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Abstract

When being in a noisy environment, a normal hearing person can manage to sort
out background noise and focus on the attended source. This is something that a
person with impaired hearing will struggle with, even when wearing a hearing aid.
Research for developing intelligent hearing aids has not yet come up with a solution
for solving this problem and more research is needed. This thesis uses data from ex-
periments where a noisy environment is simulated. The test subjects are exposed to
a monologue and a dialogue at the same time but are told to only focus on one of
them. Using EEG and eye gaze data collected from these experiments as an input,
different machine learning models are implemented to solve a binary classification
task to predict whether a subject is attending to a monologue or a dialogue. The
investigated models are support vector machine, multilayer perceptron, and convo-
lutional neural network. The input to the models is time series arrays from either
EEG signals or eye gaze data. For the support vector machine and the multilayer
perceptron models, more compact representations of the time series arrays are used
as inputs. The convolutional neural network performs best overall and reaches an av-
erage prediction score of 87% for all subjects when using inputs from all electrodes
at the same time. When using one electrode at the time as input, and then averaging
over all electrodes, the support vector machine performs best with an average ac-
curacy of 78%. There is however a clear pattern in what regions of electrodes that
succeed best with the classification task for all models. These are the electrodes at
the temporal lobe as well as the sides of the front of the frontal lobe. It varies how
long the trials need to be to get a decent accuracy for each model when EEG data is
used. The support vector machine and the multilayer perceptron performs best for
longer trials while the convolutional neural network performs best for shorter trials.
For the eye gaze data, the support vector machine reaches the highest average score
of 99%. The accuracy for the eye gaze data is not affected remarkably by decreasing
the length of trials.
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Popular science summary
Sara Enander & Louise Karsten

Intelligent hearing aids hope to amplify only the sound a person is attending to. This
thesis uses machine learning to see if there is a connection between brain signals,
eye gaze and the attended source.

Imagine being in a crowded space, sur-
rounded by lots of talking people. Stand-
ing in the same location, people with
normal hearing can easily shift focus
from one talking person to another.
Somehow their brains manage to sort out
the sound they want to listen to. The
ability of the brain to perform this se-
lection has been investigated but it re-
mains unclear how it succeeds to do it.
If a person has impaired hearing the abil-
ity of sorting out unwanted sounds is af-
fected. This leads to hearing problems in
noisy situations even though the person
is using a hearing aid. Research for de-
veloping intelligent hearing aids has not
yet come up with a solution for solving
this in a good way and more research is
needed.

One step towards intelligent hearing aids
is to find a way to understand what a
person is attending to. This thesis uses
data from brain signals (EEG) and eye

gaze to see if a machine learning model
can predict whether a person is attending
to a monologue or a dialogue. It is in-
vestigated what model is most success-
ful with this prediction. The data comes
from experiments where the test subjects
are exposed to a monologue and a dia-
logue at the same time but are told to
only focus on one of them. For the appli-
cation of integrating this into a hearing
aid device it is also interesting to investi-
gate how few electrodes of the EEG that
can be used, and also how short the trials
that are being presented to the model can
be. Another thing being investigated is
what parts of the brain that are most im-
portant when predicting what a person is
attending to. Three different models are
investigated for this task: support vector
machine, multilayer perceptron and con-
volutional neural network.

A convolutional neural network per-
forms best overall and reaches an aver-



age prediction score of 87% for all sub-
jects when using inputs from all elec-
trodes at the same time. When using one
electrode at the time, it performs worse
than the support vector machine and
multilayer perceptron that reaches aver-
age scores above 70%. There is however
a clear pattern in what regions of elec-
trodes that succeed best with the clas-
sification task. These are the electrodes
at the temporal lobe as well as the sides

of the front of the frontal lobe. It varies
how short the trials can be before the ac-
curacy decreases for each model when
EEG data is used. The support vector
machine and the multilayer perceptron
performs best for longer trials while the
convolutional neural network performs
best for shorter trials. For the eye gaze
data, the accuracy is not affected re-
markably by decreasing the length of tri-
als.
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1
Introduction

Imagine being in a crowded space, surrounded by lots of talking people. Standing
in the same location, people with normal hearing can easily shift focus from one
talking person to another. It is also possible for them to attend to a group discussion
even though there is more noise in the background. Somehow their brains man-
age to sort out the sound they want to listen to. The ability of the brain to perform
this selection has been investigated but it remains unclear how it succeeds to do it.
This problem is usually referred to as the cocktail party problem [Cherry, 1935].
If a person has a hearing disorder or impaired hearing, the ability to neglect unat-
tended sounds is also affected. This leads to hearing problems in noisy situations
even though the person is using a hearing aid. To reduce background noise and
improve the signal-to-noise ratio, there are different methods used in hearing aids
today. Adaptive bilateral beamforming microphone arrays that can enhance sounds
from different directions [Picou and Ricketts, 2019] and single-microphone noise
reduction (also known as digital noise reduction) [Chong and Jenstad, 2018] are two
examples of these methods. They have been shown to improve listening comfort and
reduce effort of listening and tiredness in noisy conditions. This works quite well
when the noise is different from the attended sound but falls short in multi-talker
environments where the noise has the same sound profile as the attended sound [An-
dersen, 2021]. This is one reason why many people with hearing loss still choose
not to wear their hearing aid [Accessible et al., 2016]. Consequently, there is a need
to keep improving hearing aids and make them more comfortable to improve speech
understanding further [Lunner et al., 2020].

One step towards resolving the cocktail party problem for hearing aids is to under-
stand how the brain manages to sort out the sound of the attended sources from the
sound of the unattended sources. This process is referred to as auditory attention
decoding (AAD) [O’Sullivan et al., 2015]. Research has been focused on measur-
ing the changes in cortical activity that track the changes in speech stimulus. This
has been done by mapping the amplitude envelope of speech to brain responses
recorded with electroencephalography (EEG) instruments [O’Sullivan et al., 2015].
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CHAPTER 1. INTRODUCTION

Several methods have been investigated to register the cortical activity, such as elec-
trocorticography [Mesgarani and Chang, 2012], magnetoencephalography (MEG)
[Ding and Simon, 2012] and magnetic resonance imaging [Satheesh Kumar and
Bhuvaneswari, 2012]. These methods are however expensive, not very common nor
portable. In comparison, EEG is a very accessible, cheap, and easy method to use.
EEG can be integrated in everyday devices, which is a huge advantage for research
of hearing aids and is a main reason why research in the field of AAD has been
focused on EEG. O’Sullivan et al. (2015) showed that unaveraged single trial EEG
data could be used to decode auditory attention (i.e., to identify the attended talker in
an environment with multiple competing speakers). The authors also presented that
the speech representation strength in the EEG was correlated with the performance
of the subject for a task concerning the cocktail party problem.

Another method for measuring responses from how subjects react to difficult lis-
tening situations is to measure eye gaze instead of brain signals. Studies have been
conducted to investigate whether there is a measurable effect of the eye position in
an environment where a cocktail party problem can occur [Lu et al., 2021; Shiell et
al., 2021]. The performance of attending to a source in this situation has been proven
to improve when the eye fixation is on the attended source and reduced when it is
not [Best et al., 2020]. Measuring eye gaze can be done by wearing eye tracking
glasses and collecting data from the way the eyes move. Eye features such as how
fast the eyes move and the changes in the direction of the movement can then help
in figuring out what kind of source the person is attending to [Groner and Groner,
1989].

If there are patterns in brain and eye activity combined with what conversation the
subject is focusing on, there is a possibility of being able to predict what sounds that
come from attended sources and unattended sources respectively [Bednar and Lalor,
2020]. This could be a part of making hearing aids better at filtering out unwanted
noise and enhancing the attended sounds. To succeed with this, the possible patterns
must be found, and a valid prediction has to be made from unseen data. A common
way of finding and predicting patterns is by using different machine learning mod-
els [Schirrmeister et al., 2017]. This is done by training a model on available data
to adapt the model to the specific kind of data so that it will be able to make correct
predictions when new data is presented. Different kinds of machine learning meth-
ods are good at predicting and finding different kinds of patterns. Therefore, it is
important to investigate what kind of model is best suited for the specific task.

Previous research on the AAD has shown that a neural network performs better
than linear models when predicting speech envelope from attended and unattended
speakers [Taillez et al., 2020]. Machine learning methods have also been used in
other fields related to EEG classification, such as epilepsy seizure prediction, with
quite good results [Alickovic et al., 2018; Rasheed et al., 2021]. To investigate how
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attention decoding was affected by the position of attended and unattended speakers,
a more realistic setup was created by Das et al. (2018) where the sound sources
were positioned at different locations. Additional noise was added and varied as
well. It was reported that both the location of the sound sources and the level of
noise impacted the accuracy. It has also been shown that the number of electrodes
needed in order to obtain a good accuracy could be decreased to an extent if there
is sufficient training data [Mirkovic et al., 2015; Montoya-Martínez et al., 2021].

Evidently, studies regarding hearing in noisy environments are of great importance
to hearing aid research [Lunner et al., 2020]. Machine learning algorithms applied
to data from brain and eye activity could be a way to improve today’s hearing aid
technology so that speech understanding is improved. This thesis aims to use ma-
chine learning to investigate if it is possible to find correlation between brain activity
recorded using EEG as well as eye gaze data and whether the subject is attending a
monologue or a dialogue. It focuses on answering the following questions:

1. If all scalp electrodes (K = 64 in this study) are used, what model makes the
best overall prediction?

2. How short can each trial be before the accuracy decreases
significantly?

3. How few electrodes can be used in order to make a good prediction, and in
what region of the scalp should these electrodes be located?

15



2
Auditory attention decoding

2.1 Brain signal processing

The brain receives information from all our senses, it connects and processes the in-
formation and then sends impulses to the rest of the body. Depending on what senses
that are activated and how they are processed, different parts of the brain are used.
The largest part of the brain is the cerebrum, and this is split in two hemispheres,
one on the left and one on the right. Each hemisphere is used for different tasks.
The left hemisphere is used more for logical reasoning and abstract representations,
while the right hemisphere interprets spatial conditions and emotions [Nationalen-
cyklopedin, 2022b]. The outer neural layer of the cerebrum is called the cerebral
cortex and is divided into four lobes in each hemisphere. These lobes are named
frontal, parietal, temporal, and occipital. The frontal lobe is the biggest one and is,
as the name suggests, located in the front and top part of the brain. The parietal lobe
is located in the back top of the brain, the temporal lobe is the area on the sides
and the occipital lobe is located in the far back. The cognitive functions as well as
voluntary movements are connected to the frontal lobe and the parietal lobe handles
touch and temperature. Hearing and vision are connected to the temporal and the
occipital lobe respectively [Nationalencyklopedin, 2022b].

When a person sees someone speaking, a signal from the receiving retina in the
eye is sent to the visual centre in the occipital lobe. To understand what the colours,
contours, and movements that the visual centre distinguishes, signals are sent further
on to the temporal lobe [Nationalencyklopedin, 2022c]. If wanting to understand
what the person is saying, these signals are sent to the left hemisphere since this
is used for interpreting speech and language. The right side is in charge of more
cognitive functions such as visuospatial and social cognition [Bernard et al., 2018].

When a nerve impulse in the brain is activated it means that there is a change in
the membrane of the sending and receiving nerve cell as well as connected cells.
This leads to a flow of positive ions such as sodium and potassium [Nationalencyk-

16



2.2. EEG

lopedin, 2022b]. Each of these ions contribute to a small electrical activity. Since
large groups of nerve cells are synchronized and oriented perpendicular to the scalp,
the outer nerve cells of the cerebral cortex get a summed potential difference from
activated nerve cells beneath. A method to measure this summed electric activity
present in these outer nerve cells is EEG [Constant and Sabourdin, 2012].

2.2 EEG

To measure the brain activity with EEG, electrodes are placed on the scalp. These
are often used together with conducting gel or electrolytic water [Humanities lab,
Joint faculties of humanities and theology at Lund University, 2022]. The electrodes
are then able to sense the potential difference from activated nerve cells beneath
and perpendicular to the scalp. This technique can detect signals continuously in
the frequency interval 0.3-40 Hz that can be divided into five frequency rhythms:
delta, theta, alpha, beta and gamma [Abo-Zahhad et al., 2015].

The first interval, the delta rhythm, has frequencies between 0.5-4 Hz and is ob-
served from deep sleep. A bit higher frequencies, 4-8 Hz, are reached when the
subject sleeps lightly and this span is called the theta rhythm. The next frequency
interval is the alpha rhythm that contains the frequencies 8-14 Hz. This rhythm is
observed from a relaxed subject, for example when meditating. The fourth interval,
the beta rhythm, has frequencies between 14-30 Hz and is reached when a subject is
actively thinking. All frequencies above 30 Hz are in the so called gamma rhythm.
These frequencies are connected to visual stimulation [Abo-Zahhad et al., 2015].

There are different variations within EEG, where it is possible to vary the number of
electrodes, the placement of them and the method how to place them on the scalp,
depending on the objective. Figure 2.1 illustrates an EEG method called the 10:20
electrode system. Each presented combination of letter and number represents an
electrode. The letters stand for what parts of the brain they detect signals from, Fp
is pre-frontal, F is frontal, T is temporal, P is parietal, O is occipital, and C is central.
The electrodes labelled with A are located between Fp and F [Lotte et al., 2015].

As seen in figure 2.1, the distance between the electrodes is 10% or 20% of the dis-
tance between the front and the back of the skull. A common EEG setup is a 10:20
system with 64 electrodes. This means an extra row of electrodes between each
of the illustrated lines seen in the top of head view in figure 2.1 as well as added
electrodes between the already existing lines. The 10:20 system is an internation-
ally recognized method and due to the standardization, it is possible to reproduce
conducted studies and compare subjects to each other [Khazi et al., 2012].
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CHAPTER 2. AUDITORY ATTENTION DECODING

Figure 2.1 Placement of electrodes in the 10:20 system of EEG. The number of electrodes
used can vary, for a 64 electrode system an extra row of electrodes between each of the
illustrated lines seen in the top of head view are added as well as added electrodes between
the ones on the already existing lines.

A drawback of EEG as a method to investigate brain signals from sensory inputs,
compared to for example MEG, is that it collects a lot of noise. For example, blink-
ing or movement of eyes or muscles will appear in the collected data. This leads to a
need of pre-processing the data as a first step before it is ready to be used in further
analysis [Palendeng, 2011].

The analysis of EEG data is usually visualised by means of brain electrical topogra-
phy. Topography is done by creating a heatmap where the activity of each channel
is represented by a colour on its corresponding place on a 2D plot of a head. De-
pending on the strength of the electrical activity measured from the channels, the
colours are distributed along a spectrum between red and blue.

2.3 Eye tracking

Eye movements can be measured in different ways, such as screen based remote
devices, wearable devices [Tobii, 2022a] and electrooculography (EOG) [Creel,
2019]. Remote devices can for example stand on a desk and be connected to a
screen. They are advantageous to use in a setting where a subject is reacting to or
interacting with the screen. These kinds of trackers are also quite robust to head
movements and are therefore usually a good option for people with certain medi-
cal conditions and for young children. These eye trackers also have a wide range

18



2.4. SIGNAL REPRESENTATION

of sampling rates. Since a very high sampling rate is possible, a lot of very de-
tailed data can be collected [Tobii, 2022a]. Wearable devices include glasses or
VR-headsets. These are best used when moving around in an environment and do-
ing activities such as interacting with others, shopping in a store or playing sports
[Tobii, 2022a]. The quality of the data collected from wearable eye tracking devices
is usually lower than for desktop devices since they need to be compact and light.
They are also prone to shifting if the subject is moving around a lot [Tam, 2019].
Both remote and wearable devices are performing eye tracking based on invisible
near-infrared light that is directed towards the eye. The direction of the reflection
of this light is then recorded and from that the exact position of the eye and the
direction where the eye is focusing can be determined [Tobii, 2022a]. Another eye
tracking method is EOG, where electrodes are placed on the skin on each side of
the eyes. The potential difference between these varies when the eyes move, and
therefore eye movements can be detected [Creel, 2019].

When measuring the eyes’ movements, the direction can be represented by yaw and
pitch angles. The yaw angle represents horizontal rotation of the eyes, and the pitch
represents vertical rotation. These angles can be used to detect for example when a
person is switching gaze from one person to another in a conversation.

2.4 Signal representation

EEG data consists of time series data, Xt = {x1,x2, ..,xT} where t = {1,2, ...,T}
denotes each measured time point. The time series data belong to a channel each,
C = {Xt 1,Xt 2, ..,Xt K} where K denotes the number of electrodes, and each electrode
is represented by one channel. Every channel is a part of a trial, Zi = {C1,C2, ..,CL}
where i = {1,2, ...,L} and L is the total number of trials. All trials are used for all
subjects, S j = {Zi1,Zi2, ..,ZiM} where M denotes the number of subjects. The eye
gaze data also consists of data stored as similar time series Xt , containing the values
of the yaw angle. It only consists of one channel, K = 1 and has the same number
of trials, and same number of subjects as the EEG data.

When measuring the brain signals there is also a lot of noise that gets in the way.
Therefore, the EEG signal does not fully represent the true signals from the brain.
The signal acquired by the electrodes can be modelled as presented in equation
(2.1). Here the true brain activity is denoted as at , B is the linear mapping from the
brain activity to the EEG, et is the noise from measurement and Xt is the measured
signal.

Xt = Bat + et (2.1)
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CHAPTER 2. AUDITORY ATTENTION DECODING

To use the data for classification, there are many different approaches. For EEG, it
is possible to investigate the behaviour of all electrode channels, C, or only one at a
time, Ci, both using the full time series array. The data can also be split into smaller
sizes XT/n or be converted into a more compact representation, by creating different
features. These features could be calculating the mean value of the time series or
the spread of the data to detect how it behaves more generally. The eye gaze data
does not contain multiple channels, but the eye gaze data can also be converted into
features in the same way as the EEG data.
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3
Machine learning methods
for audiovisual attention
decoding

3.1 Concept

To understand the concept of machine learning, it can help to compare it with how
humans learn. From the moment we are born the learning process of learning a
language begins. We keep receiving information from all our senses and use this
to understand the world around us. By listening to the language continuously and
by starting to use words, one at a time, we slowly but steady build up our own
dictionary. This learning process continues throughout our entire lives, as we en-
counter new surroundings where new combinations of words are needed to grasp
and explain the world. Not only does the library of words that we carry help with
understanding the world, all experiences that we have had during our lifetimes will
also play a part in making decisions of language usage. We will perhaps understand
that a certain scenario requires a more polite sentence than other informal words
containing the same message.

Machine learning is when this learning process is implemented for a machine in-
stead. Starting from zero, it receives information and creates an understanding of
its world. If given enough knowledge and training, it will manage to make valid
predictions. These predictions are done on previously unseen data, such as finding
a good word describing an object the machine encounters. Depending on each sit-
uation, a different amount of knowledge as well training is needed. To make the
learning process as efficient as possible, a lot of varied knowledge together with as
little training as possible is preferred [Bhagat, 2021].
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CHAPTER 3. MACHINE LEARNING METHODS FOR AUDIOVISUAL
ATTENTION DECODING
3.2 Classification and prediction

A common machine learning task is to predict between different class labels yi, for
inputs that can for example be a feature vector fi, an image or time series Xt . For
example, a model could get an image of a handwritten digit as an input and the task
to classify what digit the image represents. The classes are then numbers between
0 and 9, so the class labels are yi = (0,1,2, ...,8,9). Each digit consists of many
different features such as circles, corners, or straight lines that could be included in
the feature vector fi. The entire image can also be used as input, without creating
features first.

The feature vector, image or time series data is then the input to a model, that per-
forms a nonlinear processing, here denoted h, to get one class prediction as output,
yi. The kind of processing depends on what model is used. This is described in
equation (3.1).

yi = h(z), z = fi or Xt (3.1)

By letting the model study a lot of data, it is possible for it to gain an understanding
of what features are needed to classify between the classes. In the same example as
earlier, the images of handwritten digits, some digits might be more cursive, thicker,
thinner, or a bit vague. Therefore, it is important to have a large and varied dataset
to train the algorithm with as well as validating on unseen data.

A problem a machine learning algorithm might experience is that it gets too much
training. This leads to an algorithm that is not generic enough to predict classes
correctly when being exposed to previously unseen data, because it is too adapted to
the already seen data. This concept is called overfitting. To avoid this, it is important
to have both a decent amount of training data as well as validation data. There
are multiple different methods on how to perform this split of the training dataset.
Two methods that can be used to prevent overfitting are cross validation and early
stopping.

Cross-validation
The method of splitting the dataset into a training and a validation part can be done
in many ways. By cross-validating the data, the datasets are crossed over so that
each data point has a chance of being validated against [Refaeilzadeh et al., 2016].
The performance of cross-validation can be measured by using different metrics,
in this thesis only accuracy is used. The accuracy is the proportion of correctly
classified samples among all samples. When cross-validation is used this metric is
calculated from the average of all validation accuracies.
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3.2. CLASSIFICATION AND PREDICTION

A simple version of cross validation is the so called k-fold cross validation and is
illustrated in figure 3.1. Here, the sample called Test is used for validation and the
rest of the data for training. In k-fold cross validation, the data is iterated over itself
k times. Each time, the data is split into k parts, where one part is left out during
training and then used for validation. After this, a new part is selected, and a new
validation is performed. This is iterated until all parts of the data have been used
both as train and validation data.

Figure 3.1 Illustration of k-fold cross validation, where the data is iterated over itself k
times.

Another version of cross validation is the leave-one-out cross validation (LOOCV).
It is a special case of k-fold cross validation where k is set to the number of data
points in the dataset. This means that only one sample is used for validation each
iteration, and the rest for training. The data is then iterated over until every data
point has been used for validation. When using LOOCV there are more available
training samples for each fold, which is good, especially if there is limited training
data available. The drawback of LOOCV is that the computational cost and time
increases since the data is iterated over many times.

Early stopping
When training a model, the accuracy will start at a very low level, and then increase
the more the data it is trained on. The model can however get too familiar with
the data and start to classify using features and connections very specific to the
training data, that do not appear in the validation data. If this happens, the accuracy
on the training data will be very high, but when the network or model is presented
to new data that is seemingly similar to the training data it will perform badly.
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To avoid this, it is a good idea to monitor the error for the training and validation
data during training. The error measures how much the prediction deviates from
the ground truth. When the training error is still decreasing, but the validation error
starts to increase the training should stop to prevent overfitting from happening. An
illustration of this is seen in figure 3.2.

Figure 3.2 Example of early stopping of the training when the training error is still de-
creasing, but the validation error starts to increase.

Machine learning models
The machine learning models used in this thesis are support vector machine (SVM)
and artificial neural networks (ANNs). For the ANNs, both multilayer perceptron
(MLP) and convolutional neural network (CNN) are used. A CNN usually con-
tains more layers than a simple MLP, as well as different types of layers. SVM has
been used widely for EEG data classification in many previous studies [Richhariya
and Tanveer, 2018], and it is therefore of interest to investigate the SVM in this
thesis too. Previous research shows that a CNN is a successful model using EEG
data as an input [Lawhern et al., 2018; Waytowich et al., 2018; Schirrmeister et al.,
2017] and this thesis therefore analyses five different CNNs. As mentioned earlier,
to avoid overfitting a machine learning model should be as generalised as possible.
It is also better to use a simpler model when possible to reduce computational cost.
Therefore, an MLP, which is a more simple version of an ANN than a CNN, is also
implemented in this thesis.
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3.3 Support vector machine

Many machine learning algorithms aim to classify the data by separating it into
different classes. SVM is one of these methods and it uses a hyperplane to separate
the data. A hyperplane is a plane with a dimension that is one order lower than
the surrounding space. For example, if the surrounding space is of two dimensions,
then the hyperplane is of one dimension, consequently a line. If the surrounding
space is of three dimensions, then the hyperplane is a plane since it will be in two
dimensions [Subasi and Gürsoy, 2010].

Figure 3.3 shows a 2D example of the minimum distance d from any point x to
the hyperplane that is defined by equation (3.2). As presented in the figure, w in
equation (3.2) is a weight vector and together with the constant b and the variable x
it forms a line [Weinberger, 2018].

Figure 3.3 A 2D example of the minimum distance from any point to a hyperplane. d is
the minimum distance from the point x to the hyperplane (blue). w is the weight vector that
together determines the slope of the line.

wT x+b = 0 (3.2)

Calculating the distance d from any point x to the hyperplane is done according to
equation (3.3) [Weinberger, 2018]. Here, ||d||2 and ||w||2 are the Euclidean norms
of the distance and weight vectors respectively. The distance between the closest
data points of each class is called the margin. The points that are closest to the
hyperplane are called support vectors and are the most difficult points to classify
[Gandhi, 2018].

||d||2 =
|wT x+b|
||w||2

(3.3)
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The optimal hyperplane is when the margin is maximised, in other words when
the distance from the points to the hyperplane is minimised. By finding the point x
that minimises the distance from equation (3.3), the maximum margin can be found
[Weinberger, 2018]. When it is impossible to separate the data linearly, a so called
kernel can be used.

A kernel manages to map the data to a higher dimension where it may be possible
to separate the data linearly. The mapping is explained by the definition in equation
(3.4), where K is the Kernel function that maps the points x and y from the original
space via the feature map φ . It returns the dot product of the vectors in the feature
space [Wilimitis, 2018]. The mapping done by the kernel function is illustrated
in figure 3.4. Here the kernel function is used to map the data points to a higher
dimension where the data points are linearly separable.

K(x,y) = φ(x) ·φ(y) (3.4)

Figure 3.4 Mapping points to a higher dimension to make it possible to linearly separate
the data.

Proposed SVM model
To investigate the ability of an SVM to classify whether a person is attending to a
monologue or a dialogue, the module scikit-learn was used [Pedregosa et al., 2011].
This module provided components, so that the SVM model did not have to be imple-
mented from scratch. The classifier was created by using the module’s grid search
component and the built in LOOCV function. By trying all possible kernels with
the grid search, the optimal SVM kernel based on the input could be identified. The
input consisted of a feature representation, fi, of the time series arrays, Xt . Then,
an SVM classifier with the found parameters from the grid search could be created.
This was then used to train and validate on the data using cross-validation.
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3.4 Artificial neural network

An ANN is a computational model that is inspired by how computations happen in
the brain. It uses many of the same concepts as the brain, but in a reduced number
[Walczak and Cerpa, 2003]. An artificial neuron fires when a linear combination
of the inputs to that neuron exceeds a predecided threshold. When many of these
neurons are connected in a network an ANN is created [Russell and Norvig, 2016].

An ANN is built from nodes connected by edges. The edges propagates the signal,
from one node to the next. The signal is denoted ai, where i represents the nodes
the signal comes from. The strength and sign of the connection is decided by a
numeric weight, wi. In each node the weighted sum of the inputs, s, is computed.
This computation for node j is presented in equation (3.5). An activation function,
ϕ , is then applied to this sum, to obtain the output from that node, a j, as presented
in equation (3.6) [Russell and Norvig, 2016].

s j =
n

∑
i=0

wi, jai (3.5)

a j = ϕ(s j) = ϕ

(
n

∑
i=0

wi, jai

)
(3.6)

The activation can look different depending on the function of the network. A hard
threshold or a logistic function can be used, but it is an advantage to use a nonlinear
function. If the activation function is linear the network will not be able to learn
complex patterns [Sharma et al., 2020]. The activation functions used in this thesis
are presented in equation (3.7).
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Sigmoid ϕ(x) =
1

1+ e−x

Hyperbolic tangent ϕ(x) =
ex − e−x

ex + e−x

Rectified linear unit ϕ(x) = max(0,x)

Softmax ϕ(x) =
ex

∑
n
j=1 ex j

Softplus ϕ(x) = log(1+ ex)

Elu ϕ(x) =

{
x x < 0
a(ex −1) x ≤ 0

Selu ϕ(x) =

{
s · x x < 0
s ·a(ex −1) x ≤ 0

Exponential ϕ(x) = ex

Softsign ϕ(x) =
x

(|x|+1)

(3.7)

The sigmoid function transforms values into the range between 0− 1 and is for
example good to use in the output layer of a binary classifier. Similar to the sigmoid
function is the hyperbolic tangent function, also called tanh, that instead transforms
values between −1 to 1. The rectified linear unit, or ReLU, is linear for x > 0, and
zero for x < 0 [Sharma et al., 2020] and is the most common activation function
used in convolutional and deep learning models [Bharath, 2020]. It is more effective
than other functions because all neurons will not fire at the same time [Sharma et al.,
2020], and the fact that it is close to linear also makes optimisation simpler [Bharath,
2020]. The Selu and Elu functions are the same function, just scaled differently with
the predefined parameters a and s [Keras, 2022c]. The three most commonly used
functions of these are sigmoid, tanh and ReLU, and plots of these are presented in
figure 3.5.
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Figure 3.5 Plots of sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU),
the most commonly used activation functions.

This thesis uses so called feed-forward networks. This means that the links in the
network only go in one direction, from the input nodes to the output nodes. There are
no links to previous nodes or any loops. In these kinds of networks, the nodes are
usually arranged in layers. The nodes in each layer will therefore only get inputs
from the nodes in the layer directly before. If there is only one input layer that
directly connects to an output layer that network is called a perceptron.

Multilayer perceptron
When layers are added between the input- and output layers these are called hidden
layers, and the network is called a multilayer perceptron. An example of an MLP
with 3 input nodes, 2 output nodes and one hidden layer with 4 nodes is presented
in figure 3.6.

Proposed MLP model
A few different versions of MLPs were created and tested on the data. The networks
were created using Keras [Chollet et al., 2015] and contained one fully connected
layer, also called dense layer. The number of nodes in the input layer were matched
to the input data, and the output had one node to perform binary classification. To
investigate which hyperparameters that would fit best to the data KerasTuner Hyper-
band tuner was used [O’Malley et al., 2019]. The hyperparameters that were tested
were number of units and activation function. The number of units ranged from 1 to
100, activation functions that were tested were rectified linear unit, hyperbolic tan-
gent, sigmoid, softmax, softplus, Selu, Elu, exponential and softsign. This was done
for each channel, Ci for each subject Sk to get an optimal network for each channel.
Early stopping was used to avoid overfitting. It was done by stopping the training if
the validation error did not decrease for 5 epochs of training and was implemented
by using the Keras callback EarlyStopping [Keras, 2022b]. After performing this
Hyperband Tuning it was investigated which hyperparameters were chosen by the
tuner most frequently and a new network was created from these hyperparameters.
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The network that was kept for further analysis was a network with one hidden layer
containing 80 nodes, ReLU activation function in the hidden layer and a sigmoid
activation function for the output layer.

Figure 3.6 An example of a multilayer perceptron with one hidden layer and three input
nodes, four nodes in the hidden layer and two output nodes.

Convolutional neural networks
CNNs are often used to classify images, because they manage to understand how
the image is connected by capturing the spatial and temporal dependencies very
well [Saha, 2018]. They can also perform well for other tasks, for example signal
processing.

As the number of layers increases, the computational cost gets very high fast for
fully connected layers. Therefore, instead of using only fully connected layers,
CNNs use two additional types of layers: convolutional layers and pooling layers
[O’Shea and Nash, 2015]. Convolutional layers are layers where each node only
gets input from a specific region of nodes in the previous layer. To reduce compu-
tational costs further the same weights can be used for each of these regions. The
layers work as filters or sliding windows that map the region of input neurons to
one output neuron. This is depicted in figure 3.7. Depending on the weights, spe-
cific features can be detected in the input layer, regardless of position. Therefore,
these layers are called convolutional layers [Albawi et al., 2017]. Each layer can
then use different filters and the network can be specialised to its purpose. To make
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the computations faster, batch normalisation can be used. This method finds mean
and variance of the current input and normalises it [Huber, 2020].

Figure 3.7 Example of a convolutional layer. It consists of an input map, a filter and an
output map.

There are different convolutional layers such as depthwise convolutional layers and
separable convolutional layers. For depthwise convolutional layers each input chan-
nel gets a single convolutional layer applied to it [Wang, 2022]. For a separable layer
a depthwise convolution is followed by pointwise convolution. Pointwise convolu-
tion uses a kernel with a depth of the amount of input channels. This kernel iterates
through all data points [Wang, 2022]. Convolutional layers can be implemented us-
ing for example Keras, where a common version is called Conv2D [Keras, 2022a].
It is also possible to reshape the input so that it fits the next layer. This can be done
using different methods, two of these are using a permute layer and a flatten layer.
The permute layer takes a pattern as an input and permutes the input dimensions
accordingly [Keras, 2022d]. The flatten layer flattens the input so that it can be sent
into a dense (fully connected) layer [Dumane, 2020].

The architecture of a very simple CNN is presented in figure 3.8, where a convolu-
tional layer is followed by a pooling layer and then a fully connected layer. Another
common way to structure a CNN is to use two convolutional layers before a pooling
layer, and then repeating before having the fully connected layers last.
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Figure 3.8 Typical architecture of a CNN where a convolutional layer is followed by a
pooling layer and then a fully connected layer.

Pooling layers have the role of reducing the dimension of the network. Typically,
these layers take a region of for example 2×2 nodes and map it to one node in the
next layer, which results in a down scaling to 25% of the size of the previous layer
[O’Shea and Nash, 2015]. To prevent the models from getting overfitted, dropout
layers can be used. If using a regular dropout layer, some input elements are ran-
domly set to 0. If instead using a spatial dropout layer, feature maps are dropped
randomly [Keras, 2022e].

The dense or fully connected layers have the functions that are present in a normal
ANN, they calculate class scores from activations to perform classification. There-
fore, fully connected layers are typically put in the end of a CNN, since that is where
the classification will take place [O’Shea and Nash, 2015].

Proposed CNN models
Five different CNNs were implemented from the code presented in the Army Re-
search Laboratory EEGModels project [Army Research Laboratory, 2022]. All
models were able to train on data from all 64 electrode channels at the same time.
The channel number could be modified to 1 channel when using either one electrode
at the time or eye gaze data as an input. All parameters and weights given from the
source were used to be able to compare easier between the results in this study with
the one presented in the article.

The first of the five models had the structure shown in figure 3.9. It consisted of
two main blocks, where each block contained at least one convolutional layer. The
first of the blocks contained a depthwise convolutional layer and the second one a
separable convolutional layer. The model was implemented to match an input signal
that was sampled at 128Hz [Lawhern et al., 2018].
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Figure 3.9 An illustration of the first CNN model presented in the Army Research Labora-
tory EEGModels project [Army Research Laboratory, 2022].

The second CNN model was the same as the first one except for the dropouts not
being spatial dropouts but regular ones. The number of units in the convolutional
layer was also higher for this model. The architecture is presented in figure 3.10
[Waytowich et al., 2018].

Figure 3.10 An illustration of the second CNN model presented in the Army Research
Laboratory EEGModels project [Army Research Laboratory, 2022].

In the third model, there were three blocks containing convolutional layers before
the classification that was done by flattening, then a dense layer and then using
softmax. The convolutional layers contained 16, 4 and 4 units respectively and were
separated by batch normalisation, the Elu activation function and dropout layers. In-
stead of using a pooling layer, the model used a permute layer, where permutations
were done according to the pattern 2, 1, 3 [Lawhern et al., 2018].
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Figure 3.11 An illustration of the third CNN model presented in the Army Research Lab-
oratory EEGModels project [Army Research Laboratory, 2022].

The fourth model was the most complex ones of the five different models since
this one contained most layers. It was built up by four blocks, each containing at
least one convolutional layer. The first block had two convolutional layers with 25
units each and the other had one convolutional layer with 50, 100 and 200 units
respectively. Max pooling was used in between together with batch normalisation
and the Elu activation function. The implementation matched a signal of 2 seconds
sampled at 128 Hz [Schirrmeister et al., 2017].

Figure 3.12 An illustration of the fourth CNN model presented in the Army Research Lab-
oratory EEGModels project [Army Research Laboratory, 2022].

The fifth model consisted of one block containing two convolutional layers. It used
batch normalisation, two different activation functions as well as an average pooling
layer. The classification was linear and was done by flattening, and then using a
dense layer and softmax. Just like the fourth model, the implementation was done
to match an input signal of 2 seconds that was sampled at 128Hz [Schirrmeister
et al., 2017].
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Figure 3.13 An illustration of the fifth CNN model presented in the Army Research Labo-
ratory EEGModels project [Army Research Laboratory, 2022].
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4
Dataset

The dataset used in this thesis was presented in the master thesis Decoding Attention
in Real-world listening [Bilert, 2020]. The experiment was conducted at Eriksholm
Research Centre and the data is not publicly available.

4.1 The experiment

There were M = 18 subjects in this experiment, 7 of those were female, and two
left-handed. The handedness has a connection to what half of the cerebral hemi-
sphere that is more dominant for different tasks, such as language. For about 95%
of all right-handed people, language is left lateralised. For left-handed people, this
percentage is instead 70% [Nationalencyklopedin, 2022a]. All subjects in the exper-
iments were normal hearing and native Danish. The age range was 18 to 57 years,
with all but two subjects in the range 18 to 32 years. The experiment was done
in approval of Science Ethics Committees for the Capital Region in Denmark in
accordance to the Declaration of Helsinki [Bilert, 2020].

The audiovisual (AV) stimuli were video clips where actors were sitting facing the
camera. One person was having a monologue while simultaneously the two others
were having a dialogue. These configurations of the actors were changed for each
trial between two female and two male actors, so there were four actors in total, but
only three in each trial. The clips were cut to be approximately 120 seconds each,
which represents one full trial.

The subjects were seated in front of a big TV-screen where the videos of the actors
were shown, and audio was played through 10 speakers in front of the screen. There
were two different types of experiments conducted: baseline and main experiments,
which used different videos. For the baseline experiments videos of a monologue
and a dialogue were shown separately. During the main experiments the monologue
and the dialogue were shown simultaneously, and multi-talker babble noise was
added. Before the main experiment the subjects were told to focus on either the
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monologue or the dialogue and ignore the other. For the baseline experiment they
were just told to focus on the film and pay attention to the kind of trial that was
shown. After each trial a question about the content in the video was asked to the
subject, to make sure that the subject would pay attention. Then the subject had to
make a subjective rating of how the audibility of the trial was. Each subject did 34
trials each, of which 10 were baseline experiments and 14 main experiments.

The EEG was recorded using the ActiveTwo BioSemi device [BioSemi, 2022] with
K = 64 electrodes placed using the 10:20 system as described in section 2.2. Head
and eye movements of the subjects were also recorded during the experiment. This
was done using the Vicon motion capture system with integrated Tobii pro glasses
II for eye tracking [Vicon, 2022; Tobii, 2022b].

4.2 Pre-processing

The pre-processing of the data was conducted by Sascha Bilert when the data was
collected and analysed for his master thesis [Bilert, 2020]. Both the EEG and the
eye data had to be pre-processed to be usable for further analysis. A summary of
how the pre-processing was done is presented below.

EEG
The EEG channels were re-referenced using the average of external mastoid elec-
trodes, one on the left side and one on the right side. The data was then downsam-
pled from 8192 Hz to 128 Hz. The power line artifacts were removed, and the EEG
data was further down sampled to 64 Hz. The DC component was removed, and
the eye-activity was controlled by referencing the Fp2 and AF4 electrodes (over the
eyes). This made it possible to identify and remove eye-blinks artifacts. After this,
the EEG signals from the trials were band-pass filtered between 1 and 9 Hz to match
the frequency bands mainly driven by attention [Bilert, 2020].

Eye gaze
The eye gaze data was first separated from the head movements, and then eye-blinks
were removed by using linear interpolation over the blink artifacts. After this, the
data from each eye was analysed and either the left or the right eye was chosen for
further analysis based on the quality of the data. In some cases, the quality index
of both eyes was below 50% and in those cases that specific trial was excluded
entirely. The data was then downsampled from 100 Hz to 64 Hz by using a low pass
filter. From the unit gaze vector coordinates the yaw and pitch angles (horizontal
and vertical rotational angles respectively) were calculated [Bilert, 2020]. Figure
4.1 shows the yaw angle over time from one of the subjects when attending to a
dialogue. The time series of the yaw angle was the data used further in this thesis.
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Figure 4.1 The yaw angle from subject 2 plotted over time when attending to a dialogue.

4.3 Selecting data

Subject 1 was used as a pilot subject to make everything run correctly, so it was
removed entirely from the analysis. Subjects 3, 5 and 15 were not included due to
bad quality of the EEG data. The subjects that remained and had good quality EEG
data were subjects 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17 and 18. This sums up
to M = 14 subjects in total with good EEG that were used for the experiments with
the EEG data. For some subjects the eye data for some trials was not included, so
when investigating the predictions from eye gaze data, these subjects were ignored.
The subjects that were kept for eye gaze data were 2, 6, 7, 8, 10, 11, 13, 14, 16, 17,
which is M = 10 subjects in total.

The EEG signals were expected to be stronger and more distinct when the subjects
were focusing on either a monologue or a dialogue in the main experiment, com-
pared to only one of them being present in the baseline experiment. Therefore, only
the L = 24 main trials were used for each subject in this thesis.
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4.4 Structure of the data

For all L = 24 trials the EEG data was collected for approximately 120 seconds,
for K = 64 channels. The data for each channel was stored in a time series array
Xt = {x1,x2, ..,xT} where t = {1, ...,T}, T = 6913. So for each trial Zi there were
64 channels C: Zi = {C1,C2, ..,CL}, where C = {Xt1,Xt2, ..,XtK}. The eye gaze data
only has K = 1 channel but is otherwise structured in the same way as the EEG data,
with the same number of trials.

4.5 Visualisation

EEG
Using brain electrical topography, it is possible to easily visualise what electrodes
that are receiving electrical activity. This can be done subject by subject, trial by
trial. Figure 6.5 presents a visualisation of subjects 2, 6 and 7, where the mean
values of each electrode for the first trial are plotted in three topographic plots. The
figure shows three heads seen from above where the nose is pointing forward. Each
dot represents an electrode. As seen to the right of each head, the colours represent
the values at each electrode compared to each other. These specific mean values will
not be further investigated, but this way of visualising values for each electrode is
used in this thesis.

(a) Subject 2 (b) Subject 6 (c) Subject 7

Figure 4.2 Topographic plots for three subjects’ electrodes’ mean values for the first trial.

Eye gaze
The eye gaze was visualised using the finished script that was used to extract fea-
tures in the original data [Bilert, 2020]. Figure 4.3 shows the eye gaze data plotted
on top of images corresponding the trials from the main experiments. Here the sub-
ject was watching both a dialogue and a monologue at the same time, but was told
to focus on either the monologue or the dialogue. Note that the images are just one
frame from the videos and since the persons in the videos move their heads, the
points do not correspond perfectly to the images.
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(a) Monologue (b) Dialogue

Figure 4.3 Eye gaze measurements for subject 2 plotted on top of one frame from the
videos for the main experiment. The eye gaze data is clearly positioned on the attended
source, and the movement pattern of the eyes also varies significantly depending on whether
the subject is attending to a monologue or a dialogue.

From figure 4.3 it is evident that the eye gaze data is positioned on the attended
source. It can also be seen that the movement pattern of the eyes varies significantly
depending on whether the subject is attending to a monologue or a dialogue. The
plotted data is from the entire trial length, so an investigation of whether a shorter
time window would lead to the same clear results could be interesting. The eye gaze
data could also be valuable as an extra check whether a model designed for another
dataset as an input is working. When using the eye gaze data as an input to machine
learning models in this thesis, only the movement of the eyes was used, without the
audio or the videos.
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By letting machine learning models train on EEG and eye gaze data it was investi-
gated if it would be possible to predict if the test subject was attending to a mono-
logue or a dialogue. First an SVM model was tested, then MLP models and finally
five different CNN models. All scores were validated using LOOCV. The overall
methodology was the same for all models, but more specific implementations dif-
fered. The trials used were the ones from the main dataset, where a monologue and
a dialogue were presented at the same time to the subject. Each model was trained
separately for each subject.

5.1 Feature extraction

To compress the time series data from each channel of the EEG data and the eye
gaze data, several features were extracted and used as input to the SVM and MLP.
Extracting features is a way of sorting out parts of the data that are not important
for classification, and to focus the models on what is most important. As a first step
many features were extracted and evaluated. The choice of the features were based
on available methods from NumPy [Harris et al., 2020]. The five features that made
the best predictions were analysed more in detail. The features were extracted by
reducing the entire time series for each channel into one value in different ways.
The features that were kept for further analysis were the mean value, the standard
deviation, the 25th and 75th percentiles and the mean value of the angle in the fre-
quency domain. Then each combination of these five features were investigated and
the combination that gave the highest prediction accuracy was kept and used as
input to the models.
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Mean value
The mean value was calculated from the time series for each channel as presented
in equation (5.1).

Xt =
1
T

T

∑
t=1

xt (5.1)

Standard deviation
The standard deviation was calculated similarly as the mean value for each channel
from the time series. The calculation is showed in equation (5.2).

std =

√
1
T

T

∑
t=1

(Xt −Xt)2 (5.2)

Percentiles
The 25th percentile is the value where 25% of the points in the time series have a
lower value. Similarly, the 75th percentile is the value where 25% of the examples
in the time series have a higher value.

Mean value of angle in the frequency domain
The mean value of the angle in the frequency domain was calculated by applying a
fast Fourier transform [Harris et al., 2020], that was defined as presented in equation
(5.3) and then taking the mean of the angle of the resulting complex argument.

Ak =
T−1

∑
t=0

Xte−2πi tk
T k = 0,1, ...,T −1 (5.3)

Standardisation of features
When the features had been extracted, they were standardised to have a similar
impact on the classification. This was done using scikit-learn’s StandardScaler [Pe-
dregosa et al., 2011], which subtracts the mean of the training samples and divides
by the standard deviation of the sample as presented in equation (5.4) where fi j is
the specific feature sample, f j a vector of samples for that specific feature.

s =
fi j − f j√
( f j − f j)2

(5.4)

5.2 Input and output to the models

The input to the SVM and MLP models was a feature vector, fi. For the CNNs, the
input was the entire time series array, Xt . The time series array could either be split
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up into different channels or an entire matrix containing all the channels. The input
went into the models, was processed, and the output was either 0 or 1 depending
on which class the model predicted the input to belong to. The class vector was
yi = (0,1) depending on whether the subject was told to focus on a monologue or a
dialogue.

5.3 Electrode regions

To investigate what parts of the brain that had a big impact on predicting whether
the subject was attending to a monologue or a dialogue, the electrodes were divided
into six different groups. This also made it possible to see whether fewer electrodes
could be used to make a good prediction. These groups contained 4, 5 or 6 elec-
trodes each and were grouped together depending on what region of the brain they
belonged to. The six regions were: temporal left and right, frontal left, right, and
center, central, parietal and occipital. Exactly what electrodes that belonged to each
group is presented in figure 5.1. The models were trained using data from one elec-
trode at a time as input and was then averaged over the electrodes in each group and
over subjects.

Figure 5.1 Plot of the position of the electrodes belonging to different regions. The regions
investigated are: temporal left and right, frontal left, right, and center, central, parietal and
occipital.
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5.4 Process

All the data from the EEG and eye gaze measurements was initially stored as time
series arrays, Xt . The number of channels C depended on if it was EEG or eye gaze
data being investigated as an input. K = 64 for EEG when all electrodes were used,
and K = 1 when the electrodes were used individually as well as when using eye
gaze data. For the eye gaze data, the yaw angle was used to identify whether the
subject was attending to a monologue or a dialogue. Since the yaw angle represents
horizontal eye movements, it was expected that a subject, attending to a dialogue
would have much more horizontal eye movements than a person attending to a
monologue.

The first step was to select what models to use from the different variants of SVM,
MLP and CNN. Only the best versions were used for further analysis. For the SVM
model the first step was to find good features, and for the MLP and CNN models
it was investigated which of the versions described in section 3.4 that reached the
highest accuracy. The final step of these selection processes was to change the time
window length of the trials. Each 120 seconds trial was split into n windows of
equal length (n = 1, 2, ..., 10). Each split led to more trials, each with less data in it.

After this, each electrode was used individually for each subject to predict between
monologue and dialogue. The averages of the resulting scores from this were then
compared between each subject. These mean values were also presented in topo-
graphic plots done in MATLAB using the EEGLAB add-on. The coordinates for
the electrode locations were selected using the BESA file for 4-shell dipfit spherical
model [Delorme and Makeig, 2004].

The next step was to find the five electrodes that performed best at the classification
task for each model. When the best electrodes for each subject had been identified,
the overall best electrodes for each model were calculated by summing up the scores
from all subjects. It was then investigated what regions of electrodes that performed
best as presented in section 5.3. After this, the optimal number of electrodes needed
for a successful prediction were analysed. This was done by sorting the electrodes
after the mean accuracy of all trials of all subjects. The best electrodes were then
chosen from this list and taken away gradually.

The final part was to investigate the time dependency of the five best electrodes of
each model as well as the eye gaze data. Just like the when selecting models, this
was done by splitting the time window length from 120 seconds into n windows of
varying length (n = 1, 2, ..., 10).

During all experiments, the validation of the models was done with LOOCV. Here
each sample left out consisted of all the data from one trial at the time. This was
done to make sure that the validation was always done on data from another trial.
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6
Results

6.1 Selecting models

Support vector machine
The experiments done with the SVM calculated each subject’s electrode’s ability
to predict whether a subject was attending to a monologue or a dialogue. From the
time series arrays, Xt , the standard deviation, the 25th and the 75th percentiles, the
mean, and the mean of the phase in the frequency domain were calculated. These
were combined in all possible ways to choose which features to move forward with.
The resulting mean scores for each subject’s electrode’s prediction accuracy are
presented in table 6.1. Here, ST D stands for standard deviation and Freq mean for
the mean of the phase in the frequency domain. The EEG column presents the
mean of all subjects’ electrodes’ accuracy. The Eye column presents the mean of
all subjects’ accuracy when using eye gaze data as input. X in the table denotes the
used features.

The highest mean accuracies for the EEG and eye gaze data were 0.78 and 0.99
respectively and are marked with a red colour in table 6.1. The best EEG result was
reached with the combination standard deviation and the 25th and 75th percentiles.
The resulting feature vector as input to the model was therefore f = (std,25th,75th)
and this was used during further experiments with the SVM.

The original time window length for each time series array was 120 seconds. Split-
ting this into shorter time intervals and thus increasing the amount of trials instead
resulted in the mean prediction accuracies seen in figure 6.1. Here, each 120 sec-
onds trial was split into n windows of varying length (n = 1, 2, ..., 10). All lines
reached their highest value at 120 seconds, in other words with no split of the data.
Therefore, no time split was used for the rest of the SVM calculations.
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Table 6.1 Mean scores of the SVM model when combining different features. The highest
accuracy for EEG was reached using the feature vector f = (std,25th,75th). X denotes the
used features.

STD Percentile 25 Percentile 75 Mean Freq mean EEG Eye

X 0.69 0.97

X 0.68 0.97

X 0.67 0.93

X 0.54 0.63

X 0.53 0.54

X X 0.75 0.85

X X 0.75 0.96

X X 0.66 0.91

X X 0.66 0.78

X X 0.74 0.88

X X 0.65 0.98

X X 0.65 0.85

X X 0.65 0.96

X X 0.64 0.93

X X 0.56 0.58

X X X 0.78 0.89

X X X 0.71 0.98

X X X 0.71 0.79

X X X 0.71 0.87

X X X 0.70 0.96

X X X 0.64 0.97

X X X 0.70 0.97

X X X 0.70 0.95

X X X 0.64 0.95

X X X 0.64 0.87

X X X X 0.75 0.98

X X X X 0.74 0.98

X X X X 0.69 0.96

X X X X 0.69 0.99

X X X X 0.69 0.97

X X X X X 0.73 0.97
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Figure 6.1 The scores of using EEG to predict whether a subject is attending to a mono-
logue or a dialogue using the SVM model with the feature vector f = (std,25th,75th). Each
120 seconds trial was split into n windows of varying length (n = 1, 2, ..., 10) and evaluated
for each time split. Using no time split but keeping the trials at 120 seconds resulted in the
highest scores.

Multilayer perceptron
Different kinds of MLPs were tested and the accuracies for the two best ones are
presented in table 6.2. Here f t is short for features. The two best MLP models both
contain one hidden layer. The first model was created using KerasTuner [O’Malley
et al., 2019], where the hyperparameters were tuned for each channel as described in
section 3.4. For this model all five features presented in table 6.1 were used as input.
The other model was a fixed model based on the most frequent hyperparameters
that were found with KerasTuner, using 80 units, ReLU as activation function in the
hidden layer and the sigmoid activation function in the output layer. This model was
trained both using five features as input and the three features that were best for the
SVM model, f = (std,25th,75th). This model was used for both the EEG data and
the eye gaze data.

As seen in table 6.2, the fixed model with three features as input was the best model
for the EEG data and is marked with red colour in the table. Therefore, this model
was selected for further analysis. For the eye gaze data, the fixed model performed
equally good for five and three input features.

Splitting the original time window length for each time series array into shorter time
intervals resulted in the mean prediction accuracies seen in figure 6.2. Just like the
SVM model, all lines reached their highest value at 120 seconds. No time split was
therefore used for the rest of the MLP experiments.
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Table 6.2 Resulting mean scores for all subjects when each electrode predicts between a
monologue or a dialogue using two different MLPs with 1 hidden layer. One is created with
KerasTuner and the other is fixed network with 80 neurons. The fixed network uses ReLu as
activation function in the hidden layer and sigmoid as activation function in the output layer.
The MLP with KerasTuner had 5 features as input and the fixed MLP had either all 5 features
or the feature vector f = (std,25th,75th). Here f t is short for features.

Subject Tuner, 5ft Fixed, 5ft Fixed, 3ft Fixed eye, 5ft Fixed eye, 3ft

2 0.65 0.64 0.74 0.63 0.75

4 0.59 0.64 0.68 - -

6 0.60 0.58 0.68 0.60 -

7 0.63 0.71 0.83 0.88 0.88

8 0.59 0.56 0.59 0.79 0.67

9 0.57 0.59 0.74 - -

10 0.55 0.58 0.63 0.76 0.71

11 0.57 0.51 0.66 0.73 0.67

12 0.64 0.59 0.67 - -

13 0.60 0.61 0.73 0.70 -

14 0.66 0.69 0.74 0.67 0.67

16 0.64 0.58 0.69 0.83 0.88

17 0.56 0.60 0.75 0.79 0.71

18 0.67 0.64 0.74 - -

Mean 0.61 0.61 0.71 0.74 0.74
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Figure 6.2 The scores of using EEG to predict whether a subject is attending to a mono-
logue or a dialogue using the MLP model. Each trial was split into different number of sec-
onds and evaluated for each time split. Using no time split resulted in the highest scores.

Convolutional neural network
Five different CNN models were implemented and run on each subject’s data. The
models are described thoroughly in section 3.4. Figure 6.3 shows how the models
performed during different time window length splits. Since models 1 and 5 were
best overall and peaked at the time around 24 seconds, this time split was used for
further experiments with CNN.

Figure 6.3 The scores of using EEG to predict whether the subject is attending to a mono-
logue or a dialogue using the CNN models. Each trial was split into different number of
seconds and evaluated for each time split. Using a time split of around 24 seconds resulted in
the highest scores for both of the two best models.
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The resulting prediction scores for using each subject’s EEG data as an input is seen
in table 6.3. The highest mean accuracy for EEG was reached with the first CNN
model. This result is marked with a red colour in table 6.3. This network was the
only one used in further experiments with CNNs. The scores for this model using
each subject’s eye data as an input is presented in the last column in table 6.3.

Table 6.3 The table presents the resulting scores when predicting between a monologue or
a dialogue from EEG data for the CNN models. The first CNN model performs best, and the
last column presents the scores from this model but using eye gaze data as an input.

Subject CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 Eye CNN1

2 0.93 0.75 0.59 0.64 0.88 0.94

4 0.96 0.63 0.61 0.55 0.83 -

6 0.99 0.74 0.77 0.55 0.84 0.74

7 0.92 0.54 0.63 0.50 0.87 0.89

8 0.96 0.59 0.53 0.51 0.86 0.92

9 0.52 0.52 0.43 0.50 0.54 -

10 0.75 0.60 0.63 0.52 0.66 0.96

11 0.89 0.63 0.55 0.56 0.83 0.92

12 0.96 0.56 0.59 0.52 0.84 -

13 0.86 0.56 0.55 0.51 0.75 0.87

14 0.97 0.51 0.53 0.50 0.83 0.85

16 0.83 0.67 0.61 0.53 0.73 0.93

17 0.69 0.70 0.45 0.53 0.80 0.80

18 0.92 0.68 0.58 0.56 0.76 -

Mean 0.87 0.62 0.57 0.53 0.79 0.88
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6.2 Prediction accuracy from each electrode

For each subject, all electrodes were used individually to predict if the subject was
attending to a monologue or a dialogue. The SVM model reached highest scores
overall for this and the results are presented in the box plots in figure 6.4. The
median values are represented with a horizontal line in each coloured box in the
plot, the size of the box represents 50% of the data points.

Figure 6.4 Box plot of the accuracy for each subject when predicting whether the subject
is attending to a monologue or a dialogue. Each electrode was used separately as input to the
SVM model, and the median and standard deviation for each subject is visible in the plot.

Each electrode was compared to each other depending on its placement on the sub-
ject’s head. This was visualised by plotting topographic plots with the reached pre-
diction accuracies for each subject. The model with the highest scores overall was,
as already mentioned, SVM and performances from each subject using this model
are presented in figure 6.5. The figure also includes topographic plots of the average
scores for all three models. It is only possible to spot a simple pattern from the plot
of the average scores from the CNN.
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(a) Subject 2 (b) Subject 4 (c) Subject 6 (d) Subject 7

(e) Subject 8 (f) Subject 9 (g) Subject 10 (h) Subject 11

(i) Subject 12 (j) Subject 13 (k) Subject 14 (l) Subject 16

(m) Subject 17 (n) Subject 18 (o) SVM mean

(p) MLP mean (q) CNN mean

Figure 6.5 Topographic plots for each subject’s electrodes accuracy of predicting between
a monologue or a dialogue using SVM. The last subplots present the mean values of all
subjects for the MLP and CNN models. All plots show activity in multiple parts of the brain,
only from CNN’s mean it is possible to spot a simple pattern.
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The best electrodes for predicting between a monologue or a dialogue are presented
in tables 6.4, 6.5 and 6.6. Here, Electrode 1 represents the best electrode and Elec-
trode 5 the fifth best electrode. The electrode labels are presented together with the
reached scores. The last rows of the tables present the electrodes with the highest
accuracies after summing up the scores from all subjects. For the SVM model, elec-
trodes FC4, P2, FC2, AF4, and FC6 were best. For the MLP with 1 hidden layer
and only 3 features, the best electrodes were FC4, FC2, P5, C5 and FC6. The CNN
model’s best electrodes were F8, FT8, F7, AF7 and FT7.

Table 6.4 The five best electrodes for each subject when predicting between a monologue
or a dialogue for a SVM. The best electrodes overall were FC4, P2, FC2, AF4 and FC6.

Subject Electrode 1 Electrode 2 Electrode 3 Electrode 4 Electrode 5

2 FC6 : 1.0 FC4 : 1.0 Cz : 1.0 Fp1 : 0.96 AF7 : 0.96

4 FC3 : 0.96 FC1 : 0.96 C5 : 0.96 Fpz : 0.96 FC6 : 0.96

6 AF3 : 1.0 P5 : 1.0 O1 : 1.0 AF4 : 1.0 FC6 : 1.0

7 P9 : 1.0 Fpz : 1.0 F2 : 1.0 P2 : 1.0 AF3 : 0.96

8 C5 : 1.0 AF4 : 1.0 P2 : 1.0 FC1 : 0.96 C1 : 0.96

9 PO3 : 0.96 FC4 : 0.92 F7 : 0.88 Oz : 0.88 CPz : 0.88

10 FC4 : 0.96 FC2 : 0.96 P5 : 0.92 Iz : 0.92 F6 : 0.92

11 T7 : 1.0 AF8 : 1.0 AF4 : 1.0 FC4 : 1.0 P8 : 1.0

12 Fp1 : 1.0 AF3 : 1.0 C1 : 1.0 T7 : 1.0 P5 : 1.0

13 Cz : 1.0 FC3 : 0.96 P5 : 0.96 PO7 : 0.96 FC4 : 0.96

14 F7 : 1.0 FC5 : 1.0 P5 : 1.0 P9 : 1.0 AF4 : 1.0

16 P9 : 0.96 FC2 : 0.96 AF3 : 0.92 FC1 : 0.92 P1 : 0.92

17 C1 : 1.0 C5 : 1.0 T7 : 1.0 P9 : 1.0 FC4 : 1.0

18 AF4 : 1.0 FC4 : 0.96 Cz : 0.96 CP4 : 0.96 P2 : 0.96

All FC4 P2 FC2 AF4 FC6
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Table 6.5 The table presents the five best electrodes of each subject when predicting be-
tween a monologue or a dialogue for a MLP with 1 hidden layer and only 3 features. The
best electrodes overall are FC4, FC2, P5, C5 and FC6.

Subject Electrode 1 Electrode 2 Electrode 3 Electrode 4 Electrode 5

2 C5 : 0.96 T7 : 0.96 FC4 : 0.96 Fp1 : 0.92 AF3 : 0.92

4 FC5 : 0.92 CP4 : 0.92 P2 : 0.92 P8 : 0.92 C5 : 0.88

6 P2 : 0.96 P9 : 0.92 AF4 : 0.92 P5 : 0.88 Fpz : 0.88

7 P9 : 1.0 P2 : 1.0 AF3 : 0.96 C5 : 0.96 FC4 : 0.96

8 AF4 : 0.88 P2 : 0.88 AF3 : 0.83 C1 : 0.83 C5 : 0.83

9 F7 : 0.88 FC1 : 0.88 Iz : 0.88 Oz : 0.88 CPz : 0.88

10 P5 : 0.83 P9 : 0.83 FC2 : 0.83 Fp1 : 0.79 CPz : 0.79

11 T7 : 0.96 FC6 : 0.92 F5 : 0.88 FC2 : 0.83 Fp1 : 0.79

12 AF4 : 0.96 P2 : 0.96 AF3 : 0.92 P9 : 0.92 T7 : 0.88

13 P5 : 0.88 P9 : 0.875 AF4 : 0.875 FC2 : 0.875 P2 : 0.875

14 P5 : 1.0 FC2 : 1.0 P9 : 0.96 AF4 : 0.96 FC4 : 0.96

16 P3 : 0.83 P9 : 0.83 F6 : 0.83 F8 : 0.83 PO8 : 0.83

17 C5 : 0.92 Fpz : 0.88 F3 : 0.83 F5 : 0.83 FC5 : 0.83

18 FC4 : 0.96 C5 : 0.92 P5 : 0.92 FC2 : 0.92 T7 : 0.88

All FC4 FC2 P5 C5 FC6
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Table 6.6 The table presents the five best electrodes of each subject when predicting be-
tween a monologue or a dialogue for the CNN model. The best electrodes overall are F8,
FT8, F7, AF7 and FT7.

Subject Electrode 1 Electrode 2 Electrode 3 Electrode 4 Electrode 5

2 F8 : 0.90 F7 : 0.84 FT8 : 0.83 AF7 : 0.80 T8 : 0.78

4 FT7 : 0.71 FT8 : 0.70 F7 : 0.70 T8 : 0.69 F8 : 0.67

6 AF7 : 0.87 F7 : 0.83 AF8 : 0.82 F6 : 0.79 FC6 : 0.77

7 F8 : 0.87 AF7 : 0.84 F7 : 0.82 FC5 : 0.82 FT8 : 0.81

8 AF8 : 0.85 F8 : 0.81 F7 : 0.73 FT7 : 0.70 AF7 : 0.68

9 FT7 : 0.65 T7 : 0.62 F7 : 0.58 AF7 : 0.58 FC5 : 0.57

10 AF8 : 0.78 F8 : 0.75 FT7 : 0.73 F7 : 0.71 FT8 : 0.71

11 AF7 : 0.81 F8 : 0.69 FT8 : 0.69 F6 : 0.69 AF8 : 0.68

12 FT8 : 0.86 F8 : 0.84 F7 : 0.83 AF7 : 0.81 T8 : 0.75

13 F7 : 0.77 F8 : 0.76 POz : 0.75 AF7 : 0.70 F5 : 0.70

14 FT8 : 0.78 AF7 : 0.73 FT7 : 0.73 T8 : 0.73 PO3 : 0.71

16 AF7 : 0.74 F7 : 0.74 FT7 : 0.73 F5 : 0.73 FT8 : 0.72

17 FT8 : 0.84 F8 : 0.75 FC6 : 0.74 AF8 : 0.73 FT7 : 0.70

18 AF7 : 0.78 F7 : 0.75 FT7 : 0.75 FT8 : 0.74 F8 : 0.73

All F8 FT8 F7 AF7 FT7

Electrode regions
The performance of the electrodes based on what region of the brain they belonged
to was investigated and the results are presented in figures 6.6 and 6.7, 6.8. The box
plots seen in these figures all have a median value marked with a horizontal line in
each box and the size of the box represents 50% of the data points. All three models
had the same four regions with the highest means. These regions were temporal left,
frontal left, frontal center and temporal right.
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Figure 6.6 The performance for electrodes in different regions for SVM, over all subjects.
The four regions with the highest medians are temporal left, frontal left, frontal center and
temporal right.

Figure 6.7 The performance for electrodes in different regions for MLP, over all subjects.
The four regions with the highest medians are temporal left, frontal left, frontal center and
temporal right.

Figure 6.8 The performance for electrodes in different regions for CNN, over all subjects.
The four regions with the highest medians are temporal left, frontal left, frontal center and
temporal right.
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6.3 Optimal number of electrodes

It was investigated how few electrodes could be used without the accuracy being
too affected. Only the best electrodes for each model, presented in tables 6.4, 6.5
and 6.6, were kept. The model that had the highest accuracy was the SVM model
and its result is presented in figure 6.9, but all models had a similar pattern. For the
SVM, the accuracy stayed somewhat consistent until 12 electrodes remained. The
accuracy improved for almost all subjects when only 4 electrodes were used.

Figure 6.9 The performance for each subject, when decreasing number of electrodes, using
SVM. The accuracy stayed somewhat consistent until 12 electrodes remained and improved
for almost all subjects when only 4 electrodes were used.

6.4 Time dependency for best electrodes

Using the five best electrodes from each model, presented in tables 6.4, 6.5 and
6.6, the time dependency of their prediction scores were investigated. Changing
the time window lengths resulted in accuracies following the same pattern as when
using all electrodes, as seen in figures 6.1, 6.2 and 6.3. The two models performing
best overall are presented in figure 6.10, where the mean scores of all subjects are
plotted. It can be seen here that there is a decrease of accuracy for the five best
electrodes when the time window lengths get shorter.
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(a) SVM (b) MLP

Figure 6.10 The mean scores of all subjects using the five best electrodes of SVM and
MLP different amount of seconds. There is a decrease of accuracy when the time window
lengths get shorter.

6.5 Time dependency for eye data

The final investigation was of how the performance of the eye data as an input was
affected by changing the time window lengths. The same feature vector as above
was used as input to the SVM and the MLP: f = (std,25th,75th). The SVM model
reached scores that were highest overall and its result is presented in figure 6.11,
but all models had similar patterns where the accuracy did not decrease remarkably
for shorter time splits. For the SVM, all time windows of 10 seconds and above did
not lead to a higher accuracy.

Figure 6.11 The scores when using eye data to predict a monologue and a dialogue for the
SVM using different amount of seconds. For all time windows of 10 seconds and above, the
longer time splits did not contribute to a higher accuracy.
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6.6 Summary

The implemented CNN performed best overall for the EEG data and reached an
average prediction score of 87% for all subjects when using inputs from all elec-
trodes at the same time. The best performance of the CNN occurred when using a
time window length of around 24 seconds. When using all electrodes individually
as input, the CNN performed worse than the SVM and MLP. The best model was
then instead the SVM that reached an average of 78%. Both the SVM and the MLP
worked best without any time split. For the eye gaze data the SVM performed best,
reaching an average accuracy of 99%.

For all models, the electrodes at the temporal lobe as well as the sides of the front of
the frontal lobe performed best. Decreasing the number of electrodes led to varied
performances of the models. The SVM model had a somewhat consistent accuracy
until 12 electrodes remained, and an increased accuracy for 4 electrodes.

Using the five best electrodes from each model, the results varied regarding how
short the trials could be before the accuracy decreased. The models behaved in a
similar way as when investigating time dependency for all electrodes. When using
eye gaze data as input the accuracy was not affected remarkably by decreasing the
time window length.
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Discussion

7.1 Selecting models

Support vector machine
The combination of features that resulted in the highest prediction performance was
one that described how the data was spread. The fact that the features describing
mean values were not selected indicates that the spread of the data was more dis-
tinctive between the two classes than the mean values. The classification between a
monologue and a dialogue was in other words not better when using an average of
the EEG data.

The features used to reach the highest accuracy when using the EEG data as an input
to the SVM model did not match the features used for reaching the highest accuracy
when using eye gaze as an input. The features that resulted in the highest accuracy
for the EEG data resulted in an average accuracy of 89% when using eye gaze data.
The best average accuracy for the eye gaze data was however 99% when using four
features as presented in table 6.1. The classification task should be fairly easy from
using the eye gaze data as an input since the subjects’ eyes are mainly resting on the
person they are attending to. Any model using the eye gaze data as an input should
in other words be able to reach a high accuracy on this binary classification task.
An accuracy of 89% was still quite high but because of this being so much lower
than when using many other feature combinations, it is clear that the EEG and eye
gaze data are quite different and that they require very different features in order to
obtain a high accuracy.

Why 120 seconds was the best time split does not have an obvious explanation, since
shorter time splits also mean more trials, Z, to train on, which could have been an
advantage to the model. It seems however like longer time splits are advantageous
for the training.
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Multilayer perceptron
The fixed model was found to have the same mean accuracy across all subjects as
the one that used KerasTuner to adapt the model to the data for each subject. This
indicates that the fixed model could be used instead of tuning the model, and that
the chosen hyperparameters did not have a great impact on the performance. The
model was only tuned for the EEG data, and never for the eye gaze data, which
means that the model was not specifically adapted to handle the eye gaze data. It
was however seen that the model did get a higher accuracy for the eye gaze data
than for the EEG signals. This was probably because the eye gaze data was much
simpler than the EEG data, and that it was easier to distinguish between whether
the subject was attending a dialogue or monologue based on the eye gaze data. The
difference was larger when 5 features were used, and that was the same trend as for
the SVM, so this result supports the fact that the result is very dependent on which
features that are being used.

The MLP accuracy for the eye gaze data was not very high, especially when com-
paring to other models, so it was clear that something else was disturbing the perfor-
mance. It might have been that the model was not good enough for this kind of data,
lack of training data or that it was too adapted to the EEG data. The combination of
features that gave the highest result on the eye gaze data for the SVM was not tried
for the MLP model, but it would have been interesting to see if the model would
have performed better for these features.

Just like the SVM model, the highest accuracy for the MLP model was reached for
120 seconds. As soon as the time window length was decreased to 60 seconds or
lower, the scores were lower than 50%. Since there were only two classes to predict
between, a score beneath 50% means a result worse than chance. In other words,
this model is useless for other time window lengths than 120 seconds.

Convolutional neural network
All CNN models could use all 64 electrodes at the same time as an input. Splitting
the data from 120 seconds for each trial into smaller sets had different impacts
for different models but they all performed worst at the full time window length
120 seconds, as seen in figure 6.3. For models 2, 3 and 4, the highest accuracies
were reached when the data was split the most. Since models 1 and 5 performed
best overall it was decided to use the time split where they performed the best, 24
seconds. The first CNN model performed best of the CNN models, with a mean
accuracy of 87%. All models were implemented to match an input signal sampled
at 128 Hz, although the architectures were designed to match another EEG dataset.
According to the source where code was taken from, the first CNN model was the
best for their data as well. Since this was the case here too, only this model was
used in further analysis of the CNN models.
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The rest of the experiments were done by using one electrode at the time as an input
to the CNN and then calculating the mean of the accuracies. Since the CNN model
was designed for all electrodes together as an input instead of only one this means
that its resulting accuracy was expected to decrease. Testing the performance when
using one input channel made it possible to both investigate its generalisation but
also easier to compare with the performance of the SVM and the MLP.

7.2 Prediction accuracy from each electrode

When using one electrode at the time as an input to the models, the SVM model
reached highest accuracies in average for all subjects. The mean values were about
80% for many subjects and many electrodes got as much as 100%. The perfor-
mance of the CNN model decreased significantly when using one electrode at a
time as input to the models. This made, as already stated, sense because they were
implemented to handle all electrodes at the same time and therefore had parameters
in the architecture that matched this number of channels instead of only one.

Studying the topographic plots from the models’ mean values makes it clear that it
was a big difference between the SVM and MLP models that used features as input
and the CNN model that used the time series as input. The models where features
were used had very random topographic patterns, that also varied a lot depending
on what features that were chosen. Topographic plots for these models when using
other features are included in Appendix A. When no features were used, as seen
in the CNN model, the topographic plot had a very generalised pattern. Here, the
highest reached accuracies were from the electrodes in the front left and right of the
head. It is however difficult to draw a conclusion about whether this pattern would
look the same if other models were to be used with all electrodes as input. The
pattern could also be a result of the model’s characteristics.

Electrode regions
All four models resulted in the same pattern regarding how the electrodes in the
different regions performed at the binary classification task. The frontal left was
the region where the average score of all subjects always was the highest. The top
four regions regarding the average scores were the temporal left, the frontal left, the
frontal center and the temporal right. In other words, the regions at the side of the
head, mostly at the front were the ones where the electrodes performed best. The
result that these four regions were the ones performing best is reasonable, especially
since the temporal lobe is in charge of hearing. The frontal lobe is in charge of the
cognitive functions as well as voluntary movements. This brain part should therefore
be active when focusing on a monologue or a dialogue in a noisy situation.
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The regions with the lowest prediction scores were frontal center, central, parietal
and occipital. These are placed along the center of the head. The parietal lobe han-
dles touch and temperature, and it therefore makes sense that this region did not
perform the best in the task. What was remarkable was that the occipital lobe did
not perform better. This is the lobe in charge of vision and should be active dur-
ing the experiments. A reason for the result could be that it was always as active
independent of whether the subject was attending to a monologue or a dialogue.
This would mean no ability for these electrodes’ data to predict well what kind of
conversation the subject was attending to.

7.3 Optimal number of electrodes

The accuracy for the SVM model stayed somewhat consistent until 12 electrodes
remained. The accuracy then improved for almost all subjects when 4 electrodes
were used compared to when more electrodes were used. Therefore, it seems like
it could be a good idea to reduce the number of electrodes to reduce computational
cost if using an SVM model. For less than 4 electrodes the accuracy decreased
for almost all subjects, so to use less than 4 electrodes would most likely not be
beneficial if not specifically adapted to a specific subject. This pattern was not as
clear for the other models, so the same conclusion could not be drawn for them, but
the general pattern was the same for all models.

7.4 Time dependency for best electrodes

There was a significant decrease of accuracy for the five best electrodes when the
time window length got shorter for the SVM model. The accuracy also decreased
more for each time split. Therefore, a specific time limit for when the accuracy was
decreasing too much could not be set. The time dependency for the MLP shows a
clear decrease in accuracy for shorter time splits, and especially after 40 seconds
there was a more radical decrease. Therefore, it could be an idea to investigate
further if the time splits could be set to 40 seconds for the 5 best electrodes instead.
The accuracy down to 12 seconds is still significantly higher than chance, so the
model could still perform some classification, but it would not be as accurate as for
the longer time windows. The results from the CNN model were much lower overall
and therefore not of great importance to investigate further.

7.5 Time dependency for eye data

The result of the investigation of time dependency for the eye data using the SVM
model made it clear that for all time windows of 10 seconds and above the longer
time splits did not contribute to a higher accuracy. The accuracy for the different
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CHAPTER 7. DISCUSSION

time splits for CNN, as presented in Appendix A, seemed to vary less when the
time splits were shorter, which indicated that the model might have been more ro-
bust for shorter time windows. This result agrees with the previous result for the
CNN models from the EEG data, that it performed better for smaller time splits. As
discussed above this is probably because that model was created for shorter time
splits. In conclusion, it does not seem to decrease the accuracy to reduce the time
splits to 10 seconds, it might in some cases even be advantageous for all models.
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Conclusion

This thesis used data from experiments where a noisy environment was simulated.
The test subjects were exposed to a monologue and a dialogue at the same time but
were told to only focus on one of them. Using EEG and eye gaze data collected from
these experiments as an input, different machine learning models were implemented
to solve a binary classification task to predict whether the subject was attending to
a monologue or a dialogue. The investigated models were SVM, MLP and CNNs.
The input to the models was either time series arrays from EEG signals or eye gaze
data. For the SVM and the MLP, more compact representations of the time series
arrays were used as inputs. The project has led to the following conclusions:

1. If 64 electrodes are used together, a CNN model makes the best overall pre-
diction. The average accuracy for all subjects is then 87%. When using one
electrode at the time instead, the SVM model performs best with an average
accuracy of 78%. This is done when using of all subjects’ electrodes together
with features that represented the time series arrays.

2. It varies how short the trials can be before the accuracy decreases for each
model when EEG data is used. The SVM and the MLP performs best for
longer trials while the CNN performs best for shorter but an increased amount
of trials. For the eye gaze data, the accuracy is not affected remarkably by
decreasing the length of trials.

3. For the SVM model, the best performing model, the accuracy is somewhat
consistent until 12 electrodes remains. The electrodes should be located at
the temporal lobe as well as the sides of the front of the frontal lobe.
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9
Continuation

A valid prediction of what source a subject is attending to is of importance for
developing intelligent hearing aids. To simplify an implementation of EEG sensors
in these hearing aids, the amount of electrodes as well as the time sequence needed
for a valid prediction needs to be reduced. Continued studies regarding decreasing
the number of electrodes are therefore of interest. This could be for example to
investigate how the models perform if only one electrode is used, and to adapt the
models specifically to that one electrode.

There are numerous things left to investigate when it comes to the choice of machine
learning models. In this project, only three sorts of models were analysed. The CNN
model was not modified to fit to the dataset but still managed to perform well when
using all electrodes at the same time as an input. If the parameters would be tuned
for it to work well with one electrode at the time instead, the model has a chance
of outperforming the other models. Working with completely different models than
the three selected in this project is also of interest. There are many types of machine
learning models and there is a possibility that other ones will perform better at this
binary classification task.

The dataset also contained audio and video files of the experiment. This was not
used due to lack of time. Since listening also involves lip reading, it would be in-
teresting to combine the studies done in this project with the audio and video files.
One step would be to create a speech envelope from the predictions, another to find
patterns in the EEG and eye data with what is seen on the lips. There is evidently
more that can be done with the dataset that will hopefully help shed light on the
cocktail party problem.
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A
Appendix

A.1 Prediction accuracy from each electrode

Table A.1 Resulting mean scores for all subjects when each electrode was used separately
to predict between a monologue or a dialogue for the SVM model. The last column presents
the results when eye gaze data is used as an input for the subjects containing enough eye gaze
data.

Subject EEG Eye gaze

2 0.77 1.0

4 0.77 -

6 0.76 1.0

7 0.87 0.96

8 0.73 0.96

9 0.74 -

10 0.74 1.0

11 0.79 1.0

12 0.79 -

13 0.81 -

14 0.82 1.0

16 0.76 1.0

17 0.80 1.0

18 0.81 -

Mean 0.78 0.99
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(a) Subject 2 (b) Subject 4 (c) Subject 6 (d) Subject 7

(e) Subject 8 (f) Subject 9 (g) Subject 10 (h) Subject 11

(i) Subject 12 (j) Subject 13 (k) Subject 14 (l) Subject 16

(m) Subject 17 (n) Subject 18

Figure A.1 Topographic plots for each subject’s electrodes accuracy of predicting between
a monologue or a dialogue using MLP, using the three input features percentile 25, percentile
75 and standard deviation.
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A.1. PREDICTION ACCURACY FROM EACH ELECTRODE

(a) Subject 2 (b) Subject 4 (c) Subject 6 (d) Subject 7

(e) Subject 8 (f) Subject 9 (g) Subject 10 (h) Subject 11

(i) Subject 12 (j) Subject 13 (k) Subject 14 (l) Subject 16

(m) Subject 17 (n) Subject 18

Figure A.2 Topographic plots for each subject’s electrodes accuracy of predicting between
a monologue or a dialogue using CNN1.
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(a) Subject 2 (b) Subject 4 (c) Subject 6 (d) Subject 7

(e) Subject 8 (f) Subject 9 (g) Subject 10 (h) Subject 11

(i) Subject 12 (j) Subject 13 (k) Subject 14 (l) Subject 16

(m) Subject 17 (n) Subject 18

Figure A.3 Topographic plots for each subject’s electrodes accuracy of predicting between
a monologue or a dialogue using CNN5.
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A.1. PREDICTION ACCURACY FROM EACH ELECTRODE

Figure A.4 Box plot of all subjects’ electrodes’ accuracies of predicting between a mono-
logue or a dialogue for MLP (one layer, 80 nodes).

Figure A.5 Box plot of all subjects’ electrodes’ accuracies of predicting between a mono-
logue or a dialogue for CNN1.

Figure A.6 Box plot of all subjects’ electrodes’ accuracies of predicting between a mono-
logue or a dialogue for CNN5.
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Table A.2 The five best electrodes of each subject when predicting between a monologue
or a dialogue for CNN5.

Subject Electrode 1 Electrode 2 Electrode 3 Electrode 4 Electrode 5

2 F8 : 0.78 AF7 : 0.77 F7 : 0.75 FT8 : 0.74 FT7 : 0.73

4 FCz : 0.71 Fz : 0.69 FC5 : 0.66 T7 : 0.65 Cz : 0.64

6 F7 : 0.77 AF7 : 0.74 Fp1 : 0.68 PO4 : 0.68 AF8 : 0.64

7 FC5 : 0.82 F7 : 0.78 AF7 : 0.77 FT8 : 0.75 POz : 0.74

8 F8 : 0.72 F7 : 0.70 AF8 : 0.66 FT7 : 0.65 PO4 : 0.64

9 Pz : 0.66 CPz : 0.64 P1 : 0.63 P2 : 0.63 T7 : 0.63

10 FT8 : 0.67 AF8 : 0.66 F8 : 0.63 F7 : 0.63 F6 : 0.62

11 F5 : 0.78 AF7 : 0.74 F3 : 0.69 F7 : 0.68 AF8 : 0.68

12 FC5 : 0.78 AF7 : 0.77 F7 : 0.77 FT7 : 0.76 T7 : T7

13 FT7 : 0.70 F6 : 0.68 POz : 0.68 F7 : 0.68 FT8 : 0.64

14 F7 : 0.71 PO3 : 0.68 FT8 : 0.68 FT7 : 0.66 O1 : 0.65

16 FT7 : 0.69 FT8 : 0.69 AF7 : 0.68 F7 : 0.66 PO4 : 0.65

17 F8 : 0.80 FT8 : 0.78 C6 : 0.75 FT7 : 0.72 FC5 : 0.71

18 F7 : 0.76 F8 : 0.75 FT7 : 0.70 AF8 : 0.69 FC5 : 0.68

All F7 FT7 AF7 FT8 F8

Figure A.7 Performance for electrodes in different regions for CNN5, over all subjects.
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A.1. PREDICTION ACCURACY FROM EACH ELECTRODE

Figure A.8 Performance for each subject when decreasing number of electrodes using
CNN5.

Figure A.9 The scores using EEG to predict a monologue and a dialogue for the five best
electrodes of the CNN5 model when it is used different amount of seconds.
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A.2 Optimal number of electrodes

Figure A.10 Performance for each subject when decreasing number of electrodes for the
MLP model.

Figure A.11 Performance for each subject when decreasing number of electrodes for the
CNN1 model.
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A.3. TIME DEPENDENCY EYE DATA

Figure A.12 Performance for each subject when decreasing number of electrodes for the
CNN5 model.

A.3 Time dependency eye data

Figure A.13 The scores using eye data to predict a monologue and a dialogue for the MLP
using trials of varying length.
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Figure A.14 The scores using eye data to predict a monologue and a dialogue for the CNN1
using trials of varying length.

Figure A.15 The scores using eye data to predict a monologue and a dialogue for the CNN5
using trials of varying length.
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