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Abstract

In this text we continue the work of describing subalgebras of K[x] of
finite codimension that was started in [2]. In the referenced paper, the
authors present how univariate subalgebras can be described by conditions
based on evaluations in certain scalars, and proceed to develop a large
theoretical framework to understand the nature of such conditions. The
purpose of this thesis is to generalize as many of their results as possible
to the multivariate setting K[x]. We include generalized definitions of the
type, spectrum, clusters, α-derivations, and α,β-evaluation subtractions.
We also state and prove generalizations of most of the theorems relating to
the spectrum, clusters, α-derivation spaces, as well as the Main Theorem.
We also give a couple of new results pertaining to how α-derivation spaces
behave when we apply subalgebra conditions on clusters not containing
α.
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1 Introduction

Let K be an algebraically closed field of characteristic 0 and x = {x1, x2, . . . xn}.
Throughout this text we shall be concerned with polynomial subalgebras A ⊂
K[x] of finite codimension. We will require that the subalgebras contain the
scalar field K ⊂ A. Usually such subalgebras would be described in terms of a
basis. An example in the univariate case is the subalgebra A1 ⊂ K[x] that is
generated by the polynomials x3, x4 and x5. Then A1 consists of all polynomials
where the first, and second degree terms are all 0. In [2], an entire theory is
developed around the concept of describing such subalgebras in a new way, by

2



the use of conditions. For example, the same subalgebra A1 can be written
using conditions as follows,

A1 = {f ∈ K[x] | f ′(0) = f ′′(0) = 0}.

Another, per-haps less obvious example, let A2 = 〈x3−x, x2〉. This algebra can
be written using conditions as,

A2 = {f ∈ K[x] | f(1) = f(−1)}.

The theory which is developed in [2] is limited to the univariate case. The
purpose of this thesis is to generalize some of their results to the multivariate
case. We will still only treat the case of finite codimensional subalgebras though.
A multivariate example is given by the algebra A3 ⊂ K[x1, x2] which can be
described by a generating set as

A3 = 〈x2, x21 − 2x1, x
3
1 − 3x1,

x22x
2
1, x

2
2x1, x2x

3
1 − 2x2x

2
1 + x2x1,

x2x
4
1 − 3x2x

2
1 + 2x2x1, x

3
2x

3
1〉,

but also by conditions as

A3 = {f ∈ K[x] : f ′x1
(1, 0) = f ′′x1,x2

(1, 0) = 0}.

It may be difficult to see that the descriptions by conditions are equivalent to
the descriptions by generators right now, but it will hopefully be easier once we
have introduced the necessary theory. Unfortunately, the requirement that a
subalgebra has finite codimension is quite demanding when it comes to produc-
ing generators for- and interpreting multivariate examples. Therefore, there will
be quite few examples in the text. The problem grows larger pretty quickly as
we increase either the number of indeterminates or the codimension of the sub-
algebras we consider. Above we saw an example for a subalgebra of codimension
2 in K[x1, x2]. To show what we mean, we’ll include a computer generated ex-
ample of a subalgebra of codimension 3 in K[x1, x2, x3]. Let A4 ⊂ K[x1, x2, x3]
be defined by conditions as

A4 = {f ∈ K[x] :f ′x3
(1, 0,−1) = 0, f(3, 2, 5) = f(1,−3, 2),

f ′x1
(3, 2, 5)− 3f ′x2

(1,−3, 2) = 0}.
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Then we can described A4 via a generating set as

A4 = 〈x21 +
4

11
x2 −

54

11
x1,

x2x1 − x2 − 2x1,

x3x1 − x3 − 5x1,

x31 +
28

11
x2 −

213

11
x1,

x23 − 3x3x1 +
9

4
x21 + 5x3 −

18

11
x2 −

75

22
x1,

x3x2 −
5

2
x3x1 −

3

2
x2x1 +

15

4
x21 +

5

2
x3 +

7

22
x2 −

50

11
x1,

x3x
2
1 −

3

2
x31 − 4x3x1 + 6x21 + 3x3 +

2

11
x2 −

109

22
x1,

x3x2x1 −
3

2
x2x

2
1 −

9

2
x3x1 +

27

4
x21 +

9

2
x3 +

7

22
x2 −

83

11
x1,

x23x1 −
3

2
x3x

2
1 −

13

2
x3x1 +

39

4
x21 + 10x3 −

18

11
x2 −

120

11
x1,

x33 −
9

2
x23x1 +

27

4
x3x

2
1 −

27

8
x31 −

75

4
x3 +

54

11
x2 +

1395

88
x1,

x22 − 5x2x1 +
25

4
x21 + 11x2 −

55

2
x1,

x2x
2
1 −

5

2
x31 − 4x2x1 + 10x21 + x2 −

5

2
x1,

x22x1 −
5

2
x2x

2
1 −

9

2
x2x1 +

45

4
x21 + 13x2 −

65

2
x1,

x23x2 −
5

2
x23x1 − 3x3x2x1 +

15

2
x3x

2
1 +

9

4
x2x

2
1

− 45

8
x31 + 5x3x2 −

25

2
x3x1 −

15

2
x2x1 +

75

4
x21 +

25

4
x2 −

125

8
x1,

x3x
2
2 − 5x3x2x1 −

3

2
x22x1 +

25

4
x3x

2
1 +

15

2
x2x

2
1 −

75

8
x31 +

5

2
x3x2

− 25

4
x3x1 −

15

4
x2x1 +

75

8
x21 −

1

4
x2 +

5

8
x1,

x32 −
15

2
x22x1 +

75

4
x2x

2
1 −

125

8
x31 −

363

4
x2 +

1815

8
x1〉.

The algorithm used is based on Theorem 25 which doesn’t necessarily produce
a minimal generating set. It does however produce a minimal SAGBI basis, a
concept which will be explained shortly. A discussion on why we need so many
generators can be found in Section 3.3.

1.1 Some Conventions

Before we move along, it will be useful to give some conventions upfront. We
will speak of the degree of a multivariate polynomial as the tuple of exponents of
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each indeterminate in the leading term. When nothing else is indicated, we shall
use lexicographical term ordering where xi < xj if i > j, but any admissible
order works (but results in a different definition of deg of course). An example,

deg(4x51x
2
2x

7
3 + x21x

9
3) = (5, 2, 7).

In the case when A is a set of polynomials, we will write deg(A) = {deg(f) :
f ∈ A} for the set of degrees of polynomials in A.

Instead of writing K[x1, x2, . . . xn] we shall simply write K[x]. The same holds
in the case of monomials. Sometimes, instead of writing xa11 x

a2
2 . . . xann we will

write xa where a = (a1, a2, . . . an). Moreover, the variable n will always be used
to denote the number of free variables x = {x1, x2, . . . , xn} in our algebra.

Given a set G and a multiplicative operation on the elements of G, we will write
Gmon to denote the set of all finite products of elements of G.

We will sometimes write the range of integers {x ∈ N : 1 ≤ x ≤ n} as [1..n]

When f ∈ K[x] is a polynomial will write lm(f) to denote the leading monomial
of f . When F ⊂ K[x] is a set of polynomials, we will write Lm(F ) = {lm(f) :
f ∈ F} to denote the set of leading monomials. Similar terminology is used for
leading coefficients and terms as lc,Lc, lt,Lt.

We will sometimes refer to a least or ”smallest” polynomial which satisfies a
property P . As it stands, this is informal terminology, but it can be made
precise so we explain what we mean here. Given a term order < on K[x], we
can introduce a partial order ≺ on K[x] where f1 ≺ f2 if lm(f1) < lm(f2).
When we say that f is a smallest polynomial which satisfies P among some set
of polynomials A, we mean that g ∈ A such that g ≺ f implies that g does not
satisfy P .

2 Background

Really, the only non-standard prerequisite knowledge required to understand
this thesis is that of SAGBI bases. Thus we give a short introduction here. We
will also use a few well known results relating to linear functionals which are
included afterwards.

2.1 SAGBI Basis of a Subalgebra

For the reader familiar with the Groebner Theory, a SAGBI basis is similar to
a Groebner basis for a subalgebra. In fact, the acronym stands for Subalgebra
Analogue to Groebner Bases for Ideals. For those who have not seen Groebner
bases before, not to worry, the definition will be explained.
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Definition 1. Let A ⊂ K[x] be a subalgebra and < a term order on A. Then
a set G ⊆ A is a SAGBI basis when Lm(G)mon = Lm(A).

Every subalgebra A admits a SAGBI basis since A itself is a SAGBI basis. Un-
fortunately, there are some multivariate subalgebras which don’t admit finite
SAGBI bases. However, we will see pretty soon that any subalgebra of finite
codimension in K[x] does admit a finite SAGBI basis.

One of the main purposes of SAGBI bases is that they allow for a subalgebra
membership algorithm when they are finite. We give a brief illustration.

The algorithm is based on something called subduction, which is performed in
a sequence of steps. Let f ∈ K[x]. If lm(f) ∈ Lm(G)mon, then there exists a
scalar a0 ∈ K and product of elements in G, call it h0 =

∏
gi∈G g

bi
i , such that

a0h0 has the same leading term as f . Then lm(f − a0h0) < lm(f). We now
construct f0 = f − a0h0. If lm(f0) ∈ Lm(G)mon, we can repeat the process
above to obtain an even smaller polynomial, f1 = f0 − a1h1. We can keep on
repeating until we reach a point where either fn = 0, or lm(fn) 6∈ Lm(G)mon.
We say that f subduces to fn over G. If f subduces to 0, then we have obtained
a decomposition

f =

n−1∑
i=0

aihi

of f into a linear combination in the elements of Gmon. From this decomposition
it’s clear polynomials which subduce to 0 over G lie in A. Similarly, if f ∈ A,
then lm(f) ∈ Lm(A), but Lm(A) = Lm(G)mon by definition, so we can subduce
f one step further. Since aihi ∈ A, it follows that any fi during the subduction
of f lies in A. Inductively we see that f subduces to 0.

2.2 Some Facts About Linear Functionals

We will call any linear function for a vector space V to it’s scalar field K as a
linear functional. Here are some results from linear algebra which will be useful
later.

Lemma 2. Let V be a vector space over the field K and let f : V → K be a
linear functional. Then ker(f) is either trivial or has codimension 1.

Proof. This is nothing but a specialization of the Rank-Nullity Theorem.

Lemma 3. Let f, g be two non-trivial linear functionals from V to K. If
ker(f) = ker(g), then f = cg for some c ∈ K.

Proof. Let v0 ∈ V such that f(v0) = 1. As above, we may write any v ∈ V as
v = f(v)v0 + u for some u ∈ ker(f). Looking at g we get g(v) = g(v0)f(v) +
g(u) = g(v0)f(v) as the functionals share the same kernel. Hence for any v ∈ V ,
g(v) = g(v0)f(v) and the statement of the lemma holds with c = g(v0).
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Lemma 4. Let V be a vector space over the field K and let fi : V → K for
i ∈ [1..m] be a finite set of linear functionals. If we denote

W =
⋂
fi

ker fi,

and f, g : V → K are linear functionals over V such that f
∣∣
W

= g
∣∣
W

. Then

f = g +
∑
fi

cifi

for some set of scalars ci ∈ K.

Proof. We denote

Wk =

k⋂
i=1

ker fi

and proceed by using induction on k in reverse to show that we can write
f
∣∣
Wk

= g
∣∣
Wk

+
∑m
i=k+1 cifi. The k = m case is immediate since f

∣∣
Wm

= g
∣∣
Wm

.

Now let k < m and assume that

f
∣∣
Wk+1

= g
∣∣
Wk+1

+

m∑
i=k+2

cifi

Then

hk =

(
f − g −

m∑
i=k+2

cifi

)∣∣∣∣∣
Wk

is zero on Wk+1 whence hk = ck+1fk+1 for some ck+1 ∈ K and our statement
follows after rearrangement.

3 The Type of a Multivariate Polynomial Alge-
bra

3.1 Multivariate Numerical Semigroups

The type of an algebra is meant to capture the structure of the set of degrees
of the algebra. In the multivariate case, we need to define the notion of a
multivariate numerical semigroup to do so.

Definition 5. Let S ⊆ Nn be a semigroup such that Nn \S is finite and 0 ∈ S.
Then we say that S is a multivariate numerical semigroup.

We will show later that A ⊂ K[x] is a subalgebra of finite codimension if and
only if deg(A) is a numerical semigroup.
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We know that univariate numerical semigroups are finitely generated, and they
admit unique minimal generating sets. A natural question is whether the same
holds true in the multivariate case.

First we show that a unique minimal generating set exist.

Theorem 6. Let S be a multivariate semigroup. Then S has a unique minimal
generating set Gn = Gn(S) = S \ (S∗ + S∗) where S∗ = S \ {0}.

Proof. We first show that Gn is a generating set. Let < be a lexicographical
ordering on the elements in S. We prove that all c ∈ S lie in 〈Gn〉 via induction
over <. Let m be the minimal element in S with respect to <. Then m ∈ Gn
for if there exist a, b ∈ S∗ such that a + b = m, then a, b < m. Now let c be
an element in S and assume that all elements < c lie in 〈Gn〉. We are done if
c ∈ Gn so assume that there exist a, b ∈ S∗ such that a+ b = c. Then a, b < c
so a, b ∈ 〈Gn〉 whence c ∈ 〈Gn〉 and we are done.

Now we show that Gn is minimal. Let G′ be a generating set of S. Given any
g ∈ Gn ⊂ 〈G′〉, we can write

g =
∑
gi∈G′

xigi,

for some natural numbers xi. But as Gn ∩ (S∗ + S∗) = ∅, we have
∑
xi = 1,

and we can write g = gi for some index i. It follows that g ∈ G′ and Gn ⊂ G′.

And now we show finiteness.

Theorem 7. The minimal generating set Gn(S) of a multivariate semigroup is
finite.

Proof. For this proof, let< denote the partial order on Nn where (a1, a2, . . . , an) <
(b1, b2, . . . bn) if and only if ai ≤ bi for all i and ai 6= bi for at least one i.

Let M ⊂ Gn(S) be the set of minimal elements in Gn(S) with respect to <.
Then M is finite by Dickson’s Lemma.

Aiming towards a contradiction, assume that Gn(S) is infinite. For each mi ∈
M , let Si = {s ∈ Gn(S) : mi < s}. We now claim that some Si must be infi-
nite. To see this, note that Gn(S)\M is infinite since M is finite, and given any
non-minimal element s ∈ Gn(S) \M , we know that some mi ∈ M will satisfy
mi < s. It follows that Gn(S) = M ∪

⋃n
i=1 Si, whence at least one Si must be

infinite since Gn(S) is.

Let Si be one of the infinite sets guaranteed above. Then the elements s′ =
s −mi, s ∈ Si makes an infinite set. Even more none of the s′ lies in S since
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s ∈ S \ S∗ + S∗ and m ∈ S. This is a contradiction to the requirement that
Nn \ S is finite.

In the sequel, we shall simply say numerical semigroup when we are discussing
multivariate numerical semigroups.

3.2 The Definition of T (A) and Finiteness of SAGBI Bases
for Finite Codimensional Subalgebras

We are now ready to give the definition of the type (with respect to some term
ordering) of a multivariate subalgebra of finite codimension.

Definition 8. Let A ⊂ K[x] be a subalgebra of finite codimension. We define
the type of A, written T (A) as T (A) = Gn(deg(A)) the minimal generating set
of deg(A).

One of the main purposes of the definition is the following theorem.

Theorem 9. Let A ⊂ K[x] be a subalgebra of finite codimension. Then any
subset G ⊂ A such that deg(G) ⊇ T (A) is a SAGBI basis.

Proof. Let f ∈ A. Then deg(f) ∈ 〈T (A)〉 = 〈deg(G)〉 and it follows that
lm(f) ∈ Lm(G)mon whence G is a SAGBI basis.

Note that there exist a polynomial g ∈ A with degree d for each d ∈ T (A), and
we’ve shown that T (A) is finite. Thus we get the following corollary.

Corollary 10. Any subalgebra A ⊂ K[x] of finite codimension admits a finite
SAGBI basis.

3.3 Some Notes on Finite Codimension

As we increase the number of indeterminates, we will see that the requirement
of finite codimension becomes more and more significant. In this section we will
discuss the requirement and some consequences. First we formally prove the
following intuitive fact.

Lemma 11. Let A ⊂ K[x] be a subalgebra. Then A has finite codimension if
and only if deg(A) is a numerical semigroup with respect to any term order.

Proof. First of all, it’s clear that deg(A) is a semigroup in Nn that contains 0.

If there is some term order that results in C = Nn \ deg(A) being infinite, then
for each d ∈ C we can find a corresponding monomial not in A. Note that any
linear combination of such monomials won’t lie in A since the degree of such
a linear combination would lie in C. Thus they span an infinite dimensional
subspace of K[x] \A and codim A is infinite.
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If instead A has infinite codimension, let K ⊂ K[x] \ A be a infinite linearly
independent set. We can reduce the elements in K so that no two polynomials
have the same degree. It follows that C = deg(K) is an infinite set that lies in
C ⊂ Nn \ deg(A) so deg(A) is not a numerical semigroup.

One interesting fact that follows from codim A = finite is that for any monomial
xa, and indeterminate xi, there must be some k ∈ N such that xki x

a ∈ Lm(A).
Otherwise we would have an infinite set of elements in Nn \ T (A) which is con-
tradictory. There are probably many other similar arguments which rely on the
finiteness of Nn \ T (A).

This results explains why it is so laborious to correctly produce a set of gener-
ators which generate a subalgebra of finite codimension - and it becomes much
harder the more indeterminates that are involved.

4 Subalgebra Conditions

This section will develop definitions of different kinds of subalgebra conditions.
We say that a linear functional L : A → K is a subalgebra condition if kerL
is a subalgebra of A. We really only use two types of subalgebra conditions,
evaluation subtractions and α-derivations. We define them bellow.

4.1 Evaluation Subtractions

Definition 12. Let α,β ∈ Kn,α 6= β and c ∈ K, c 6= 0 . We define an
evaluation subtraction to be a function E : K[x] → K of the kind E(f) =
c(f(α)−f(β)). When we want to emphasize the scalars used, we call E an α,β-
evaluation subtraction. The scalar c will be irrelevant for all of our discussions
and can be assumed to equal 1 throughout the remainder of this text.

Theorem 13. Let E : A → K be an evaluation subtraction given as E(f) =
f(α)− f(β). Then ker E is a subalgebra of A.

Proof. Let f, g ∈ ker E and c ∈ K. It’s clear that E is linear whence f + g, cf ∈
ker E. Moreover, we have

E(fg) = f(α)g(α)− f(β)g(β)

= f(α)g(α)− f(α)g(α)

= 0,

so fg ∈ ker E. Finally E vanishes on K and ker E is an algebra.

4.2 α-Derivations

Definition 14. Let A ⊂ K[x] be a subalgebra and α ∈ Kn. Then a linear
functional D : A→ K is said to be a α-derivation if for all f, g ∈ A, we have

D(fg) = f(α)D(g) +D(f)g(α).
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The previous condition will be referred to as the derivation condition.

The definition above is implicit in the sense that it doesn’t tell how to construct
α-derivations. This is a non-trivial issue that will get more and more resolved
in the coming sections. For now, we can give a couple of examples.

Let A = K[x]. Then D : A→ K given by

D(f) =

n∑
i=1

aif
′
xi

(α)

is an α-derivation over A for all possible choices of scalars ai. We state an
important fact before we give our next example.

Theorem 15. Let D : A→ K be an α-derivation. Then ker D is a subalgebra
of A.

Proof. Let f, g ∈ ker D and c ∈ K. We know that D is is linear by definition
whence f + g, cf ∈ ker D. Moreover, we have

D(fg) = f(α)D(g)−D(f)g(α)

= 0,

so fg ∈ ker D. Finally, we need D(1) = D(12) = 2D(1) so D vanishes on K
and ker D is an algebra.

If we now construct the algebra A′ = K[x] ∩ ker f 7→ f ′x1
(α), then

D′(f) = b2f
′′
x1x1

(α) + b3f
′′′
x1x1x1

(α) +

n∑
i=2

aif
′
xi

(α)

is an α-derivation over A′ but not over A. In a similar fashion,

f 7→ b1f
(4)
x1x1x1x1

(α) +
n∑
i=2

aif
′
xi

(α)

is an α-derivation over K[x] ∩ ker f 7→ f ′x1
(α) ∩ ker f 7→ f ′′x1x1

(α), but not over
A or A′. In some sense, the more α-derivations that we’ve kerneled by to obtain
an algebra, the more α-derivations we can expect to exist over the algebra. The
intuition is that for example if D : K[x]→ K is given by D(f) = f ′′x1x1

(α), then

D(fg) = f ′′x1x1
(fg) = f ′′x1x1

(α)g(α) + 2f ′x1
(α)g′x1

(α) + f(α)g′′x1x1
(α)

and if D is supposed to be an α-derivation over some algebra A, then we need for
f ′x1

(α)g′x1
(α) = 0 for all f, g ∈ A, which is exactly what we get when f ′x1

(α) = 0

for all f ∈ A. In a similar way, for f 7→ f (n)(α) to be an α-derivation over some
algebra, we need all the middle terms which result from expanding (fg)(n)(α)
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via the Leibniz rule to vanish in the algebra.

We will see later in the Main Theorem of α-Derivations (Theorem 43), that
all α-derivations can be expressed this way as linear combinations of derivative
evaluations. There is also an alternate and equally important linear algebraic
interpretation given in Theorem 20.

We will take great interest in the α-derivation space.

Definition 16. Let A ⊂ K[x] be a subalgebra and α ∈ Kn. The set of α-
derivations over A form a vector space which we will call the α-derivation space,
denoted Dα(A).

4.3 Unification of α-Derivations and Evaluation Subtrac-
tions

There is a perspective which unifies the definition of evaluation subtractions
with that of α-derivations. We give it in the following lemma.

Lemma 17. Let A ⊂ K[x] be a subalgebra of finite codimension where there
exist some f ∈ A such that f(α) 6= f(β). Let E be a non-trivial linear functional
A→ K. Then E is an α,β-evaluation subtraction if and only if

E(fg) = f(α)E(g) + g(β)E(f)

for all f, g ∈ K[x].

Proof. First let E be an α,β-evaluation subtraction. Then

E(fg) = c(f(α)g(α)− f(β)g(β))

= c(f(α)g(α)− f(β)g(α)) + c(f(β)g(α)− f(β)g(β))

= g(α)E(f) + f(β)E(g).

For the other direction, if E is a linear function A → K which satisfies the
condition E(fg) = f(α)E(g) + g(β)E(f) for all f, g in A. Pick f, g such that
E(f) 6= 0, E(g) = 0. Then since f and g commute we need

0 = E(fg)− E(gf)

= f(α)E(g) + g(β)E(f)− g(α)E(f)− f(β)E(g)

= E(g)(f(α)− f(β))− E(f)(g(α)− g(β))

= −E(f)(g(α)− g(β)),

and it follows that g(α) − g(β) = 0. If we let E′ : A → K be defined as
E′(f) = f(α) − f(β), then we’ve shown that kerE′ ⊇ kerE. It follows from
Lemmas 2 and 3 that E = cE′ and we are done.
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So, we could unify α-derivations and evaluation subtractions by talking of the
set of linear functionals L : A→ K which satisfy L(fg) = f(α)L(g) + g(β)L(f)
where possibly α = β. In practice, we won’t use this too much. It turns out that
evaluation subtractions and α-derivations differ in many significant ways, and
it will almost always benefit us to consider them as different kinds of functions.
The perspective above is still interesting to maintain in the back of ones head
though, and it will be used to shorten proofs where applicable.

4.4 The Connection Between Dα(A) and Mα(A)/M2
α(A)

In the univariate case, the α-derivation space of an algebra corresponds to a
particular dual space based on A. We will see that the same correspondence is
true in the multivariate case as well. First we need some definitions.

Definition 18. Let A ⊂ K[x] be a subalgebra and α ∈ Kn. Then we denote
the α-vanishing subspace of A by Mα(A) = {f ∈ A : f(α) = 0}.

From this definition we immediately see that A = Mα(A)⊕K.

We will also need to name a few functions.

Definition 19. Let α ∈ K then we define zα : K[x]→Mα(K[x]) as the linear
function

zα(f) = f − f(α).

We will take great interest in the quotient space Mα(A)/M2
α(A), and introduce

a function related to it. Given a subalgebra A ⊂ K[x] of finite codimension, let
φα : Mα(A)→Mα/M

2
α(A) denote the linear function φα(f) = f +M2

α(A).

Finally, the composition of the functions above will be denoted as ϕα = φα◦zα.

In [2] it is shown that the following holds when A ⊂ K[x] is a univariate subal-
gebra of finite codimension,

dimDα(A) = dimMα(A)/M2
α(A),

and that the α-derivations are precisely the compositions L◦ϕα for linear func-
tionals L : Mα/M

2
α → K. We will show that this holds in the multivariate case

too.

Let D be an α-derivation. The first observation to make is that D(K) = 0
so D ◦ zα = D. The second observation we need is that α-derivations van-
ish on M2

α(A). Indeed, given f, g ∈ Mα(A) we have D(fg) = f(α)D(g) +
g(α)D(f) = 0. It follows that D(f) = D(g) whenever f − g ∈ M2

α(A) and
there exist a well-defined linear functional D′ : Mα(A)/M2

α(A) → K such that
D′(zα(f) +M2

α(A)) = D(zα(f)) = D(f). In other words, we have D = D′ ◦ϕα
where D′ is a linear functional D′ : Mα(A)/M2

α(A) → K, and we’ve verified
that all α-derivations can be written in the desired way. It remains to verify

13



that any composition L ◦ ϕα is an α-derivation.

To see this fact, let L be a linear functional Mα(A)/M2
α(A) and f, g ∈ A. Then

we can write

f = f1 + f2 + a,

g = g1 + g2 + b

where f1, g1 ∈ Mα(A), f2, g2 ∈ M2
α(A), a, b ∈ K. Our construction implies that

f(α) = a, g(α) = b and ϕα(f) = f1 +M2
α(A), ϕα(g) = g1 +M2

α(A). It follows
that

L ◦ ϕα(fg) = L ◦ φα ◦ zα ((f1 + f2 + a)(g1 + g2 + b))

= L ◦ φα ◦ zα (f1g1 + f1g2 + bf1 + f2g1 + f2g2 + bf2 + ag1 + ag2 + ab)

= L ◦ φα (f1g1 + f1g2 + bf1 + f2g1 + f2g2 + bf2 + ag1 + ag2)

= L
(
bf1 + ag1 +M2

α(A)
)

= bL
(
f1 +M2

α(A)
)

+ aL
(
g1 +M2

α(A)
)

= g(α)L ◦ ϕα(f) + f(α)L ◦ ϕα(g),

and L ◦ ϕα is an α-derivation.

We summarize our result as a Theorem.

Theorem 20. Let A ⊂ K[x] be a subalgebra of finite codimension and α ∈ Kn.
Then

(Mα(A)/M2
α(A))∗

◦φα−−→∼ Dα(A)

where (Mα(A)/M2
α(A))∗ denotes the dual of Mα(A)/M2

α(A).

This is one of the best tools we have to understand Dα(A). Unfortunately, it
is still very difficult to understand M2

α(A), which will be one of our biggest
obstacles in making sense of the α-derivation space of A.

We also have the following connection to SAGBI bases.

Theorem 21. Let A ⊂ K[x] be a subalgebra of finite codimension and G a
SAGBI basis for A inside Mα(A). Then

span
{
g +M2

α(A) : g ∈ G
}

= Mα(A)/M2
α(A)

Proof. Let f ∈ Mα(A). Then we can subduce f by G and write f as a poly-
nomial in Gmon. Any non-linear terms of the polynomial will lie in M2

α(A) and
we won’t require a constant term since G ⊂Mα(A) and f ∈Mα(A). It follows
that f ∈ span

{
g +M2

α(A) : g ∈ G
}

and we are done.

Note that the previous theorem and proof would remain valid even if G is just
a normal algebra basis. The previous theorem along with the fact that any
finite codimensional subalgebra admits a finite SAGBI basis yields the following
corollary.
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Corollary 22. Let A ⊂ K[x] be a subalgebra of finite codimension. Then
dimDα(A) is finite for all α ∈ K and if G is a generating set for A, then we
have the bound

dimDα(A) ≤ |G|.

Moreover, we claim that codim M2
α(A) is finite as well. If it were not, then

dimMα(A)/M2
α(A) would be infinite since dim Mα(A) is infinite, which con-

tradicts the previous corollary. Thus we get the following corollary as well.

Corollary 23. Let A ⊂ K[x] be a subalgebra of finite codimension. Then
codim M2

α(A) is finite for all α ∈ K.

4.5 Gorin’s Result

We will now give one of the pillars upon which this theory rests. A result which
implies that any finite codimensional subalgebra of K[x] can be described as the
kernel of a set of equality conditions and α-derivations (where in this sentence,
α is not a set scalar, but just part of the name, I.e α can vary between the
conditions). A more general version of the following result is given in [1].

Theorem 24. Let A ⊆ K[x] be a subalgebra of finite codimension. Then
A ⊂ B where codim B = codim A− 1 and A = kerL ∩ B where L is either an
evaluation subtraction or α-derivation over B.

Proof. The formulation above differs slightly from that in [1]. In [1], we are given
that L is either of the form L(f) = ϕ(f)−ϕ(g) for some algebra homomorphism
ϕ : A → K, or L is a linear function A → K such that L(fg) = ϕ(f)L(g) +
ϕ(g)L(f). In [1], we also learn that any such homomorphism ϕ can be lifted
to B → K, after which induction over the codimension on A yields that ϕ can
be extended to a homomorphism K[x] → K, whence ϕ must be an evaluation,
giving us the formulation above.

It follows that any subalgebra A ⊂ K[x] can be written as

A =
⋂
L∈L

kerL

where L is a set of α-derivations and evaluation subtractions.

4.6 Subalgebra Conditions and SAGBI bases

If we have a SAGBI basis G for a finite codimensional algebra A ⊂ K[x], and

a subalgebra condition L over A, then we can determine a SAGBI basis Ĝ for
A ∩ kerL as described in the following theorem.

Theorem 25. Let G = {gi : i ∈ [1..n]} be a ordered SAGBI basis for A and

Â = A ∩ ker(L) where L is an equality condition or α-derivation over A. Let
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j be the smallest index such that L(gj) 6= 0. Then a (not necessarily minimal)

SAGBI basis for Â is given by

Ĝ =

{
gi −

L(gi)

L(gj)
gj : i 6= j

}
∪{
gigj −

L(gigj)

L(gj)
gj : i ∈ [1..n]

}
∪{
g3j −

L(g3j )

L(gj)
gj

}
.

Moreover, if G is inside Mα, then so is Ĝ.

Proof. First of, for any f ∈ A we have f − L(g)
L(f)g ∈ Â so Ĝ ⊂ Â.

Now we show that Ĝ is a SAGBI basis. As L is a linear functional, we have
Lm(A) \ Lm(Â) = lm(g). So, let f ∈ Â, then lm(f) ∈ Lm(A) \ lm(g) =

Lm(G)mon \ {g}, and staring at the leading monomials in Ĝ, we see that any

such monomial lm(f) can be found in Lm(Ĝ)mon.

This procedure can be used to generate examples and is how the examples of A3

and A4 from the introduction were produced. The SAGBI basis Ĝ can also be
pruned with subduction to a minimal SAGBI basis. This is fairly slow though,
and there is probably a faster way to prune a Ĝ via calculating T (Â) from T (A)
and deg(gj), but such an algorithm is outside of the scope of this thesis.

Note that the above theorem when combined with Theorems 20 and 21 gives
an upper bound for how much a α-derivation space can grow when we apply a
condition as,

dim (Dα(A ∩ ker  L)) ≤ 2|G|,

when G is a SAGBI basis for a finite codimensional subalgebra A ⊂ K[x]. This
will not be used a whole bunch, but is useful for intuition.

5 The Spectrum

5.1 Definition and General Results

We will extend the univariate definition of the spectrum and prove that many
of the results we know from the univariate case still hold when we consider
polynomials in several variables.

Definition 26. Let A ⊂ K[x] be a subalgebra of finite codimension. Then we
define the spectrum of A, written sp(A) ⊂ Kn, as the set of points α such that
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either f ′u(α) = 0 for all f ∈ A and some u ∈ Kn \ {0}, or there exist some
β 6= α such that f(α) = f(β) for all f ∈ A.

Here f ′u denotes the directional derivative

f ′u =
∑
ui∈u

uif
′
xi
.

We will show that the spectrum is non-empty, but to do this, we first need to
classify all derivations on K[x].

A SAGBI basis for K[x] inside Mα is given by

G = {xi − αi : xi ∈ x}.

Moreover, these are all linearly independent modulo M2
α, hence dimMα/M

2
α =

n. But for each i ∈ [1..n], we have that Di(f) = f ′xi
(α) is an α-derivation. Lin-

earity is known, and the derivation condition is the product rule of derivatives.
Alternatively, one could verify that Di is an α-derivation by verifying that it’s
a projection onto xi−αi. To do this, note that Gmon, is an extension of G to a
vector space basis of Mα, and that Di vanishes on all elements of Gmon except
xi − αi where it attains unit value.

As there are n of these and they’re all linearly independent, these form a basis
for Dα. We summarize the result in a theorem.

Theorem 27. The α-derivation space Dα of K[x] is spanned by the basis
Di(f) = f ′xi

(α) for i ∈ [1..n].

Theorems 27 and 24 imply that if A is a non-trivial subalgebra of K[x] of finite
codimension then sp(A) 6= ∅, which we summarize in a theorem.

Theorem 28. Let A ⊂ K[x] be a non-trivial subalgebra. Then sp(A) 6= ∅.

One natural question is whether the spectrum contains any ’unexpected’ ele-
ments. It does not, as we see in the following theorem.

Theorem 29. Let B ⊂ K[x] be a subalgebra of finite codimension and consider
an algebra A of codimension 1 in B.

� If A is the kernel of some α,β-evaluation subtraction E in B, then sp(A) =
sp(B) ∪ {α,β}.

� IfA is the kernel of someα-derivationD overB, then sp(A) = sp(B)∪{α}.

Proof. One direction of inclusion is immediate. We will direct our attention
to proving that no unexpected elements appear in the spectrum of the derived
subalgebra.
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Assume there exist some γ ∈ sp(A) \ sp(B). By the definition of the spectrum
we have L(f) = 0 for all f ∈ A and L(g) 6= 0 for some g ∈ B where either
L = E is an γ, δ-evaluation subtraction or L = D is the γ-derivation given by
D(f) = f ′xi

(γ) for some xi ∈ x. In either case, we denote the linear functional
by L and consider both cases simultaneously.

Combine the two cases of the theorem statement and denote the linear functional
that was used to obtain A from B by L′. We have that kerL′ ⊂ kerL, but as L
is non-trivial over B, Lemma 2 yields dim kerL′ = dim kerL, and kerL′ = kerL.
Applying lemma 3 yields L′ = cL from which the theorem statement follows.

Finally, we define a class of α-derivations which we call trivial.

Definition 30. An α-derivation over some finite codimensional subalgebra A ⊂
K[x] is said to be trivial when α 6∈ sp(A).

We call them trivial as they all exhibit the form given in Theorem 27 and
therefore Dα(A) is only interesting when α ∈ sp(A). This is non-trivial to show
however, but we will obtain this result before the end of the next section.

5.2 Clusters

We now define a central equivalence relation on the spectrum.

Definition 31. Two elements α,β ∈ sp(A) are said to be equivalent, written
α ∼ β if f(α) = f(β) for all f ∈ A. Moreover, we say that α and β belong
to the same cluster, where the clusters are the parts of sp(A) resulting from a
partitioning by ∼.

We are going to need slightly more flexible notation for juggling derivation
spaces of multiple subalgebras simultaneously. If A′ ⊆ A is a subalgebra, we
write Dα(A)

∣∣
A′ for the space of functions Dα(A) restricted to elements in A′.

Clusters are nice in that equivalent spectral elements α ∼ β give rise to the
same derivation spaces Dα(A) = Dβ(A).

Lemma 32. Let A ⊂ K[x] be a subalgebra of finite codimension where α ∼ β.
Then

Dα(A) = Dβ(A)

Proof. Let A ⊂ K[x] be cofinite algebra where α ∼ β. Since f(α) = f(β) for
all f ∈ A, if D : A → K is a linear functional such that D(fg) = f(α)D(g) +
D(f)g(α) then D(fg) = f(β)D(g) +D(f)g(β).

Moreover, these spaces are disjoint as seen in the following lemma.

Lemma 33. Let A ⊂ K[x] be a subalgebra of finite codimension where α 6∼ β.
Also let D1 be a non-zero α-derivation and D2 be a β-derivation. Then D1 6=
D2. Even more, denote A′ = A ∩ ker f → f(α)− f(β). Then D1

∣∣
A′ 6= D2

∣∣
A′ .
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Proof. Aiming towards a contradiction, assume D1 = D2 is non-trivial. By
hypothesis there exist some f ∈ A such that f(α) 6= f(β). Then we have

D1 = D2 ⇒ D1(f2) = D2(f2)

⇒ 2f(α)D1(f) = 2f(β)D2(f)

⇒ D1(f) = D2(f) = 0

Also, as D1 = D2 is non-trivial so there exist some g ∈ A such that D1(g) =
D2(g) = 1. Then

D1(fg) = D1(g)f(α) +D1(f)g(β) = f(α),

but by similar calculation we also get D1(fg) = D2(fg) = f(β), a contradiction.

For the second statement, assume towards a contradiction that D1

∣∣
A′ = D2

∣∣
A′ .

We consider a polynomial f ∈ Mβ(A) \ A′ and denote f(α) = a. Note that
f(β) = 0 as f ∈ Mβ(A), and a 6= 0 as f 6∈ A′. Then let hk = fk − ak−1f for
k > 1 and note that hk ∈ A′. As D1 and D2 coincides here, we get

0 = D1(hk)−D2(hk)

= D1(fk − ak−1f)−D2(fk − ak−1f)

= kak−1D1(f)− ak−1D1(f)− k0k−1D2(f) + ak−1D2(f)

= ak−1((k − 1)D1(f) +D2(f)).

As this needs to hold for all k > 1, we see that D1(f) = D2(f) = 0. But f was
an arbitrary element in Mβ(A) \ A′, and as D1 = D2 on A′ by assumption, we
see that D1 = D2 on all of Mβ(A), and in turn all of A since derivations vanish
on scalars. This contradicts the first statement.

The goal of this section is to investigate what happens to Dγ when we kernel
with α-derivations and α,β-evaluation subtractions where α,β lie outside the
cluster of γ. We will see that Dγ remains unchanged and significant corrolaries
will follow from this. After this we will also investigate what happens when
we kernel by α,γ-evaluation subtractions, I.e when we merge the cluster of γ
with that of α. We will see that when we merge two clusters in such a way, the
resulting derivation space is the direct sum of the α and γ-derivation spaces of
the original subalgebra.

Let’s begin with some lemmas!

Lemma 34. Let A ⊂ K[x] be a subalgebra of finite codimension. If α 6∼ β over
A and E is a α,β-evaluation subtraction over A, then E is not a γ-derivation
for any γ.

Proof. By hypothesis, we can find f ∈ A such that f(α) = 0, f(β) = −1.
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Assume towards a contradiction that E is a γ-derivation. Then

1 = f(β)2

= E(f2)

= 2f(γ)E(f)

= −2f(γ),

but also

−1 = f(β)3

= E(f3)

= 3f(γ)2E(f)

= −3f(γ)2,

and we reach a contradiction since these two equations can’t both simultaneously
be true.

Lemma 35. Let A be a subalgebra of K[x] where α,β,γ, δ ∈ Kn and α,β,γ
are all pairwise mutually inequivalent elements. Then if E1 is an α,β-evaluation
subtraction, and E2 is an γ, δ-evaluation subtraction, we have E1 6= E2 over A.

Proof. Assume towards a contradiction that E1 = E2 over A. Let f ∈ A such
that f(α) = 0 6= f(β). Then we have

f(α) + f(δ) = f(γ) + f(β)

as E1(f) = E2(f), and

f2(α) + f2(δ) = f2(γ) + f2(β)

as E1(f2) = E2(f2). But then it follows that

(f(α) + f(δ))2 − f2(α) + f2(δ) = (f(γ) + f(β))2 − f2(γ) + f2(β)

⇒
2f(α)f(δ) = 2f(γ)f(β)

⇒
f(γ) = 0,

but this means that Mα(A) = Mγ(A) and in turn α ∼ γ in A, contradicting
our hypothesis.

Lemma 36. Let A ⊂ K[x] be a subalgebra of finite codimension, L a subalgebra
condition over A, and A′ = A ∩ kerL. If L is not an α-derivation, then

dimDα(A)
∣∣
A′ = dimDα(A)
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Proof. Let D1, D2, . . . DN ∈ Dα(A) be a vector space basis for Dα(A). Assume
towards a contradiction that the Di admit a non-trivial linear dependency when
restricted to A′,

0 =

N∑
i=1

aiDi

∣∣
A′ .

Then by Lemma 4, we have
N∑
i=1

aiDi = L

but the expression on the left is a non-trivial α-derivation, and the expression on
the right is either an evaluation subtraction or a β-derivation for some β 6∼ α.
This contradicts either Lemma 33 or 34.

We can use the previous lemma along with Theorem 20 to prove a lemma which
will be our main tool for this section.

Lemma 37. Let A ⊂ K[x] be a subalgebra of finite codimension, and L a
subalgebra condition overA which is not anα-derivation. DenoteA′ = A∩kerL.
Then

Dα(A)
∣∣
A′ ⊆ Dα(A′),

M2
α(A′) ⊂M2

α(A),

and
dim

(
Dα(A′)/Dα(A)

∣∣
A′

)
= dim

(
M2
α(A)/M2

α(A′)
)
− 1.

Proof. The first statement follows directly from the fact that any α-derivation
over A is a α-derivation over any subalgebra of A. The second statement follows
from the fact that A′ ⊂ A, and A = Mα(A) ⊕ K, A′ = Mα(A′) ⊕ K, whence
Mα(A′) ⊂Mα(A).

For the third statement, Lemma 36 and Theorem 20 yields

dim
(
Dα(A′)/Dα(A)

∣∣
A′

)
= dim(Dα(A′))− dim(Dα(A)

∣∣
A′)

= dim(Dα(A′))− dim(Dα(A))

= dim
(
(Mα(A′)/M2

α(A′))
)
− dim

(
(Mα(A)/M2

α(A))
)

=codim(M2
α(A′))− codim(Mα(A′))

− codim(M2
α(A)) + codim(Mα(A))

=codim(M2
α(A′))− codim(M2

α(A))− 1

= dim(M2
α(A)/M2

α(A′))− 1,

where we used the fact that codimMα(A) = codimMα(A′) − 1 follows from L
being a linear functional.
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We can specify the previous lemma further. Let A ⊂ K[x] be a subalgebra of
finite codimension and consider two polynomials f1, f2 ∈Mα(A). Also, let g be
a polynomial in Mα(A) \A′ = Mα(A) \Mα(A′).Then Mα(A) = Mα(A′) + gK
since codim Mα(A) = codim Mα(A′) + 1, and we can write fi = hi + aig for
some hi ∈Mα(A′) and ai ∈ K. Moreover,

f1f2 = h1h2 + (a2h1 + a1h2 + a1a2g)g,

and any polynomial in M2
α(A) is a linear combination of such products. Thus

any polynomial in M2
α(A) is congruent to a product fg for some f ∈ Mα(A)

when taken modulo M2
α(A′). We summarize our result.

Lemma 38. Let A ⊂ K[x] be a subalgebra of finite codimension, and L a
subalgebra condition over A which is not an α-derivation. Let g be a polynomial
in Mα(A) \A′. Denote A′ = A ∩ kerL. Then

dim
(
Dα(A′)/Dα(A)

∣∣
A′

)
= dim

((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1.

Proof. From Lemma 37 we know that

dim
(
Dα(A′)/Dα(A)

∣∣
A′

)
= dim

(
M2
α(A)/M2

α(A′)
)
− 1,

so our goal is to show that

M2
α(A)/M2

α(A′) =
(
gMα(A) +M2

α(A′)
)
/M2

α(A′)

but this follows immediately from the fact that any hi ∈ M2
α(A) is congruent

to some fig modulo M2
α(A′) and that gMα(A) +M2

α(A′) ⊆M2
α(A).

The following lemma will also prove useful.

Lemma 39. Let A,B ⊂ K[x] be vector spaces of polynomials of finite codi-
mension such that B ⊆ A. Then

dim(A/B) = |Lm(A) \ Lm(B)|

Proof. Let F ⊂ A be a set of polynomials such that Lm(F ) = Lm(A) \ Lm(B)
and all leading monomials of the elements fi ∈ F are unique. Now let f ∈ A.
Either f ∈ B or lm(f) ∈ Lm(F ). Either way, denote the polynomial with the
same leading monomial as f by g1 and let c1 ∈ K be such that lt(f) = lt(c1g1).
Then lm(f − c1g1) < lm(f). Restart the same process with f − c1g1 and denote
the polynomial with the same leading term by g2. We can continue in this way
until we get

f =

m∑
i=1

cigi

and since each gi ∈ B ∪ F , it follows that

A = B ⊕ span(F )

(where the sum is direct since Lm(F ) ∩ Lm(B) = ∅ ⇒ F ∩ B = ∅) and A/B =
span(F ). Since the polynomials of F have unique leading terms we have both
|F | = dim span(F ) and |F | = |Lm(A) \ Lm(B)|, after which we are done.
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We are now ready to prove the first of two significant results of this section.

Theorem 40. Let A ⊂ K[x] be a subalgebra of finite codimension where γ 6∼
α,β. Let L be an α-derivation or an α,β-evaluation subtraction, and A′ =
A ∩ ker L. Then

Dγ(A′) = Dγ(A)
∣∣
A′

Proof. Let g ∈Mα(A) \Mα(A′) be minimal with respect to the condition that
L(g) = 1. Then g(α) = 0 and g(β) = −1. By Lemmas 38 and 39, we will be
done if we can show that∣∣Lm(gMγ(A)) \ Lm(M2

γ(A′) ∩ gMγ(A))
∣∣ ≤ 1.

Let B′ be a vector space basis for Mα(A) that contains g and where no poly-
nomials in B′ have the same leading monomials. Note that if f ∈ B′, then
f −L(f)g ∈Mα(A′) and lm(f −L(f)g) = lm(f) since if lm(g) > lm(f) we have
L(f) = 0 by definition of g. Use B′ to construct

B = {f − L(f)g : f ∈ B′ \ {g}} ∪ {g}.

Then B ⊂Mα(A) is a vector space basis where all elements have unique leading
terms and B \ {g} ⊂Mα(A′) and Lm(B) = Lm(A).

Instead of splitting in to cases depending on whether L is an α-derivation or
α,β-evaluation subtraction, we just notice that for arbitrary f1, f2 ∈ A we have
in the former case

L(f1f2) = f1(α)L(f2) + f2(α)L(f1),

and in the latter case

L(f1f2) = f1(α)L(f2) + f2(β)L(f1).

Thus, we can unify our two cases by assuming that

L(f1f2) = f1(α)L(f2) + f2(β)L(f1),

and let the β = α case correspond to when L is an α-derivation.

We claim that there exist h ∈ B \ {g} such that h(β) 6= 0. First of, at least
one element h ∈ B must satisfy h(β) 6= 0 as γ 6∼ β in A. Secondly, if g were
the only element in B that didn’t vanish under evaluation at β, then we’d have
γ ∼ β in A′ as B \ {g} is a vector space basis for Mγ(A′), which would imply
that L is a γ,β-evaluation subtraction by Lemma 3, and this is a contradiction
to either Lemma 34 or 35.

Let h be the smallest polynomial in B \ {g} such that h(β) 6= 0 and let f be an
arbitrary element in B \ {g, h}. Then we have the following inclusions

h ∈Mγ(A′),

f ∈Mγ(A′),
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and,

fg − L(fg)

L(g)
g = fg − L(f)g(α) + L(g)f(β)

L(g)
g = fg − f(β)g ∈Mγ(A′),

hg − L(hg)

L(g)
g = hg − L(h)g(α) + L(g)h(β)

L(g)
g = hg − h(β)g ∈Mγ(A′).

Using these inclusions we see that

(fg − f(β)g)h = fgh− f(β)gh ∈M2
γ(A′),

(hg − h(β)g) f = fgh− h(β)gf ∈M2
γ(A′),

but then it follows that

f(β)gh− h(β)gf ∈M2
γ(A′) ∩ gMγ(A),

and lm(f(β)hg − h(β)fg) = lm(fg) since either f > h ⇒ fg > hg or f < h
which means that f(β) = 0 due to how we picked h. Thus we’ve show that
Lm(M2

γ(A′) ∩ gMγ(A)) contains all elements of Lm(gMγ(A)) except possibly
lm(gh), lm(g2). We can find the last missing monomial in a similar manner as
above by noting that g2 − (g(α) + g(β))g ∈Mγ(A′) and

h2(g2 − (g(α) + g(β))g) = h2g2 − (g(α) + g(β))h2g ∈M2
γ(A′)

(hg − h(β)g)2 = h2g2 − 2h(β)hg2 + h2(β)g2 ∈M2
γ(A′),

so

2h(β)hg2 − (g(α) + g(β))h2g − h2(β)g2 ∈M2
γ(A′).

We also have

h(hg − h(β)g) = h2g − h(β)hg ∈M2
γ(A′),

h(g2 − (g(α) + g(β))g) = hg2 − (g(α) + g(β))hg ∈M2
γ(A′),

and combing the results we see that

2h(β)(g(α) + g(β))hg − h(β)(g(α) + g(β))hg − h2(β)g2 =

h(β)(g(α) + g(β))hg − h2(β)g2 ∈M2
γ(A′) ∩ gMγ(A)

This yields our remaining leading term and we see that

dim
(
Lm(gMγ(A)) \ Lm(M2

γ(A′) ∩ gMγ(A))
)
≤ 1

and we are done.

Many interesting corrolaries follow from this. If we combine it with Theorem
27, then we immediately get the following promised result regarding trivial
derivations.
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Corollary 41. Let A ⊂ K[x] be a subalgebra of finite codimension such that
α 6∈ sp(A). Then Dα is spanned by the α-derivations

Di(f) = f ′xi
(α)

for xi ∈ x.

Now we give the second of our two main results.

Theorem 42. Let A ⊂ K[x] be a subalgebra of finite codimension where α 6∼ β.
Let E be an α,β-evaluation subtraction and denote A′ = A ∩ kerE. Then

Dα(A′) = Dα(A)
∣∣
A′ ⊕Dβ(A)

∣∣
A′

Proof. Let g ∈Mα(A) \Mα(A′) be minimal with respect to the condition that
E(g) = 1. Then g(α) = 0 and g(β) = −1.

Most of our efforts in this proof will be devoted to showing that

dim
((
gMα(A′) +M2

α(A′)
)
/M2

α(A′)
)
≤ dim

(
Mβ(A)/M2

β(A)
)
, (1)

and we first explain how proving this identity proves the theorem statement.
As codim Mα(A) = codim Mα(A′)− 1, we have that either

dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
−1 = dim

((
gMα(A′) +M2

α(A′)
)
/M2

α(A′)
)
,

or

dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)

= dim
((
gMα(A′) +M2

α(A′)
)
/M2

α(A′)
)
,

which when combined with Equation 1, would yield either

dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1 ≤ dim

(
Mβ(A)/M2

β(A)
)

(2)

or
dim

((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
≤ dim

(
Mβ(A)/M2

β(A)
)
. (3)

But we already know that all α- and β-derivations over A will be α-derivations
over A′. Moreover, Lemma 33 tells us that these won’t coincide when restricted
to A′ so

Dα(A)
∣∣
A′ ⊕Dβ(A)

∣∣
A′ ⊆ Dα(A′).

Hence

dim
(
Mβ(A)/M2

β(A)
)

= dimDβ(A)

≤ dim
(
Dα(A′)/Dα(A)

∣∣
A′

)
= dim

((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1.

Combining this inequality with those of Equation 2 and 3 yields that either

dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
≤ dim

(
Mβ(A)/M2

β(A)
)

≤ dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1,
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or

dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1 ≤ dim

(
Mβ(A)/M2

β(A)
)

≤ dim
((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1

⇒
dim

((
gMα(A) +M2

α(A′)
)
/M2

α(A′)
)
− 1 = dim

(
Mβ(A)/M2

β(A)
)
,

holds. As the first of the resulting inequalities is contradictory, we see that the
situation in Equation 3 is impossible and it must be that Equation 2 holds all
the time. Combining our results with Lemma 38 and Theorem 20, gives us our
theorem statement. Thus, we now direct our efforts to showing that Equation
1 holds.

Before we start, note that Mα(A′) = Mβ(A′) since α ∼ β in A′ (but not in A
of course). These different ways of writing the same space will be used inter-
changeably throughout the proof.

Let B′ be a vector space basis for Mα(A) that contains g and where no poly-
nomials in B′ have the same leading monomials. Note that if f ∈ B′, then
f − E(f)g ∈ Mα(A′) and lm(f − E(f)g) = lm(f) since if lm(g) > lm(f) we
have E(f) = 0 by definition of g. Use B′ to construct

B = {f − E(f)g : f ∈ B′ \ {g}} ∪ {g}.

Then B ⊂ Mα(A) is a vector space basis where all elements have unique lead-

ing terms, and B \ {g} ⊂ Mα(A′), and Lm(B) = Lm(A). Let B̂ = B ∪ {ĝ =

g−g(β)}\{g}. Then ĝ(α) = 1, ĝ(β) = 0 and B̂ is a vector space basis forMβ(A).

Let F ⊂ Mα(A′) be a finite set of polynomials such that gF is a linearly inde-
pendent set modulo M2

α(A′). As F ⊂Mβ(A) as well (since Mα(A′) ⊂Mβ(A)),
we are done if we can show that F is linearly independent modulo M2

β(A).

We consider a linear relation among F modulo M2
β(A). Assume towards a

contradiction that there exist a set of scalars {ai ∈ K : fi ∈ F} such that some
ai 6= 0 and ∑

fi∈F

aifi =
∑

(hi,Hi)∈H

bihiHi

for some H ⊂ B̂ × B̂, and scalars bi ∈ K. Denote p =
∑

(hi,Hi)∈H bihiHi. Then

g
∑
fi∈F

aifi = gp,

and it follows that gp 6∈ M2
α(A′) since gF is linearly independent modulo

M2
α(A′). I.e, we have p such that p ∈ M2

β(A) but gp 6∈ M2
β(A′). Now con-

sider each hi, Hi ∈ H \ (ĝ, ĝ), then either hi or Hi is not equal to ĝ, say hi,
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whence hi ∈Mβ(A′), and

gHi −
E(gHi)

E(ĝ)
ĝ ∈Mβ(A′).

But if Hi ∈ B̂ \ {ĝ}, then E(Hi) = 0 together with Hi ∈ Mβ(A) implies
Hi(α) = Hi(β) = 0, so E(gHi) = g(α)Hi(α) − g(β)Hi(β) = 0 and we have
gHi ∈Mβ(A′) in this case. If instead Hi = ĝ, then we have ĝ(α) = 1, ĝ(β) = 0
and g(α) = 0, g(β) = −1 whence E(gĝ) = 0 and gHi ∈ Mβ(A′) as well. Thus
we have

ghiHi ∈M2
β(A′) for (hi, Hi) ∈ H \ (ĝ, ĝ)

Let s = 1 if (ĝ, ĝ) ∈ H and s = 0 otherwise. Then

gp =
∑

(hi,Hi)∈H

bighiHi

= scgĝ2 +
∑

(hi,Hi)∈H\(ĝ,ĝ)

bighiHi

for some scalar c 6= 0 ∈ K. We see that gp ∈ M2
β(A′) if s = 0 so s must be 1.

Now note that the sum ∑
(hi,Hi)∈H\(ĝ,ĝ)

bighiHi

lies in gMα(A), since for each hi, Hi, either E(hi) = 0 or E(Hi) = 0 whence
hiHi ∈ Mα(A′) ⊂ Mα(A). Moreover, gĝ2 6∈ gMα(A) since E(ĝ2) = ĝ(α)2 −
ĝ(β)2 = 1, so the sum

gĝ2 +
∑

(hi,Hi)∈H\(ĝ,ĝ)

bighiHi

doesn’t lie in gMα(A), which is a contradiction to gF ∈ gMα(A) and we are
done.

6 α-Derivations as Derivative Evaluations.

For the univariate case we know that we can write α-derivations in A as linear
combinations of derivative evaluations in the spectral elements that are equiv-
alent to α in A. Moreover, we saw in Corollary 41 that trivial derivations can
be written as evaluations after partial derivatives. The purpose of this section
is to explore how these statements generalize to multivariate polynomials.

We begin by describing the derivation spaces of subalgebras of codimension 1.
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6.1 Dα(A) When A Has Codimension 1

First we investigate Dα(A) when A = K[x] ∩ kerD where D(f) = f ′u(α) is an
arbitrary α-derivation. According to Theorems 20 and 25, we know that

dim Dα(A) ≤ 2n,

remember that n is the number of indeterminates n = |x|. We still have that
all linear functionals of the form f → f ′xi

(α) form α-derivations over A. We
have however introduced a linear dependence among them so they span a space
of dimension n− 1.

We can find n more linearly independent derivations by considering

f → f ′′uv(α) =

n∑
i=0

n∑
j=0

uivjf
′′
xixj

(α)

since

(fg)′′uv = f ′′uv(α)g(α) + f ′u(α)g′(α)v + f ′v(α)g′(α)u + f(α)g′′(α)uv

and
f ′u(α)g′(α)v = f ′v(α)g′(α)u = 0

for f, g ∈ A.

Finally, we have our last α-derivation given by f → f
(3)
uuu since

(fg)(3)uuu = f (3)uuug + 3f (2)uug
(1)
u + 3f (1)u g(2)uu + fg(3)uuu,

and
3f (2)uu(α)g(1)u (α) = 3f (1)u (α)g(2)uu(α) = 0

for f, g ∈ A.

We have found 2n linearly independent α-derivations over A and in turn a basis
for Dα(A).

Now let A = kerE where E(f) = f(α)− f(β). Applying Theorem yields 42

Dα(A) = Dα(K[x])
∣∣
A
⊕Dβ(K[x])

∣∣
A
,

after which we can use Corollary 41 to see that Dα(A) is a 2n-dimensional space
consisting of functionals of the form f → af ′u(α) + bf ′v(β).

6.2 Notation and General Leibniz Rule for Directional
Derivatives

As we see in the exploration above, we are going to need to deal with higher
order directional derivatives. Notation can be a bit involved so we introduce
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any necessary conventions here.

When u is a vector that is meant to describe a directional derivative, we write
f ′u and to avoid redundant degrees of freedom, we can assume that |u| = 1.

We will use multisets in what follows as partial and directional derivatives can
exist with multiplicity, whence sets will not do, and the operators commute on
polynomials, so tuples are not quite right either. Multisets will be written with
bracket [] notation.

When we have a multiset U = [u1,u2, . . . ,un], and we want to compose the

directional derivatives after each other, we write f
(n)
U . If n is small, we may just

write f
(n)
u1u2...un .

The General Leibniz Rule is then given by

(fg)
(n)
U =

∑
U ′∈P(U)

f
(|U ′|)
U ′ g

(|U |−|U ′|)
U\U ′

where P(U) is the power-multiset of the multiset U . Note that P(U) will contain
duplicates if U does. We introduce one more notation. We write dj to be the set
of all multisets of combinations of j elements from x = {x1, x2, . . . xn} drawn
with repetitions. Basically, we use dj to represent all possible combinations of
j pure (as in not directional) partial derivatives. I.e if n = 3 then

d3 ={[x1, x1, x1], [x1, x1, x2], [x1, x1, x3], [x1, x2, x2], [x1, x2, x3],

[x1, x3, x3], [x2, x2, x2], [x2, x2, x3], [x2, x3, x3], [x3, x3, x3], }

Each dj will be of size

|dj | =
(
n+ j − 1

n

)
as any element of dj corresponds to a non-negative integer solution of y1 + y2 +
. . .+ yn = j where yi is the count of xi in a given dj ∈ dj

6.3 Main Theorem of α-Derivations

From the exploration of the codim = 1 situation, it seems reasonable to hypoth-
esize the following generalization of the Main Theorem.

Theorem 43 (Main Theorem of α-Derivations). Let A ⊂ K[x] be a subal-
gebra of finite codimension. Then there exist some integer N such that any
α-derivation over A can be written in the form

f →
∑
αi∼α

N−1∑
j=1

∑
djk∈dj

ci,j,kf
(j)

djk
(αi) (4)

where each ci,j,k ∈ K.
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Throughout this section, we will assume that A only has one cluster. This will
make things a whole lot easier, and we can easily recover the general case via
Theorem 40. We will need a few constructions before we are able to prove
Theorem 43. We shall just like in the univariate case, show that there exist
some N ′ ∈ N such that A contains a subalgebra which is obtained by kerneling
by all evaluation subtractions that hold in A, and all possible derivations of the
form

D(f) =
∑
αi∼α

N ′−1∑
j=1

∑
djk∈dj

ci,j,kf
(j)

djk
(αi).

for some N ′ ∈ N. We will call this subalgebra QN ′(sp(A)) ⊂ K[x] (proper
definition below) and it is the generalization of the algebra πNAK[x] + K from
the proof of the Main Theorem in the univariate case. For the purpose of being
clear, we will introduce this subalgebra and its components within a numbered
definition, but note that it won’t have much use beyond this section (as of right
now).

Definition 44. Let S be a set of spectral elements and α be some element in
S. We define E(S,α) to be the set of evaluation subtractions

E(S,α) = {f → f(α)− f(β) : β ∈ S \ {α}}.

The purpose of this definition is to have E(sp(A)) encapsulate an independent
but spanning set of evaluation subtractions which hold in A. Therefore we fixed
the first evaluation to avoid redundancies, and since we assume A to have a
single cluster, the construction above will collect all the evaluation subtractions
we need to describe A. For our applications, the actual value of α will never
matter, thus we will simply write E(S).

We also define DN (S) to be the set of linear functionals

DN (S) =
{
f → f

(j)

djk
(αi) : αi ∈ S, j ∈ [1..N − 1], djk ∈ d

j
}
.

Lastly we use these two sets of conditions to define the subalgebra

QN (S) =
⋂

L∈E(S)∪DN (S)

ker L.

If you don’t believe that QN (S) is an algebra, just note that f
(j)

djk
(αi) is a αi-

derivation in any algebra where f
(j)

dlk
(αi) = 0 for all dlk where l < j (this follows

from the Leibniz rule). Now imagine a construction of QN (S) where we start by
kerneling K[x] with all evaluation subtractions of E(S) and trivial derivations
in elements of S, and work our way up inductively by kerneling by all higher
order derivations which are available, until we reach QN (S).
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Now, as we will soon see, the Main Theorem will follow fairly easily as long as
we can show that A contains some QN (sp(A)), and that the derivations over
any QN can be written as in equation 4. I.e we need the following two lemmas.

Lemma 45. Let A ⊂ K[x] be a single cluster subalgebra of finite codimension.
Then there exist some N ∈ N such that

QN (sp(A)) ⊆ A.

Lemma 46. Let S be a set of spectral elements, α ∈ S, and N ∈ N. Then

Dα(QN (S)) = 〈D2N (S) \ DN (S)〉

Unfortunately, proving these two lemmas will be pretty difficult though. We
worry about this later and assume their validity for now in giving a proof of the
Main Theorem.

Proof of The Main Theorem of α-Derivations. Consider first the case when A
is a single cluster subalgebra. Let α ∈ sp(A) and D be an arbitrary α-derivation
on A. By the Lemma 45, there exist some N ′ such that QN ′(sp(A)) ⊆ A. More-
over, we know from Lemma 46 that Dα(QN ′(sp(A))) ⊂ D2N ′(sp(A)). But as D
must be an α-derivation when restricted to QN ′(sp(A)) it follows D

∣∣
QN′ (sp(A))

can be written as in equation (4) with N = 2N ′. Moreover, since QN ′(sp(A)) is
obtained from A as the intersections of kernels of linear functionals which also
can be written as (4), it follows from Lemma 4 that D can be written as (4) as
well.

Generalization to arbitrary subalgebras A ⊂ K[x] of finite codimension (i.e not
necessarily single cluster), can be done with induction and Theorem 40.

We have two nested induction processes. First an outer one on the number of
clusters. Let A be an algebra and C ⊂ K a set of spectral elements which form
one of the clusters in A. Let D′, E ′ be all derivations and evaluation subtractions
which vanish on A that don’t pertain to the cluster C. Let A′ be the algebra
obtained as the kernel of D′ and E ′. Similarly, let D′′, E ′′ be the conditions
which only pertain to C and let A′′ be the algebra obtained as the kernel of
these conditions. Note that we then have

A =
⋂

L∈D′∪D′′∪E′∪E′′
kerL

We proved above that the Main Theorem holds over single cluster algebras such
as A′′. Let the induction hypothesis of the outer induction process be that the
Main Theorem holds over A′. Then an inner induction process can be applied
with Theorem 40 on the conditions of D′∪E ′ to obtain that the C-derivations of
A are the same as those of A′′, and similarly, we can obtain that the sp(A) \C-
derivations of A are the same as those of A′. This gives the Main Theorem over
A.
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The remainder of this section will be dedicated to proving lemmas 45 and 46. In
the interest of being structured, we will decompose the constructions and logic
into various definitions and lemmas, even if they won’t be used for any other
sections. The route we will take is to first define a subalgebra Q′N (sp(A)) which
is easy to show is contained in A for some N ∈ N. After this we will spend
quite a bit of effort to show that Q′N (sp(A)) = QN (sp(A)) which will result in
a proof of lemma 45. We will obtain a proof of lemma 46 along the way as well.

Definition 47. Let P (α) = {xi − αi : αi ∈ α} and PN (α) be the subset of
P (α)mon consisting of all monomials in P (α) of total degree N . For example,

P3(2, 1) = {(x1 − 2)3, (x1 − 2)2(x2 − 1), (x1 − 2)(x2 − 1)2, (x2 − 1)3}.

I.e if |α| = n, then

|PN (α)| =
(
n+N − 1

N

)
.

Elaborating further, if S is a set of spectral elements we will use the no-
tation ΠN (S) to denote the set consisting of all possible product combina-
tions of elements from the sets PN (α) for every α ∈ S. For example, if
S = {(2, 1), (0, 0), (1, 3)}, then every element of ΠN (S) will be a product of
one polynomial in PN (2, 1), one polynomial in PN (0, 0), and one polynomial in
PN (1, 3), and every possible combination of polynomials drawn from the three
sets, will exist as a product in ΠN (S). I.e, the set will have magnitude

|ΠN (S)| =
(
n+N − 1

N

)s
,

where s = |S| and all polynomials in ΠN (S) will have total degree Ns. A quick
example is given by

Π2({(0, 0), (0, 1)}) ={x41, x31(x2 − 1), x21(x2 − 1)2,

x31x2, x
2
1x2(x2 − 1), x1x2(x2 − 1)2

x22x
2
1, x

2
2(x2 − 1)x1, x

2
2(x2 − 1)2}.

If the reader is familiar with the theory presented in [2], note that in the uni-
variate case, we have ΠN (sp(A)) = {πNA (x)}, where πA is notation reused from
Theorems 19 and 20 in [2].

Finally, we define Q′N to be the ideal subalgebra generated by ΠN as

Q′N (S) = ΠN (S)K[x] + K.

To be clear, here we write ΠN (S)K[x] to be the ideal generated by ΠN (S) in
K[x].
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Our end goal here is to show that Q′N = QN . We constructed Q′N as aobve
because we want all of the conditions that were used to define QN to vanish on
Q′N , and as we will soon see, being divisible by N linear factors that all vanish
on some of the elements of α ensures that a polynomial will be annihilated by
DN ({α}). Also we want the largest such algebra, indeed we need for Q′N = QN .
This is why we don’t just multiply all polynomials of the PN (α) into one big
polynomial and consider the algebra it generates. By the end of this section,
we will have shown that we Q′N is indeed the largest such algebra (if you have
doubts and thoughts regarding least common multiples, see the remark after
the following lemma).

Lemma 48. Let f ∈ K[x], π ∈ PN (α) and D ∈ DN ({α}). Then D(fπ) = 0.

Proof. Let D be given as D(f) = f
(j)

djk
(α). Note that j < N by the construction

of DN ({α}). By the generalized Leibniz rule we have

D(fπ) =
∑

dil∈P(d
j
k)

(f)
(j−i)
djk\d

i
l

(α)(π)
(i)

dil
(α).

We now claim that (π)
(i)

dil
(α) = 0 for all i < N . To see this fix some xk ∈ x. If

dil has a higher count of xk than π contains factors of xk − αk, then the dil-th
derivative will completely annihilate π. If instead dil has at most the same count
of xk as the amount of factors xk−αk in π, for all xk ∈ x, and a lower count for

at least one xk ∈ x, then (π)
(i)

dil
will be divisible by some xk − αk, after which

the α-evaluation will annihilate (π)
(i)
di . Finally one of these cases must occur

since π consists of N factors and i < N . It follows that all terms in the sum
above are zero and D(hπ) = 0.

It follows that Q′N ⊂ QN .

Corollary 49. Let S be a set of spectral elements. Then Q′N (S) ⊂ QN (S).

Proof. It’s trivial to see that E(S) kills all of Q′N (S) since the generators of
Q′N (s) all have roots in every element of S and it follows from the prior lemma
that all elements in DN (S) vanish on Q′N (s).

Remark. You might have noticed that we can obtain a seemingly larger subal-
gebra on which the conditions that define QN vanish. If we instead would have
combined the elements of the various PN via taking the least common multiple
as opposed the product, then all of the proofs above would still hold and such
a construction would result in a subalgebra which is contained in QN . But as
said before, we will see that QN = Q′N so it must be the case that these ’LCM
combinations’ are obtainable as linear combinations of elements in Πn.
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To give some evidence of this, consider the example S = {(0, 0), (0, 1)}. Then

P2(0, 0) ={x21, x1x2, x22},
P2(0, 1) ={x21, x1(x2 − 1), (x2 − 1)2},

Π2(S) ={x41, x31(x2 − 1), x21(x2 − 1)2,

x31x2, x
2
1x2(x2 − 1), x1x2(x2 − 1)2

x22x
2
1, x

2
2(x2 − 1)x1, x

2
2(x2 − 1)2}.

We now write some of the ’LCM combinations’ of P1(0, 0), P2(0, 1) as linear
combinations of elements in Π2(S),

lcm(x21, x
2
1) = x21 = x21x

2
2 − x21(x2 − 1)2 − 2x21x

2
2 + 2x21x2(x2 − 1),

lcm(x21, x1(x2 − 1)) = x21(x2 − 1) = x21x2(x2 − 1)− x21(x2 − 1)2,

lcm(x1x2, x1(x2 − 1)) = x1x2(x2 − 1) = x1x
2
2(x2 − 1)− x1x2(x2 − 1)2,

and so on... Of course we could have defined Q′N as the set of these LCM
combinations. We don’t do this as it would complicate some of the upcoming
proofs, and the current definition works.

We now show that some Q′N is contained in A.

Lemma 50. Let A ⊂ K[x] be a single cluster subalgebra of finite codimension.
Then there exist some N ∈ N such that Q′N (sp(A)) ⊂ A.

Proof. We will prove the lemma by induction on the codimension of A. For our
induction step, we will only consider kerneling by α-derivations. We can do this
since we can kernel by all evaluation subtractions before we start kerneling by
α-derivations. This will require our base case to pertain to an algebra obtained
by kerneling with a certain amount of evaluation subtractions.

Consider the case of a single cluster algebra A which is obtained from K[x]
by kerneling by evaluation subtractions only. Let N = 1 and note that any
π ∈ ΠN (sp(A)) has a root in every spectral element. Hence E(fπ) = 0 for all
π ∈ ΠN (sp(A)), f ∈ K[x] and any evaluation subtraction E that holds in A.
Membership of linear combinations f1π1 + f2π2 follows by linearity of E.

Moving on to the induction step, let A′ be a single cluster subalgebra of finite
codimension such that the statement of the lemma holds in A′ with N ′. Let A
be obtained from A′ as the kernel of some non-trivial α-derivation D. We set
N = 2N ′. Note that for any β ∈ sp(A) = sp(A′), we have that each polynomial
in PN (β) can be written as a product of two polynomials in PN ′(β). Thus
each π ∈ ΠN (sp(A)) can be written π = π1π2 for π1, π2 ∈ ΠN ′(sp(A′)). It
follows that fπ = (fπ1)(π2) ∈ M2

α(A′) whence D(fπ) = 0 and fπ ∈ A for
all π ∈ ΠN (sp(A)), f ∈ K[x]. Membership of linear combinations follows by
linearity of D.
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We now have everything we need to prove Lemma 46.

Proof of Lemma 46. Our first ambition is to show that the statement of the
lemma holds when S = {α}, I.e that

Dα(QN ({α})) = 〈D2N ({α}) \ DN ({α})〉. (5)

As it turns out, it will be easier to deduce the derivations space of Q′N ({α}).
Thus we begin by showing that QN ({α}) = Q′N ({α}). We can see this by a
dimensional argument. The codimension of QN ({α}) is given as the amount of
linear functionals in E({α}) ∪ DN ({α}), but E({α}) is empty so

codim QN ({α}) = |DN ({α})|

=

N−1∑
j=1

|dj |

=

N−1∑
j=1

(
n+ j − 1

n

)

=

(
n+N − 1

n

)
,

where we used the Hockeystick identity for the last equality. As for the codimen-
sion of Q′N ({α}), note that Q′N ({α}) contains polynomials of all total degrees
greater than or equal to N . There are

(
n+N−1

n

)
non-constant polynomials of

total degree less than N . Thus we get the bound

codim Q′N ({α}) ≤
(
n+N − 1

n

)
= codim QN ({α})

But we know from Corollary 49 that Q′N ({α}) ⊂ QN ({α}). Combining this
with the derived codimensional inequality yields Q′N ({α}) = QN ({α}) (The
bound above is only tight when |S| = 1 and can unfortunately not be used to
prove Lemma 45).

Now we perform a change of variables so that α 7→ 0. In this setting, a minimal
SAGBI basis for Q′N ({0}) is given by all monomials of total degrees between N
and 2N − 1 inclusively. There are(

n+ 2N − 1

n

)
−
(
n+N − 1

n

)
such monomials and it follows from Theorem 20 that

dim Dα(Q′N ({0})) ≤
(
n+ 2N − 1

n

)
−
(
n+N − 1

n

)
.

We also have that

|D2N ({0}) \ DN ({0})| =
(
n+ 2N − 1

n

)
−
(
n+N − 1

n

)
,
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so equality (5) would follow in the α = 0 case if we could show that

〈D2N ({0}) \ DN ({0})〉 ⊂ Dα(Q′N ({0})), (6)

since D2N ({0}) \ DN ({0}) is a linearly independent set, even when considered
as elements of the dual of Q′N ({0}).

To see that the inclusion (6) holds, consider the generalized Leibniz rule and

Lemma 48. Indeed, given f, g ∈ K[x], π1, π2 ∈ ΠN ({0}) and D = f 7→ f
(j)

djk
∈

D2N ({0}) \ DN ({0}) we have

D(fgπ1π2) =
∑

dil∈P(d
j
k)

(fπ1)
(i)

dil
(gπ2)

(j−i)
djk\d

i
l

and since j < 2N either i or j− i must be less than N whence every term is zero
by Lemma 48 as π1, π2 both contains factors from PN (α). Thus D vanishes on
Q′N ({α}) and

Dα(Q′N ({0})) = 〈D2N ({0}) \ DN ({0})〉.

Undoing our change of variables yields

Dα(Q′N ({α})) = 〈D2N ({α}) \ DN ({α})〉.

As we’ve shown that Q′N ({α}) = QN ({α}), we have

Dα(QN ({α)}) = 〈D2N ({α}) \ DN ({α})〉.

If we now let αi be an arbitrary element in S, Theorem 40 and induction yields
that

Dαi

(⋂
α∈S

QN ({α})

)
= 〈D2N ({αi}) \ DN ({αi})〉,

after which using Theorem 42 inductively yields

Dα(QN (S)) =
⊕
α∈S
〈D2N ({α}) \ DN ({α})〉 = 〈D2N (S) \ DN (S)〉

which completes our proof.

We shall require one more lemma before we are able to prove Lemmas 45 and
46.

Lemma 51. Let S be a set of spectral elements and N ∈ N. Then Q′N (S) =
QN (S).

Proof. We already know from Corollary 49 that Q′N (S) ⊂ QN (S). Our strategy
for this proof is to show that any derivations or evaluation subtractions which
hold over Q′N (S) also hold over QN (S), after which equality ensues. I.e, we need
to show that no extra derivations or evaluation subtractions hold over Q′N (S).
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If it were the case that Q′N (S) ( QN (S), then by Theorem 24, Q′N (S) would
be contained in some algebra which can be obtained as the kernel of some eval-
uation subtraction or α-derivations. Thus we only need to consider evaluation
subtractions, trivial α-derivations, and α-derivations in any of the Dα(Q′N (S))
for α ∈ S.

We begin with the case when D ∈ Dα(QN (sp(A))) is a non-trivial α-derivation
given as

D(f) = f
(j)

djk
(α)

for some djk ∈ dj and j ∈ [N..2N − 1]. We will construct a polynomial in
Q′N (sp(A)) on which D is not zero. Let

π1(x) =
∏
xi∈djk

(xi − αi).

Then π1 = fπ̂1 for some π̂1 ∈ PN (α), f ∈ K[x] and also D(π1) = M for some
integer M . For every spectral element in β ∈ sp(A)\{α} there must exist some
index i(β) such that βi(β) 6= αi(β). Construct

π2(x) =
∏

β∈sp(A)\{α}

(xi(β) − βi(β))N .

Then π2(α) 6= 0 and π = π1π2 ∈ ΠN (sp(A)) ⊂ Q′N (sp(A)). Applying our
derivation, we get

D(π) = (π1π2)
(j)

djk
(α)

=
∑

di∈P(djk)

(π1)
(i)
di (α)(π2)

(j−i)
djk\di

(α)

= (π1)
(j)

djk
(α)π2(α)

= Mπ2(α)

6= 0.

For arbitrary α-derivations, we can combine linear combinations of polynomials
like π above, one for each derivative evaluation, and since K is infinite, we can
chose scalars in such a way that the given α-derivation doesn’t vanish on the
linear combination of polynomials.

To see that no extra trivial derivations hold, let γ 6∈ sp(A). Just like we con-
structed π2, we can construct a polynomial π3 ∈ Q′N (sp(A)) such that π3 is a
product of Ns linear factors and π3(γ) 6= 0. Then if we multiply π3 by some
xi − γi we get that (π3γi)

′
xi

= π3(γi) 6= 0. We extend the result to deal with
arbitrary γ-derivations in exactly the same way as we did for non-trivial α-
derivations above.
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To see that no evaluation subtractions hold, let γ 6∈ sp(A). Just like we con-
structed π2 and π3, we can construct a polynomial π4 ∈ Q′N (sp(A)) such that
π4 is a product of Ns linear factors and π4(γ) 6= 0. Let δ ∈ Kn such that
δ 6= γ. Then there exist some index i such that δi 6= γi. Let h = π4(xi − δi) ∈
Q′N (sp(A)). Then h(γ)− h(δ) = h(γ) 6= 0, and γ 6∼ δ over Q′N (sp(A)).

Lemma 45 now follows trivially,

Proof of Lemma 45. Follows immediately from Lemmas 50 and 51,

and we can finally considered the Main Theorem as settled.
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