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Abstract

This thesis aims to further investigate the viability of using reinforcement learning,
specifically Q-learning, to schedule shared resources on the Ericsson Many-Core
Architecture (EMCA). This was first explored by Patrik Trulsson in his master thesis
Dynamic Scheduling of Shared Resources using Reinforcement Learning (2021).

The shared resources complete jobs assigned to them, and the jobs have dead-
lines as well as a latency. The Q-learning based scheduler should minimize the
latency in the system. Most importantly, it should avoid missing deadlines. In this
work, the Q-learning algorithm was tested on a simulation model of the EMCA that
Trulsson built. Its performance was compared to a baseline and random scheduler.

Several parts of the Q-learning algorithm were evaluated and modified. The
action and state space have been made smaller, and the state space has been made
more applicable to the real system. The reward function, as well as other parameters
of the Q-learning, were altered for better performance.

The result of all of these changes was that the Q-learning algorithm saw an in-
crease in performance. Initially, it performed slightly better than the baseline on
only one of the two configurations it was evaluated on, but in the end it performed
significantly better on both. It also handles the introduction of noise to the sim-
ulation without a significant decrease in performance. While there are still things
that might require further investigation, the algorithm always performs better than a
baseline scheduler provided by Ericsson and is overall more suited for a real imple-
mentation due to the changes that have been done.
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1
Introduction

The signal processing required for base stations using 5G at Ericsson uses a chip
with a system called the Ericsson Many-Core Architecture (EMCA), which is a
multi-core environment with concurrent jobs being executed on shared hardware
resources. On the EMCA, there are one or several carriers that either send (called
Downlink (DL)) or receive (called Uplink (UL)) radio signal transmissions, the pro-
cess of which is called Downlink (DL) or Uplink (UL) respectively. In order to send
or receive transmissions, beamforming is used, which requires large amounts of
calculations to be done. These calculations can be made faster using specialized
hardware, so called Beamforming Accelerator Cores (BACs). These can be mod-
elled as a shared resource between UL and DL transmissions, the usage of which
needs to be scheduled effectively in order to minimize overall system latency.

However, such efficient scheduling can be challenging to achieve due to the
many different kinds of carrier configurations. These may need different kinds of
scheduling behaviors in order to be considered optimal. Another thing that needs
to be taken into account is that UL and DL transmissions have different latency
definitions. It is also important that deadlines are met.

Using reinforcement learning to achieve this may alleviate some of these diffi-
culties. It has earlier been investigated by Trulsson (2021) for his Master Thesis. He
explored the use of reinforcement learning to schedule tasks with shared resources
on the EMCA in order to minimize latency and meet deadlines. He implemented Q-
learning and a Deep Q-learning Network (DQN). One of the conclusions he came
to was that there were definite areas with room for improvement, some of which we
looked at and tried to optimize.

Note that since our work is a continuation of that of Trulsson (2021), some parts
of the report such as the Background chapter will look similar to his, since they treat
the same subject matter. The report is written with the goal that you should not have
to read his report to understand what we have done.
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Chapter 1. Introduction

1.1 Goals

Our goal was to improve the Q-learning algorithm from Trulsson (2021) such that it
outperforms a static scheduler on the massive beamforming part of the EMCA. This
means that it should have a lower latency, as well as avoiding missing deadlines. The
following list summarizes key points of investigation ordered by priority, the three
first being the most important.

• Evaluate and improve the reward function

• Evaluate and improve the state- and action space

• Evaluate and improve exploration, e.g., exploring whether the system can
protect itself from deadline misses while exploring?

• Try to reduce the agent’s dependency on time in order to save memory for a
real implementation.

• Evaluate if any extensions to the Q-learning need to be added, like model
based reinforcement learning, decision trees, etc.

1.2 Method

We are using the EMCA simulation model that Trulsson (2021) built as a starting
point, while possibly tweaking it if necessary. We will investigate different ways to
improve the reinforcement learning he used based on the points above. The goal for
the algorithm is to be able to schedule UL and DL types of symbols such that job
deadlines are met and latency is minimized. Configurations such as state space and
action space will be altered and benchmarked. Certain points of interest noted by
Trulsson (2021) will be taken into account.

1.3 Delimitations

In general, we have similar delimitations as Trulsson (2021), which are that the
EMCA model is somewhat simplified, see Chapter 3, and that the actions available
to the scheduler are not all possible actions.

Additionally, the focus of this report is on Time Division Duplex (TDD), while
Frequency Division Duplex (FDD) has not been investigated.
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1.4 Report Outline

1.4 Report Outline

Introduction
Briefly describes the background of the problem, the purpose of the report, as well
as the method.

Background
Conveys the information about the underlying system relevant to the problem, as
well as background for the theory of reinforcement learning that is needed to under-
stand the work done in this report.

Earlier Work
Contains a summary of the work of Trulsson (2021), particularly the parts that con-
cern us and serve as our starting point as we continue to work on the problem. Also
explains some bugs that were found and fixed.

Modifications
Depicts the modifications and testing that have been done in order to improve the
Q-learning algorithm. It focuses on one modification at a time, being evaluated and
discussed.

Results
Presents the final results in-depth, and also evaluates the Q-learning agent’s robust-
ness in more difficult situations, such as adding noise and increasing contention.

Discussion
Contains a reflection of the results, as well as potential avenues to explore for future
work.
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Chapter 1. Introduction

1.5 Individual Contributions

The programming work has been done together, utilizing pair programming and
switching between being driver and navigator weekly. Both of us have been running
tests, but Johan in general ran more.

A lot of the work on the report has been done together, because some parts
required discussion as to how to best convey the information. Listed below are
the sections and things that have been written/done separately, although the other
person has of course read through them and given feedback.

Work by Elin:

• Created the images that were needed in addition to the ones generated from
the program. She also modified images that needed larger text in order to be
presentable.

• Chapter 1.

• Exploration & Exploitation in Section 2.2.

• Chapter 3

• Subsections Symbol Index and Slot Progression in Subsection 4.3

• The results and discussion regarding System 1 in Chapter 5

• Subsections Delays in the System and Configurations in Chapter 6

Work by Johan:

• Table formatting of results

• Subsection 2.2, excluding Exploration & Exploitation

• Subsections Number Jobs and Waiting Jobs in Subsection 4.3

• The results and discussion regarding System 2 in Chapter 5

• Subsections State Space and Future Work in Chapter 6

14



2
Background

2.1 Transmission

The EMCA chip sits in a base station with one or multiple carriers that handle
incoming (UL) and outgoing (DL) signal transmissions. The carriers are responsible
for generating symbols in a transmission [Trulsson, 2021]. They are divided into
subcarriers [Dahlman et al., 2018]. The spacing between subcarriers affects the time
between symbol arrivals [Lei et al., 2020].

An important part of handling the transmissions is beamforming, which requires
complex calculations. To alleviate the burden, BACs are used for the calculations.
However, these are a shared hardware resource between all transmissions and carri-
ers, and thus need to be properly scheduled to maximize throughput and minimize
latency.

Beamforming
Beamforming is the act of focusing a transmission in a specific direction, allowing
a majority of the energy being sent to arrive only at the intended receiver. It can be
done both ways, by having the receiver only listen to signals coming from the trans-
mitter. This decreases the noise in the entire cell, increasing throughput [Rommer
et al., 2019].

Orthogonal Frequency Division Multiplexing
New Radio (NR) is a radio-access technology released in 2017 that supports the use
cases required by 5G. It builds upon its predecessor Long Term Evolution (LTE),
which was released in 2009 and is associated with 4G. The organization which de-
velops these technical specifications is called Third Generation Partnership Project
(3GPP) [Dahlman et al., 2018].

In both NR and LTE the transmissions are sent and received by carriers using
Orthogonal Frequency Division Multiplexing (OFDM), which is a transport tech-
nology taking advantage of several equally spaced subcarrier frequencies in order
to split and transmit a high data rate stream into several parallel lower data rate
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Chapter 2. Background

streams. The spacing between each subcarrier frequency is referred to as the sub-
carrier spacing. In OFDM each and every subcarrier is in theory orthogonal to each
other, allowing the spectrum of each subcarrier to overlap with no risk of interfering
with one another [Osseiran et al., 2016].

The subcarrier spacing of a carrier is determined by its numerology, see Table
2.1. Numerology 0 is supported by LTE, while NR supports a wider range of nu-
merologies. The subcarrier spacing affects the duration in time of an OFDM symbol
[Lei et al., 2020]. In this work, the focus is on numerologies 0 and 1.

For NR, transmissions are divided into 10 ms long frames, which consist of 1
ms long subframes. A subframe, in turn, contains a number of slots, each such slot
containing 14 OFDM symbols each. The higher the numerology, the shorter the
time between symbol arrivals, and the more slots a subframe contains, see Figure
2.1 [Dahlman et al., 2018].

Numerology Subcarrier spacing (kHz) Slot length (ms)
0 15 1
1 30 0.5
2 60 0.25
3 120 0.125

Table 2.1 Conversion table between numerology and subcarrier spacing.

Figure 2.1 Frame structure and its relation to numerology.

16



2.1 Transmission

Time Division Duplex
When the carriers send transmissions, this can be done in different duplex schemes,
and one of them is Time Division Duplex (TDD) [Rommer et al., 2019]. TDD means
that the arrival of UL and DL symbols are separated in the time domain but use the
same carrier frequencies; the UL and DL symbols will arrive at different points in
time [Dahlman et al., 2018]. What kind of symbol that will arrive at a given point
in time depends on the TDD pattern.

One example of a pattern would be DDSU, where each letter is representative of
a slot: D or U indicates that the entire slot consists of either only DL symbols or UL
symbols respectively.

S represents the special slot, which has the format (X:Y:Z) meaning that the slot
contains X DL symbols, Y GAP symbols, and Z UL symbols, sent in that order. A
GAP symbol means that nothing is being sent, and a special slot always contains
at least one GAP symbol, which is used to enact a guard period. This guard pe-
riod ensures that there are periods where no transmissions are being sent, which is
needed when the transmission switches from DL to UL in order to avoid interfer-
ence [Dahlman et al., 2018].

Beamforming Jobs
Beamforming Jobs (BFJs) are the jobs in the system relating to beamforming cal-
culations. For the purposes of this report, the terms Beamforming Job and job are
used interchangeably. Note that Trulsson (2021) referred to these as Super Jobs.

A Physical Resource Block (PRB) is a unit of work, consisting of an OFDM
symbol in the time domain, as well as 12 adjacent subcarriers in the frequency
domain. Each BFJ is associated with a PRB size which directly affects the time a
BAC takes to complete the job [Trulsson, 2021].

Each symbol results in the creation of several BFJs, the number of which is de-
termined together with the number of PRBs such that they exploit the full bandwidth
of the carrier the symbol belongs to [Trulsson, 2021].

The bandwidth of a carrier can be expressed in PRBs. Since each carrier has a
subcarrier spacing and each PRB has 12 adjacent subcarriers, a carrier with 20 MHz
bandwidth and a subcarrier spacing of 15 kHz will have a PRB of 100. This is be-
cause 100 ·12 ·15≈ 18 MHz. The reason that we do not end up with exactly 20 MHz
is because guard bands without data transmission are needed to avoid interference
[Lei et al., 2020].

In the case of TDD, different types of transmissions generate different job types
in a base station. A UL transmission generates two types of Antenna to Beam (ATB)
jobs, ATB1 and ATB2, whereas a DL transmission generates Beam to Antenna
(BTA) jobs [Trulsson, 2021]. In this report, the term for a symbol and the term
for the jobs generated from it are sometimes used interchangeably depending on
context.
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Chapter 2. Background

Resource Pool
Since there are a limited amount of BACs, not all jobs can be sent to them imme-
diately. Instead, all jobs are first sent to a priority queue. The BACs then retrieve
the jobs with the highest priority and earliest arrival, performing the beamforming
calculations without interruption until finished. Together, the queue and the BACs
are called the resource pool.

System Overview
It is the task of the scheduler to handle arriving symbols such that primarily, dead-
lines misses are avoided at all costs, and secondarily that the latency is minimized.
The arrival timing of a symbol depends on the number of carriers and their prop-
erties, and the time between symbol arrivals from the same carrier is referred to
as symbol time. The deadline also depends on carrier properties, being located a
set amount of symbol times after the symbol’s arrival. The scheduler determines the
number of BFJs, and then BFJ tokens are generated from the symbol. The scheduler
also decides when these tokens should be sent to the resource pool, and what prior-
ity they all have in the priority queue. The beamforming calculations for a symbol
are complete when the BACs have completed the work on all of the generated BFJ
tokens.

Latency Definitions
Transmissions from a user to the base station are referred to as Uplink. For UL
symbols, the latency is defined by the time between arrival to the scheduler and the
completion of the beamforming calculations. This includes the time before being
sent to the resource pool, the time waiting in the priority queue, and the time for the
beamforming calculations, see Figure 2.2.

Figure 2.2 Latency definitions for UL and DL symbols.
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2.2 Reinforcement Learning

DL symbols, where the base station is sending transmissions to the user, have a
different latency definition. The transmissions have a set time upon which they are
sent, i.e., their deadline, which means that having the BFJ complete too long before
that time takes up memory. The latency for a DL symbol is determined by the time
spent in the resource pool, and the margin between the beamforming calculations
finishing and the deadline.

Missing deadlines might lead to a reduced quality of service or waste radio
resources if a resubmission is needed.

2.2 Reinforcement Learning

Reinforcement learning is a subset of machine learning concerned with learning
how to map certain situations into actions based on trial and error. It differs from
other machine learning paradigms in the sense that the learning agent learns by
directly interacting with its environment and observing the impact. This, as opposed
to learning based on provided sets of situations and corresponding optimal actions
[Sutton and Barto, 2018].

In order to make this possible, the agent needs a way of observing the environ-
ment, known as the state. It also needs a set of actions which can influence the envi-
ronment. The situation can be described using a Markov Decision Process (MDP),
which is used to formalize the reinforcement learning problem into having states,
actions, and goals. The mapping from certain situations to actions then becomes a
mapping between states and actions, also known as the policy. The goal of the agent
is to find the optimal policy; the action for a given state that gives the best result.
This is defined using rewards, signals that the environment sends to the learning
agent to measure the worth of an action based on its impact, see Figure 2.3 [Sutton
and Barto, 2018].

Figure 2.3 The interaction between an agent and an environment in an MDP. Note
that this uses a similar denotation as Equation 2.2.
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Chapter 2. Background

While a reward represents the short-term value of an action, the value function
represents the long-term value, being a representation of cumulative future rewards.
This is because even if the immediate reward of an action is not high, the resulting
state might be advantageous in the sense that it offers high rewards in the long run,
and vice versa. It is the value function that is used to make decisions [Sutton and
Barto, 2018].

A reinforcement learning algorithm may also be model-based, while it is called
model-free if it is not. A model imitates the environment and how it behaves, which
means that it can be used to predict what might happen in the future and allow the
agent to make decisions while taking into account what state that decision will result
in [Sutton and Barto, 2018].

Temporal Difference Learning
As described by Wiering and Van Otterlo (2012), Temporal Difference (TD) learn-
ing is a branch of reinforcement learning which does not require a model. It uses a
technique called bootstrapping to learn over the course of a training episode. The
value function is estimated using bootstrapping, which means that values are based
on other estimated values [Sutton and Barto, 2018]. This means that algorithms us-
ing TD-learning do not have to wait until the end of a training episode to update
their value functions, but instead do so continuously, as opposed to other methods
[Wiering and Van Otterlo, 2012].

The simplest version of TD is called TD(0), or one-step TD, and its value func-
tion estimation is seen in Equation 2.1. Upon transition from state St to St+1 and
receiving the reward Rt+1, the estimated value V (St) is updated. The update takes
into account the current estimated value, the reward, and the estimated value of the
next state [Sutton and Barto, 2018].

V (St) =V (St)+α
[
Rt+1 + γV (St+1)−V (St)

]
(2.1)

α ∈ [0,1] is the step-size parameter. Sutton and Barto (2018) show several examples
where α can be either constant or decreasing over the course of training. Wiering
and Van Otterlo (2012) call it the learning rate, which influences the impact of the
value estimate updates. According to Even-Dar et al. (2003), the rate of convergence
is dependent on how the learning rate changes throughout the training.

γ ∈ [0,1] is the discount rate for future rewards. It determines the weight of
future rewards, which means that depending on how far into the future a reward is
received, it will matter more or less. The reward decreases each time step into the
future, for example: At time step k, the reward will only be worth γ k−1 of what it
would be if it were a current reward [Sutton and Barto, 2018].
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2.2 Reinforcement Learning

Q-learning
Q-learning is an off-policy, model-free TD algorithm. Off-policy means that the
value function is not approximated using the policy, but another policy, tending to be
more exploratory [Sutton and Barto, 2018]. Model-free approaches to TD learning
use state-action value functions, denoted Q(St ,At), to estimate values based on state
and action taken [Wiering and Van Otterlo, 2012]. In Q-learning the value function
is approximated in accordance with Equation 2.2 [Sutton and Barto, 2018]. The
difference compared to the TD value function estimate is that the Q-learning value
function also includes the action that was taken, and the estimated value of the next
state is based on the action in that state that has the highest value estimate.

Q(St ,At) = Q(St ,At)+α
[
Rt+1 + γ max

a
Q(St+1,a)−Q(St ,At)

]
(2.2)

Given an infinite amount of visits to each state-action pair, Q-learning is guar-
anteed to find the optimal policy if α is reduced suitably, independently of the ex-
ploration policy [Wiering and Van Otterlo, 2012].

Exploration and Exploitation
Choosing an exploration policy is important. Exploitation of current knowledge is
needed because it means performing the current best action. However, the agent
should explore other actions in order to learn new things. Exploration does not al-
ways find a new best action though [Wiering and Van Otterlo, 2012].

An example of a simple exploration policy is the greedy method. This method
entails selecting the action with the current highest estimated value, i.e., exploiting
current knowledge. However, since this method never tries any other possible ac-
tions, it runs the risk that an inferior action is considered to be better than an optimal
one [Sutton and Barto, 2018].

This is remedied using the ε-greedy method, which instead chooses to exploit
with a probability of 1− ε , and will perform an exploratory action, trying out an
action randomly, with a probability of ε [Sutton and Barto, 2018].

With ε having a high value the agent will perform more exploratory actions. This
may mean that it finds the optimal action quickly, but does not choose to perform
it as often. A lower value may mean that the agent takes longer to find the optimal
action, but exploits it more. It is also possible to have ε decrease from a higher value
to a lower in order to benefit from the advantages of both [Sutton and Barto, 2018].
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3
Trulsson’s Work

Trulsson (2021) set out with a similar goal to ours; to implement a reinforcement
learning algorithm that would outperform a static scheduler. He also built the simu-
lation model that we are using to evaluate the algorithms.

3.1 Schedulers

Apart from the agent itself, two other schedulers were used for comparison. One
was a static scheduler provided by Ericsson which serves as the baseline, making
decisions solely based on the job type of the symbol. The other was a scheduler that
made decisions at random in order to showcase the challenge of achieving good
scheduling.

3.2 Simulation Model

Trulsson (2021) built the simulation model mimicking a possible scenario for the
EMCA using SimPy, a discrete event simulator [Scherfke et al., 2020a]. Using it,
symbols can be sent to the scheduler at an appropriate time based on a traffic file,
imitating how it would work in real life with symbols being sent to the system by
different carriers. See Figure 3.1 for an overview.

Figure 3.1 An overview of the simulation model flow.
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3.3 Configurations

The traffic file is generated using a given TDD pattern and based on the current
configuration, discussed further below. Notably, a D slot will always result in BTA
symbols being generated, whereas a U slot will result in one ATB1 and one ATB2
symbol per OFDM symbol. ATB1 symbols are hardcoded in the sense that one job
is generated per symbol, which means that they have a fixed PRB size.

The simulation program reads the symbols from the traffic file, sorts them by
timestamp, and puts them in the FIFO symbol queue. The timestamp represents
the moment in time when the symbol will arrive to the system. A SimPy process
then extracts one symbol from the queue at a time, waits until it is time to send the
symbol, then sends it to the agent for scheduling.

The agent then makes its decision, determining BFJ PRB size, priority, and wait
time. The wait time is decided in an interval between the symbol’s arrival time and
its deadline; its precision depending on a constant amount of time steps, referred
to in this report as time precision. This will be further discussed in Section 5.1.
Once the wait time has passed, a number of BFJ tokens representing the jobs are
generated from the symbol based on the decided BFJ PRB size, and then sent to
the BFJ token queue. The BFJ token queue is modelled as a SimPy priority store,
which means that when tokens are extracted from it, this will be done according to
the decided priority [Scherfke et al., 2020b].

The BACs are simulated as a process that pops BFJ tokens from the BFJ token
queue and waits the amount of time the job would take, calculated based on the
properties of the token. Then, the result is sent to the result queue. A symbol is
considered to be finished when all generated jobs are done and that is when the Q-
learning can learn something from the result. The process that handles the results
pops items from the result queue, and updates the agent accordingly.

Note that the simulation does not include the runtime of the scheduler and the
BFJ queue, which is a simplification of how it is in reality.

3.3 Configurations

The agent was trained on input consisting of 10 UL symbols followed by 10 DL
symbols, which in actuality becomes 30 symbols total since UL symbols generate
both ATB1 and ATB2 symbols. The main situation being highlighted was the switch
from the UL to DL slot, wherein the first DL symbols start arriving before the
UL symbols stop coming. Throughout an agent being trained and evaluated, the
configuration remains the same. For example, there will always be the same amount
of carriers sending traffic. The traffic file is not part of the configuration, even if it
is based on it.

The Q-matrix is zero-initialized, meaning that at the start of the training, all
actions have equal value. The size of the matrix is determined by the state space and
action space. That is to say, the amount of different states, as well as the number of
possible actions. The value of an action in a given state corresponds to the value in
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Chapter 3. Trulsson’s Work

the Q-matrix when indexing using that state and action.
Trulsson (2021) tested the algorithms on two different systems which we will

also be using, presented in Table 3.1. Both systems used 40 BACs, and the total
carrier bandwidth was 100 MHz. System 2 is the more challenging of the two, given
that it has five times as many carriers, and thus will have more traffic to schedule,
at a higher contention rate, even though System 1 has higher numerology which
means that the latency requirements are harder.

Name # Carriers Numerology
System 1 1 1
System 2 5 0

Table 3.1 Carrier configurations.

The state space of the reinforcement learning algorithms in Trulsson (2021),
and therefore our starting point, consisted of three variables. These were:

• Job type (ATB1, ATB2, or BTA)

• The number of jobs in the resource pool

• Symbol index

To clarify, the symbol index is a unique index for each symbol based on time of
arrival.

The action space consisted of:

• The BFJ PRB size

• The BFJ queue priority

• The wait-time before the jobs are sent to the resource pool

There were two different implementations of reinforcement learning in [Truls-
son, 2021]; Q-learning and a Deep Q-learning Network (DQN). DQN is a variant of
Q-learning that instead of using a matrix to store the value Q(St ,At) it uses an arti-
ficial neural network [Sutton and Barto, 2018]. Both used exploration factor proba-
bility ε = 0.1 while training. The Q-learning scheduler had a constant learning rate
of α = 0.5 and a future rewards discount of γ = 0.99.

The reward function used in [Trulsson, 2021] is presented below, rewarding a
scheduling based on a symbol’s latency x. The k-values are design constants. UL
and DL are rewarded differently.

r(x) =


e−kDL·x for DL
e−kUL·x for UL
−1 if deadline miss

(3.1)
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3.4 Results

Overall, Trulsson (2021) saw promising results. On System 1, the Q-learning sched-
uler had a slightly lower total latency than the baseline. The UL symbols had a
higher latency than the baseline, while the DL symbols’ latency was lower. In the
UL/DL-switch, the scheduler managed to schedule the DL symbols a bit later than
the baseline.

On System 2, the Q-learning scheduler met all deadlines but had about twice as
high latency as the baseline. In general, the DL symbols were scheduled earlier than
the baseline, giving reduced performance.

The scheduler using DQN had a higher latency as well as suffering from dead-
line misses on both systems. Therefore, we are primarily focusing on improving the
Q-learning scheduler.

3.5 Our Starting Point

While we were working with the code we noticed that sometimes the algorithm did
not quite behave as expected, and had results that did not make sense. An example of
this was that in some situations, no matter how much the punishment for a deadline
was increased the agent did not stop making the decisions that led to the misses.
This was of course not in line with how Q-learning should work.

The reason why was discovered by investigating the Q-values of trained agents.
An important part of the scheduler picking an action is what index the action has
in the Q-matrix. Some actions are forbidden by the scheduler, for example ATB1
symbols’ PRB sizes are statically decided. This necessitates being able to convert
back-and-forth between actions and their respective indexes. However, there was a
bug in this functionality. If an index was converted to an action and back again to
an index, the end result would not always be the original index. And in the code,
this conversion is always done, to account for when part of an action is statically
decided.

This meant that if an action was chosen, that action would always be executed,
but the corresponding index was not always correct. In that situation, when an action
got its reward, or punishment, the reward was not contributed to the actual action
that had been executed, but instead to the one connected to the incorrect index.
Because of this, an action could have a high value in the Q-matrix on unfair grounds,
or a lower value than it should. After fixing the bug, the conclusion was that this was
the reason for the agent behaving in unexpected ways.

It can not be said for certain how large of an issue this was for Trulsson (2021)
since there were other areas to explore in order to improve the Q-learning, but it
likely had some impact.

Additionally, the simulation’s BFJ queue did not take the arrival time into ac-
count for jobs with equal priority. This was also fixed.
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Presented in this chapter are the modifications that have been tested out on the Q-
learning algorithm with the ultimate goal of minimizing latency and avoiding dead-
line misses for both systems. Another factor to keep in mind is that the algorithm
should be viable for adaption to a real implementation.

Note that the tests presented in this chapter have been performed on System
2, and evaluated on the DDSU evaluation pattern. System 2 was chosen since it has
five carriers, and thus requires the scheduler to make good decisions in situations
with higher contention. System 1 has a lower degree of contention even with its
higher numerology, meaning that it is easier for the agent to find the optimal policy.
Additionally, since System 2 is more complicated, some of the changes have a larger
impact on that system. For tests performed on System 1, see Chapter 5.

To avoid repetition, deadline misses are mentioned whenever they occur, but are
omitted if all deadlines are met.

4.1 Initial Action Space

To keep things simple to start with, the action space was scaled down. Instead of
deciding BFJ PRB size, priority, and wait time, the agent only decides the wait
time, and only for DL symbols. The other actions are instead replaced with how the
baseline scheduler would act.

Recall that UL symbols generate ATB jobs and DL symbols generate BTA jobs.
While ATB jobs ideally should be scheduled to start as soon as possible, there are
situations where it might be beneficial if they are not. In the UL/DL switch, a later
scheduling of a UL symbol could allow a DL symbol to meet its deadline.

However, having the wait time for the ATB job be dynamic might not necessarily
help. ATB jobs are preferably sent to the BFJ queue as soon as they enter the system,
whereas BTA jobs ideally wait a while. If ATB and BTA jobs exist in the system
simultaneously and affect each other’s results, this means that the BTA jobs were
likely scheduled a couple of symbols back in comparison to the ATB jobs. If ATB
jobs cause BTA jobs to miss a deadline, for example by starting right before when
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the BTA jobs would need to start in order to meet their deadline, this information
is in no way propagated to the ATB jobs’ reward process. The Q-learning update
function takes future rewards into account, but if the scheduling of a symbol causes
another symbol scheduled earlier to miss, it will not learn of this. This issue would
not exist if the symbols were worked on in the same order as they arrived to the
system. Thus, letting ATB wait time be decided dynamically has a limited benefit.

The assigned priority for the BFJ queue is also statically decided, and there
might not be a reason to decide that dynamically again either. During traffic with
only one job type, priority does not matter, since all symbols have the same ideal
scheduling. However, in the UL/DL switch, it is important that BTA jobs that have
been scheduled close to their deadlines get retrieved from the BFJ queue in a timely
manner, such that they actually meet their deadlines. This might not be the case
if ATB jobs are sent to the system at the same time with with an equal or higher
priority. Statically assigning higher priority to BTA jobs will ensure that this does
not happen.

4.2 Input Data

Training and evaluating on the right kind of data is important, since it directly affects
the agent’s behavior. Therefore, the TDD pattern used in the traffic generation was
expanded from the TDD pattern UD used by Trulsson (2021) for both training and
evaluation, to instead use the pattern shown in Table 4.1 for training. Since UL
symbols have their wait times statically assigned, the special slot has been chosen
without any UL symbols to increase the possible training for DL symbols in the
special slot.

Special slot
Pattern #DL #GAP #UL

DDSUUDDSUD 11 3 0

Table 4.1 The pattern used to train the agent.

The patterns used for evaluation of the agent have also been updated, shown in
Table 4.2. A situation that is of particular interest, as also seen in [Trulsson, 2021],
is the switch between UL and DL symbols. The DDSU pattern is repeated in order to
evaluate this switch.
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Special slot
Pattern Repetitions #DL #GAP #UL
DDSU 2 11 3 0

DDDSUUDDDD 1 3 8 3
DDDSUDDSUU 1 10 2 2

Table 4.2 The patterns used to evaluate the agent.

These new training and evaluation patterns better reflect situations that might
occur in a real scenario, and not just the UL/DL-switch. Not all of these situations
require the same kind of scheduling, or have the same difficulties. The UL/DL-
switch is difficult because the end of the U slot coincides with the beginning of the
D slot. This means that for a period of time, both kinds of symbols are arriving,
which also increases the contention in the system. Then, a DL symbol might not be
able to be scheduled too close to its deadline, because a UL symbol might arrive
shortly before the DL symbol is scheduled. They might utilize the BACs in such a
way that not all of the generated DL jobs will finish in time. This requires the DL
symbol to be scheduled earlier.

In contrast, when a UL/DL-switch is not occurring, scheduling DL symbols
becomes easier. Since all symbols have the same optimal behavior, that is to say
finishing close to their deadline, symbols that arrive at different points in time will
not interfere with each other. This is because they will have different deadlines,
and if they are both scheduled optimally they will be entering the resource pool at
different times. As for UL symbols, all actions for those are still statically decided,
being sent to the BFJ queue as soon as they arrive to the system.

It is advantageous for the agent to be able to handle both of these types of situ-
ations, and schedule them differently.

Additionally, the traffic file has been extended in the sense that it also contains
information about certain state events to support some of the updated parts of state
space described below. During the simulation, this information is added to the sym-
bol queue in order to retain information regarding the order of events and symbol
arrivals. Thus, it might not be accurate to call it a symbol queue, since it contains not
only symbols, but also events. The simulation as a whole still functions the same,
though.
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4.3 State Space

Presented below are modifications to the state space that have been investigated, as
well as why they are interesting to explore.

Symbol Index
As noted by Trulsson (2021), the symbol index gives the algorithm a sense of time.
Each symbol in the simulation will be given a unique symbol index. This, however,
can be detrimental in the sense that as the time during which the agent is trained
continuously increases, so will the symbol index.

This will cause memory issues, since the size of the Q-matrix is dependent on
the amount of possible values of the state space, which increases with the number of
symbols. This is especially a problem when testing System 2, which has five times
as many symbols as System 1. Additionally, it would not be possible to train and
evaluate on different traffic files if they do not have the same size.

The symbol index also has some flaws when it comes to generality. Because
of the way symbol index is assigned, the agent will learn which action is optimal
at a certain point in time during the training episode, based entirely on the traffic
file. For different types of TDD patterns of the same length this is not generally
applicable, because behavior that was optimal at a certain point in time for one
pattern might not be optimal for another. Additionally, two symbols in different
patterns may have the same symbol index, but not the same job type; they will have
different states. When training on one of the patterns and evaluating on the other,
the agent might encounter states which it has not trained on.

Assuming that the agent is being trained and evaluated on the same file, there
is no point in having both symbol index and job type, since any symbol index will
always correspond to the same job type. Therefore, having job type and symbol
index simultaneously is a waste of memory. This issue does not arise when it comes
to the number of total jobs in the system, since exploration means that this number
might vary at a given point in time.

There is also the risk of the agent learning something that does not reflect the
real world, which is that it may start scheduling jobs towards the end of a traffic file
later, since there will be no more arriving symbols to contend with. This is obviously
not true to reality, where the patterns could repeat indefinitely.

Another issue with symbol index is that there is no common denominator be-
tween different symbols with similar properties. For example, if a UL/DL switch
occurs twice in a traffic file, there would perhaps be a benefit if the symbols were
scheduled in similar ways. But if the symbol index is a part of state space, the agent
will not be able to take advantage of this.

The Solution The symbol index needs to be replaced, and its replacement should
be taking advantage of symbols that have similar properties. It would make sense to
introduce a state variable which is supposed to convey a sense of surroundings as
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opposed to a sense of time.
This state will be referred to as slot state, and it keeps track of the most recent

as well as the current slot. Some other versions of this have been considered, such
as also keeping track of the upcoming slot, or only keeping track of the current
and future slot. Ultimately though, the past and current slot are enough to serve our
purpose.

The idea is that by giving the agent an idea of what has happened recently in
the past and what is happening now, there will be a distinction between different
states that need different scheduling considerations. If the current slot is D, then the
symbols need to be scheduled differently depending on if the last slot was U or D,
since if U was the latest slot, UL symbols may still be arriving.

TDD-patterns have restrictions on the order in which different types of slots can
be arranged. Therefore, while one might think that if a slot can be either D, S or
U, it would necessitate 3 ·3 = 9 different slot states. However, the actual number of
valid slot states are smaller, at five.

With this, the size of the Q-matrix can be significantly reduced, as well as not
depend on how many symbols the file it gets its traffic from contains. This means
that the agent can be trained and evaluated on different files without any restrictions
on file size. It also solves the potential memory issues that arise as the symbol index
grows larger. Additionally, the time axis for a real implementation is reduced.

Another effect of the change is that each state can be trained multiple times
during one training episode. This was not possible before, when symbol index was
a part of state space. This results in the agent learning more per training episode,
which makes the training process faster.

Slot Progression
It is important that the state space is precise enough that symbols that require differ-
ent scheduling behaviors have different states. One such situation is in the UL/DL-
switch. The arrival of both kinds of symbols in the system makes scheduling more
difficult, since there are more jobs in the resource pool that need to be worked on.
This may mean that BTA jobs are not able to fully minimize their latency without
risking missing deadlines. However, the UL symbols stop coming before the DL
symbols do, which means that not all DL symbols should need to be scheduled as
if there were also UL symbols in the system.

In other words, these situations need to have different states, and it should be
connected to how far into the slot the symbols are. A new state space variable is
introduced, called slot progress, which keeps track of this.

It is important to consider how many different values slot progress needs to
have in order to fulfill its purpose. The different scenarios are shown in Figure 4.1.
Ideally, slot progression is divided as seen in scenario a). A symbol that needs a
harsher scheduling, harsher in this context meaning that it needs to be scheduled
further away from its deadline in order to meet it, should not have the same state,
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and therefore scheduling, as one that can be scheduled closer to its deadline. If
they do, all the symbols will either be scheduled closer to their deadline in scenario
b), resulting in deadline misses, or scheduled earlier in scenario c), meaning an
increased latency for some symbols. The latter situation is not as dangerous as the
former.

Figure 4.1 A simplified view of slot progress and the different scenarios that occur
when scheduling BTA symbols in the UL/DL-switch. The black lines divide the
slots into different states. Situation a) describes the ideal case where symbols that
require a harsher scheduling are in a state separate from those that do not. Situation
b) represents the undesired case where a symbol that requires a harsher scheduling
has the same state as ones that do not, possibly risking deadline misses. Situation c)
describes a situation that is undesirable but not as bad as situation b). A symbol that
does not need a harsher scheduling has the same state as the ones that do need it,
resulting in higher latency for this symbol.

However, the added precision that slot progress gives is not always a benefit. In
fact, its use is limited to the UL/DL-switch, where symbols in the same slot should
be treated differently. In pure DL or special slots, this is not the case. All symbols
should have the same scheduling, and introducing slot progress will only increase
the training time the agent needs to find the optimal scheduling. Therefore, slot
progress is only used in the UL/DL-switch.

Number Jobs
Currently, the state variable keeping track of the number of jobs in the resource pool
tracks the exact number of jobs. This means that two otherwise similar symbols
with a very small difference in this part of state will be treated differently from each
other. The precision is too high, because the behavior of the agent should not differ
if there are for example 17 current jobs in the system as opposed to 18.

That is why that part of the state space has been reworked to instead reflect
contention in proportion to the number of cores. Important to consider here is the
degree of precision, since being either too precise or imprecise will render the state
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worthless. Too high precision does not eliminate the issue, while a too low precision
might mean that there is no distinction between varying contention levels.

Lowering the precision also serves to further reduce the size of the state space,
and therefore the Q-matrix, while also making the learning process faster for the
same reason as implementing slot state does.

Waiting Jobs
An important insight is that there is a delay between a decision being made and the
decision being reflected in the system. This is because when the scheduler deter-
mines the wait time for a symbol, the jobs are not sent to the BFJ queue immedi-
ately, but instead only when the wait time has passed. Currently, there is no way to
keep track of these jobs, even though information regarding the contention in the
near future could be available to the scheduler, since it was the scheduler that made
the decision in the first place.

The potential issue lies in the fact that there might be jobs that will alter the
system’s contention in the future, which could affect the optimal scheduling of the
current symbol.

With all this in mind, a new state variable is introduced that represents future
contention, referred to as waiting state. As with the variable keeping track of cur-
rent contention, it should be represented with appropriate resolution, for the same
reasons.

Final State Space
Not all of the modifications listed above were kept, because they were not all
needed. The final version of the state space consists of:

• Slot State

• Slot progress

• Job type

Keep in mind, if DL symbols were to continue being the only symbols scheduled
dynamically, the job type should eventually not be needed either. Contention as well
as waiting state have been removed.

Contention, as it turns out, has little to no value. Firstly, for an optimal schedul-
ing, there should be no contention in the system at the time of a symbol arriving.
This is because symbols arrive at certain intervals, which also coincide with other
jobs’ deadlines. Any BTA jobs in the system should optimally be scheduled close
to their deadline and thus already have finished or not entered the resource pool yet.
Therefore, the contention would be zero. Furthermore, and more importantly, why
should the current contention matter to how a DL symbol should be scheduled?
Jobs that affect the current contention have ideally already finished by the time the
symbol enters the resource pool. For UL symbols it does not matter either, given
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that the jobs should be sent to the resource pool as soon as possible regardless of
contention.

The number of jobs waiting to be sent to the resource pool might be more useful
in that case. However, it turned out during testing that it was too imprecise, resulting
in the state variable having the same value a majority of the time. Additionally,
it turns out that it was not needed to get a good behavior from the agent for the
configurations it was tested on. The main advantage of keeping track of the amount
of jobs waiting to be sent is mainly when there are several carriers sending symbols
at the same time. It could allow the agent to differentiate between the first and
third symbol that arrived simultaneously, allowing them to be scheduled differently,
which could be useful in the UL/DL switch. This is useful because if there is a high
degree of contention with a risk of deadline misses, all symbols would otherwise
have to be scheduled earlier.

Since the size of the Q-matrix is dependent on the number of states, these
changes have impacted it. The number of different values for each state space vari-
able is listed in Table 4.3 along with the total number of combinations of state.
Note that the number of values for the symbol index may vary depending on the
training/evaluation file, which means that the size of the Q-matrix also may vary.

Modifications State Number different values

Before

Symbol index 134 (varying)
Number jobs 401
Job type 3

Total combinations 161 202

After

Slot state 5
Slot progress 4
Job type 3

Total combinations 60

Table 4.3 State space and the number of combinations of state before and after the
modifications. The symbol index is assumed to have 134 different values, which is
the case when evaluating on the DDSU pattern in System 1.

The results when running tests with the parameters as defined in Chapter 3 are
shown in Table 4.4. Note that the baseline’s performance on the same traffic file
is 28 942 268 clock cycles (cc). Although UL symbols’ wait times are statically
decided, they are still taken into consideration when calculating the total latency.
This is because they still coexist with the symbols that are dynamically scheduled,
and may be affected by or affect other symbols.

The results are somewhat inconsistent in the sense that two agents trained with
the same settings might have differing performances. For this reason, when evalu-
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ating the algorithm several agents have been trained with the same settings to es-
timate the average performance. Aside from that, the results seem promising since
the agent is capable of performing with a lower latency than the baseline. Especially
when considering that quite a bit of the precision that Trulsson (2021) had has been
stripped away, while also generalizing the state space.

Min Max Average Median
18 330 765 57 632 881 31 256 031 30 499 538

Table 4.4 Latencies when training 20 agents 5000 episodes each on System 2, and
then evaluating them on the DDSU pattern. The baseline’s performance on the same
traffic file is 28 942 268 cc. It seems promising that the agent is sometimes able to
perform better than the baseline.

The inconsistency sometimes leads to deadline misses, see Figure 4.2. Looking
closer at these misses, the issue seems to be that the symbols have simply been
scheduled too close to their deadlines, resulting in guaranteed misses. The other
symbols are scheduled close to optimally, however, even in the more challenging
UL/DL switch.

Figure 4.2 Deadline status for System 2 on the DDSU pattern, where each rectangle
represents a job. The yellow vertical lines represent slot state changes, and the dashed
ones represent slot progress.

The fact that the agent sometimes misses deadlines is highly undesirable. A
possible reason for it could be a lack of training. In general, it can be difficult to
determine when a reinforcement learning algorithm has converged. However, the
Q-values of the state-action pairs change over time as the agent learns which actions
are good and which are not. Eventually, the average values should stabilize, at which
point it can be concluded that the agent will not learn anything new if the training
is continued.
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The average Q-values for this run are presented in Figure 4.3. Compared to
Trulsson (2021), whose Q-values can be seen in Figure 4.4, the agent now seems
to converge faster and also more convincingly, likely being a result of the smaller
state and action space. The updated agent converges to a smaller value than that of
Trulsson (2021), which is because of the statically decided actions.

The average Q-values for runs without deadline misses look similar to those
presented in Figure 4.3. Based on the figure, the Q-values quickly shoot up, and
then seem to fluctuate between values in a small interval, indicating that the agent
has learned all it can. However, the oscillation means that the agent’s behavior is
still changing. Coupled with the fact that not every trained agent will have deadline
misses, this could indicate that drastically different decisions (good ones, ones that
guarantee deadline misses, and those that do not miss but have poor latencies) end
up with similar Q-values.

Figure 4.3 The average Q-values of an agent trained on System 2 with the
DDSUUDDSUD pattern. It rises in value quickly in the beginning and then seems to
stagnate with a fluctuation, indicating that the agent largely has finished learning.
Note that the values by themselves are not interesting, what matters is that the values
no longer change significantly. A low average could simply mean that there are many
actions with poor rewards, which still means that the agent has learned something.
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Figure 4.4 The average Q-values of the agent from [Trulsson, 2021] trained on
System 2 with the UD pattern. In comparison with Figure 4.3 the average value still
seems to be rising towards the end, indicating that there is more to learn.

This inconsistent behavior is of course undesirable, and thus different α config-
urations will be investigated in order to see if it is possible to reduce this variation.

4.4 Learning Rate

Different configurations of α were tested, constant as well as linearly decreasing, in
order to find the ones that lead to the best behavior. This was both in terms of lower
latencies and increased consistency. Having a linear decrease means that further
into the training, newer rewards will affect the Q-values less. In other words, past
experiences matter more than what was recently learned. The results can be found
in Table 4.5 as well as Table 4.6. Note that the results for α = 0.5 are taken from
Table 4.4. For comparison, the baseline’s performance on the same traffic file is 28
942 268 cc.
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Latencies (cc)
α Min Max Average Median

0.5 18 330 765 57 632 881 31 256 031 30 499 538
0.3 17 419 195 53 783 425 33 828 235 33 071 261
0.1 17 438 055 53 903 011 30 010 086 26 801 543

Table 4.5 Latencies (cc) when evaluating 20 trained agents using the DDSU pattern.
All 20 agents were trained for 5000 episodes each on System 2 with different con-
stant α configurations.

Note that for both α = 0.5 and α = 0.3, deadline misses occurred during eval-
uation. The misses in question were due to two different problems, one of which
is that some symbols were being scheduled far earlier than they should have been.
This caused them to interfere with and cause misses for symbols that were sched-
uled closer to their deadline. The other misses were because of a late scheduling,
similar to those seen in Figure 4.2. These kinds of schedulings should not be able
to have the highest Q-value. Moreover, the symbols that miss should have been ad-
justed by the scheduler not to, which could possibly be solved by punishing a miss
more harshly, see Section 4.5.

Looking at Table 4.5, it seems like the lower α values are generally associated
with a decrease in latency, although α = 0.3 has a higher average and median than
α = 0.5. There is still a high variation in latency though, at least for every constant
α that has been tested. The window of variation seems to diminish when using a
linearly decaying α , as can be seen in Table 4.6.

On average, all configurations from Table 4.6 outperform the baseline, although
α = 0.1 → 0.01 has a higher max value than the baseline. Both α = 0.5 → 0.01 and
α = 0.1 → 0.01 had runs that failed due to deadline misses. These misses were of
the same type as for the constant α = 0.3. α = 0.3→ 0.01 had no misses. Given that
deadline misses can be rare, this is not necessarily a guarantee that α = 0.3 → 0.01
is sufficient for removing deadline misses.

Latencies (cc)
α Min Max Average Median

0.5 → 0.01 16 306 815 28 280 631 17 974 625 17 190 288
0.3 → 0.01 16 383 945 28 056 285 18 344 790 16 753 218
0.1 → 0.01 16 409 655 32 138 639 19 169 745 16 836 514

Table 4.6 Latencies (cc) when evaluating 20 trained agents using the DDSU pattern.
All 20 agents were trained for 5000 episodes each on System 2 with different linearly
decaying α configurations.

In general, the difference between different α configurations in Table 4.6 is not
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large, and it is not easily discernible which one is best. However, when α = 0.1 →
0.01, the latency is higher in general, in particular the max value and the average. It
performs the worst out of the linearly decaying configurations.

The other two configurations, on the other hand, have very similar minimum and
maximum latencies. The issue that remains is that there seems to be a tendency for a
trained agent to sometimes have a significantly higher latency than what is typical,
which is seen in the difference between the max values and the medians. When
α = 0.3 → 0.01, the tendency seems to be somewhat higher, which is the reason for
the higher average in comparison to when α = 0.5 → 0.01. Still, α = 0.3 → 0.01
has a lower median, which indicates that when it does not have these outliers, it
has lower latency in general. For this reason, both configurations will be tested in
Section 4.5.

It can also be seen from Figure 4.5 that the resulting average Q-values no longer
contain the fluctuation that was brought up in Section 4.3. The other linearly decay-
ing configurations of α exhibit similar behavior.

Figure 4.5 The average Q-values of an agent with a linearly decaying α from 0.3
to 0.01 trained on System 2.
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4.5 Reward Function

Another factor that affects the Q-values is the reward function. While switching to
linearly decaying α values decreased the latency and made the results more consis-
tent, the fact that there may still be differences in how two trained agents behave
indicates that maybe some actions are considered to be of similar or equal value. Of
course, exploration/exploitation as well as future rewards could also affect this.

There are some things that are important to consider when designing a reward
function for this problem. The primary one is the goals: strongly discourage dead-
line misses while minimizing the latency. Minimizing the latency, when scheduling
DL symbols, means that the symbols should be scheduled as close to their deadline
as possible. However, the closer the symbol is to its deadline, the higher the risk of
a deadline miss. In other words, the goals are somewhat conflicting. Also impor-
tant to keep in mind is that the punishment for a deadline miss should be harsh. No
action which causes some symbols to miss their deadline but otherwise offers high
long-term rewards should be determined to be the best one.

The reward function used thus far has been the one Trulsson (2021) used, as
defined in Equation 3.1. Although, since the actions for UL symbols are currently
statically decided, the equation has been somewhat simplified, see Equation 4.1.

r(x) =

{
e−kDL·x for DL
−1 if deadline miss

(4.1)

Currently, the rewards are given using an exponential function. This means that
the difference in how two symbols are rewarded is not proportional to their differ-
ences in latency. Also, a larger difference between rewards would allow the agent
to more easily differentiate between the worth of different actions. Hence, an alter-
native reward function is defined in Equation 4.2, where k is a design constant and
symbol time is the time between symbol arrivals. It has been designed with the fac-
tors discussed above in mind. In comparison to Equation 4.1, there will be a larger
difference in reward between different latencies.

r(x) =

{
5(1− x

k·symbol time ) for DL

−25 if deadline miss
(4.2)

Additionally, the punishment for missing a deadline has been increased, and is
five times as high as the maximum possible reward. This serves to further lower the
probability of actions that cause deadline misses having high long-term Q-values. A
situation that is important to take into account is when there are actions where some
but not all symbols miss their deadlines, either regularly or randomly, as shown
in Section 5.1. In these cases, a punishment of −1 may not be enough to bring
down the Q-value of the action in the long run. The action may still be chosen
through exploration and have positive results if it rarely results in misses, as well as
increasing in value due to future rewards.
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Both reward functions were tested in order to properly compare them with both
of the α configurations that were deemed to have potential. The results are presented
in Table 4.7, note that the results for Equation 4.1 are taken from Section 4.4. There
were no deadline misses using Equation 4.2.

Configurations Latencies (cc)
α Reward Function Min Max Average Median

0.5 → 0.01 Equation 4.1 16 306 815 28 280 631 17 974 625 17 190 288
0.5 → 0.01 Equation 4.2 16 426 795 22 494 355 17 247 934 16 946 043
0.3 → 0.01 Equation 4.1 16 383 945 28 056 285 18 344 790 16 753 218
0.3 → 0.01 Equation 4.2 16 401 085 21 397 395 16 978 497 16 769 595

Table 4.7 Latencies (cc) when evaluating 20 trained agents using the DDSU pattern.
All 20 agents were trained for 5000 episodes each on System 2 with different reward
functions.

Overall, it seems like Equation 4.2 performs better, for both α configurations.
The maximum outlier values are smaller, going from around 28 million cc to 22-
21, meaning that the interval within which the results fluctuate is far smaller. The
averages and median values are also lower. In addition, the difference between the
values is also smaller, indicating that outlier values are also less common.

Using Equation 4.2, the two α configurations perform similarly. The 0.3 →
0.01 α configuration has lower values than the 0.5 → 0.01 configuration in general.
Based on this, these are the settings that will be used going forward, i.e., α = 0.3 →
0.01 and the reward function as defined in Equation 4.2.

4.6 Future Rewards Discount

The reward given from an action is not the only thing that affects its Q-value. An
important part of the Q-learning’s update function is the future reward, reflecting
the current highest possible reward for the next state. If an action results in a state
that has a high long-term value, naturally this affects the value of the action. The
parameter γ is the future rewards discount, deciding how much of an impact the
future reward has.

Currently, γ has a value of 0.99. However, there might be reason not to let the
future reward influence the Q-value to such a degree. There are two main factors
within the current system that are the reason for this. The first is that while the
scheduler’s actions affect the environment, not all parts of the environment are re-
flected by the state. In fact, the current state space, consisting of job type, slot state
and slot progress, is not affected by the scheduler’s actions at all, only by the pas-
sage of time.
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Even if this was not the case, there is another factor to consider. For optimally
scheduled DL symbols the wait time before being sent to the system means that the
jobs’ impact on the environment is delayed. The next state, however, depends on
the state of the next symbol to be scheduled, which is far sooner. It does not matter
which action is chosen, the next state is the same independent of the action.

A consequence of this is that an exploratory action with a poor reward will see
an increase in its Q-value based on the maximum possible reward in the next state,
even though it is not deserved.

Therefore, there is reason to consider that perhaps the current value for γ does
not give the best possible results. When γ is lowered, the agent cares less about the
rewards of the next actions. For example, with γ = 0.5, only 50% of the maximum
value for the next state is considered, which in turn only is affected by 50% of the
value of its own next state, meaning that 25% of the second-next state’s value is
taken into account. In short, with γ = 0.5 the agent does not look very far into the
future, which is why it is the lowest value that will be tested.

Presented in Table 4.8 below are the results with different values for γ , although
note that the results for γ = 0.99 are taken from Table 4.7.

Latencies (cc)
γ Min Max Average Median

0.99 16 401 085 21 397 395 16 978 497 16 769 595
0.95 16 392 515 21 398 921 17 286 472 16 886 053
0.9 16 366 805 18 423 605 16 890 028 16 718 175
0.8 16 358 235 19 254 895 17 635 623 17 592 315
0.5 17 379 591 20 548 965 19 063 966 19 011 413

Table 4.8 Latencies (cc) when evaluating 20 trained agents using the DDSU pattern.
All 20 agents were trained for 5000 episodes each on System 2 with different γ

configurations.

Overall, there is not a large difference in the performance between varying val-
ues of γ . The two highest tested values have the largest difference between their low-
est and highest latencies, while the two lowest values have the highest averages and
medians, which means that their latencies are generally higher. The best-performing
value for γ seems to be 0.9, since it has the lowest max latency, average and median.
Its smallest latency is only slightly larger than for γ = 0.8. Therefore, γ = 0.9 will
be used going forward.

The similarities between the results for different γ in Table 4.8 indicate that the
reasoning for trying out different γ still holds, in the sense that it does not seem to
affect the results very strongly. However, lowering γ beyond a certain point seems
to yield worse results, which means that there might be something more to it. It is
possible that this is largely due to the fact that while the agent does not affect the
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state with its actions, it still affects the environment. A larger γ is used to propagate
the future results of an action, not necessarily depending on the state to reflect the
change that occurs in the environment in order to be effective.

4.7 Exploration & Exploitation

Another of our goals was to evaluate and possibly improve the exploration part of
the Q-learning, particularly if it was possible to avoid deadline misses during ex-
ploration. However, at this point we have realized that the agent should not avoid
deadline misses during exploration. Instead, they should be found. If a particular ac-
tion has any chance of failing, even if it is not often, the agent should have witnessed
that during training, so that it has learned to prioritize less risky actions.

The one exception is when different symbols’ schedulings impact each other in
a way that the Q-learning cannot mitigate. If the agent chooses exploitation for one
symbol and schedules it close to its deadline but chooses exploration for another
symbol, the jobs might be sent to the BFJ queue at the same time. This could cause
the exploiting action to miss at no fault of its own. A higher ε will likely exacerbate
this issue.

Thus, the balance between exploration and exploitation is still very important.
Exploring is useful in order to discover potential better actions, while exploitation
is good for evaluating how good the current "best" action is. Right now, this is
determined using the ε-greedy algorithm with a constant ε = 0.1. There is still a
variation in how a trained agent will perform, and this is based on when and what it
chose to explore at different points during the training. Therefore, it can be valuable
to investigate how different values of ε , including ones that decay over the course
of training, affect the results.

As noted in Section 2.2, there are benefits of both higher and lower ε , as well as
a possibility of gaining the advantages of both by decaying from a higher value to a
lower. Therefore, different values have been tested in Tables 4.9 and 4.10.

Latencies (cc)
ε Min Max Average Median

0.3 17 283 795 21 433 201 19 404 119 19 564 178
0.1 16 366 805 18 423 605 16 890 028 16 718 175

0.01 16 375 375 17 156 771 16 743 266 16 736 841

Table 4.9 Latencies (cc) when evaluating 20 trained agents using the DDSU pattern.
All 20 agents were trained for 5000 episodes each on System 2 with different con-
stant ε configurations.
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Latencies (cc)
ε Min Max Average Median

0.5 → 0.01 16 289 675 17 808 091 17 001 948 17 041 076
0.3 → 0.01 16 306 815 17 712 295 16 903 469 16 953 850
0.1 → 0.01 16 323 955 17 259 611 16 673 717 16 658 185

Table 4.10 Latencies (cc) when evaluating 20 trained agents using the DDSU pat-
tern. All 20 agents were trained for 5000 episodes each on System 2 with different
linearly decaying ε configurations.

It is not entirely obvious which configuration is best. ε = 0.3 sticks out in the
sense that it has the highest latencies across the board. ε = 0.5→ 0.01 also performs
slightly worse than the other configurations, in the sense that its average and median
are above 17 million cc, although notably it has the lowest minimum value. This is
likely connected to the issue mentioned above, as these configurations were the ones
featuring the highest values of ε .

Of the constant configurations, ε = 0.1 and ε = 0.01 have very similar results.
The biggest difference between them is their max latencies, where ε = 0.01 is over
a million cc lower, making it seemingly the best performing configuration out of the
two of them.

Among the decaying configurations, ε = 0.3 → 0.01 has a slightly lower mini-
mum latency than ε = 0.1 → 0.01, but a higher max, average and median, meaning
that ε = 0.1 → 0.01 overall performs better.

Overall, ε = 0.1 and ε = 0.1 → 0.01 have similar results, although the latter has
the lower minimum, average and median latency. Because of this, ε = 0.1 → 0.01
will be used going forward. Note that the differences in performance at this point
are not large, but in the range of ten-thousand cc as opposed to millions of cc as
seen in sections above. As such, even though a certain configuration is used going
forward, this does not mean that the others are bad and would not perform well.

4.8 Recap

To recap: After the modifications have been done, the following settings are used,
listed in Table 4.11. The action space has been decreased, in the sense that the
agent now only dynamically decides the wait times of DL symbols. The state space
consists of: slot state, slot progress and job type.

α Reward function γ ε

0.3 → 0.01 Equation 4.2 0.9 0.1 → 0.01

Table 4.11 The settings that are used moving forward.
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5
Results

It is evident that the changes done in Chapter 4 have made a difference in compar-
ison to Trulsson (2021), both in the sense that the latency for a trained agent has
decreased, as well as not having seen any deadline misses since the reward function
was updated. However, the only evaluation pattern that has been looked at is DDSU,
and the only system that has been presented is System 2.

Note that the same TDD pattern will be used for training as in Chapter 4, listed
in Table 4.1, but all of the evaluation patterns listed in Table 4.2 will be used. This
means that the agent is evaluated on patterns that it has not seen before.

This chapter aims to take a closer look at how both the systems perform for all
evaluation files, and comparing the results to the baseline and random schedulers.
Refer to Table 3.1 for the system information. The behavior of the agent when
scheduling symbols in different situations is also investigated in more detail.

Additionally, in Section 5.1, the agent is stress-tested by seeing how it performs
when adding noise to symbol arrival times, as well as looking at what happens when
the number of BACs are decreased.

System 1
The latencies for the different schedulers using the different evaluation files are
listed in Table 5.1. Note that the baseline scheduler and the agent never had any
misses, while the random scheduler always did, for every single run. Additionally,
since the baseline always makes the same decisions, it only has one possible result.

The number of training episodes used has been increased to 10 000 for System
1. This is because there is only one carrier, which means fewer symbols and the
agent learning less per training episode.
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DDSU
Latencies (cc)

Scheduler Min Max Average Median
Baseline 5 811 988
Agent 2 861 333 2 925 225 2 880 166 2 878 090

Random 4 212 117 4 777 840 4 515 487 4 551 304

DDDSUDDSUU
Latencies (cc)

Scheduler Min Max Average Median
Baseline 7 102 564
Agent 3 696 021 3 770 197 3 715 111 3 712 778

Random 5 356 821 6 107 715 5 706 226 5 719 695

DDDSUUDDDD
Latencies (cc)

Scheduler Min Max Average Median
Baseline 7 347 081

Agent 3 522 641 3 606 244 3 540 017 3 538 113
Random 5 448 097 6 179 565 5 748 698 5 731 179

Table 5.1 Final evaluations on System 1 for all evaluation patterns found in Table
4.2. All 20 agents were trained for 10 000 episodes each.

The agent performs better than the baseline for all evaluation files, especially in
comparison to the results Trulsson (2021) saw, where the agent barely performed
better. This implies that the agent has gotten better at finding schedules that result
in lower latencies, and does so consistently. Additionally, since all evaluation files
have good results, this means that if the agent performs well on one file, it probably
performs well on all files.

Curiously enough, the random scheduler seems to generally have lower latencies
than the baseline, although this is largely irrelevant due to the fact that it, due to its
randomness, never is able to evaluate on a file without causing deadline misses.

The average Q-values for the agent are shown in Figure 5.1. Notably, the aver-
age value seems to shoot up very quickly in the beginning of training, and slowly
stabilize throughout it. Judging by both the results and this figure, it seems like in-
creasing the number of training episodes to 10 000 was enough to guarantee that
the agent has converged.
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Figure 5.1 Average Q-values of one trained agent using System 1.

A Closer Look While the latencies for the agent look promising, it is also impor-
tant to take a look at how it actually schedules symbols. Thus, the results of one of
the trained agents has been picked to be investigated further. The results that were
picked perform closely to the median latency for all evaluation files. It was picked
with the assumption that there should not be a significant difference in behavior
between different trained agents, given the small differences in latency. The latency
with the different evaluation patterns for the chosen trained agent is listed in Table
5.2.

Pattern Latency (cc)
DDSU 2 878 090

DDDSUDDSUU 3 712 778
DDDSUUDDDD 3 539 398

Table 5.2 Final evaluations on System 1 for one of the agents, comparing the re-
sulting latencies (cc) for each pattern. The agent was trained for 10 000 episodes.

Figure 5.2 shows how the jobs were distributed across the BACs throughout
evaluation on the DDSU pattern. It is visible in the beginning that the agent schedules
the DL symbols closer to their deadline than the baseline does. The block of BTA
jobs is further to the right for the agent than the baseline, which indicates that the
jobs are scheduled later by the agent. Something similar also seems to be happening
in the UL/DL-switch, but both situations warrant further investigation.

46



Chapter 5. Results

Figure 5.2 Job scheduling for the DDSU pattern in System 1, where each rectangle
represents a job. The green lines represent changes in slot state. The y-axis represents
the core upon which the job was completed, and the x-axis is time in cc. The dotted
light brown lines represent the places where slot progress would shift, even though
it is only actually used in the UL/DL-switch.

Figures 5.3 and 5.4 show the situations from Figure 5.2 in further detail. Figure
5.3 shows a situation where only DL symbols are scheduled, and it seems like the
agent has learned to schedule the symbols as close to their deadline as possible with
the given time precision. The situation that Figure 5.4 shows is the UL/DL-switch,
where at times all of the BACs are at work concurrently. This means that jobs might
be waiting in the BFJ queue for a while before they get processed. DL symbols
cannot be scheduled as close to their deadline here, because ATB jobs might arrive
and be picked by the BACs to be worked on before the BTA jobs are sent to the BFJ
queue, which comes with the risk that the BTA jobs miss their deadlines. Still, the
agent seems to have learned that it is able to push the jobs closer to their deadlines
than what the baseline does, while still being early enough to avoid missing them.

The fact that the agent is able to schedule the symbols differently in these two
scenarios points to the state space being precise enough to allow this. It schedules
the symbols close to their deadlines when it is possible and schedules them further
away when it is dangerous.
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Figure 5.3 Job scheduling for a period of only DL transmissions in System 1,
where each rectangle represents a job. The purple lines represent deadlines. The
agent schedules the jobs later than the baseline does, and close to their deadlines.

Figure 5.4 Job scheduling for the UL/DL switch in System 1, where each rectangle
represents a job. The purple lines represent deadlines. The agent still schedules the
jobs later than the baseline does, but not as close to their deadlines as in Figure 5.3.
This shows that the agent has learned to prioritize avoiding deadline misses in high-
contention phases.
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System 2
Listed in Table 5.3 are the latencies for the different schedulers using the differ-
ent evaluation files. Note that the baseline scheduler and the agent never had any
misses, while the random scheduler always had, for every single run. Since most
modifications were evaluated on System 2, the results shown for the pattern DDSU
are the same as from Section 4.7, specifically Table 4.10 with ε = 0.1 → 0.01.

DDSU
Latencies (cc)

Scheduler Min Max Average Median
Baseline 28 941 268

Agent 16 323 955 17 259 611 16 673 717 16 658 185
Random 37 837 209 42 558 802 40 432 963 40 583 508

DDDSUDDSUU
Latencies (cc)

Scheduler Min Max Average Median
Baseline 36 455 900

Agent 21 851 483 23 027 099 22 238 096 22 230 089
Random 48 361 910 51 226 598 49 987 243 50 159 505

DDDSUUDDDD
Latencies (cc)

Scheduler Min Max Average Median
Baseline 36 193 620

Agent 19 767 688 21 423 224 20 194 580 20 076 971
Random 49 562 892 53 691 296 51 464 265 51 291 535

Table 5.3 Final evaluations on System 2 for all evaluation patterns found in Table
4.2. All 20 agents were trained for 5000 episodes each.

Once again, the agent always performs better than the baseline, and does so with
quite some margin on all evaluation files. There is also not a huge variation in how
the trained agents perform. Compared to the results in Trulsson (2021), where the
agent had a twice as high latency as the baseline, this is positive. Once again, the
random scheduler shows the difficulty of finding a good schedule, although now it
does perform consistently worse than the baseline, and always has deadline misses.
In comparison, the baseline and agent never miss.

The average Q-values for one of the runs are seen in Figure 5.5. It looks similar
to the Q-values for System 1.
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Figure 5.5 Average Q-values of one trained agent using System 2.

A Closer Look Once again, looking more closely at one of the trained agents will
reveal more about the its behavior. The latencies for the different evaluation files for
this trained agent are listed in Table 5.4.

Pattern Latency (cc)
DDSU 16 649 615

DDDSUDDSUU 22 160 003
DDDSUUDDDD 19 930 518

Table 5.4 Final evaluations on System 2 for one of the trained agents, comparing
the resulting latencies (cc) for each pattern. The agent was trained for 5000 episodes.

Figure 5.6 shows the schedule for the DDSU evaluation pattern. While it is a bit
difficult to discern the details due to the number of symbols in this file, it seems that
BTA jobs are generally pushed closer to their deadlines.
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Figure 5.6 Job scheduling for the DDSU pattern, where each rectangle represents
a job. The green lines represent changes in slot state. The dotted light brown lines
represent the places where slot progress would shift, even though it is only actually
used in the UL/DL-switch.

Zoomed in versions of Figure 5.6 are shown in Figures 5.7 and 5.8, to more
easily investigate the agent’s scheduling behavior. Figure 5.7 shows the baseline
and agent’s decisions in a situation where only DL symbols are arriving. The agent
schedules its symbols such that the generated jobs finish as close to their deadline
as possible with the given time precision, which is the desired behavior.

Figure 5.8 shows the situation in the UL/DL-switch. This is similar to System
1, with all BACs working at certain points.

Because of this, the agent seems to have learned to schedule DL symbols such
that the generated jobs are processed in between the ATB jobs that arrive close
to the BTA jobs’ deadlines. Compared to the baseline, which schedules the BTA
jobs before the ATB jobs, this leads to a lower latency. Since this is System 2, five
symbols arrive at the same time. They have the same state and thus get the same
scheduling decision. However, it is visible in the figure that it could theoretically be
possible to minimize the latency further by scheduling some of the symbols closer
to their deadline, which is not possible with the current state space.
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Note also that the BTA jobs start to get scheduled closer to their deadline when
there are no more ATB jobs in the system, meaning that the slot progress variable
manages to create a difference between the two situations. Still, these jobs do not
finish as close to their deadlines as the jobs in Figure 5.7.

Figure 5.7 Job scheduling for a period of only DL transmissions in System 2,
where each rectangle represents a job. The purple lines represent deadlines. The
agent schedules the jobs later than the baseline does, and close to their deadlines.
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Figure 5.8 Job scheduling for the UL/DL switch in System 2, where each rectangle
represents a job. The purple lines represent deadlines. The agent still schedules the
jobs later than the baseline does, but not as close to their deadlines as in Figure 5.7.
This shows that the agent has learned to prioritize avoiding deadline misses in high-
contention phases.

5.1 Robustness

Now that the agent performs well, with low latency and avoiding deadline misses, it
is time to test the algorithm’s robustness and check how the agent performs in more
difficult situations. The reason for this is to further investigate how fit the agent is
for a potential real implementation.

One way this is done is by introducing noise in the system, such that symbol
arrivals in both training and evaluation files are not as consistent. Another way to
do it is by checking how the agent performs with a lower amount of cores, such that
the period of high contention for the BACs becomes longer. Both of these are tested
separately in the sections below.

Noise
In a realistic setting, things might happen that cause symbols to not always arrive
at consistent times, which the scheduler should ideally be able to handle. For the
purpose of these tests DL symbols may be either late or early, whereas UL symbols
can only be late. The noise for each symbol is randomly generated within param-
eters chosen to accurately reflect a real situation. The deadlines remain unaffected
by noise.

Deciding the wait time for UL symbols is trivial, because they are ideally sent
to the BFJ queue as soon as possible regardless of arrival time. However, it can
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become problematic for DL symbols. This is because the scheduling needs to be
adapted to the worst possible scenario, that is, the latest possible symbol arrival. If
it is adapted, then the symbols arriving earlier than that will have a wait time that
is too short to fully minimize their latencies. If it is not adapted, then the wait time
might be too long for the latest possible symbol arrival, instead resulting in those
symbols missing their deadlines.

However, it would still be ideal to fully minimize the latency. This can be done
by changing how the time when jobs are sent to the BFJ queue is decided. Instead
of deciding a time to wait, which is dependent on the time of arrival, the agent can
instead decide how soon before its deadline a symbol should be sent. The deadline
distance is decided in the interval between the arrival time that the symbol would
have had without noise, and the deadline. This way, the actual arrival time does not
matter.

Of course, avoiding deadline misses is the most important part. Introducing
noise causes a situation where few symbols may miss their deadlines, and is one
of the reasons for punishing those misses more harshly.

System 1 Table 5.5 shows the impact that latency noise has, both for deciding
wait time and for deciding deadline distance. As expected, the latencies are gener-
ally higher when adding noise and deciding wait time, whereas deciding deadline
distance makes the agent perform more similar to the case without noise.

Latencies (cc)
Configuration Min Max Average Median

No noise 2 861 333 2 925 225 2 880 166 2 878 090
Noise (wait time) 2 995 130 3 071 707 3 029 071 3 030 370

Noise (deadline distance) 2 874 353 2 998 409 2 908 648 2 905 727

Table 5.5 Comparison with noise in System 1 when deciding wait time as well
as deadline distance, evaluated on the DDSU pattern (result without noise taken from
Table 5.1). All 20 agents were trained for 10 000 episodes each. The agents featuring
noise were both trained and evaluated with noise. During each training episode, the
training file was re-generated using the same training pattern but with randomized
noise.

Figure 5.9 shows the latencies for some symbols for both approaches. The figure
displays the issue with deciding wait times, where latencies are inconsistent since
they depend on the arrival time of a symbol. This inconsistency is removed when
deciding deadline distance.
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Figure 5.9 The differences in latency between deciding wait time and deadline dis-
tance for System 1 with noise. Evaluated on the DDSU pattern, showcasing situations
where only DL symbols arrive. Each cross corresponds to a symbol. The y-axis is
the latency, and the x-axis is the symbol sorted by time. The yellow lines represent
changes in slot state. The dotted light brown lines represent the places where slot
progress would shift, even though it is only actually used in the UL/DL-switch.

System 2 System 2 does not seem to be affected in quite the same way by noise as
System 1, as seen in Table 5.6. Instead, adding the noise seems to slightly lower the
average and median latency when deciding wait time. Deciding deadline distance
has very similar results, if slightly lower average and median.

Latencies (cc)
Configuration Min Max Average Median

No noise 16 323 955 17 259 611 16 673 717 16 658 185
Noise (wait time) 16 152 597 17 242 334 16 556 288 16 551 730

Noise (deadline distance) 16 074 881 17 263 678 16 545 440 16 455 596

Table 5.6 Comparison with noise in System 2 when deciding wait time as well
as deadline distance, evaluated on the DDSU pattern (result without noise taken from
Table 5.1). All 20 agents were trained for 10 000 episodes each. The agents featuring
noise were both trained and evaluated with noise. During each training episode, the
training file was re-generated using the same training pattern but with randomized
noise.

Despite the latencies being lower when introducing noise while deciding wait
time, the same behavior seen in System 1 can be seen for System 2, see Figure
5.10. Notably, some of the latencies when deciding wait time are lower than the
latencies found when deciding deadline distance, which is interesting because the
latter latency is as low as possible given the time precision.
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Figure 5.10 The differences in latency between deciding wait time and deadline
distance for System 2 with noise. Evaluated on the DDSU pattern, showcasing situa-
tions where only DL symbols arrive. Each cross corresponds to a symbol. The y-axis
is the latency, and the x-axis is the symbol sorted by time.

These results could be connected to the precision when deciding wait
time/deadline distance. The deadline distance is decided using a pre-decided, never
changing time interval. When deciding the wait time, the time interval depends on
the arrival time, which is different for each symbol because of noise. With max-
imum noise, this means that the time interval in which the wait time is decided
grows smaller, which increases the time precision since the number of time steps
is constant. It is possible that this allows those symbols to be scheduled just a
bit closer to their deadline. However, there is probably a limit for how much an
increased precision can help.

The reason why this same behavior is not seen for System 1 could be connected
to the differences between the systems. Since System 1 has a higher numerology
than System 2, it has a higher subcarrier spacing. The higher subcarrier spacing
means that the time between symbol arrivals is smaller, which leads to earlier dead-
lines. Thus the time interval for System 1 is shorter both in regards to deciding wait
time and deadline distance. The noise would also have a larger effect.

Increasing Contention
By decreasing the number of cores, the contention for the BACs will increase. This
means that scheduling symbols becomes more difficult, since there is less room for
error without risking missing deadlines. There will be a point when there simply are
too many symbols to schedule for every symbol to be able to meet its deadline. A
similar effect could also be achieved by increasing the number of carriers.
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System 1 As seen in Table 5.7, the agent manages to avoid deadline misses for a
bit longer than the baseline as the number of cores decrease.

Scheduler
# Cores

40 32 30 29 28 27

Baseline
Agent

Table 5.7 Deadline stress test of System 1. Green means that a run had no misses,
whereas red means there were misses on at least one evaluation file.

Figure 5.11 shows the distribution of jobs when the agent starts to miss dead-
lines at 28 cores, and the jobs that miss in both the agent and the baseline are ATB
jobs. The issue seems to lie towards the end of the UL/DL-switch, which makes
sense since it does have more contention than the areas with purely DL or UL trans-
missions. If there are too many jobs for the BACs to work on given the time frame,
it is a given that some jobs will not be picked up by them until it is too late.

Figure 5.11 Job scheduling for the DDSU pattern in System 1 with 28 cores, where
each rectangle represents a job. The yellow lines represent changes in slot state.
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A closer look at the exact scheduling is shown in Figure 5.12. In general, it
seems like the issue is that there simply is not enough space to properly schedule
the symbols such that they meet their deadlines. Interestingly, the agent shows a
slightly different behavior than the baseline. In the beginning of the UL/DL-switch,
the BTA jobs are scheduled earlier compared to the baseline, while towards the
end they seem to be scheduled slightly later. It is possible that this allows for more
ATB jobs to be worked on compared to the baseline, in the part where no BTA jobs
are worked on. This probably accounts for the differences in how many cores the
baseline and agent manage respectively as well as the number of misses, since it is
ATB jobs that miss.

Figure 5.12 Job scheduling for the UL/DL switch in System 1 with 28 cores. Each
rectangle represents a job, and the purple lines represent deadlines. For both the
baseline and the agent, it is ATB jobs that miss, because they have a lower priority
than the BTA jobs. The baseline has more misses than the agent does, visible in
Figure 5.11, whereas the only deadlines missed by the agent are the three right-most
ATB2 jobs in this image.

System 2 In System 2, the agent and the baseline have similar performance, both
managing to schedule without deadline misses at 26 cores, but failing if the number
of cores are decreased beyond that. Figure 5.13 shows the distribution of jobs across
the BACs over time. Perhaps not unexpectedly since they start missing deadlines at
the same number of cores, the baseline and the agent perform similarly. The main
difference is that the agent seems to schedule BTA jobs slightly earlier than the
baseline does, which results in fewer ATB jobs left in the BFJ queue towards the
end of the UL/DL-switch.
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Figure 5.13 Job scheduling for the UL/DL switch in System 2 with 25 cores. Each
rectangle represents a job, and the purple lines represent deadlines. For the baseline,
the entire right-most block of ATB2 type jobs miss their deadline. For the agent, the
two right-most ATB2 type jobs miss.

There is also an interesting thing to point out with the behavior during periods
with only DL symbols arriving. With five carriers, too many jobs are generated
from the five symbols for all of them too be worked on by the BACs at once. The
scheduling in this situation is shown in Figure 5.14. Since all of these symbols have
the same state, they need to have the same scheduling. Fortunately, the agent learns
to schedule the symbols in such a way that all of the symbols meet their deadline,
even though it does lead to an increase in latency, since multiple symbols are not
scheduled as close to their deadline as they could be.

Figure 5.14 Job scheduling with 25 cores for a period of only DL transmissions
in System 2, where each rectangle represents a job. The purple lines represent dead-
lines.
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Discussion

Overall the agent has improved, consistently outperforming the baseline. Since the
reward function was updated, it manages to consistently find low-latency schedules
without missing deadlines, and it does so without needing an extreme amount of
training. For System 1, the agent has an average latency over the different evalua-
tion files corresponding to approximately 50% of the baseline’s latency. The corre-
sponding number for System 2 is 58%.

It is not entirely fair to compare the agent’s new performance regarding latency
with its performance in the work of Trulsson (2021). The reason for this is mainly
that the agent is now evaluated using multiple patterns that more accurately reflect
reality. This includes sections with only DL transmissions where there is a lot to
gain latency-wise in comparison to the baseline. Trulsson (2021) does not have
these sections.

The behavior, on the other hand, can be compared. The agent now manages to
schedule DL symbols close to their deadline in the UL/DL-switch for both systems.
For Trulsson (2021), this only occurred in System 1. The changes made to the state
space guarantee a more uniform scheduling.

State Space
The state space has received heavy modifications, the only part of how it initially
looked that is left being the job type, which in and of itself could be removed as long
as the agent only dynamically schedules DL symbols. The new parts of state space
consist of slot state and slot progress. In comparison to the old state variable symbol
index, the precision has decreased, which is good in the sense that symbols with
similar or the same best schedulings now have the same state, which decreases the
amount of training episodes needed to find the optimal scheduling for each symbol.

However, a certain precision is still needed, because otherwise symbols that do
not have the same ideal scheduling have the same state, which is not desirable. This
is the reason that slot progress was introduced, to take into account the need for
different schedules in the different parts of the UL/DL-switch.

In the end, there are two situations that warrant different schedules: the UL/DL-
switch, that requires a more careful scheduling of symbols to ensure keeping dead-
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lines, and the situation that is not the UL/DL-switch, where the agent can schedule
symbols closer to their deadline safely.

If the state space were to be optimized to the extreme in favor of training time,
this means that all that is really needed is a way to distinguish between the afore-
mentioned situations, and use them as the two states. This would increase perfor-
mance and decrease the training time, since there would be no need to distinguish
between a D slot and an S slot. It can be achieved using the same underlying infor-
mation that is used for slot state and progression.

However, having a smaller state space does come at the cost of some precision.
It was seen in System 2 that sometimes when symbols arrive at the same time, the
latency could theoretically be lowered by scheduling some of the symbols later. This
does not happen because they have the same state. The state space is too small to
handle this situation. Conversely, precision could be increased by introducing a state
space variable that allows for the agent to distinguish between these symbols. This
could be something similar to the earlier proposed waiting state. Then, the latency
could be lowered although at the cost of an increased training time.

Delays in the System
An important aspect to take into account when working on this problem is the pos-
sible delay between the agent making a scheduling decision, and the generated jobs
actually being sent to the system. This means that symbols that arrive to the system
at similar times might not end up in the BFJ queue at the same time, and thus end
up not affecting each other, even though the Q-learning will look at the state of the
next symbol when updating the Q-value.

Another issue is that there is no inherent mechanism in Q-learning that will
always properly blame a scheduling that causes another symbol to miss. To give a
proper example: Suppose that symbol A arrives to the system, and is scheduled close
to its deadline at time T. Later on, symbol B arrives to the system and is scheduled
with a shorter wait time than A at time T-1, just before symbol A, perhaps as an
exploratory action. As a result, not all of the jobs generated from symbol A will get
picked up by the BACs, since they are working on the jobs from symbol B, resulting
in symbol A missing its deadline. The action taken for symbol A will be punished for
a deadline miss even though it actually had a good schedule, and it was B that was
the true offender. Furthermore, Q-learning only looks at future rewards, and from
symbol B’s perspective, symbol A is in the past. Symbol B will therefore not get any
feedback that it caused a miss. Additionally, the Q-value of symbol A’s scheduling
might not recover after being wrongfully punished. Then, a worse scheduling could
be valued higher at the end of the training.

The idea of introducing the waiting state, i.e., keeping track of the number of
scheduled jobs, came from the aforementioned issue. The basic idea still holds:
Why should the agent forget that it just made a scheduling decision that will affect
the viability of scheduling upcoming symbols in a certain way? Ideally, the agent
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should be able to keep track of when jobs have been scheduled, and thus know that
it is not a good decision to schedule more symbols at a time when the contention for
the BACs is high. However, this would likely require moving away from Q-learning
and implementing a more model-based method. As it stands, the agent manages to
find low-latency schedules while avoiding deadline misses despite these issues, and
as long as that holds there is no compelling reason to move away from Q-learning.

The precision of state space likely has an effect, because at the core of it, this is
a question of symbol interplay, how the scheduling of one symbol affects another.
When multiple symbols have the same state, they will have the same behavior, bar-
ring exploratory actions. When they have the same actions, they will not interfere
with each other. However, symbols can also interfere with each other during ex-
ploitative actions if they do not have the same state, and therefore have different
actions. Thus, the higher the amount of different states, the larger the risk of sym-
bols interfering with each other. This could be the reason for why the symbols in
the D-slot of the UL/DL-switch do not always find the optimal schedule, as seen in
Figure 5.8. This is the only slot where slot progress, and therefore a more precise
state space, is actually used.

Lowering ε should also have an effect on this issue, since a low ε means that the
probability of an unfortunate exploratory action is smaller. It could also be possible
to decrease the time interval which the agent schedules DL symbols in, since send-
ing them to the BFJ queue with a short wait time is rarely desired, even in the more
difficult scheduling situations. If symbols cannot have a short enough wait time to
interfere with other symbol that arrived at different times, there will not be an issue.

However, it is not possible to lower ε all the way down to 0 and pick actions
purely though the ε-greedy approach. Since the Q-matrix is 0-initialized, all actions
have equal value in the beginning of the training. This means that whichever action
that is picked and does not cause deadline misses will be what the greedy algorithm
goes with, likely resulting in the agent getting stuck with a sub-optimal policy.

Configurations
In the interest of time, when testing new configurations they were trained and evalu-
ated 20 times. However, given the element of randomness inherent with exploration,
it is not certain that 20 runs were actually enough to properly determine which
configurations were best. For certain tests, like comparing letting α decay linearly
with having it constant, the results were obvious, but for the different ε configura-
tions, the results were close to each other, meaning that while one configuration was
picked to move forward with, it might not necessarily have made a difference.

Something that might have made a difference was the order in which particular
settings were tested. While adjusting α made a significant difference in latency,
lowering it as well as making the agent perform more consistently, the change might
not have been as dramatic if, for example, ε was investigated first. It could also have
lead to a bigger difference for different ε .
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6.1 Future Work

Scaling down the action space for the sake of simplicity seems to have paid off.
There does not seem to be any issues in assigning priority statically, and neither for
deciding wait time for UL symbols statically. However, it is still possible that letting
the agent decide BFJ PRB size dynamically could have benefits.

For example, lowering the BFJ PRB size leads to a lower job processing time,
potentially leading to a lower latency if there is no shortage of BACs. However,
this also leads to an increase in the amount of jobs generated, and therefore a larger
overhead, making this a trade-off between memory and latency. Regardless, it could
be worth investigating in the future.

It could also be possible to investigate γ further, since the tests of different con-
figurations did not yield the expected results. This could include further testing of
different values.
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7
Conclusions

The Q-learning algorithm and its parameters have been investigated and improved.
Some parts of action space have been removed to simplify the algorithm, although
there is still room to re-add those actions. To be able to train and showcase the
agent’s performance in a more multifaceted way, the training/evaluation data has
been extended to cover more scheduling situations.

The state space has received comprehensive changes, and the agent no longer
depends on time with the removal of symbol index, paving the way for a real im-
plementation. The size of the Q-matrix is now independent of the traffic file, and
is also far smaller. An important aspect when discussing state space is the trade-off
between precision and training time. As of right now, some degree of precision is
sacrificed for training time, but there are arguments for going either way.

Several parameters for the Q-learning have been investigated. Implementing lin-
ear α decay had a large impact on the performance. It is important that ε is not too
large, since exploratory actions may interfere with exploitative ones, which the Q-
learning cannot always properly reward. Changing γ does not seem to make a large
difference. The reward function has also been updated, mostly in the sense that the
punishment for missing deadlines has increased.

There are some attributes inherent to the system that a model-based method most
likely would be able to take advantage of, although the Q-learning still performs
very well compared to the baseline.

In conclusion, the agent manages to schedule symbols in a way that is almost
optimal, and without deadline misses, on both the different system configurations.
It also performs well when introducing noise, indicating that it could work in a real
implementation.
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