameter assumed values in a range between 0.00 and 0.33. The fact that twoβ
methods suited for intermittent and lumpy time-series performed the best for
class Z is very much in line with the expectations. In order to visualize the
distribution of the MASE values for each class, a box plot was created. It can be
viewed in figure 25 below.
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Figure 25. Box plot visualization of MASE distribution for all ABC-XYZ classes on
level 1.

Some of the notions that emerged in chapter 4.1 are further cemented when
looking at figure 25. Forecastability of a time-series, i.e the degree of variance
it experiences, has a significant effect on the accuracy measurement outcome. It
is clear that the time-series in class X are easier to forecast with high accuracy
compared to time-series in class Z. The degree of forecastability for time-series
in class Y is naturally in between class X and class Z.
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4.3.3 Distributional Forecast Accuracy of ETS State-Space
Models Across XYZ Classes on Level 1

A boxplot for the skill score on level 1 was also computed in order to visualize
its distribution across the XYZ-classes. The boxplot can be viewed in figure 26
below.

Figure 26. Boxplot of Skill Score for XYZ classes on level 1.

It is interesting to see the discrepancy in the skill score distributions between
the classes. Judging from figure 26 it looks like the median skill scores across
the classes are similar. However, the significant increase of outliers as the
coefficient of variation increases is hard to neglect. This could partly be

82



explained by the fact that the majority of the time-series on level 1 fall into the
Z-class. However, it is coherent with theory that skill scores are significantly
worse for time-series that experience large variance. Time-series with high
coefficient of variation yield distributional forecasts with wide tails. Therefore
it seems reasonable that the accuracy of the distributional forecasts performs
worse for these time-series. The interpretation of a bad skill score is that it
reduces the reliability of the point forecast.

4.3.4 Benefits of Improved Forecast Accuracy on Level 1

Improved forecasting accuracy on level 1 enables regional planners at Sandvik
to plan their stock levels in a more cost efficient manner. The one-step ahead
forecasts provided on level 1 serves as an input variable when the regional
planners determine sufficient reorder points in the supply chain. The provided
ABC-XYZ classification of Sandviks SKU/Stockroom/Customer Cluster
time-series provide a solid overview of which classes that have constituted the
lion share of the revenue and can serve as a foundation when deciding strategies
for stock keeping. Class AZ only makes up 10.72% of the time-series on level 1
but accounts for 45.90% of the total revenue. Therefore, it is of high importance
to keep stock levels as low as possible without missing service level agreements
towards the customer clusters. Croston and SBAs method was deemed to be the
best method for 74% of the time-series in class AZ. For time-series where
Croston’s method was the best method, it yielded an average MASE value of
0.87. For the same time-series, Moving Average 12 yielded an average MASE
value of 1.20. A similar discrepancy in forecasting accuracy was displayed
when comparing SBA and Moving Average 12. Henceforth, with an
implementation of Croston and SBAs method in class AZ, there is substantial
potential in improving point forecasting accuracy. However, one should
remember that distributional forecast accuracy for class Z is low. Naturally, this
puts the reliability of the point forecast under a question mark. The takeaway is
that an implementation of Croston and SBAs method on class AZ could
improve Sandviks stock levels compared to forecasting class AZ with Moving
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Average 12. However, one should be aware that there is an inherent uncertainty
when forecasting time-series that experience high variance.

The most potential in improving relative forecasting accuracy is within the
Z-classes where Croston and SBAs methods are prominent. The time-series in
these categories have a coefficient of variation greater than 1, which implies
difficulties in forecasting demand accurately. It is also within these classes
where the vast majority of the time-series are allocated, mainly in the CZ
category. However, the historical revenue within this class is, due to the C
classification, significantly lower relative to the other categories. Therefore, the
monetary impact of improving forecast accuracy within class CZ would be
minimal even though most time-series are found here.

Under the condition that there is enough inventory capacity in the warehouses,
it would be a good idea to stock up on the SKUs in class CZ to ensure high
product availability. It is also convenient that these products, that hold a small
share of the historical revenue, also are mostly small components that take up
relatively small spaces. The takeaway is that forecasting improvements in less
important classes don’t have significant impacts on monetary gains. Hedging
against demand uncertainties with excessive stock levels for these classes is a
wise way to ensure high product availability towards the customer clusters to a
relatively low holding cost.

4.4 Results of Hierarchical Forecasting

As mentioned, this study explores the possibility of using hierarchical
forecasting. As such, the time-series that were appointed a SES method as the
best fit on level 1 were chosen as samples for testing. The aim being to compare
the individual forecasting methods in the two previous sections with the point
forecasts produced by utilizing the various hierarchical forecasting methods.
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The results of the different hierarchical forecasting approaches and the
comparison with the independent forecasts are presented below in table 17.

Table 17: Mean MASE values of the hierarchical forecasting results compared to the
independent approach.

Level Independent
SES

Top-Down Bottom-up Optimal
Method

Level 3: SKU 0.770 0.978 0.997 0.991

Level 1:
SKU/Stockro
om/Customer

Cluster

0.850 0.871 0.851 0.870

Looking at the results, all three hierarchical forecasting approaches using SES
as the forecasting method performed similarly. There were no significant
differences when comparing the average MASE values neither on level 3 nor 1.
It is however apparent that all three performed significantly better on the
bottom most disaggregated level.

The top-down approach yielded a slightly better forecasting accuracy on the top
most aggregate level compared to the bottom-up and optimal method. The
bottom-up approach performed better on the bottom level. This is an expected
result as each respective approach should generate better forecasts within their
starting levels compared to the other approaches. However, the fact that the
top-down approach performed significantly worse on level 3 compared to level
1 was highly unexpected. Each method should according to literature produce
better forecasting accuracy on their starting levels. More specifically, the
bottom-up approach should generate forecasts with a higher accuracy on the
bottom level compared to the aggregated forecasts on the top-level and likewise
the top-down approach should perform better on the top level. This is not the
case after evaluating the accuracy of the top-down approach.
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The optimal method performed slightly worse than the top-down approach on
level 3 and better than the bottom-up approach. On level 1 it performed worse
than the bottom-up approach and almost the same as the top-down approach.
The results indicated that the bottom-up approach produces slightly more
accurate results than the other two approaches.

Comparing all three approaches with the independent forecasting with SES,
they are outperformed on the top most aggregated level. On the bottom level
however, they perform fairly similarly with the independent method having a
slight edge. This shows that the independent forecasting method is generally a
more reliable forecasting approach.

As the bottom-up approach produces forecasts on the bottom level, the average
MASE value should correspond to the same as the independent, likewise the
top-down approach should provide the same average MASE value on the top
level. It is worth noting that the forecast accuracy on level 3 from the top-down
approach does not at all correspond to the MASE value of the forecasts
produced independently on the same level. This could mainly be due to the fact
that the -parameters are not optimized in the same way as they were whenα
forecasting on each level independently. There was no optimization criterion in
the hierarchical forecasting packages in R and the discrepancy in accuracy on
level 3 between the top-down approach and the independent forecasting could
be explained by this. The same goes for the small discrepancy between the
average MASE values on level 1 between the bottom-up approach and the
independent forecasting.

Another unexpected result from the hierarchical forecasting is the poor
performance of the Minimum Trace Shrink optimal reconciliation method.
According to literature, and most importantly Wickramasuriya et al. (2019), it is
the method that generally performs the best out of the three and in some cases
better than the independent forecasting methods, especially on the bottom
levels. However our results show that it was in fact not the best overall method
for the time-series at our disposal.
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5. Conclusions & Recommendations
In this chapter, the conclusions of the study will be presented with respect to the
research purpose presented in chapter 1.4.2. Following the conclusions, the
final recommendations of the study will be presented for the case company.

5.1 Conclusions

The purpose of the study was to identify and propose quantitative forecasting
methods with the aim to improve forecasting accuracy on a SKU and
SKU/Stockroom/Customer Cluster level at Sandvik. This objective was
approached by analyzing historical demand data provided by Sandvik. The
study resulted in an ABC-XYZ classification where an optimal method was
determined for each class.

Sanders' forecasting process constituted the foundation for the master thesis.
The five steps in the process mapped out the necessary activities to help
improve the forecasting process. The forecasting methods included in the thesis
were chosen based on frequency of appearance in relevant literature. The
chosen methods included the Naive, Seasonal Naive, Simple Exponential
Smoothing, Holt’s Linear, Holt’s Linear Damped, SBA and Croston’s method.
These methods were deemed to be comprehensive enough to cover the varying
demand patterns that the time-series displayed.

Both point- and distributional forecast accuracy was measured in the study.
Literature provided meaningful insights when sufficient accuracy
measurements were determined. For the point forecast measurement the choice
fell on MASE. For the distributional forecast measurement the choice fell on
Skill Scores. The common theme between the two measurements is the scaled
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nature which is deemed appropriate when comparing forecasting accuracy
between time-series.

The results showed that all the chosen forecasting methods with the exception
of the Naive method improved point forecast accuracy on both level 1 and 3
compared to Moving Average 12. The results also indicated that the
distributional forecast accuracy is best for class X and worst for class Z. In
other words, the reliability of the point forecasts decrease as the forecastability
of time-series decreases.

The time-series on both level 1 and 3 were classified according to an
ABC-XYZ classification. The rationale behind the classification was to
differentiate the time-series based on value impact (ABC) and forecastability
(XYZ). The simplicity of performing this analysis makes for an appropriate
method for classifying the time-series. As such, this was chosen as the approach
for cataloging each time-series and assigning a suitable forecasting method for
each class.

The results from chapter 4 showed that Simple Exponential Smoothing was the
best method for the classes AX, AY, BX, BY, CX and CY on both level 1 and 3
with the exception of class CX on level 1. For classes AZ, BZ and CZ,
Croston’s and SBA were the most prominent forecasting methods on both level
1 and 3.

The results from the hierarchical forecasting showed no improvement in
forecasting accuracy compared to forecasting on level 1 and 3 independently.
Therefore, the three approaches were not deemed fit for the case company.

To conclude, Croston’s, SBA and Simple Exponential Smoothing were deemed
the most appropriate forecasting methods for the time-series on both level 1 and
3 and will thus be recommended to the case company.
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5.2 Recommendations

The study resulted in a couple of recommendations. The first pertaining to the
measurement of accuracy for the chosen methods. MASE is the accuracy
measurement that should be used when evaluating the forecasts. Its scaled
nature makes it appropriate when measuring accuracy performance for a whole
ABC-XYZ class. We do not recommend that Sandvik continues using MAPE
and/or SMAPE as their main accuracy measurements. These methods are not
suitable for intermittent time-series which accounts for a plurality of the
time-series.

Another recommendation is that Sandvik should classify their time-series
according to an ABC-XYZ classification. Differentiation of the time-series in
this manner provides a better overview of value and forecastability.

The method that yielded the best forecast accuracy for each ABC-XYZ class
was determined. We recommend that Simple Exponential Smoothing is
appointed as the forecasting method for classes AX, AY, BX, BY and CY on
both level 1 and 3. In addition, it was also the best method for class CX on level
3. Furthermore, we recommend that SBA and Croston’s methods are appointed
as forecasting methods for classes AZ, BZ and CZ.

As new demand arrives in the future, the demand characteristics for time-series
can change and hence current ABC-XYZ classifications become obsolete. To
be able detect changes in demand characteristics, it is necessary to monitor the
forecasts with a tracking signal. When the forecast error deviates from the
tolerable ratios, the practitioner should be notified and examine if the current
forecasting method is feasible or not. Should a time-series deviate from the
tolerable ratios, it should then be re-classified according to the ABC-XYZ
classification described in section 3.1.3.1.
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