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Abstract

The Pan-Tilt-Zoom (PTZ) camera is a type of camera that covers large areas, up
to 360°, in addition to zoom. Some of these cameras are susceptible to tampering,
which means that an additional angle measurement feedback is necessary to detect
such attempts. This thesis has evaluated the possibility of using MEMS-based IMUs
to solve this problem. An advantage of such a system over other solutions, such as
optical and magnetic encoders, is the decreased cost and complexity. The difficulty
of using IMUs is that they are susceptible to drift in horizontal rotations in pan
and require advanced signal processing to be reliable in demanding environments.
Results showed that it was possible to correct tampering by using two IMUs, one on
the fixed part of the camera and one on the moving part of the camera. It was then
possible to track and correct tampering attempts with an average error of 1.0◦ in pan
and 0.7◦ in tilt. The solution works when the camera is mounted on both fixed and
moving objects. Notably, the solution proved to be much cheaper than alternative
methods. Additionally, it proved to be robust against vibrations and shocks and
within the performance requirements of the tested model.

Additional methods were suggested for the system to track absolute orientation, for
example, to be able to move the camera to pre-set positions. However, further work
is needed to increase robustness in applications where the camera is mounted on
objects that can rotate in roll or pitch.
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1
Introduction

This chapter provides a background which highlights important facts about PTZ
cameras and history of the IMU. Furthermore, Section 1.2 consists of a problem
formulation that explains the aim of this thesis. Finally, Section 1.3 discusses scope
and limitations which helps narrow down the problem formulation.

1.1 Background

It is increasing in popularity to use cameras for surveillance in public areas where
people want to feel safe or in private areas where someone has something to mon-
itor. There is a wide variety of different types. For example, the Pan-Tilt-Zoom
(PTZ) cameras can cover large areas, up to 360°, combined with optical and digital
zoom. A PTZ camera differs from fixed-position cameras by requiring more com-
plex mechanics, for example, electric motors and belts. However, the added degrees
of freedom (DOF) also allow for easier camera tampering. External influences can
make the camera lose its position if positioned in an exposed environment. Some-
one can easily change the camera’s field of view, which means there is a need for
feedback to validate that the current position has not been tampered with. The list
of possible feedback solutions are long. However, one that has grown popular is
the micro-electromechanical-system (MEMS) based IMU because of its reasonable
trade-off in price and precision. The IMU’s main components are gyroscope and ac-
celerometer, and sometimes also a magnetometer. The IMUs were developed during
the 20th century with a primary goal to be used in the military industry. Since then,
they have been integrated in numerous other products such as smartphones, cars and
wearables, to name a few.

A prominent company in the market of surveillance cameras is Axis Communica-
tions AB (Axis). The company is continuously developing several different models,
and one of their popular segments is the PTZ camera. This master thesis is con-
ducted at Axis PTZ department with the main goal to investigate if it is possible to
get a reliable heading feedback using MEMS-based IMUs.
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Chapter 1. Introduction

1.2 Problem Formulation

Axis currently has two options for feedback to their PTZ cameras: optical and mag-
netic. The magnetic feedback solution is more expensive but has an advantage in
resolution over the optical, see Table 1.1 for comparison. The feedback is a costly
part of the electronics budget, hence a cheap solution with good resolution is to
prefer.

Table 1.1 Resolution for the two existing feedback solutions

Magnetic feedback ±0.005°

Optical feedback ±9°

As mentioned in Section 1.1, MEMS-based IMUs have become a cheap option for
pose estimation. The purpose of this thesis will be, on behalf of Axis, to investigate
the pose estimation performance of MEMS-based IMUs compared to the magnetic
and optical feedback solution.

This study is divided into three investigations. The first two involves placing an
IMU in two different positions on the moving part on a PTZ camera. The last sub
problem involves placing another IMU in a non-moving part on the same camera.

• One IMU is placed in the horizontal rotation axis on the moving part of the
camera, and one is placed on the vertical axis on the moving part.

• One IMU is placed on a part of a camera which can rotate in both pan and
tilt.

• One IMU is placed on a part of a camera which can not rotate in pan or tilt,
and one that can rotate in pan and tilt.

Another goal is to detect if tampering has occurred. Since the camera can be
mounted on both moving and non-moving objects, there are four different cases
that have to be handled to get as general a solution as possible:

1. When the camera is mounted on a non-moving object:

a) Camera is tampered while not moving.
b) Camera is tampered while moving.

2. When the camera is mounted on a moving object:

a) Camera is tampered while not moving.
b) Camera is tampered while moving.

12
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1.3 Scope & Delimitation

The study has focused on getting an accurate and robust pose estimation from one
or several IMUs. It can be divided into three main parts:

1. Pre-study on:

a) Feedback solutions for pose estimation

b) Signal processing techniques

c) Transformation of coordinate systems

d) IMU’s strengths and weaknesses

2. Microcontroller programming and implementation of IMU and control algo-
rithms.

3. Testing:

a) IMU drift and noise compensation

b) IMU heading estimation

c) IMU tampering detection and vibration sensitivity

4. Evaluation of final system with the goal of getting as accurate and robust
orientation estimate as possible with the magnetic feedback solution as refer-
ence, see Table 1.1.

13





2
Theory

This chapter will present the underlying theory, which is the foundation for this
report and necessary to grasp the content in the subsequent chapters. The chapter
has been divided into Section 2.1 that presents different types of feedback solutions,
Section 2.2 that presents reference frames, orientation estimation techniques and
rotations. Section 2.3 discusses attitude and heading estimation and lastly Section
2.4 presents signal processing techniques that are used throughout the report.

2.1 Stepper Motor & Positioning Feedback

A stepping motor is a type of Brushless DC Motor (BLDC) that, ideally, does not
need closed-loop sensor feedback to control its position since it moves in discrete
steps. This property is typically appropriate in applications requiring precise au-
tomated positioning, such as robotics or camera positioning. An alternative to a
stepping motor is to use a closed-loop servo motor that requires external position-
ing feedback to track the rotor position, which in turn provides higher accuracy. The
upside of stepping motors is that they are cheaper and more straightforward than a
servo motor since they do not require feedback circuitry. However, the downside is
that it loses its positioning (relative step position to some initialized state) if it is
over-torqued. At the same time, a servo motor would detect such a difference be-
tween the desired position and the actual position. Therefore, stepping motors are
generally not used in systems where the system is exposed to external load during
acceleration, such as if an external force counteracts the supposed rotation. It is
more commonly used in applications operating with static load and low accelera-
tion [Jones, 2001]. When using stepping motors, it is common to use a hold current
when the motors are idle to prevent them from losing position. However if the mo-
tors are used in an application where such an external force could make them lose
position, adding an external feedback input to a stepping motor controller makes it
possible to achieve tampering detection and error correction while having a more
cost-effective solution than servomotors.

15



Chapter 2. Theory

Figure 2.1 Operating principle of (a) magnetic encoder and (b) optical encoder. [Seybold
et al., 2019, Fig 1]

2.1.1 Encoder Feedback
Today, many different techniques are used for rotational positioning feedback to
stepping motors. One method is to use encoders for precise control, typically ca-
pacitive, optical, or magnetic encoders. Optical encoders are the most common and
consist of a LED, two photosensors in quadrature, and a disk in between with en-
graved splits, creating different light patterns depending on the position. The sensors
pick up the pattern and can thereby determine position. The resolution then depends
on the engraved splits in the disk. An advantage of optical encoders is that they of-
fer high resolution, but a drawback is that it is sensible to dirt and dust [Schweber,
2021]. It is better to use magnetic encoders in such environments. This type of en-
coder decode the rotational position from a hall-sensor measuring magnetic flux of
permanent magnets since these are more reliable in dusty and humid environments.
The achievable resolution then depends on the number of sensors and the number
of pole pairs on the rotating magnet [Seybold et al., 2019]. See Figure 2.1 for a
comparison between optical and magnetic encoders.

2.1.2 IMU Feedback
An alternative method is to use an inertial measurement unit (IMU), typically in
a 6-axis or 9-axis version. A 6-axis IMU includes an accelerometer that measures
acceleration in a local 3-axis Cartesian coordinate system and a gyroscope that mea-
sures angular velocity in Tait-Bryan angles in the same local coordinate system as
the accelerometer, see Figure 2.4 for illustration. However, a 9-axis IMU also in-
corporates a magnetometer that measures the cartesian coordinates’ magnetic field.

16



2.2 Orientation and Rotations

The magnetometer component is valuable when the application needs to know the
object’s orientation relative to the earth’s magnetic field. IMUs are generally less
expensive than encoders but are not as accurate. They are sensitive to noise and bias
error which accumulates when integrating gyroscope data, which in turn cause the
pose estimation to “drift” with time. Therefore, IMUs require considerably more
signal processing before being considered reliable.

2.2 Orientation and Rotations

Before diving into the many ways of calculating orientations using an IMU, it is
important to explain the different coordinate systems and frames that the follow-
ing sections will mention. For example, a magnetometer measures magnetic field
strength in linear cartesian coordinates in the earth frame, whereas the gyroscope
measures the angular velocity in Tait-Bryan coordinates in the inertial frame.

2.2.1 Reference Frames
In order to estimate the orientation of the IMU, it is important to account for the
relativity of coordination frames that it moves within. Essentially there are four
frames that must be taken into consideration: the body frame, the natural frame, the
earth frame and the inertial frame, see Figure 2.2. The inertial frame is the static
frame with its center in the core of the earth. The earth frame is the frame that has
its center at the earth’s core but also follows the rotation of the earth relative to the
inertial frame. Note that the IMU measures the angular velocity and acceleration
in the inertial frame, which means that it also measures the angular rotation of the
earth as well as the rotational speed of the earth and the Coriolis acceleration. The
natural frame is the local geographical frame that the position of the IMU is relative
to. [Kok et al., 2017].

2.2.2 Coordinate Systems
The Cartesian coordinate system represents numerical coordinates along perpendic-
ular linear axes. An accelerometer measures acceleration in this coordinate system,
while a magnetometer measures magnetic field strength linearly as well. Figure 2.3
shows the linear x, y & z axes that is referred to throughout the report. Note that the
z-axis points downwards because it is following the direction of the force of gravity.

The Cartesian coordinate system is not ideal for rotations which is why Peter
Guthrie Tait and George H. Bryan developed the Tait-Bryan coordinate system,
principally to more easily represent rotations meant for aerospace engineers. Tait-
Bryan coordinates measures orientation in 3D space using yaw (ψ), pitch (ϕ), and
roll (θ ). The definition can be expressed geometrically by the angle difference be-
tween the earth frame and the body Frame. Referring back to Figure 2.2, ψ is the
angle between ze and zn, ϕ is the angle between ye and yn, and θ is the angle be-

17



Chapter 2. Theory

Figure 2.2 Frames of reference - body frame, natural frame, earth frame and inertial frame.
The exponent in the axis name indicates which frame it is [Kok et al., 2017, Fig 2.1].

Figure 2.3 Cartesian coordinate system [InvenSense, 2021, Fig 13]

tween xe and xn. This coordinate system can therefore be used to represent rotations
around the linear x, y and z axes [Allgeuer and Behnke, 2018]. Figure 2.4 shows
the yaw, pitch and roll that are used throughout the report.

When using Tait-Bryan angles, there is a possibility that gimbal lock will occur.
The phenomenon leads to losing one or more degrees of freedom in the heading
estimation, making it corrupt. The consequence is that it becomes unattainable to
describe the orientation uniquely. When one of the angles yaw, pitch or roll, see
Figure 2.4, is near ±90°, two planes will have the same orientation, and after their
alignment, there is a possibility that the planes will lock and hence one degree of

18



2.2 Orientation and Rotations

Figure 2.4 Tait-Bryan angles [InvenSense, 2021, Fig 12]

freedom is lost [Mansur et al., 2020].

2.2.3 Rotations
2.2.3.1 Rotation Matrices A rotation matrix is used to rotate points or vectors
in space. This kind of transformation is often used to calculate a point’s position
or vector’s direction in another coordinate system than the currently used. When
having a three-dimensional space, three basic rotations are needed, one for each
axis. These basic rotations are then multiplied to get a rotation matrix for the whole
space [Freidovich, 2017]. The roll rotation (around x-axis) can be formulated as

Rx(θ) =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 . (2.1)

For pitch rotation (around the y-axis) the matrix becomes

Ry(ϕ) =


cosϕ 0 sinϕ

0 1 0

−sinϕ 0 cosϕ

 . (2.2)

The final rotation, in yaw (around z-axis), is

Rz(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 . (2.3)
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Chapter 2. Theory

The resulting rotation matrix comes from multiplying the basic rotations mentioned
above. The order of rotations matter, following a left-to-right rule. For example if
having the order roll-pitch-yaw in a rotation, then the transformation matrix be-
comes

R = Rz(ψ)Ry(ϕ)Rx(θ) =
cosψ cosϕ cosψ sinϕ sinθ − sinψ cosθ cosψ sinϕ cosθ + sinψ sinθ

sinψ cosϕ sinψ sinϕ sinθ + cosψ cosθ sinψ sinϕ cosθ − cosψ sinθ

−sinϕ cosϕ sinθ cosϕ cosθ


(2.4)

.

If having another order in rotations then the matrix multiplication comes in another
order, resulting in a different rotation matrix.

2.2.3.2 Quaternions The quaternion system was brought in 1843 by W.R Hamil-
ton, by the realisation that a fourth dimension could be used to simplify 3 dimen-
sional multiplications. It uses three complex dimensions i, j, and k where

i2 = j2 = k2 = ijk =−1, (2.5)

and one real such that the quaternion q becomes

q = q0 +q = q0 +q1i+q2j+q3k. (2.6)

The set of quaternions together with multiplication and addition forms a non-
commutative ring, such that the multiplication operation A×B ̸= B×A. More pre-
cisely, addition of two quaternions qA and qB are defined as:

qA +qB = (qA,0 +qB,0)+(qA,1 +qB,1)i+(qA,2 +qB,2)j+(qA,3 +qB,3)k. (2.7)

Based on the definition in Equation 2.5 it is straightforward to derive and simplify
the product of two quaternions vectors as:

qAqB = qA,0qB,0 −qA ·qB +qA,0qA+qB,0qB +qA×qB (2.8)

Note that the product of two quaternions again becomes a quaternion.

20



2.2 Orientation and Rotations

Furhtermore, the complex conjugate, q∗ of a quaternion is defined as:

q∗ = q0 −q = q0 −q1i−q2j−q3k. (2.9)

Such that
qq∗ = 2q0. (2.10)

Lastly, the inverse of a quaternion becomes

q−1 =
q∗

|q|2
(2.11)

where the norm is defined as
|q|=

√
qq∗. (2.12)

A quaternion with a norm of 1 is called a unit quaternion and the reason why they
are of special importance is that they make it possible to use the quaternion in R4 to
rotate a R3 vector. A rotation with an angle of θ on a vector v ∈ R3, represented in
quaternion space as p = (0,v), can be done forming an unit quaternion:

q = q0 +q = cos
θ

2
+usin

θ

2
, (2.13)

u = q
||q|| and rotate the coordinate frame of v to its new orientation p′ with the

operation

p′ = qpq−1. (2.14)

In addition to the effectiveness, the advantage of quaternion rotations over rotation
matrices in Tait-Bryan coordinates, is that these are not susceptible to gimbal lock.
The proof of this is left out but can be found in [Kuipers, 2020].

It is important to mention that even if the rotations are performed in quaternion
space, it is still possible to translate it back into Tait-Bryan angles yaw, pitch and
roll:


ϕ

θ

ψ

=


atan2(q0q1 +q2q3,1−2(q2

2 +q2
2))

asin(2(q0q2 −q3q1))

atan2(2(q0q3 +q1q2),1−2(q2
2 +q2

3))

 . (2.15)
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Chapter 2. Theory

2.3 Heading Estimation

Pose estimations give the orientation of the body frame in the “natural” or “refer-
ence” frame. A gyroscope measures the angular velocity in Tait-Bryan angles, see
Figure 2.4, whereas the accelerometer and magnetometer measures the acceleration
and magnetic field strength in linear coordinates, see Figure 2.3. About some initial
state, the heading of an object with an IMU can be estimated by individually or in
combination a) integrating the angular velocity in order to determine the angle in
yaw, pitch, and roll, b) determine the pitch and roll by observing the accelerometer
values in relation to the force of gravitational vector c) determine the yaw by double
integrating accelerometer data in x & y plane knowing the radius of the rotation and
d) determine the yaw by measuring the magnetic field strength of the earth [Yang
et al., 2017].

As discussed in Section 2.1.2 the accelerometer is susceptible to noise and the gy-
roscope to bias. The gyroscope is also susceptible to noise but far less than the
accelerometer. In other words, the gyroscope provides accurate measurements in
the short term and the accelerometer in the long term. The time frame depends on
how much the gyroscope drifts, but even the most advanced gyroscopes have an
error that increases with time. It is therefore desirable to combine the signals us-
ing Sensor Fusion Algorithm (SFA), such as a Kalman Filter (KF), an Extended
Kalman Filter (EKF), or Complementary Filter (CF) to get the best of both worlds.
Using SFA, the combination of gyroscope a) and accelerometer b) and/or the mag-
netometer d) [Fan et al., 2017]. A downside with magnetometers is that they are
sensitive to magnetic disturbances caused by Electromagnetic Interference (EMI)
from power cords, motors, and ferromagnetic objects, that are difficult to filter out.
Nonetheless, researchers have suggested several methods that compensate for dy-
namic magnetic disturbance, for example, by applying a nonlinear optimization ap-
proach using Kalman Filters. [Wu, 2019]

2.3.1 Direct Tait-Bryan Angle Method
The most common heading estimation algorithm using an IMU is to calculate the
Tait-Bryan angles pitch directly from trigonometric operations on the accelerome-
ter and magnetometer and numerically integrate the angular velocity from the gyro-
scope. It is called the Direct Tait-Bryan Angle Method. [Pedley, 2013]

From the linear accelerometer readings a = [ax,ay,az], the pitch ϕ , is calculated
directly with

ϕ = atan2(ay,az). (2.16)

The roll can be determined similarly with

θ =−atan2(ax,
√

a2
x +a2

z ). (2.17)
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2.3 Heading Estimation

In both cases, it is assumed the rotation sequence is x-y-z.

Furthermore, the gyroscope can be numerically integrated in order to obtain all three
angles. Remember that the integration leads to drift. Additionally, since the roll
and pitch are already calculated using the accelerometer, the yaw angle is simply
determined given the angular velocity ω = [ωx,ωy,ωz] with

ψgyro =
∫

ωzdt. (2.18)

Additionally, since the gyroscope is calculated in the body frame, it needs to be
rotated in to the reference frame. The most straightforward way is to construct a
rotation matrix given the roll and pitch angles in Equation 2.16 and 2.17.

Using a 9-axis IMU, it is also possible to retrieve the absolute yaw angle given the
magnetic field strength, m = [mx,my,mz], from the magnetometer, again by incor-
porating the already retrieved pitch, ϕ , and roll , θ , angles from the accelerometer
to rotate it into the reference frame:

ψmag = atan2(−my cosϕ +mz sinϕ,mx cosθ +my sinϕ sinθ +mz cosϕ sinθ).
(2.19)

2.3.2 Complementary Filter
A second popular heading estimation algorithm is the Complementary Filter (CF).
The different characteristics of accelerometer, gyro, and magnetometer means that
they can contribute with diverse information. As discussed in Chapter 2.3 the gyro
provides reliable short-term measurements, the accelerometer long-term measure-
ments, whereas the magnetometer is sensible to magnetically unstable environ-
ments. Therefore, it is desirable to fuse the sensor data using an SFA to increase
the accuracy of the resulting pose estimation. The most common ones are Kalman-
based filters and Complementary Filter. The complementary filter has been praised
for its simplicity while still providing good performance. In contrast, Kalman-based
filters tend to be more difficult to implement and require more computational power.

A downside with the complementary filter is that additional measures are needed to
rotate the gyroscope measurements into the reference frame to get the correct yaw
result over the full pitch range. It is achieved using either quaternions or rotation
matrices. [Mahmood et al., 2016]

2.3.3 Factored Quaternion Algorithm
A third prevalent method is the Factored Quaternion Algorithm (FQA) which cir-
cumvents the singularity problem in Direct Tait-Bryan Angle Method by performing
the rotations in quaternion space.
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Assuming that the accelerometer initial state is facing downwards along with the
force of gravity such that ainit = [0,0,g]. A pitch angle, θ , from this initial state will
directly lead to the accelerometer readings ax = gsinθ and az =−gcosθ . Combin-
ing with the resulting unit quaternion equation in Equation 2.13, the unit rotation
quaternion in pitch becomes

qp = cos
θ

2
(1 0 0 0)+ sin

θ

2
(0 0 1 0). (2.20)

Proceeding with the unit rotation quaternion for roll angle, changing the roll results
in that ay =−gcosθ sinϕ and az =−gcosθ cosϕ , from which the roll rotation unit
quaternion could be calculated as

qr = cos
ϕ

2
(1 0 0 0)+ sin

ϕ

2
(0 1 0 0). (2.21)

Since the accelerometer is unable to determine yaw, either the gyroscope or the
magnetometer data must be used. As discussed above, one way to achieve the yaw
quaternion is to first solve for pitch, qp and roll, qr and then rotate it together with
the normalized accelerometer vector into the earth frame (note that the accelerom-
eter measures in inertial frame and magnetometer in earth frame). Outgoing from
the magnetometer readings in the body frame

mb =


mx

my

mz

 , (2.22)

the yaw measurements are rotated into the earth frame with the operation presented
in Equation 2.5, such that the magnetometer reading, me, becomes

me = qpqrmbq−1
r q−1

p . (2.23)

However, the rotated xy-plane may not align with the local normalized geomagnetic
field, or sometimes called the “true north”. except for the yaw angle, ψ , such thatnx

ny

=

cosψ −sinψ

sinψ cosψ

me
x

me
y

 . (2.24)

Because IMU magnetometers are susceptible to interference which causes the vec-
tors to differ in length, it is desirable to normalize the magnetic x-y plane, M, in the
earth frame;

24



2.3 Heading Estimation

M =

Mx

My

=
1√

me
x

2 +me
y

2

me
x

me
y

 , (2.25)

and the x-y plane of the known local geomagnetic field, N, such that;

N =

Nx

Ny

=
1√

n2
x +n2

y

nx

ny

 . (2.26)

In turn solving for cosψ and sinψ results incosψ

sinψ

=

 Mx My

−My Mx

Nx

Ny

 (2.27)

from which ψ is extracted and thereafter put into forming the yaw unit rotation
quaternion;

qy = cos
ψ

2
(1 0 0 0)+ sin

ψ

2
(0 0 0 1). (2.28)

The orientation, q̂, is then fully described by the quaternion;

q̂ = qyqpqr. (2.29)

To use the gyroscope in quaternion space, it is first necessary to form the the angular
rate, ω ∈ R4, such that

ω̄ =
[
0 ωx ωy ωz

]
. (2.30)

The angular rate, ω, which describes the rate of change, is numerically integrated
using the Runge-Kutta method with the initial value problem

dq̂t
dt

=
1
2
· q̂tω̄ (2.31)

where, q̂0 = [1,0,0,0]. The resulting orientation is then described by the integrated
quaternion at time t as

q̂t = q̂t−1+
∆t
2
⊗ q̂t−1. (2.32)
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where ∆t denotes the sample time.

If both the magnetometer and the gyroscope were to be used in determining yaw, an
additional SFA, such as the Complementary Filter, is needed.

A positive aspect of the FQA algorithm is that pitch and roll are decoupled from
the magnetometer and thus unaffected by magnetic disturbances. Additionally, ro-
tations are easily performed since they are performed in quaternion space [Yi et al.,
2018].

2.3.4 Mahony Filter
A fourth popular sensor fusion algorithm is the quaternion-based PI-regulator ap-
proach known as the Mahony Filter. It is based on a complementary filter that pro-
vides reference frame rotation and bias correction to obtain accurate yaw estimation
results over the entire tilt range. A high-level overview flowchart of the Mahony Fil-
ter algorithm can be observed in Figure 2.5. In this Figure, magnetometer is shown
as input but the algorithm works with only accelerometer and gyroscope data as
well.

Figure 2.5 High-level overview of the Mahony Filter [Cirillo et al., 2016, Fig 1.5]

In more detail, the first step is usually to normalize the accelerometer and magne-
tometer measurements since only the relation of the three axes is necessary in order
to determine the orientation. Since it is still based on numerical integration of the
gyroscope, the Runge-Kutta method in Equation 2.32 is used, with quaternion state
q̂t at time t.

The rotation from body frame to the reference frame is different from previous
methods. Instead the error from the correct estimation caused by the lack of rotation
is estimated. First a frame correction vector, v(q̂t), is constructed from the previous
quaternion state at time t −1 as
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v(q̂t−1) =


2(q2q4 −q1q3)

2(q1q2 +q3q4)

(q2
1 −q2

2 −q2
3 +q2

4).

 (2.33)

the most recent accelerometer measurements, at, is used in order to calculate the
estimated proportional orientation error et from the previous step

et = at×v(q̂t−1). (2.34)

Furthermore, the integration error, iet, is thereafter calculated as

iet =
iet−1+et∆t (2.35)

where ∆t is the sample period.

Next, the estimated proportional and integration error is after that added to the gyro-
scope measurements so that they become represented in the reference frame rather
than the gyroscope’s local body frame, ωcorr , resulting in the corrected gyroscope
measurements;

ωcorr = ωt+ kp ·et+ ki · iet. (2.36)

The user-defined proportional and integral constants kp and ki must be determined
through testing, and the optimal values differ from case to case.

Lastly, the corrected gyroscope measurement is converted into quaternion space and
thereafter integrated using the Runge-Kutta method as in Equation 2.30, 2.31 and
2.32 in order to achieve the final estimated orientation q̂t.

2.3.5 Madgwick Filter
A fifth proven SFA is the Madgwick Filter which can be modified to suite both 6-
axis and 9-axis IMUs. The reason why Madgwick has shown wide recognition is
that it matches high accuracy Kalman based algorithms but with lower execution
time. Like Mahony Filter, it is a quaternion based algorithm, but uses an optimized
gradient descent algorithm to determine the gyroscope measurement error instead
of a PI-regulator. For the 6-axis IMU the idea is to combine integrated gyro mea-
surements and the direction given by the accelerometer measurements. The attitude
is given by integrating gyro data and attitude from accelerometer data is estimated
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by using the already mentioned gradient descent algorithm. A flowchart of the al-
gorithm can be seen in Figure 2.6. As with the Mahony flowchart, magnetometer is
included as input but also here it could be left out.

Figure 2.6 High-level overview of the Madgwick Filter [Cirillo et al., 2016, Fig 1.5]

The algorithm’s target is to find the function

f (I
W q̂,W ĝ,I â) =I

W q̂∗⊗W ĝ⊗I
W q̂−I â, (2.37)

and then solve the minimization problem

min
I
W q̂∈R4×1

f (I
W q̂,W ĝ,I â). (2.38)

where prefix I indicates the inertial frame and W the world frame, see Section 2.2.1
for definition of frames. The hat indicates that it is a normalized vector. q∗ is the
conjugate of q and W ĝ a normalized gravity vector, which is [0,0,0,1]T . I â is the
normalized acceleration measurements in the inertial frame. The filter computations
follow the scheme down below.

Sampled gyroscope- and acceleration measurements are denoted Iωt and Iat. The
acceleration measurements are normalized since only the directions are important
and not the size. The new normalized acceleration vector at time t is denoted I ât.

The gradient step, the orientation increment, is computed as

∇ f (I
W q̂est,t ,

W ĝ,I ât+1) = JT (I
W q̂est,t ,

W ĝ) f (I
W q̂est,t ,

W ĝ,I ât+1), (2.39)

using the acceleration measurements and the previous estimated orientation. The J
function;

JT (I
W q̂est,t ,

W ĝ) =


−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0

 , (2.40)
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is a 3x4 matrix and the elements of it consists of the previous estimated quaternion.
The f function;

f (I
W q̂est,t ,

W ĝ,I ât+1) =


2(q2q4 −q1q3)− âx

2(q1q2 +q3q4)− ây

2( 1
2 −q2

2 −q2
3)− âz

 , (2.41)

is a column vector including the previous estimated quaternion and acceleration
measurements. The total update quaternion from the accelerometer measurements
is calculated as

I
Wq∇,t+1 =−β

∇ f (I
W q̂est,t ,

W ĝ,I ât+1)

||∇ f (I
W q̂est,t ,W ĝ,I ât+1)||

. (2.42)

The filter also uses gyroscope measurements as input. The new rate of change,

I
W q̇ω,t+1 =

1
2
·IW q̂est,t ⊗ [0,I ωt+1]

T , (2.43)

is calculated by taking the cross-product between the previous normalized quater-
nion and the gyroscope measurement. The dot above the variable indicates that it is
the derivative and not a normalization, as was the case for the hat.

The quaternions are then fused to get a more accurate estimation of the attitude. The
quaternions from Equation 2.42 and 2.43 are first added together

I
W q̇est,t+1 =

I
W q̇ω,t+1 +

I
W q∇,t+1. (2.44)

The fused measurements are then integrated,

I
Wqest,t+1 =

I
W q̂est,t +

I
W q̇est,t+1∆t, (2.45)

to get a quaternion estimating the new position. In the integration ∆t is the sampling
time.

A convenient aspect of the Madgwick Filter compared to Mahony is that there is
only one tunable parameter, β which determines the relationship between gyro and
acceleration measurements. [Madgwick et al., 2011].

2.3.6 Summary of methods for attitude estimation
Several methods for attitude estimation have been presented in this chapter. Most of
them apply quaternion calculations, this is an advantage since gimbal lock can be
avoided. There are five different algorithms, listed below.

• Direct Tait-Bryan Angle Method
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• Complementary Filter

• Factored Quaternion Algorithm (FQR)

• Mahony Filter

• Madgwick Filter

Direct Tait-Bryan Angle Method is the only one of the mentioned using trigonomet-
ric functions to calculate movement. An advantage is the simple implementation and
a disadvantage is that gimbal lock can occur.

Complementary filter is a simple sensor fusion algorithm. It uses quaternions and
therefore gimbal lock is avoided. Another advantage is that two sensors are fused
which allows a more robust and reliable estimation of correct position since one
signal can be used long-term and another one short-term. A disadvantage is that the
gyroscope coordinate system have to be rotated into a reference frame to get correct
measurements.

FQR also use quaternions to prevent gimbal lock but a downside is the use of a
magnetometer, which is sensitive to magnetically unstable environments t and the
measurements from that can not be fully trusted unless the environment is fully
controlled.

Mahony Filter is according to research a highly accurate algorithm and can be seen
as a PI-regulator with quaternions where the error is estimated. A disadvantage with
that is that there are two parameters to tune which can be very time consuming. But
the advantage is that the algorithm is easy to implement and can be very accurate
when tuned properly.

Madgwick Filter is the last presented algorithm. It calculates a gradient to optimize
the attitude estimation and an advantage over the Mahony is that it contains only
one tuneable parameter. A disadvantage compared to Mahony is that the algorithm
is harder to implement and takes more computation power.

2.4 Signal processing

MEMS-based IMUs require careful digital processing techniques to achieve an ac-
ceptable accuracy of orientation calculation, as mentioned in the previous paragraph
because noise and bias accumulate when integrating the angular velocity and accel-
eration needed to determine the orientation.

2.4.1 Sampling data
Proper sampling is critical for a functioning system. If the sampling is too fast in a
closed-loop system, the loop will lag because it is impossible to deliver data as fast
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as desired and there will be redundant calculations, and if sampling is too slow, there
is a risk that essential data is lost. In this case, it is crucial not to sample too slow
to avoid as much drift as possible in the integration. A rule of thumb for sampling
interval in a closed-loop is;

0.1 ≤ ωc∆t ≤ 0.6, (2.46)

where ωc is the cut-off frequency and ∆t is the sampling interval [Wittenmark et al.,
2002].

2.4.2 Low-Pass Filters
2.4.2.1 Simple Moving Average Common distortions of signals are noise and
bias. By using calibration, bias could be removed. However, noise is a bit more com-
plicated. It can not be accounted for in advance and, therefore, not removed from
the signal. One way to account for this distortion is using a Simple Moving-Average
(SMA) filter. The SMA-filter averages the N+1 most previous measurements from
x[n] as

y[n] =
x[n]+ x[n−1]+ ...+ x[n−N]

N +1
. (2.47)

where N is called the Window Size.

One downside with the SMA-filter is that the dynamic memory quickly grows as
the window size increases. Otherwise it is an effective and simple way to reduce
noise in a signal.

2.4.2.2 Exponential Weighted Moving Average An Exponential Moving Aver-
age (EMA) filter is an Infinite Impulse Response (IIR) filter that consists of expo-
nential decreasing components. For this purpose a first-order filter have been used:

y[n] = αx[n]+ (1−α)y[n−1] (2.48)

where α is the weighting factor, x[n] is the current sample and y[n−1] is the previous
output from the filter.

EMA-filters are similar to Simple Moving Average (SMA) filters, but the difference
lies in the weighting. EMA uses more weight on the current sample and SMA is an
average of the N last samples.

2.4.3 Gyroscope Bias Compensation
Several methods have been proposed to compensate for the long-term effect of gyro
bias. A gyro with 0.1 dps results in 6◦ error after only 1 minute due to integration
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drift, which is too much in order to be of any practical use. That is why gyroscopes
are often combined with a magnetometer to determine the yaw over a long time
accurately. However, it is still essential to reduce the long-term drift, such as when
measurements are performed in unstable magnetic environments.

Since the gyroscope contains both low and high-frequency components, it is also
essential to apply proper high-pass filtering to reduce DC bias and low-pass filtering
to reduce noise. It is also common to introduce a threshold, ωthres, such that if the
gyroscope measurements, ω, is below the threshold, they are set to zero, as

ω =

 ω if ω ≥ ωthres

0 if ω < ωthres

. (2.49)

The value of ωthres must be chosen so that vibrations and noise isn’t added to the
integration while at the same time make sure that it is low enough to incorporate
slow angular movements.

A second measure is to keep calibrating the gyroscope when it is static and to re-
move the bias from the output from time to time since the bias changes randomly
and due to external factors such as temperature. The downside is that it disturbs
the unit’s operation during calibration. For example, a gyroscope sitting on a PTZ
camera would not be able to rotate as the gyroscope is calibrating, which is in most
cases unacceptable.

A third approach is the Model-Based Gyro Bias Update Method which estimates
the orientation and the bias at the same time using a Kalman-based approach, thus
avoiding the need for intermediate calibration. A downside of this approach is that
it is more resource-heavy than the previous one. One example of such an algorithm
is the approach taken by the Mahony Filter. [Fan et al., 2017]

2.4.4 Magnetometer Calibration
Cheaper magnetometers requires calibration in order to compensate for static mag-
netic disturbances in the surroundings originating from, for example, alternating
currents or ferromagnetic objects. These disturbances can be divided into hard-iron
effects and soft-iron effects.

Hard-iron effects come from permanently ferromagnetic objects on the PCB that
rotate with the IMU. Therefore it demonstrates itself as a permanent bias from the
origin during a 360◦ rotation of the magnetometer. The hard-iron effects can be
calibrated by measuring the offset during a full rotation and calculate the center
points, mx,center. my,center, and mz,center that describes the offset, as
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mx,center =
mx,max +mx,min

2
(2.50)

my,center =
my,max +my,min

2
(2.51)

mz.center =
mz,max +nz,min

2
. (2.52)

The hard-iron calibrated magnetometer readings, mhard is then calculated by sub-
tracting the magnetometer center, mcenter, from the magnetometer readings, m,
to move it to origo;

mhard =m−mcenter. (2.53)

Soft-iron effects is a second type of magnetic disturbance that originates from nor-
mally unmagnetized ferromagnetic components that becomes induced by the geo-
magnetic field, such as iron or nickel for example. In comparison with hard-iron
distortion, soft-iron distortion depends on the orientation relative to the interfering
object. In order to compensate for this effect it is necessary to re-scale the axial
response in order to make it more spherical. One simple and effective method is
to use the offset measurements from Equation 2.50, 2.51 and 2.52 to produce the
re-scaling vector dsoft:

dsoft =


dx,so f t

dyso f t

dz.so f t

=


mx,max−mx,min

2
my.max−my.min

2
mz.max−mz,min

2

 (2.54)

with an average scaling coefficient, d̄, of

d̄ =
dxso f t +dyso f t +dzso f t

3
. (2.55)

The final calibrated vector, mcalibrated , is lastly calculated by applying an averaged
re-scaling matrix to the hard-calibrated magnetometer as

mcalibrated =mhard×


d̄

dxso f t 0 0

0 d̄
dyso f t 0

0 0 d̄
dzso f t

 . (2.56)
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Figure 2.7 Soft and Hard Iron Effects on magnetometer measurements [Sawicki et al.,
2017, Fig 3.b]

The result of soft-and hard iron effects can be seen in Figure 2.7.

It is important to note that the previously proposed calibration method is effective
when the magnetometer rotates around its origin. Otherwise, the translation of the
magnetometer’s coordinate system pin relation to the surrounding magnetic coordi-
nate system needs to be accounted for by incorporating real-time attitude estimation
using the accelerometer.
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3
Experimental Setup

The previous chapter presented the theoretical background needed to understand the
steps of the report. This chapter presents an overview of the material used through-
out the report to make it re-creatable for future researchers. Section 3.1 starts by
presenting PTZ cameras in general and the specifications of the camera used for
testing throughout the report. It continues by presenting the hardware used in the
testing and finishes off with a presentation of the test setup.

3.1 Material

3.1.1 PTZ Camera
The application of replacing the existing feedback solutions with IMUs is made on
a PTZ camera. The model used for this report’s investigation is Axis Q6215 model
provided by the company, see Figure 3.1 and 3.2. It has a pan range of 360° and tilt
range ±90°, making it possible to cover all angles. Additionally, the zoom speci-
fications for this camera is 30x Optical Zoom and 21x Digital Zoom. The angular
velocities are limited to ±700 dps in pan and tilt respectively.

An advantage with this model over others is that it can be tampered with in both
pan and tilt. Many other PTZ cameras tilt is protected under a dome.

The Q6215 uses a magnetic encoder with a resolution of ±0.005°, see Table 1.1.
The cost of it can be seen in Table 3.1 and is used in all camera models in the higher
price range.

In the cheaper segment the camera models use a cheaper option which is an optical
feedback solution. The cost of this can be seen in Table 3.2. The sacrifice for a
cheaper solution is the resolution since the optical feedback has an accuracy of
±9°. The resolution requirements are lower in the cheaper cameras because they do
not have as much zoom as the cameras in the higher price range.
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Figure 3.1 Axis Q6215 camera
mounted on wall facing downwards.

Figure 3.2 Axis Q6215 camera up-
right mounted on pole.

Source: Axis Communications AB intranet

Table 3.1 Cost of currently used magnetic feedback solution

Magnetic feedback

2x encoder PCB $14.18

1x metal encoder ring for pan $6.60

1x metal ring for tilt $6.63

Total cost $27.41

Table 3.2 Cost of currently used optical feedback solution

Optical feedback

2x PCB $1.10

Mechanics Pan $6.80

Mechanics Tilt $2.98

Total cost $10.88
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3.2 InvenSense ICM20602 MEMS IMU

3.1.2 STMicroelectronics Nucleo-G070RB
A Nucleo-64 development board with STM32G070RB MCU from STMicroelec-
tronics is used for communication and computations. The board is provided with
16 MHz oscillator, the MCU features 128 kB memory and supports SPI and I2C.
SPI is used to communicate with the IMU in this development because of speed and
protocol simplicity. An argument for using a STM32 is because STMicroelectronics
provides a friendly and intuitive IDE. All code is written in C.

3.1.3 InvenSense ICM20948 MEMS IMU
The InvenSense ICM20948 Micro-electromechanical system (MEMS) sensor is
used during this proof-of-concept. The chip is equipped with 9-axis motion tracking
and consists of a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer
(compass).

3.1.3.1 3-Axis Accelerometer The accelerometer noise sensitivity is 100
µg/

√
Hz with programmable Full-Scale Range (FSR) of ±2 g, ±4 g, ±8 g and

±16 g. This results in the sensitivity options 0.061 mG/LSB, 0.12207 mG/LSB,
0.244141 mG/LSB and 0.4 mG/LSB following Equation 3.1. Additionally, the
16-bit ADC is equipped with a number of digital low-pass filters (DLPF)

ρstep =
2 ·FSR

216 /LSB. (3.1)

3.1.3.2 3-Axis Gyroscope Likewise the gyroscope noise sensitivity is ±4
mdps/

√
Hz with programmable FSR of ±250 dps, ±500 dps, ±1000 dps, ±2000

dps. This results in the sensitivity options 0.0076 dps/LSB, 0.0153 dps/LSB,
0.03048 dps/LSB and 0.608 dps/LSB. Additionally, the sensitivity error of the
gyroscope is ± 1%. Both the accelerometer and gyroscope data are fetched from a
16-bit ADC with a set of optional digital filters.

3.1.3.3 3-Axis Magnetometer A magnetometer is a correct term for a compass.
The range of ICM20948s magnetometer is ±4900 µT and has a sensitivity of 0.15
µT/LSB. No information about the magnetometer noise is present in the datasheet.

3.2 InvenSense ICM20602 MEMS IMU

The ICM20602 MEMS IMU comes from the same manufacturer as the ICM20948
mentioned above. The difference between the two is that the ICM20602 does not
have a magnetometer included. The ICM20602 is a bit cheaper and is thus a good
alternative if there is no need for a magnetometer.
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3.3 Cost of IMUs

Table 3.3 presents the cost for the two IMU models used in this master thesis. The
stated prices are per unit when ordering 1000 units at DigiKey which is a frequently
used supplier to Axis.

Table 3.3 Cost of used IMU models

ICM20948 $5.50

ICM20602 $2.40

3.4 Test Environment

The initial test setup can be seen in Figure 3.3. 1) is the STM32, 2) slip ring con-
necting the micro-controller with the IMU to prevent the cables from tangling when
rotating., and 3) the IMU. The ICM20948 is temporarily placed with its x- and y-
axis in horizontal on the part of the camera, which can only rotate in pan. If the
concept were to be integrated into the camera, the IMU would be placed in a more
suitable location. Nevertheless, it is a convenient place for measuring yaw angle for
now and it fulfills the criteria for the first problem discussed in Section 1.2.

In Figure 3.4 the second test setup can be seen. The micro-controller and the slip
ring are placed as before. However, the IMU is now located so it can rotate both in
pan and tilt. This scenario is the second problem formulation in Section 1.2. The first

Figure 3.3 Pan Test Setup using the Axis Q-6215 PTZ camera.
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Figure 3.4 Tilt Test Setup using the Axis Q-6215 PTZ camera.

problem formulation was only to get started with the measurements and get familiar
with the environment. This setup is the real challenge to get accurate measurements
since the IMU can rotate in both pan and tilt. Figure 3.5 shows a setup when testing
reliability of magnetometer using a permanent disturbance in the form of a wrench.

Figure 3.5 Setup when testing magnetometer with disturbance present.
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4
IMU Measurements

This chapter explores the functions and constraints of the IMU to achieve the main
aim of the thesis. Section 4.1 evaluates the impact of gyroscope bias, Section 4.2
presents the impact of acceleration noise, and Section 4.3 explores the quality of the
magnetometer signals.

4.1 Gyroscope Bias

Figure 4.1 shows the gyroscope bias for rotation around the z-axis (yaw) with dif-
ferent DLPF settings sampled at 50 Hz over one minute after initial bias calibration
with a resolution set to ±1000 dps. The result was similar for the other two axes, so
only one result is shown.

The initial bias calibration is done by averaging 1000 samples as the gyroscope
lies idle at start. This value is subtracted from each axis. The calibration accuracy
depends on the resolution configured on the gyroscope - the better resolution, the
better calibration. It is clearly seen that the drift increases linearly with around 35°
per minute when no filter is applied. The digital low-pass filter on the IMU has a
significant impact in dealing with drift caused by the gyroscope bias and achieves a
drift of fewer than 1° per minute in idle state, see Figure 4.2. This Figure shows the
same measurements but without the one labeled “No filter" (12106 Hz)” in Figure
4.1 to see the other results better. Small vibrations in the testing environment also
help build up the bias, explaining why the filters perform differently. However, it is
evident that filters with the lowest cut-off frequencies, 11.6 Hz and 5.7 Hz, perform
best.

Furthermore, the filter with a cut-off frequency of 196.6 Hz seems to perform well
with a low bias according to Figure 4.2. However, the drift is difficult to control with
the gyroscope alone in the presence of vibrations. Therefore, additional calibrations
might be needed to determine orientation over time with a gyroscope.
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Figure 4.1 Measurements of the yaw drift for a variety of DLPFs, with the 12106 Hz filter
included.

Figure 4.2 Measurements of the yaw drift for a variety of DLPFs in more detail,with the
12106 Hz filter excluded.
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4.2 Acceleration Noise

Figure 4.3 shows the accelerometer noise for the z-axis for different DLPF settings
sampled at 10 Hz over 10 seconds after initial calibration with a resolution set to ±8
g. The noise is only shown for one axis but is similar for the other two. As expected,
less noise is present in the lower cut-off frequency in the DLPF that is used. With the
highest cut-off frequency, using DLPF (1046 Hz), an unacceptable amount of noise
can be seen. In this case, as in most, the less noise, the better. But noise is however
expected from accelerometers as discussed in Section 2.2. Yet, using filters from
21,2 Hz and below results in noise levels below 0,001 g (approximately 0,01 m/s2)
which can be accepted in this case.

Figure 4.3 Measurements of accelerometer noise with different DLPFs applied.

4.3 Magnetometer Disturbances

The magnetometer measurements were sampled with 50 Hz while rotating around
z-axis 360°. Four tests were conducted with the results seen in Figure 4.4 and they
were taken during different magnetic conditions in order to demonstrate the effects
of magnetic disturbances in the environment. For three of the four tests the setup in
Figure 3.3 were used and for the final test the setup in Figure 3.5 were used.

A moving average filter with a window size of 10 was used to get rid of some of
the noise that was evident while reading raw data. The difference by applying this
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Figure 4.4 Plot shows magnetometer field strength in x and y as it is rotated 360◦ in pan
(horizontally): without moving average, with moving average and no distortion, with moving
average and fixed magnetic distortion, and with moving average and dynamical magnetic
distortion.

filter can be observed by comparing the red circle with the blue circle in Figure
4.4. However, with the filter comes a delay, which makes it not suitable for faster
signals. Nevertheless, the magnetometer was not intended to be used in this way but
only considered to complement the more precise gyroscope.

Figure 4.5 Impact of soft-and hard-iron calibration in combination with SMA low-pass
filter.
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Furthermore, Figure 4.4 shows how the magnetometer is affected by both dynamic
and static magnetic fields. The static field was produced by fixing an iron wrench
about 3 cm from the IMU and is seen in the stretched green curve, and the dynamic
field was produced by holding the 90 W midspan which was supplying power to the
camera around 5-10 cm during the sweep and is seen in the pink curve.

The magnetometer is sensitive to external magnetic fields, which drastically degrade
the performance of using it to determine yaw orientation by using the magnetic field
of the earth as a reference. Nonetheless, there are both hard and soft iron effects
on the readings during normal office circumstances as well. The results of applying
hard and soft iron compensation according to the method described in Chapter 2.4.4
can be seen in Figure 4.5. It is still evident that the performance of the magnetometer
after calibration is far from perfect.

Figure 4.6 3D plot of magnetometer field strength as it is rotated 360◦ in pan (horizontally),
sampled at 50 Hz without SMA low-pass filter.

Additionally, the 3D effects of hard and soft compensation with and without mov-
ing average filter during calibration and measurement can be seen by comparing
Figure 4.6 and 4.7. The filter increases the performance of the magnetometer read-
ings. Nonetheless, the results are far from a perfect circle along the x-y plane with
its center in origo. Additional measures are evidently needed in order to get reliable
results. As noted at the beginning of the chapter, all measurements have been per-
formed in an indoor office environment. Therefore, it is not determined how well the
magnetometer performs in outdoor conditions. Nonetheless, additional measures
are needed if it were to be used in a camera that is expected to function correctly
during all kinds of environments - indoors in a factory environment with large ma-
chines or on the sea or near high power cables. For example, more sophisticated

45



Chapter 4. IMU Measurements

Figure 4.7 3D plot of magnetometer field strength as it is rotated 360◦ in pan (horizontally),
sampled at 50 Hz with SMA low-pass filter using N=10.

calibration techniques and noise detection algorithms could help increase the per-
formance. The purpose of the implementation is to make it as general as possible
which means it needs to function properly in any environment with disturbances. It
has therefore been decided not to use the magnetometer because of its unreliability.
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Testing & Evaluation

This chapter will dive deeper into the IMU as a tampering detection and correction
mechanism for PTZ cameras. More precisely, the possibility of achieving accurate
orientation measurements is explored through four testing fields. Section 5.1 evalu-
ates the quality of the IMU as an angle sensor when the rotation is fixed on one axis.
Section 5.2 evaluates the performance of two different Sensor Fusion Algorithms.
Additionally, to understand the robustness requirements of the IMU, Section 5.3
evaluates the impact of tampering on the camera, and lastly Section 5.4 measures
the impact of vibrations through real-world field testing.

5.1 Fixed Axis

5.1.1 Pan Result
Fixed axis pan testing was performed using the setup shown in Figure 3.3 by plac-
ing the IMU on the camera with its x- and y-axis in horizontal position and com-
paring with the magnetic encoder as reference. The gyroscope offset was subtracted
before the measurements were performed by averaging the first 1000 samples. Ad-
ditionally, a threshold of ±0.3048 dps was used to eliminate errors caused by small
vibrations. It is important to stress that this value was determined as a trade-off be-
tween vibration resistance and resolution. Therefore, it is not guaranteed to perform
likewise in environments with more vibration.

Figure 5.1 shows the squared yaw angle error with two different angle measurement
methods. The red curve shows the squared error when using Tait-Bryan angles for
gyro measurements using numerical integration with a sample time of Ts = 20 ms.
The blue curve shows the squared error when using the Runge-Kutta quaternion
estimation described in Equation 2.30, 2.31 and 2.32.

The two methods for calculating angle from gyro shows a substantial difference.
When using Tait-Bryan angles, the error diverges. However, when using quater-
nions, the error stays at a level below 1°. Figure 5.2 shows the same measurements
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Figure 5.1 Squared yaw angle error between gyro and magnetic encoder with direct inte-
gration (red) and Runge-Kutta quaternion integration (blue).

as the blue curve in Figure 5.1 in better detail. A different scale on the y-axis gives
a better perspective on the error when using quaternions; when turning 360°, the
squared error, and hence the error, is less than 1°.

Figure 5.2 Squared yaw angle error between gyro and magnetic encoder for Runge-Kutta
quaternion integration in more detail.
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5.1.2 Tilt Result
Using the setup shown in Figure 3.4 by placing the IMU on the side of the camera
with its x-and y-axis in the vertical position, it was possible to compare the IMU per-
formance with the magnetic encoder. Similarly, as in the pan result, a threshold of
±0.3048 dps was used to eliminate vibration errors accumulated by the gyroscope
integration. Additionally, low-pass filters were applied to both the accelerometer
and the gyroscope to reduce noise. Lastly, an average of 1000 initial pitch and roll
angles samples was determined as an offset and subtracted from all angle readings
to account for the IMU not being placed perfectly along the vertical axis.

Figure 5.3 Squared tilt angle error between both gyro and accelerometer.

Figure 5.3 shows the squared roll angle error compared with the magnetic encoder;
the accelerometer in red and of the gyroscope in blue. The gyroscope shows desir-
able short term performance with a quadratic error below 1◦, but where the error
increases slightly at the end of the test, suggesting drift, as could also be seen at
the end of the gyroscope yaw measurements in Figure 5.2. However, the gyroscope
angle error is slightly more prominent in the tilt measurements than in the yaw
measurement, caused by the fact that external vertical vibrations are more profound
than horizontally. A more aggressive vertical threshold could be needed if the gy-
roscope determines the tilt-angle alone. A better way would be to fuse it with the
accelerometer in an SFA.

The gyroscope performance nonetheless shows better short-term performance than
the accelerometer, in which the error is biggest around 0◦ and smallest around
90◦ and -90◦. It could be the effect of factory calibration parameters that changes
slightly after thermal stress during the soldering process, which in turn suggests
that re-calibration could be necessary to achieve more accurate results around 0◦

[Pedley, 2015].
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5.2 Sensor Fusion Algorithm

There are different types of sensor fusion algorithms for both rotation and filtration.
Section 2.3 mentions the Complementary filter, Mahony filter, FQA, and Madgwick,
yet, there are many more. We have chosen to look into Mahony and Madgwick in
more detail. The reason for not testing more algorithms is lack of time and the
similarity in results compared to, for example, Kalman Filter and FQA [Ludwig
and Burnham, 2018].

As described in Section 2.3.4, the Mahony filter is a PI-controller with one integra-
tion constant and one proportional constant that tunes the performance depending
on the use case. Testing is vital when deciding on the two parameters.

Using the settings in Table 5.1, a reasonable low error was given. The two filters un-
derwent two different tests - Continous and Sweep. The first results in Section 5.2.1
show the continuous measurements with different tilt and pan angles with no cali-
bration in between any of the measurements. The second test results in Section 5.2.2
show the sweep measurements, where after every measurement, the camera resets
to yaw angle 0° and tilt angle 90° for calibration before the next measurement. The
results demonstrate the error against the magnetic encoder as a “true” reference and
is split into two tests to evaluate the performance of having the algorithm running
continuously or by only using it to measure relative estimation differences.

Table 5.1 Mahony Filter parameters

fs 50 Hz

Kp 0.4

Ki 1.1

The Madgwick filter uses only one parameter compared to the Mahony filter that
uses two. The optimal parameter was found through testing and comparing the atti-
tude estimation with the magnetic encoder and is shown in Table 5.2. In the evalua-
tion of the two algorithms, the same sampling frequency was used.

Table 5.2 Madgwick filter parameters

fs 50 Hz

β 0.1
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Figure 5.4 Color labels of tilt angles for Figure 5.5, 5.6, 5.7, 5.8

5.2.1 Continuous Measurements
The continuous filter measurements were performed by first calibrating the gyro-
scope offset with 1000 samples when the IMU was idle. In addition, an exponential
weighted moving average low-pass filter with α = 0.2 was applied to the gyroscope
data to reduce noise. Furthermore, the proportional and integral parameter for the
Mahony filter and the gain parameter, β , for Madgwick Filter was chosen as in Ta-
ble 5.1 and 5.2, after experimental testing for a subjective optimal value in a test
environment. Additionally, a rotation matrix was applied to the acceleration mea-
surements to correct for misalignments in pitch and roll.

Figure 5.5 Continuous Pan Error between reference (magnetic encoder) and IMU for Pan
0◦−360◦ and Tilt 90◦, 45◦, 0◦, −45◦, and −85◦

The Pan angle error is shown in Figure 5.5. It demonstrates the failure of the gy-
roscope to estimate the pan (yaw) angle over time because of accumulated errors
for both filters. However, it is not until the fourth turn at -45◦ that the estimation
begins to drift considerably as the first 360◦ rotation shows promising results with
low errors. At the end of the last 360◦ rotation at -90◦ tilt, the accumulated error has
grown to approximately 40° for Mahony and 30° for Madgwick, which indicates
that Madgwick has better bias compensation performance over time. Nonetheless,
both filters show bad performance over time, making them unusable in an applica-
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Figure 5.6 Continuous Tilt Error between reference (magnetic encoder) and IMU for Pan
0◦−360◦ and Tilt 90◦, 45◦, 0◦, −45◦, and −85◦

tion like this without any additional reference.

Furthermore, the tilt angle error in Figure 5.6 shows varied performance along with
the tilt angle range with the best performance at 0◦, -45◦ and -90◦ and worst per-
formance at 45◦ and 0◦ for both filters. The result is expected compared with the
fixed accelerometer tilt result in Figure 5.3 and may be a result of poor accelerome-
ter calibration. The angle error is smaller than if the accelerometer were to be used
alone since the gyroscope has good short-term performance and the accelerometer
has good long-term performance. The drift can therefore be eliminated while at the
same time providing desirable accuracy. This is not the case in pan since the ac-
celerometer cannot measure the yaw angle and cannot be fused with to compensate
for drift as it can in tilt.

5.2.2 Sweep Measurements
As seen in the previous section, continuous measurements did not give accurate
position feedback because of the drift, which is unavoidable during integration. The
second sweep test avoids it by not integrating continuously. The same initialization
procedure was used for the sweep measurements by calibrating the gyroscope by
measuring the offset of 1000 samples with the IMU in an idle position. The same
exponential moving average filter with α = 0.2 was also applied to reduce noise.
The other parameters were also the same as in the first continuous measurements in
order to achieve a fair comparison, see Table 5.1 and 5.2.

Figure 5.7 shows the pan angle error between the IMU and magnetic encoder when
using the sweep method. When applying the Mahony Filter the maximum error oc-
curs when tilting 180° (from idle position which is tilt 90° to -90°), then the error
is approximately 4°. For the Madgwick Filter the error goes up to approximately
3.5° when tilting to -45° and pan to 270°. When comparing to the continuous mea-
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Figure 5.7 Sweep Pan Error between reference (magnetic encoder) and IMU for Pan 0◦−
360◦ and Tilt 90◦, 45◦, 0◦, −45◦, and −85◦

surements in Figure 5.5 there is a significant difference in the errors. The errors are
almost a factor of 10 larger for the continuous measurements. It is because the er-
rors accumulate as the integration progresses continuously. When using the sweep
method, only the camera’s movement is integrated, which can be achieved with the
help of a threshold. If the gyroscope and accelerometer measurements exceed the
threshold, integration will progress, and the accumulated error can reduced. The
threshold might have to be adapted to the environement that it is used within. Sup-
pose it is used in an environment with considerable vibration. In that case, a low
threshold might not be enough to minimize the accumulated errors. Using it instead
in a stable environment, then a big threshold might negatively affect the orientation
estimation. In summary, a suitable threshold requires testing in different environ-
ments.

Figure 5.8 shows the tilt error for both filters when using the sweep method. With
the Mahony filter there is a maximum error of approximately 3° for tilt 0° and 45°
and pan 180°. The Madgwick filter shows a similar error for the same angles. Com-
paring these results with the continuous measurements does not differ significantly
because of the fusing between gyroscope and accelerometer. It gives a more accu-
rate position estimation than when the gyroscope measurements are used alone, as
is the case for pan. When fusing, the gyroscope can be used for short-term changes
and the accelerometer for long-term, leading to a low accumulated error and reduced
drift.
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Figure 5.8 Sweep Tilt Error between reference (magnetic encoder) and IMU for Pan 0◦−
360◦ and Tilt 90◦, 45◦, 0◦, −45◦, and −85◦

5.2.3 Error Interpolation
Since the encoder acts as feedback that the testing can be bench-marked against, it
can also be used for calibration by examining and interpolating the error profile for
pan and tilt. Figure 5.9 shows an interpolation surface of the pan angle error (yaw) as
a function of tilt and pan angle for both Mahony and Madgwick. Figure 5.10 shows
tilt angle error as a function of tilt angle and pan angle of both filters likewise. A
polynomial f (ψ,ϕ) was interpolated to the measurement error using the Surface
Fitting functionality from MATLAB’s Curve Fitting Toolbox [MATLAB, n.d.]

Figure 5.9 Interpolation surface of the pan angle error (yaw) as a function of tilt angle and
pan angle.
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Figure 5.10 Interpolation surface of the tilt angle error (roll) as a function of tilt angle and
pan angle.

As can be seen in Figure 5.10, Madgwick shows a more pleasing error trend that is
easier to interpolate than Mahony, which may be an indication that the Madgwick
Filter is more robust than the Mahony Filter. The pan error in Figure 5.9 however
demonstrates a similar profile.

The interpolated surface can be seen as a calibration surface that depends on sys-
tematic and random errors of the IMU. With the interpolation’s error estimation, it
is possible to get even more accurate measurements from both filter’s estimations
of the angles and hence get a more accurate orientation. From empirical results, it
is evident that minor alignment differences between the IMU’s x-axis and the axis
of the camera have a profound impact. However, this error is expected to be very
small as the IMU is mechanically integrated into a camera. Nevertheless, it would
still need to be re-calibrated for each unit after production to account for factory
errors.

5.3 Tampering Measurements

One of the scopes of this thesis is to detect and compensate for tampering in both
pan and tilt. In order to configure the system, it is desirable to measure the difference
between regular motor movements - as the motor is told to move from home position
(0◦) to 90◦-and when the system has been tampered with. In Section 2.1 it was
mentioned that in many cases, a hold current is present in the step motors, which
creates a slight resistance in tampering. These measurements are conducted to detect
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a significant difference in gyroscope and accelerometer data when the hold current
is counteracted.

Figures 5.11, 5.12, 5.13 and 5.14 show plots of gyroscope measurements and ac-
celeration measurements for non-tampering movements and tampering attempts in
pan (yaw). In all Figures the left plots show data for expected movements 90°, and
the right plots show tampering attempts. Figures 5.15, 5.16, 5.17 and 5.18 show the
same kind of measurements but in tilt. Five measurements were done in the case
with expected movement and eight measurements were done in the tampering case
with various velocities to get a wide profile.

5.3.1 Pan Measurements
Figure 5.11 shows two plots of gyroscope measurements in yaw (z-axis). The left
plot shows angular velocity when movement is expected 90°, and the right plot
shows angular velocity when approximately 90°. The tampering velocities are in
the range of approximately 50 dps and 320 dps. A recurrent pattern can be seen
in the left plot with expected movements and the maximum velocity is the same
for all measurements, approximately 150 dps. The angular acceleration also has
a recurrent pattern between measurements, which can be concluded from similar
velocity increases. The right plot with tampering measurements is less correlated
with each other, and they differ a lot depending on the strength of the tampering.

Figure 5.11 Left picture: angular velocity in pan (yaw) when the camera is moving as
planned 90°. Right picture: angular velocity when tampering in pan.

Figure 5.12 shows x-axis acceleration for the same measurements. Also, here a
pattern in the expected movements can be seen. The acceleration is approximately
maximum 0.08 g for all measurements, and the peaks have a similar appearance.
There is an initial negative acceleration for some of the measurements, which could

56



5.3 Tampering Measurements

be due to worn-out mechanics in the test camera. There is no obvious pattern for
the tampering case because of the variety in strength of the different tampering
attempts.

Figure 5.12 Left picture: x-axis acceleration when the camera is moving as planned 90°.
Right picture: x-axis acceleration when tampering in pan.

Figure 5.13 shows y-axis acceleration for the measurements. The left plot shows
acceleration when the camera moves 90° as expected and have a pattern that is easy
to recognize both for positive and negative accelerations. The absolute value of
the maximum is approximately 0.1 g, both positive and negative since acceleration
starts from 0° and retardation when close to 90°.

Figure 5.13 Left picture: y-axis acceleration when the camera is moving as planned 90°.
Right picture: y-axis acceleration when tampering in pan.
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Figure 5.14 shows the z-axis acceleration when camera is moving. Since the camera
is placed with the z-axis in the vertical position, it is expected that when the camera
is idle, then the acceleration is 1 g. In the left plot, depending on when the movement
started in the recording, the deviations from 1 g comes at different times, but a
pattern can be seen in the peaks of the deviations. There are no recognizable patterns
in the right plot, showing the tampering attempts.

Figure 5.14 Left picture: z-axis acceleration when the camera is moving as planned 90°.
Right picture: z-axis acceleration when tampering in pan.

The reason that the different axis accelerations have their behavior is because of the
placement of the IMU. When testing, the placement had the x- and y-axis aligned
with the horizontal axis, and the z-axis aligned with the vertical. If the concept is
integrated into a camera, the IMU might have another orientation in its placement.
Then it is crucial to have a factory calibration process in place.

5.3.2 Tilt Measurements
Figure 5.11 shows the difference in pan and Figure 5.15 shows the difference in tilt
for five normal movements and eight tampering movements. The tampering move-
ments were as small as possible and with much force to include the full range of
possible tampering profiles. The pan measurements show the z-axis (yaw) angular
velocity, and the tilt measurements show the x-axis (roll) angular velocity.

The figures show that the IMU experiences approximately 150 dps in both pan and
tilt during a meant movement configured at the fastest speed on the Axis Q6215
model. A high of approximately 325 dps and a low of approximately 50 dps are seen
in the pan tampering movements, and a high of approximately 400 dps and a low of
approximately 125 dps are seen in tilt. Regular movements take an average of 0,48 s
until it reaches their maximum in pan, whereas tampering takes 0,40 s. In tilt, regular
movements take an average 0.57 s until they reach their maximal angular velocity,
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Figure 5.15 Left picture: angular velocity in tilt when the camera is moving as planned
90°. Right picture: angular velocity when tampering in tilt.

Figure 5.16 Left picture: x-axis acceleration when the camera is moving as planned 90°.
Right picture: angular velocity when tampering in tilt.
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Figure 5.17 Left picture: y-axis acceleration in tilt when the camera is moving as planned
90°. Right picture: angular velocity when tampering in tilt.

Figure 5.18 Left picture: z-axis acceleration in tilt when the camera is moving as planned
90°. Right picture: angular velocity when tampering in tilt.

60



5.4 Vibration Measurements

whereas tampering movements take 0.32 s. Tampering in tilt, therefore, experiences
higher velocities and higher angular accelerations that ought to be easier to detect.
Therefore, it is possible to detect tampering movements, primarily if it is known in
software that the camera should not be moving.

It is worth mentioning that the difference in pan and tilt also depends on the slack in
the motor belts, which affects the impact of glitches. Therefore, a new tight motor
belt camera would have been expected to show even higher, more accurate tam-
pering measurements. Since the camera tested has experienced many tampering
attempts, it suffers from deteriorated mechanics.

5.4 Vibration Measurements

It is most common for Axis PTZ cameras to be mounted on a fixed surface, such as
a roof or wall, but nothing prevents them from being mounted on moving objects.
A client may want to mount it on, for example, a shipping boat, on the trunk of a
pick-up car, or at the top of a crane, which in turn means that any solution would
need to be able to handle vibrations from such applications. In order to quantify
such vibrations, the camera used for testing was fastened in the trunk of a car as can
be seen in Figure 5.19 after which each IMU axis was measured during a long 10
minute route and a short 1 minute route, shown in Figure 5.20. The long route, A
to B, included longer angular motions, such as those experienced in round-a-bouts,
and short motions caused by bumpy roads. The short route, C to D, was included to
measure the impact of speed bumps.

Figure 5.19 Vibration test setup in the
trunk of a Volkswagen Touran. 1) Axis
Q6215, 2) Power box, 3) 90W midspan.

Figure 5.20 Map showing long and
short vibration test route.

The short route acceleration measurements in Figure 5.21 shows expected results as
it meets the speed-bump at around 30 s where it experiences a magnitude of 0.5 g
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in y-direction and 0.12g in z-direction. It is worth noting that the IMU is configured
to handle up to ±8 g.

Figure 5.21 Car ride acceleration vibration measurements during 60 s. Impact of road-
bump is clearly seen at approximately second 30.

Figure 5.22 Car ride gyroscope vibration measurements in during 60 s. Impact of road-
bump is clearly seen at approximately second 30.

The speed-bump effect is even more prominent in the short route gyroscope mea-
surements in Figure 5.22 where the x-axis angular velocity or roll experiences as
much as 35 dps. Z-axis angular velocity is also affected with around 35 dps, which
is somewhat unexpected since the speed-pump is expected to give most of its re-
sult in x-axis velocity. However, it could again be because of mechanical motor belt
backlash.

Continuing with the long route measurements, the accelerometer magnitude in Fig-
ure 5.23 are showing similar results as in the short route, with the y-axis showing
the largest magnitudes during the 10 minute ride. X and y-axis are expected to show
similar result but may differ in magnitude depending on how the camera is oriented
in the back of the trunk. The z-axis vibrations are smaller than the other two axes,
which is unexpected since the vibrations should be in the vertical direction caused
by irregularities in the road surface.

Furthermore, the long route gyroscope measurements in Figure 5.24 gives a better
intuition of the cameras movement. The impact of the roundabouts is clearly seen
at, for example, 90 s and 110 s. Additionally, the impact of a bumpy dirt road is seen
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Figure 5.23 Car ride acceleration vibration measurements during 10 minutes.

Figure 5.24 Car ride gyroscope vibration measurements during 10 minutes.

between 400 s and 500 s. The maximum vertical x-axis bump is also clearly seen
at 350 s with a value of almost 70 dps which overlaps with the minimum measured
tampering value in Figure 5.15. This means it would not be possible to determine
the difference between a bump or vibration and a tampering attempt by only looking
at a single 6-axis IMU.

5.5 Conclusion

In Section 5.1 we showed that the gyroscope achieved very accurate performance
when it was fixed against the tilt axis. An average error of 0.27◦ was achieved
using the Runge-Kutta quaternion integration compared with an average error of
7.0◦ using regular numerical integration. In conclusion, quaternions are more ro-
bust against integration errors than numerical integration, which helps in reducing
the drift over time. Quaternions also have the advantage that they avoid potential
gimbal lock if they were to be used in a three dimensional scenario and therefore do
not lose any DOF.

Furthermore, it was demonstrated that the accelerometer has the smallest calibra-
tion error profile at tilt ±90◦ and the largest at tilting 0◦. However, the gyroscope
achieved satisfying results, indicating that it is helpful to use both in a SFA to obtain
better results.
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The two different filters, Mahony and Madgwick, were compared in two scenarios:
continuous and sweep measurements. Both filters demonstrated the difficulties in
keeping an accurate heading estimation over time without any additional reference,
especially as the tilt angle passed 0° and further down. The tilt angle successfully
kept an accurate tilt estimation, indicating that the SFA does a satisfactory job in-
fusing the two sources using both filters.

The sweep results showed significantly better performance than the continuous re-
sults, with a maximum error under 4° for both filters. It is an indication that the
6-axis IMU (gyroscope and accelerometer) is most useful in measuring angle differ-
ences rather than absolute position over time, as it is close to impossible to achieve
desirable continuous measurements without noticeable drift. However, this does not
pose a problem in achieving the purpose of this thesis since the aim is to use it
for tampering compensation and not continuous absolute attitude and heading es-
timation. Therefore, a solution could be to focus on achieving as accurate relative
angle difference measurement as possible in combination with a tampering detec-
tion mechanism. It is possible to detect tampering, measure the tampered angle, and
compensate for the angle difference.

It should be noted that the camera was only rotated in one direction when conducting
the continuous measurements. When performing the sweep tests, the camera rotated
the direction which had the shortest path from the current starting point. However,
it is not expected to result in any difference which direction the camera takes. Still,
note that this does not affect the results significantly but should still be mentioned.

In addition, the error interpolation polynomial could be applied to reduce the sys-
tematic errors in pan and tilt to receive even more accurate sweep results along the
full tilt range. Even though Mahony and Madgwick show similar results overall,
Madgwick demonstrates a more systematic error that would be easier to minimize
than Mahony.

Additionally, the impact of tampering attempts was measured and compared with
regular movements in both pan and tilt. Lastly, the impact of vibrations during a
10 minute and 1 minute car ride was measured. It showed that the tampering and
vibration measurements overlapped both in pan and tilt, which means that it would
not be possible to determine the difference without any additional measures. One
possible solution would be to train a Machine Learning model to recognize the dif-
ference between tampering and vibration. However, this approach would be costly
in terms of complexity and computation load. A second solution would be to add
an IMU and attach it to a fixed, non-moving part of the camera and measure the
difference between the fixed and the moving part to determine the difference be-
tween "normal" movements and tampering. In such a system, a movement would
be classified as a “normal” movement caused by moving objects or vibrations if
the two IMUs measure the same values. On the contrary, it would be classified as a
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tampering attempt if the IMUs would measure different values.
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6
Final System

The final system is the product of testing and comparing through Chapter 4 and 5,
where some methods were abandoned in favor of others that showed better perfor-
mance for this particular application. It is important to stress that the main goal is
not to achieve a general attitude and heading estimation system but a way to de-
tect and compensate for deviations in movements. At the same time, it needs to be
a general solution that proves to be robust in any environment. The cases that are
presented in Section 1.2 and handled in this thesis are repeated:

1. When the camera is mounted on a non-moving object:

a) Camera is tampered while not moving.

b) Camera is tampered while moving.

2. Tampering when camera is moving.

a) Camera is tampered while not moving.

b) Camera is tampered while moving.

The following chapter will demonstrate a system that fulfills all of the above cases.

Section 6.1 starts by presenting the design of the final system, in terms of an ex-
planation of its hardware and software features in addition to the implementation
and the used parameters. Thereafter, Section 6.3 presents the economic aspects of
the system in relation to the previous mentioned solutions. The results are then pre-
sented in Section . The last vibration tolerance results are lastly presented in Section
6.4.3.
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Chapter 6. Final System

6.1 Design

The final system uses a modification of the general Madgwick orientation filter,
which we call the Motion Triggered Differential Madgwick (MTDM) that makes
use of a 6-axis IMU in order to track relative angular movements between two idle
positions reliably. It follows the No Motion No Integration (NMNI) principle, which
means that it will only continue quaternion integration using an SFA as long as it has
trespassed the Motion Threshold. It will continue until it has reached the No-Motion
Threshold and keep its previous position in quaternion space. We decided on using
the Madgwick filter, which proved to have desirable performance in Chapter 5. In
principle, this method could be used to measure absolute position as well. How-
ever, the error would still be accumulated for each motion, making it an unreliable
method over time. Focusing on the relative angle differences makes it possible to
achieve high resolution over time, even though the absolute position in quaternion
space has drifted due to integration and other errors.

6.1.1 Motion Triggered Differential Madgwick
The basic principle of the MTDM scheme is shown in Figure 6.1 where the red
parts of the curve highlight the intervals where the quaternion integration is acti-
vated, whereas the black parts show the intervals where it is idle. Using the results
from the tampering and vibration results in Section 5, the angular measurements
from the gyroscope proved to be the most reliable source for movement detection
since tampering is dominantly angular rather than linear and vibrations dominantly
linear rather than angular, which means that it is not only detected tampering best
but also picks up noise less than the accelerometer. The gyroscope measurements go
through a low-pass filter before it checks whether the “motion threshold” has tres-
passed. If it a motion would occur as in Figure 6.1 the Madgwick filter is activated,
propagating the quaternion state q̇est,1 until it reaches the “no-motion threshold” and
the next idle quaternion state q̇est,2 and q̇est,3 after the next movement. At each idle
quaternion state, the quaternion state space is converted to Tait-Bryan angles using
Equation 2.15, from which the difference between the latest two consecutive angles
is calculated.

The state changes can also be expressed in terms of “is moving” and “was moving”.
If the state change is “is not moving” −→ “was not moving”, nothing will happen.
If the change is from “is moving” −→ “was moving” it will continue the Madgwick
integration until it reaches the state change “is not moving” −→ “was moving” from
which the angle difference, ∆mov , between the current state, j and previous state,
j−1, is calculated as
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Figure 6.1 Demonstrates the basic principle of the MTDM algorithm, where the quaternion
integration is running during the red part of the curve as it reaches the motion threshold and
then paused at a new state as it reaches back to the no-motion threshold.

∆mov =


∆ϕ j,mov

∆θ j,mov

∆ψ j,mov

=


ϕ j,mov −ϕ j−1,mov

θ j,mov −θ j−1,mov

ψ j,mov −ψ j−1,mov

 (6.1)

This system is enough to achieve the first goal of the thesis, to be able to detect and
correct when tampering has occurred when the camera is mounted on a non-moving
object presented in Section 1.2. Since the step-motor state is known in software, we
know when it is moving and when it is not, meaning that it is possible to determine
both (a) and (b). If the camera has been tampered with when the step-motor is not
active, the difference from the latest known idle state is calculated using the MTDM
after which the step-motor can be corrected. If the camera has been tampered with
when the step-motor is active, the measured angle from the MTDM algorithm is
compared with the expected angle and thereafter corrected.

6.1.2 Double IMU sensors
Only using the MTDM alone is not enough to achieve the second goal of the thesis
since the camera angle information would be lost if the whole camera was moving.
An example would be if the camera pan motor moves 50◦ and the whole camera
also moves 50◦, it would compensate for 100◦ since it would be the total expe-
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Figure 6.2 Axis Q6215 camera showing the possible placements of the moving and fixed
IMU.

rienced rotation for the IMU. In order to also allow the camera to be mounted on
moving objects, a second IMU is placed in the fixed part of the camera so that it does
not rotate along with the pan and tilt motors, as shown in Figure 6.2. The second
IMU also runs the MTDM algorithm but is triggered by the moving IMU threshold
instead of its own. Once the moving IMU has met the lower threshold, the angular
difference of the moving IMU is calculated as in Figure 6.1 as well as the angular
difference of the fixed IMU, ∆fix, between the current state, j and previous state,
j−1, calculated as

∆fix =


∆ϕ j, f ix

∆θ j, f ix

∆ψ j, f ix

=


ϕ j, f ix −ϕ j−1, f ix

θ j, f ix −θ j−1, f ix

ψ j, f ix −ψ j−1, f ix

 . (6.2)

The total angular difference between the moving angular difference and the fixed
angular difference, ∆tot, at a state, j, is then simply subtracted:

∆tot =∆mov −∆fix. (6.3)

This way, the second goal of the thesis, to be able to detect and correct potential
tampering on a moving camera, would be fulfilled in both case a) and b).

6.1.3 Motion State Sampling
As we found out in Chapter 5.2.1, the SFA algorithm suffers from the drift that
increases with time, which poses a problem to the proposed system as the motions
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events become longer. A camera mounted on a car that would go in and out of
roundabouts would perhaps not meet the No-Motion threshold for some time. Ad-
ditionally, the drift of the two IMU:s would perhaps not drift at the same speed or
direction, which would produce inaccurate difference calculations. Therefore, an
additional Motion State Sampling (MSS) mechanism is introduced to compensate
for this drift. The basic principle of the MSS is that it samples the quaternion space
at a frequency fmss during the time that both the fixed and the moving IMU is mov-
ing. It is demonstrated in Figure 6.3, where q̄est, j represents the regular quaternion
states and the q̄mss, j represents the extra quaternion states triggered by the MSS
mechanism at a frequency of 0,1 Hz. With this mechanism in place, if the fixed
IMU mounted on a car would experience angular movements between t=260 to
t=340 it would detect and correct for the potentially tampered difference between
the fixed and the moving IMU at each MSS sample, the same way it was calculated
in Equation 6.3.

Figure 6.3 Principle of the MSS function, where the red interval demonstrates where it is
in moving state, and black interval the non-moving state.

6.1.4 Interpolation Error Compensation
As discussed in Chapter 5.2.3, the sweep measurements in Chapter 5.2.2 were also
a way to calibrate against systematic errors of the IMU. Each new product could
perform this factory calibration with the step-motor movements as a reference to
map out the error profile to further increase the accuracy. Testing showed that a 2D
interpolation surface ftilterror(ψ,ϕ) of order ψ2 and ϕ3 was appropriate for tilt and
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a surface fpanerror(ψ,ϕ) of order ψ3 and ϕ2 for pan. The polynomials used in this
particular system can be seen in Appendix 8.1.

6.2 Sensor Calibration

As mentioned throughout the report, it is important to include measures to reduce
drift. Therefore, the gyroscope is initially calibrated by averaging the first 500 sam-
ples in a non-vibrating environment, which are saved and subtracted from future
samples to reduce angular off-sets. Additionally, since the accelerometer measures
angle in the inertial frame, it is necessary to rotate the measurement to a fixed ref-
erence frame. The reference frame is the same as the calibration frame, which has
a preset orientation in the camera. Since the camera does not have any reliable way
to measure absolute position in pan, it is necessary to have a "homing sensor" that
guides the camera to its calibration state. The calibration orientation tilt angle is
found by observing the absolute tilt difference between the moving and the fixed
IMU to find a preset calibration position in tilt relative to the direction of grav-
ity. It is achieved, by sampling the first 500 accelerometer values from which roll
and pitch values are calculated using the Direct Tait-Bryan Angle method for each
IMU. These reference values are then used to construct a rotation matrix used to
rotate future accelerometer readings to get them in the reference frame.

6.2.1 Software Design
The software implementation of the algorithm is described in the flowchart in Figure
6.4. The total Lines Of Code (LOC) including embedded drivers ended at 2550.
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Figure 6.4 Software design flowchart of the final system.
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6.2.2 Parameters

• Sensor Resolution: The accelerometer resolution was determined to ±8 g in
order to get as accurate measurements as possible while still being within the
range of vibrations. The gyroscope resolution was set to ±100 dps in order to
be able to read the fastest motor movements of 700 dps.

• ICM20602 Hardware Low-pass Filter: A cut-off frequency of ωcut−o f f =
5.7 Hz was applied to the raw accelerometer data and a cut-off frequency of
ωcut−o f f = 11.6 Hz was applied to the raw gyroscope data.

• Software Exponential Moving Average: The weighting factor in the EMA
low-pass filter was set to α = 0.2 for both the accelerometer and gyroscope
data.

• Sampling time: The IMU measurements was polled at a rate of Ts =20 ms
per poll - corresponding to a frequency of 50 Hz.

• Madgwick Filter constant: The Madgwick filter constant was set to β =0.1
after experimental testing of optimal value.

• Motion threshold: The motion threshold was set to ωm = 5 dps after analysis
of the results in Section 5.3 and 5.4.

• No-Motion threshold : The no-motion threshold was set to ωnm =0.2 dps
after analysis of the results in Section 5.3 and 5.4

• Motion State Sampling time: A reasonable MSS sampling time was set to
TMSS =10 s.

• Total Difference Tampering Threshold: The total difference tampering
threshold was set to ∆tot = 3 ◦ since tampering showed to be extremely diffi-
cult below this value.

6.3 Economy

The only hardware needed, and only expense, for this implementation is two IMUs.
In this final design, the ICM20602 mentioned in Section 3.2 is used. The cost of
one unit can be seen in Table 3.3. As mentioned, two IMUs are needed and the
price for them can be seen in Table 6.1. The total costs for the existing feedback
solutions are repeated and put into relation to the new IMU feedback solution cost
in Table 6.2. However, this comparison is not completely fair. The magnetic- and
optical solution costs are prices negotiated between Axis and the reseller. It is pos-
sible to reduce prices when the volumes are big. At this time, the cost for the IMU
feedback solution is calculated with prices found at a reseller. If this solution would

74



6.4 Performance results

be integrated into a product then the volumes of IMUs would be big and the prices
are negotiable. A reduced cost of IMUs would lead to less than a total of $4.80.

Table 6.1 Hardware cost for new feedback solution

Unit price ICM20602: $2.40

Total cost: $4.80

Table 6.2 The total cost for the different feedback solutions and their relation to the IMU
feedback cost.

IMU Magnetic Optical

Total cost: $4.80 $27.41 $10.88

In relation to IMU cost: 100% 571% 227%

6.4 Performance results

6.4.1 Mounted on non-moving object
The resulting precision (error in degrees) benchmarked against the magnetic en-
coder, when mounted on a non-moving object is compiled in Table 6.3. The tilt and
pan error angle was measured 50 times with a non-moving camera head and 50
times with a moving camera head, both in a quiet office environment.

Table 6.3 Results of final system mounted on a non-moving object with 50 samples for
moving camera head and 50 samples for non-moving camera head.

Non-moving Camera Moving Camera

Pan Tilt Pan Tilt

Max 2,98 2,09 2,18 1,79

Min 0,03 0,04 0,06 0,03

Mean 1,24 0,93 0,76 0,50

Median 1,18 0,99 0,66 0,37

RMSE 1,46 1,11 0,92 0,69

Std. dev 0,78 0,62 0,53 0,48
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6.4.2 Mounted on moving object
The error against the magnetic encoder’s estimation, when mounted on a moving
object is compiled in Table 6.4. The test was performed with the camera mounted
inside the trunk of a car while driving in both city and country environments. Be-
cause of the difficulty of testing in a moving environment, 15 samples were taken
both for the case of non-moving camera tampering and moving camera tampering,
compared with the fixed mounted tests that were easier to perform.

Table 6.4 Results of final system mounted on a moving object with 15 samples for moving
camera head and 15 samples for non-moving camera head.

Non-moving Camera Moving Camera

Pan Tilt Pan Tilt

Max 1,49 4,22 1,0 4,38

Min 0,26 1,34 0,06 0,81

Mean 0,76 3,06 0,59 2,63

Median 0,42 3,19 0,66 2,87

RMSE 0,82 3,24 0,68 2,93

Std. dev 0,58 1,16 0,37 1,4

6.4.3 Vibration Tolerance
As a tolerance test on the final system design, the IMU was put on a vibrator board
that was set to vibrate with different magnitudes of gravity and frequencies. The
setup on the vibrator board can be seen in Figure 6.6. The test was done to simulate
possible vibrations that the camera can be exposed to when mounted in a customer’s
environment. The IMU was mounted a bit differently from the other setups to ensure
it would not affect the vibrations more than the camera itself. Holes were drilled in
the camera, and then the IMU was screwed into it and then glued to make it more
robust. For example Figure 3.4 shows that the IMU was only taped to the camera’s
chassi before; this worked fine for the tests that were relevant at that time. The new
setup can be seen in Figure 6.5. This setup was not applied initially to make the
setups the same and avoid tape because this test was not planned. Because of the
limited time for this master thesis, it was not certain there would be time to do this
test.

In total, three different tests were made. The goal of two of the tests was to find
a threshold for magnitudes of gravity that the system identified as tampering, both
for continuous vibrations and shock. Those magnitudes can be seen in Table 6.5.

76



6.4 Performance results

Figure 6.5 IMU mounted on moving
part of camera for vibration tolerance test.

Figure 6.6 The setup with vibrator and
camera mounted on the table.

In the continuous vibration mode, a resonance frequency for the whole camera was
found at approximately 17 Hz and was used when finding the tolerance. The newly
designed feedback system could handle much higher shock accelerations than con-
tinuous vibrations. A reason for this could be because the resonance frequency was
used. If another frequency was used without amplification, the system might have
been able to handle greater accelerations. However, since vibrations at resonance
frequency are a worst-case scenario, it was more urgent to find this limitation. It
was important to test both modes because of the customers varying environments
exposed the products to. Shock is good to test if the camera is placed in, e.g., a city
with easy access for someone to kick at the camera. Continuous vibrations could be
good to test if a customer, e.g., places the camera on a crane.

Table 6.5 Tolerance at the different vibration modes tested.

Max magnitude before tampering alert Resonance frequency

Continuous vibrations 0.75 g–1 g 17 Hz

Shock 12.5g–15g -

The last of the three tests was to test tampering during continuous vibration mode at
resonance frequency with a magnitude of 0,1 g, see Table 6.6. The errors are seen in
the same table result from an average of ten tampering attempts. As with previous
tampering attempts, the IMU’s estimation of tampering was compared to the differ-
ence in the magnetic encoders’ estimation of position. Due to worn mechanics from
all previous tampering there is backlash, which resulted in unwanted movements
in the camera during the vibrations. Those movements made the magnetic encoder
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uncertain in the decimals in the position estimation, making the reading unreliable.
However, the error was satisfyingly low for that many vibrations.

Table 6.6 Errors from ten tampering attempts at the presented settings.

Mode Frequency Magnitude Pan error Tilt error

Continuous vibration 17 Hz 0.1 g ±1.06° ±0.68°
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Discussion

7.1 Solutions for Tampering Detection Comparison

The resulting system was proven to be a viable alternative to step-motor feedback
for tampering detection alongside with the current solutions at Axis: the magnetic
encoder and the optical encoder. Comparing the three, it is clear that the magnetic
encoder has superior performance, with an average accuracy of ±0.005◦, but with
a hefty price tag of $27.41 in bulk. In the time of writing, there is a global semi-
conductor shortage affecting almost all electronics companies globally, and the fact
that there are currently only two different manufacturers of magnetic encoders that
fit the Q6215 could eventually be a disadvantage. In times of supply shortage, it
could therefore become a problem with to specific solutions which is difficult to
find second sources of. Even if the proposed IMU solution, achieving an average
precision around ±1◦, is less accurate than the magnetic encoder, it is still an ad-
vantage that there are many more 6-axis IMU manufacturers on the market from this
perspective. A second advantage of the proposed IMU solution is the price-point of
$4.80, almost 6 times cheaper than the magnetic encoder and 2 times cheaper than
the optical.

Depending on the product requirements, the accuracy of the proposed IMU solution
could still be too low, for some applications. In some of the PTZ cameras that offer
up to 30x zoom, 1◦ error could potentially shift the whole image, in which the
tampering auto-correction would not too much help in that particular situations.
However, in some other products in Axis product segments without zoom, there
is the optical encoder that provides on average ±9◦. In these cameras, the IMU
solution would be a very viable alternative to the optical encoder. Additionally, even
if the optical encoder is not as expensive as the magnetic encoder, the proposed IMU
solution still has an advantage in terms of cost.

An additional advantage of the IMU is that is very easy to integrate into existing
products. For example, the Q6215 already has one IMU on the power PCB that re-
sides in the fixed part of the camera, which means that only one additional IMU
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would have to be put on one of the existing cards in the moving parts. The mechan-
ical footprint of this solution is therefore minimal comparing with the magnetic and
the optical encoder solution.

7.2 Limitations of Final System

The biggest difference between the encoder solutions and the proposed IMU solu-
tion is that the encoder solutions measure absolute orientation, whereas the IMU
solutions measure angular movements. It means that the IMU cannot be used in
order to determine the absolute position, which is useful when we want the camera
to move to a preset position, for example a "homing" position that it goes to after
reboot, or a "calibration" position that it uses during calibration. If we want this
properties in the IMU solution, an additional homing sensor would be needed, as
already pointed out in Section 6.2. A solution that is used in some of today’s product
is to have a magnet that is read by a magnetic hall sensor, which solves this problem
easily, but the number of possible preset positions is then constrained by the number
of magnet flags in the camera.

A second solution would be to incorporate the magnetometer, which was analyzed
in Section 4.3, in order to add this functionality. Then no additional magnetic flag
would be needed within the camera, since it would be possible for the magnetometer
to measure the absolute orientation of the moving IMU relative to the fixed. In
addition, it would add the functionality to move along the magnetic poles of earth, a
feature that could be valuable in maritime applications. However, the magnetometer
was dropped in the final system due to its sensitivity towards magnetic disturbances
which could pose a big problem to its functionality as it is integrated near the step-
motors. Additionally, the magnetometer required careful calibration and was too
sensitive to be used as a reference in the final angle difference calculations, since
the system is required to show robust performance in all environments.

Currently the designed feedback system can not handle changes in pitch and roll
in the fixed part of the camera (when the whole camera is pitching and rolling)
if the two IMUs coordinate systems are not aligned. This is due to the lack of a
reference in the horizontal plane, i.e., for the x- and y-axes. There is a need for a
magnetometer or similar to fix the axes at a certain direction, then the pitch and roll
angles can be compared in a correct way. For the z-axis there is no problem since
the tilt of the IMUs can be computed with help from gravity and then corrected.
The challenge to find a reliable reference can be tough. A magnetometer can be
disturbed from the environment and hence show incorrect data which could lead to
a faulty rotation matrix. This will be the case if the IMUs magnetometers are not
affected by the exact same disturbances.
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7.3 Further work

As mentioned in Section 7.2, there is a need for an additional reference to fix two
of the three axes in the IMU for a more reliable result. Because as of now, the
system can not handle permanent changes in pitch and roll since there might be a
misalignment between the IMUs coordinate systems that can not be transformed,
and to get a general feedback solution a transformation is needed. In this thesis it
has been investigated to use IMUs with magnetometers, but since these sensors are
reliable on the environment, this is not a good option. Instead other solutions have
to be investigated. For example, it would be a good idea to test using permanent
magnets and a Hall sensor. If the magnets are aligned for both IMUs then axes
could be fixed and the IMUs could be transformed to the same coordinate system.

Since this is a master thesis we have not had the resources to access the signals from
the stepper motors. Something to investigate could be to involve these signals in the
control loop in combination with a homing sensor. The homing sensor could consist
of, e.g, a Hall sensor and magnets. Then the feedback is not reliable on the envi-
ronment, and if both IMUs have the same alignment for sensor and magnets, they
share homing position. This could potentially increase robustness of the system. If
knowing the motors position with respect to the homing sensor, and tracking how
much tampering occured, then it is easy for the system to find home and then go
back to the position before tampering, potentially with smaller error than our final
system.

It could also be interesting to test using one IMU for pan, one IMU for tilt and one
IMU in a non-moving part, instead of using one IMU on the moving part where the
gyro and accelerometer are used for pan and accelerometer used for tilt. Figure 5.3
shows how the gyro outperforms the accelerometer for almost all angles between
±90° when the IMU is placed so that its yaw angle is the cameras tilt angle. A test
to put the current solution, with two IMUs, in relation to using three IMUs could
be useful to compare performance. The cost would in total, if using three IMUs, be
less than any of the already existing feedback solutions.

Tests that there was not time for but could still be good are temperature and a long-
time accuracy test. Since Axis cameras can be found all over the world and should
be able to handle temperatures from −20° to 50° then it is crucial for the tampering
feedback to do so as well. The long-term test would be good to see if the accuracy
of the feedback gets worse with time.

The new feedback system could also be integrated with another use-case. Since
having a gyroscope, the camera could be instructed to stay with the same footage if,
e.g., mounted on a moving object like a crane.
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Conclusion

When wrapping up this master thesis and looking back at the results for this proof-
of-concept we can see some satisfying results. From start it was stated that the
solution should only be compared to the magnetic feedback because of its superi-
ority in resolution compared to the optical feedback. The goal was to achieve as
close estimations as possible and hence, minimize the error between IMU output
and magnetic encoder output. Inherited weaknesses of the IMU, such as drift, noise
and interference sensitivity made it difficult to achieve an accurate solution. There-
fore the original idea with absolute position estimation was redirected to estimate
relative movements.

Advanced signal processing and sensor fusion algorithms were used to get a sys-
tem that could handle the demands put on it by the environment. An accuracy of
±1.0◦ in pan and ±0.7° in tilt, compared to the magnetic feedback, was achieved
when the camera was mounted on a fixed object. As the camera was mounted on
a moving object, the accuracy in tilt was decreased but still more than three times
as accurate as the optical encoder. The proposed system using IMUs also helps in
reducing mechanical complexity and reducing cost, compared to existing solutions.
Additionally, the system proved to handle tough vibrations up to 1 g and shock tests
up to 15g, which are accelerations over the specification requirements of the tested
camera model.

Further work is however needed in order to integrate the new feedback system into
cameras, though this proof-of-concept has shown that using IMUs for feedback on
a PTZ camera can be a great cost reduced option to the optical feedback. However,
the new designed concept might have a hard time competing with the magnetic
feedback because of its very good resolution and independence on the environment.
It can be concluded that keeping the magnetic encoders for the more premium PTZ
cameras that have zoom is better, since a single degree error can change a zoomed
footage completely.
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Appendix

8.1 Error Interpolation Polynomial

(8.1)ftilterror(ψ,ϕ) = p00 + p10ψ + p01ϕ + p20ψ
2 +

p11ψϕ + p02ϕ
2 + p21 ∗ ψ

2
ϕ + p12ψϕ

2 + p03ϕ
3

Tilt error coefficients with 95% confidence bounds:

• p00 = 0.8559 (0.4538, 1.258)

• p10 = 1.768e-06 (-0.003616, 0.003619)

• p01 = 0.04034 (0.02978, 0.05089)

• p20 = 3.295e-05 (9.978e-06, 5.593e-05)

• p11 = 3.532e-06 (-3.422e-05, 4.128e-05)

• p02 = -0.0001032 (-0.0001677, -3.871e-05)

• p21 = 2.714e-07 (-8.596e-08, 6.287e-07)

• p12 = 7.007e-08 (-5.805e-07, 7.206e-07)

• p03 = -4.74e-06 (-6.105e-06, -3.376e-06)

(8.2)fpanerror(ψ,ϕ) = p00 + p10ψ + p01ϕ + p20ψ
2 + p11ψϕ

+ p02ϕ
2 + p30ψ

3 + p21ψ
2
ϕ + p12ψϕ

2

Pan error coefficients with 95% confidence bounds:
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• p00 = -1.774 (-1.98, -1.568)

• p10 = 0.007119 (0.004029, 0.01021)

• p01 = 0.00967 (0.007317, 0.01202)

• p20 = -5.38e-06 (-1.961e-05, 8.855e-06)

• p11 = -7.878e-06 (-2.678e-05, 1.102e-05)

• p02 = 0.0001361 (0.0001038, 0.0001684)

• p30 = -1.487e-07 (-2.914e-07, -5.992e-09)

• p21 = 6.914e-08 (-1.098e-07, 2.481e-07)

• p12 = -3.358e-07 (-6.614e-07, -1.015e-08)
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