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Abstract

Speaker verification is the process of verifying the identity of a person based on
voice. This process usually encompasses the following steps: The speech signal is
mapped into features using a feature extractor, these features are then classified
using a post processor. The most common features used in speaker verification
today are STFT, MFBs, and MFCCs, that are different spectral representations
of the speech signal. Recently, a biologically inspired feature extractor called the
cuneate nucleus (CN) model, that outputs CN features, was created. The main
goal of this Master thesis is to find an optimal ANN post processor for the CN
features. Testing different models on both conventional features and CN features
concluded that a CNN model and a LSTM model were most suitable. The perfor-
mance result concluded that the CN features and STFT performed well on noisy
data but worse on clean data compared to the MFCCs and MFBs. A statistical
analysis of the features was conducted using cross correlation, average activity and
entropy. The analysis concluded that the inherent dynamical properties of the CN
features and STFT make the training process of an ANN difficult, and therefore
performance on clean data is poor. On the other hand these dynamical properties
is what allows the features to perform well on noise. In comparison, the MFCCs
and MFBs have the opposite inherent properties and this allows them to have
state-of-the-art performance on clean data but poor performance on noise data.
This in turn means that a conventional ANN post processor can only provide lim-
ited performance for CN features, and that other post processor methods need to
be developed to reach beyond that limit.
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Popular Science Summary

Speaker verification is the process of identifying the person speaking.
It is a widely studied field and usually deep neural networks are used.
This work aims at doing speaker verification inspired by biology.

We humans can easily distinguish between different voices, and we can often iden-
tify a person speaking with only hearing their voice. Further our ability to identify
a person does not notably diminish in noise conditions. This is an amazing ability
to have and it is often taken for granted.

Speaker verification is the process of identifying a person by the use of their voice,
today this is a hard task to accomplish especially in noise conditions. An example
of speaker verification is when we use voice command on our mobile devices. As-
sume that two people that are sitting next to each other, both use hands free voice
commands option on their phones. If someone activates their voice command by for
example saying "Hey, Google!" only that persons phone should answer. Otherwise
if someone uses the activation phrase in a crowded area you could potentially have
multiple mobile devices answering you, which would be inconvenient. To deal with
this, phone companies usually require you to say the activation phrase a couple of
times before you can start using voice command. When you are repeating these
phrases you are actually actively training a deep neural network to be specialised
at identifying your voice. This is why the scenario above does not occur in real life.

Deep neural networks are most often used in the field of speaker verification to-
day. And these networks function in the following way: They process frequency
information of the raw speech signal, and based on that try to determine who is
speaking. But, theses methods are not true to how our ear and brain picks up
and process voices. In this work instead of using frequency information for the
networks to process, the information output from a biologically inspired model was
used. This biologically inspired model picks up frequency patterns for the deep
neural network to process.
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Chapter 1
Introduction

To be able to distinguish between different speakers is usually a simple task for
humans, but for computers this task is difficult. Speaker recognition is the process
of identifying a person by his or hers voice. Today, this is a wide area of research
and an example of use is voice command on a mobile device. Most smartphones
have the option to activate their voice assistant hands-free by for example saying
"Hey Google". The problem with this is that you do not want your voice assistant
reacting when someone else is trying to activate their voice assistant. So, in other
words, the assistant needs to be able to tell if it is the owner of the phone speaking
or somebody else.

Recently, the company IntuiCell has made developments in feature extraction
technology used in speaker recognition. The new feature extractor is based on
a biologically inspired model, and has not before been observed in the field. For
this reason, this master thesis work aims to test and evaluate different post pro-
cessors given the new feature extractor. The post processors that will be tested
and evaluated are be based on artificial neural networks (ANNs). To get a bet-
ter overview of how the post processor can be designed, a literature study was
performed of the following neural network architectures: long short-term mem-
ory (LSTM) networks, recurrent neural networks (RNNs), convolutional neural
networks (CNNs) and deep neural networks (DNNs). The aim was to gain an
understanding of how these network architectures work and why, and in what way
different post processors perform better than others. The aim of the study is also
to evaluate if the post processors are suitable to use for the speaker recognition
problem.

When the literature study was completed, the focus of the thesis was firstly to
implement the suitable ANN post processors, and secondly the post processors
were trained on both conventional features, that are introduced in chapter 3.2,
and on the features developed by IntuiCell described in chapter 3.1. The post pro-
cessor models and features were during and after training evaluated in different
ways.
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Chapter 2
Background

The field of speaker recognition can be divided into two categories; speaker veri-
fication and speaker identification. This master thesis work is focused on speaker
verification which is the process to confirm a claimed identity by using voice bio-
metrics. In other words speaker verification is a classification problem. The com-
mon way of solving this classification problem is to first do a feature extraction of
the raw speech signal, then these features are used as an input to a post processor.
The post processor creates a speaker embedding, which is a vector, containing high
level speaker biometrics. The embedding can be compared to a "voice fingerprint"
for a specific person. The final classification is based on these embeddings.

There are two main ways of creating speaker embeddings. The first way, which is
the traditional way of doing speaker verification, is to create an embedding called
the i-vector. This i-vector is usually extracted from a Gaussian mixture model
(GMM). After the GMM/i-vector model is created a template i-vector is created
for the target person. This template i-vector is saved and later used to be able to
confirm a persons identity. When the GMM/i-vector model is later used for verifi-
cation tasks, an i-vector is created for every new utterance, an utterance is a short
segment of speech which can be divide up into equally spaced frames, these frames
usually represent one time step (Bai, & Zhang 2021). The template i-vector is then
compared to the i-vector that was just created, often by measuring how similar the
two i-vectors are. Usually, the cosine similarity is used to measure this similarity,
see equation (3.5). This traditional GMM/i-vector is based on statistical methods
and does not use an ANN. The traditional method of using an i-vector extrac-
tor is not usually used today in speaker verification since other methods using
ANNs have surpassed the traditional method’s performance. About two decades
ago ANNs were first used in the field of speaker recognition. The ANNs have
revolutionised the speaker recognition field, yielding better results than any tra-
ditional method. The embedding technique is also used when performing speaker
verification with an ANN post processor and is the other standard way to create
embeddings. The embedding is usually extracted from the last hidden layer of the
ANN model and is called the d-vector or x-vector, depending on the architecture
type of the ANN. The cosine similarity is also usually used to measure how similar
two embeddings are, a more thorough explanation of the d-vector and x-vector
can be found in chapter 3.3.
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Chapter 3
Theory

The theory is divided into two main parts, first a explanation of the CN features
and conventional features is given, and second there is a description of the different
ANN architectures.

3.1 CN features

The CN features are two dimensional, where one dimension is in space and the
other in time and are constructed using a unique ANN architecture. This archi-
tecture is unique since it follows a biologically inspired model based on (Andersson
2021). This model attempts to mimic the process of neurons encoding signals from
tactile inputs. The CN features are created according to the following steps:

1. Take the short time Fourier transform (STFT) of the raw speech signal.

2. This time frequency signal is then used as input to a biologically inspired
feature extractor based on an ANN architecture. The input is fed into the
feature extractor one time step at a time. This point is explained in more
detail below.

3. The output from the feature extractor is the CN feature that will be used
as input for the ANN post processor.

The feature extractor consists of a single layer of nodes. There are two types of
nodes in this layer, first there are excitatory nodes and second there are inhibitory
nodes. The excitatory nodes amplify key frequencies in a positive way and the
inhibitory nodes amplify key frequencies in a negative way. All excitatory nodes
produce an output which is the feature itself. Each inhibitory node is connected
to every other inhibitory node, but not to itself, and each inhibitory node is also
connected to every other excitatory node. In other words the inhibitory nodes do
not produce an output themselves. Therefore, the feature size for each time step
will be the number of excitatory nodes. The input to the feature extractor is the
STFT, all nodes are connected to all frequencies of the STFT by synapses that
have weights. The nodes then learn what the key frequencies are by an unsuper-
vised learning model. Certain frequencies are deemed important by a node if they
correlate, the total output of the node then gets stronger than the separate signals
together. Each node tends to be connected to different correlated frequencies. For

5



6 Theory

one node most synapses connected to the frequencies will die, meaning that the
weight for those synapses will be close to zero. This means that only a few of the
frequencies correlate per node (Andersson 2021).

The weights in the CN model get updated by the following rule

wt+1,i = wt,i + r ·
∫ tmax

0

(yt −KLPT yt) ·max{ft,iwt,i −KLAT ft,iwt,i, 0}dt (3.1)

Where wt,i is the weight of synapse i at time t, and r, KLPT and KLAT are
constants, yt is the output of the node that synapse i is connected to, and ft,i is the
frequency being fed into synapse i at time t. The weight update in equation (3.1)
measures the correlation between the output of the node and the input of the
synapse i. In other words, the CN model does not learn according to traditional
supervised learning. In Figure 3.1, an example of the CN feature can be seen,
the CN model has 100 excitatory and 33 inhibitory neurons. In the Figure the
output from the excitatory neurons are visible, in a three seconds window. Here
the irregular shape between time steps 100 and 150 is a vowel.

Figure 3.1: An example of the CN feature, here each line is a neu-
ron output, where the x-axis is time, and the y-axis is neuron
activity.
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3.2 Conventional features

The features ordinarily used as inputs to an ANN post processor are, raw speech
signals, spectrogram, Mel-filter bank energy features (MFBs), Mel-frequency cep-
stral coefficients (MFCCs). Where MFBs and MFCCs are the most commonly
used (Bai, & Zhang 2021). An overview of how the features are related to each
other is shown in Figure 3.2. Below each feature type is described more in depth.

Raw speech 
signal MFB MFCC

CN features

STFT

Figure 3.2: A graph showing the transforms applied to create the
certain features.

3.2.1 Raw speech signal

The one dimensional raw speech signal is sometimes used as input to a post pro-
cessor. Often the input features for ANN models are hand-crafted meaning that
some sort of transform was applied to the raw speech signal. But by using the raw
speech signals as input to the ANN model directly, features are allowed to develop
by themselves within the model. The advantage with using the raw speech sig-
nal as input to the ANN model is that hand-crafted features can very easily miss
something.

When used as an input to a CNN the analysis done after training shows that
the CNN preforms filtering similar to a Fourier transform (Muckenhirn, Magimai-
Doss, & Marcel 2018). Because of this the raw speech signal was not considered
as an input feature for the chosen ANN models.

3.2.2 STFT

Since the STFT is the base for the other features, see Figure 3.2, it was deemed
interesting to see how well a Fourier transform would hold to the other features.
Therefore the absolute value of the STFT was used as input to the ANN models.
The STFT was also used as input to have a base to compare with, and to see how
the other features behave in comparison.
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3.2.3 MFBs

The Mel-frequency scale is a frequency unit that is more adapted to how humans
perceive sound and is therefore often used in speaker recognition in the form of
Mel-filer bank energy features. For example, the human ear is more perceptive of
changes in the lower frequencies than in the higher frequencies, and this is reflected
in the MFBs since the lower frequency bins are narrower than the higher frequency
bins (Andersson 2021). Here, bining is the process of data reduction, depending
on the data resolution one wants, a number of bins is selected and distributed over
the range of data. Usually, 20-40 bins or filter banks are used to create the MFBs.
These bins have a shorter span for lower frequencies and higher span for higher
frequencies. Except for the increasing bin width the MFB is quite similar to the
STFT signal. The MFBs were used as inputs to the ANN models.

To compute the MFBs the power spectrum needs to be multiplied with the Mel-
filter banks for every utterance. In other words, as one also can see in Figure 3.2,
the MFBs is a transformation of the STFT. The power spectrum is calculated
in the following way. A pre-emphasis filter is applied to the raw wave form, for
instance this helps with the numerical stability of the Fourier transform. The pre-
emphasis filter is on the form y(t) = x(t)−αx(t−1) where x is the raw wave form
for at time point t and α is a constant in the range (0, 1). After the pre-emphasis
filter is applied the utterance are sliced into overlapping frames. For each frame
a window function and then the STFT is applied. Finally, the power spectrum is
computed for each frame by taking the absolute value of the STFT and squaring
it then dividing by the number of points in the frame. The power spectrum is
usually stored in a (number of frames ×nf

2 + 1) matrix, where nf is the number
of STFT points. After this is done the Mel-filter banks are computed in the fol-
lowing way. A lower and upper bound of the frequency in Hertz (Hz) is chosen,
often this is based on what frequencies the human ear can perceive. These linear
frequencies f are then transformed in to Mel-frequencies m which uses log scale,
m = 2595 log10

(
1 + f

700

)
. Then if nm is the number of Mel-filter banks that are

wanted, then nm equally spaced points are calculated in between the lower and
upper Mel-frequency bound. Now, there are nm + 2 equally spaced points in the
Mel-frequency scale. These points are then transformed back into Hz, meaning
that the points will not be equally spaced any more. These frequencies are rounded
to the nearest STFT bin by taking fb =

⌊
(nf+1)·f

s

⌋
, where nf is the number of

STFT points, f are the frequency points in Hz, and s is the sample rate. The
Mel-filter banks are then calculated as

H(k) =



0, k < fb(l − 1)
k−fb(l)

fb(l)−fb(l−1) , fb(l − 1) ≤ k < fb(l)

1, k = fb(l)
fb(l+1)−k

fb(l+1)−fb(l)
, fb(l) < k ≤ fb(l + 1)

0, k > fb(l + 1).

(3.2)

Where k are frequencies between the upper and lower bound in the same scale
as fb, and l = [1, . . . , nm]. For every l, H(k) will yield a triangular shaped filter
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bank. From equation (3.2) it can be seen that for every l the triangle will have its
peek at k = fb(l) and its endpoints at k = fb(l ± 1), since the distance between
every adjacent point in fb gets wider the triangular filter banks will get wider as
well, see Figure 3.3. Normally, these Mel-filter banks are stored in matrices of
size (nm × nf

2 + 1), so that each triangle gets stored in one row. The MFBs are
then calculated as the product between the power spectrum matrix and the Mel-
filter bank matrix transposed, yielding a (number of frames ×nm) matrix. The
resulting output is log transformed before it is used.

Figure 3.3: Ten Mel-filter banks with sampled frequency from 300
Hz to 8000 Hz.
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3.2.4 MFCC

The MFCC features is a transformation of the MFBs as one can see in Figure
3.2, and they are obtained when the discrete cosine transform (DCT) is applied to
the MFBs. This is done since the MFBs are correlated since the Mel-filter banks
overlap, see Figure 3.3, and the DCT helps decorrelate the signal. The DCT is
defined as

yk = 2f

N−1∑
n=0

xn cos

(
πk(2n+ 1)

2N

)
, where (3.3)

f =


√

1
4N , k = 0√
1

2N , otherwise,
(3.4)

and k = 0 . . . N − 1. Sometimes the so called ∆ and ∆∆, which are the first and
second order derivative of the MFCC, can be incorporated in the MFCC feature.
Although, since ∆ and ∆∆ are linear transformation of the MFCC an ANN should
be able to reproduce this, but still many ANN implementation utilise the MFCCs
and their derivatives as inputs (Andersson 2021). The MFCCs were used as input
to the ANN models without the ∆ and ∆∆ coefficients.

3.3 ANN architectures

There are many types of ANNs and not all may be suited to have the CN features as
input. For this reason different types of ANN architectures were studied and from
this study it was determined if the architectures are suitable to use when the CN
features are used as input. The chosen ANN models are going to be tasked with
learning to distinguish between different speakers using standard classification.
The output layer from the network will contain the same number of nodes as the
number of speakers in the training data set. Each node in the output layer will then
represent one speaker, therefore the person connected to the node that outputs
the highest value will be classified as the person speaking. During training the
weights of the network will be optimised based on this output result. However, as
mentioned in chapter 2 when the classification is done during testing, embeddings
called d-vector or x-vector are used (Bai, & Zhang 2021). The d-vector is a frame
level embedding and is created from the output from the last hidden layer of
the ANN. After training a template d-vector of the target person is saved and
then during testing a d-vector is created for every frame in an utterance, these
d-vectors are averaged to create a single embedding. How close the template d-
vector and test utterance d-vector are, is what decides how the person in question
gets identified. Usually, the cosine similarity, which is cosine of the angle between
the two d-vectors, is used (Variani, Lei, McDermott, Lopez Moreno, & Gonzalez-
Dominguez 2014). The cosine similarity is calculated using the scalar product:

cos(θ) =
a · b

||a||2 · ||b||2
. (3.5)
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Where θ is the angle in between the two embeddings a and b. The x-vector is an
advancement of the original d-vector, the difference is that the d-vector is a frame
level embedding and the x-vector is an utterance level embedding. To create a
x-vector first an embedding is created for each frame in an utterance using a one
dimensional CNN (see chapter 3.3.3), then a statistical pooling layer is used to
create a utterance level feature. This utterance feature is then usually fed through
fully connected feed forward network, the x-vector is extracted from one of these
layers. The ANN is trained as a whole to solve the classification problem. During
testing a test utterance x-vector is compared to template x-vector in the same way
as described for the d-vector (Snyder, Garcia-Romero, Povey, & Khudanpur 2017).

Speaker verification methods using ANNs can be categorised in two ways, stage-
wise and end-to-end. The stage-wise method can be divided into a front-end and
back-end stage. In the front-end the embeddings are extracted while in the back
end a similarity score is calculated and compared with a threshold. Usually, if
the score is higher than the threshold the two signals belong to the same person
and otherwise not. The loss function used during training is usually the categori-
cal cross entropy loss function. The end-to-end method compares a pair of input
voices during training and produces a similarity score between these directly de-
termining if they belong to the same person or not. The major difference between
these two methods is the choice of loss function. Although, in literature there is
sometimes a confusion between these two, since the end-to-end system is often
called an embedding extractor. The reason for this name is that during testing an
embedding has to be extracted and compared with a template embedding, these
two embeddings are used as input to an independent back-end. If during training
similarity scores are produced then the ANN model is regarded as an end-to-end
method. With end-to-end methods there are three main challenges, deciding on
a loss function, similarity metric, and constructing training pairs (Bai, & Zhang
2021).

Most of the post processors in speaker verification that uses a ANN structure
have more than one layer of nodes. This, by definition, means that all the post
processors are deep neural networks (DNNs).

3.3.1 RNNs

The traditional RNN network is similar to a feed forward network except that it
also has backward connections to nodes in the same or previous layers. These
backward connections have the same properties as forward connections, in other
words they have a weight connected to them. The decision of where to put the
backward connection is optional. RNNs are often used to solve problems that
have time dependencies (Goodfellow, Bengio, & Courville, 2016). An example of
a simple perceptron with a backward connection can be seen in Figure 3.4. In this
figure we also see the network being unfolded in time two time steps. Here x is
the input to the node and h is the output from the node. There are two weights,
one forward weight W and one backward weight U . The same weights U and W
are used for every time step.
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xt

U U U

W W WW

xt+1 xt+2

Unfolding 
in time

x

h ht ht+1 ht+2

Figure 3.4: (Left) A perceptron which has a feedback connection.
(Right) The same architecture as in (Left) but unfolded two
time steps.

The output ht is calculated as

ht = ϕ(xtW + ht−1U) (3.6)

where ϕ is the activation function of the node. The node of an RNN can be seen
in Figure 3.5.

ᶲ

xt

ht-1 htU

W

Node

Figure 3.5: Inside a node of a recurrent neural network, where ϕ is
the activation function of the node.

One of the main problems with the traditional RNN is that it is bad at capturing
long term dependencies between samples. The reason for this is because the gra-
dients need to be propagated through many time steps which often causes them to
vanish, this is known as the vanishing gradient problem. To handle this problem
a different kind of node was designed. The network that implements this kind of
nodes are called long short-term memory (LSTM) network (Goodfellow, Bengio,
& Courville, 2016). Since long term time dependencies could be needed to model
the different features a LSTM network might be needed, and for this reason we
look at them separately. Although, since the traditional RNN also models time
dependencies it seems reasonable to compare the RNNs performance to the LSTM.
Therefore the RNN architecture was chosen as one of the ANN models.
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3.3.2 LSTMs

The LSTM network was designed to better handle long term dependencies between
samples. A LSTM node is different then an ordinary node since it has a memory
of previous inputs. The LSTM node has two outputs, the node value ht, and an
internal memory value ct, where t denotes the time dependency (Ye, & Yang 2021).
These values are recurrently fed to the LSTM node for each new time step input,
see Figure 3.6. In the figure one can see a perceptron with a LSTM node and two
values recursively being fed back into the node, and the network being unfolded
two time steps. The difference between this network and the RNN in Figure 3.4 is
that two values are being sent back into the LSTM node. To avoid confusion the
weights have not been marked in Figure 3.6 since the LSTM network has more
weights then the RNN.

xt xt+1 xt+2

Unfolding 
in time

x

h ht ht+1 ht+2

hc
ct

ht

ct+1

ht+1

Figure 3.6: (Left) A perceptron with a LSTM node with two feed-
back connections. (Right) The same architecture as in (Left)
but unfolded two time steps.

Inside the LSTM node there are three gates, the input gate it, forget gate ft, and
output gate ot that help calculate the node value ht, and the internal memory
value ct. The the node value and the internal memory are calculated as follows

ct = ct−1ft + c̃tit, (3.7)
c̃t = tanh(xtW

c + ht−1U
c), and (3.8)

ht = tanh(ct)ot, (3.9)

where

it = σ(xtW
i + ht−1U

i), (3.10)

ft = σ(xtW
f + ht−1U

f ) and (3.11)
ot = σ(xtW

o + ht−1U
o), (3.12)

and σ(a) = 1
1+e−x is called the sigmoid function, and W c,i,f,o and U c,i,f,o are

weights (Ye, & Yang 2021). One setback of using a LSTM network is that it
has four times more trainable weights per node then a traditional RNN. The
LSTM node is depicted in Figure 3.7. To avoid confusion the weights specified
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in the above equations have not been marked in Figure 3.7, although one can
easily see where the weights should be placed. In Figure 3.7, one can see the two
values ct−1 and ht−1 being fed into the node, and the two values ct and ht being
outputted. The Figure depicts a schematic interpretation of equations (3.7)-(3.12).
The rectangular boxes in the figure are activation functions, in other words there
are four small networks inside of the LSTM node. The circular shapes in the figure
are point-wise operations, where × means multiplication, + means addition, and
tanh is the hyperbolic tangent function, tanh(a) = e2x−1

e2x+1 .

ct-1 ct

ht-1

𝜎 𝜎 𝜎tanh

✕ +

✕

✕

tanh

ht

xt

ft
it ct~ ot

Node

Figure 3.7: The inside of a LSTM node where σ and tanh are
activation functions of the node.

Since a LSTM network is good at modelling time dependent data it was interesting
to consider a LSTM network. It would also be of interest to compare the results
with a traditional RNN to see if the traditional RNN is good enough.

3.3.3 CNNs

The CNN provides translation invariance, meaning that for two dimensional fea-
tures in space and in time, it can locate speaker specific features without disrupting
the timeline (Ye, & Yang 2021). For this reason the CNN architecture seems suit-
able to use. The CNN is weight efficient compared to other networks since one
kernel in one layer uses the same weights for the entire input. A kernel in this case
is a matrix, containing trainable weights, that moves over the input multiplying
the weights with the specific sub region of the input. For each step the kernel
makes there is one output. Another aspect of the CNN is that it has sparse weight
connections, since only a small subset of the input is used to create the output in
the next layer. A convolutional layer in a CNN consists of a convolution with the
the input of the layer and the kernel, then an activation function is applied to the
resulting convolution, and finally a pooling layer is applied (Goodfellow, Bengio,
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& Courville, 2016). The kernel in the convolutional layer does not necessarily have
to consist of one single block, it can be dilated by a fixed amount of steps.

The time delay neural network (TDNN) is a one dimensional CNN. The differ-
ences between a one and two dimensional CNN is the size of the kernel. For a two
dimensional CNN the kernel is often two dimensional but the size of the kernel is
smaller then the input size. So, for example, if a input has size m × n and the
kernel is i× j then i < m and j < n meaning that the kernel has to move in two
directions to cover the whole input. A one dimensional CNN has a kernel that only
moves in one direction, meaning that if the input is of size m×n and the kernel is
of size i × j then either i = m or j = n (Goodfellow, Bengio, & Courville, 2016).
If the one dimensional CNN would be used in speaker verification then the kernel
would move along the time axis. Results from the literature study showed that
the CNN is the most used post processor in the field of speaker verification, both
one and two dimensional CNNs are commonly used. The one dimensional CNN
is the basis of the architecture that is used to create the x-vector, for this reason
the one dimensional CNN architecture is suitable to use in speaker verification.

3.3.4 Layers

An ANN consists of layers often most of these layers implement different types of
nodes with trainable weights connected to them, but this is not necessarily the
case. Some layers have nodes that use fixed weights to try to reduce the size of the
output from the previous layer or to confine the output values from the previous
layers. Two type of layer that uses fixed weights are batch normalisation (BN)
layer and statistical pooling layer. The BN layer is used to normalise the outputs
from a layer. The normalisation is done over an entire utterance. In other words
the mean and the standard deviation is calculated for an entire utterance and then
the mean is subtracted from the entire batch and the the difference is divided by
the standard deviation. This effectively confines the values that the layer outputs
within a range, often contributing to the networks learning faster. The statistical
pooling layer calculates the mean an the variance of an utterance and concatenates
them, effectively reducing an utterance to a single vector representation. This is
usually done when x-vectors are created.

3.3.5 Supervised learning model

During the training of an ANN post processor a supervised learning model is used.
The weighs are updated using the Adaptive moment estimation (Adam) which is
a method for minimising the loss function of a neural network. The method is
based on gradient decent but also has momentum terms. The loss function to be
minimised is the categorical cross entropy function

E(w) = − 1

N

N∑
n=1

c∑
i=1

dn,i ln yn,i. (3.13)

Where c is the number of classes, N is the number of samples in a batch, dn,i is
the true output, and yn,i is the network output.
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3.3.6 Performance measure

In speaker verification the standard way of evaluating network performance during
the testing stage is using the equal error rate (EER). The EER is a measure of
when the number of false positives and false negatives is equal. The EER is defined
as

EER =
FPR + FNR

2
, if FPR = FNR. (3.14)

Where FPR is the false positive rate and FNR is the false negative rate. The EER
is measured in percent.

3.3.7 Adaptation of the CN features

Two different CN models were used in this thesis, at first the old CN model or
CN model V1 was used, later this model was modified to CN model V2. Based
on the results of the ANN performance with the conventional features and the
CN features from CN model V1 used as input, and the feature analysis study (see
sections 5.1 and 5.2.1), the CN features were modified in ways to try and improve
the results for these features. There were three following types of changes made
to the CN features:

1. The first modification was made to the CN model itself. In Figure 3.8 one
can see part the weights of CN model V1 as a heat map. Each row represents
the weights that go from the input frequencies to an excitatory neuron. Here
the colouring means: white is a high value, red is a medium value, blue is
a low value, and black is zero. The weights for CN model V1 are spare,
meaning that most of the weights are zero or low (black or blue), and some
few weights are medium or high (red or white). The modification done
changed hyper parameters of the CN feature extractor so that the weights
would pick up upon larger frequency bands. The resulting weights for this
modified CN model, called CN model V2, can be seen in Figure 3.9 where
the colouring is the same as before. In CN model V2 there are more medium
and high weights (red and white) than in CN model V1.

2. Upon observing the weights in Figure 3.9 one can see that the they resemble
Mel-filter banks in the following way: Each excitatory neuron picks up a
frequency band, and that band often has medium weights at the edges and
high weights at the centre, giving the weights a some what triangular shape.
These bands tend to overlap, looking at the weights between several neurons.
This is a similar to the Mel-filter banks in Figure 3.3. Given this resemblance
the CN features of CN model V2 were log filtered since this is also done to
the MFBs. To learn how the opposite would affect the performance the CN
features for CN model V2 were also filtered with the power of two. To see
if the filtering had the same effect on the CN features of CN model V1 the
filters were also used on the CN features from CN model V1 as well.

3. To additionally try to improve performance, the level of inhibitory neurons
were increased and decreased. The number of inhibitory neurons tried were
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11, 33, and 66 with 100 excitatory neurons. This was done for both CN
model V1 and V2, and these new features with different level of inhibitory
neurons were also log / power filtered.

To summarise there were a total of 18 different CN features tested and evaluated.
Nine were from the old model and nine were from the new model. For each model
those nine features can be divided into three triplets, where each triplet has the
same number of inhibitory neurons and the difference within one triplet being the
filter applied to it, either being none, log, or power. These features will not be
given specific names, but it should be clear from context which feature is meant.
The performance result of the CN features from CN model V1 and CN model V2

are represented in chapter 5.2.2, the sections before and after that in the result
chapter are strictly on the conventional features and the non filtered CN features
from CN model V2 with 100 excitatory neurons and 33 inhibitory neurons.
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Figure 3.8: The weights of CN model V1, here one can see that the
weights are more sparse compared to the new model in Figure
3.9
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Figure 3.9: The weights of CN model V2, here one can see that
the weighs pick up larger frequency bands compared to the old
model in Figure 3.8
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Chapter 4
Methodology

Considering that the goal of this Master thesis work is to evaluate what type of
information ANNs learn from specific features and understanding what type of in-
formation certain features offer, the ANNs chosen for implementation were, a one
dimensional CNN based on (Snyder, Garcia-Romero, Sell, Povey, & Khudanpur
2018), and a LSTM network based on (Marchi et al. 2018). To further understand
and analyse the advantages and shortcomings of the LSTM network a traditional
RNN similar to the LSTM network was implemented. The CNN, and LSTM were
chosen since they are the traditional networks used for speaker recognition and the
more recent network architectures are based on them. For example, the CNN that
will be implemented is based on the original x-vector model, and the LSTM model
is based on Apples implementation on speaker verification used for Siri (Marchi
et al. 2018). The more recent models were not chosen for implementation since
they are more complex then the traditional models an would make evaluating the
networks unnecessarily difficult. Details of the chosen model architectures can be
found in section 4.1. All ANN models are stage-wise models. In this chapter "CN
feature" refers to the non filtered CN features from CN model V1 with 100 excita-
tory neurons and 33 inhibitory neurons.

The LSTM model, based on (Marchi et al. 2018), is optimised for MFCC fea-
tures, and did not preform well for the CN features. To be able to do analysis
of what a LSTM network learns from CN features, the LSTM network was regu-
larised to get better performance for CN features. A RNN model regularised in the
same way as the LSTM model was also created. Results from both the regularised
and unregularised LSTM/RNN is presented in chapter 5.

The features that were used as input to the ANN models were the CN features, the
MFCCs, the MFBs, and the STFT. All of the input features are two dimensional
in time and space. These features consists of three seconds utterances, where each
utterance is divided into about 300 frames or time steps. Depending on what type
of input feature is used each frame consists of a number of data points equal to
the number of points in space. A channel consists of all of the n:th data point for
all frames. So for example in the STFT a channel is equal to a bin, or for the CN
feature a channel is equal to one neuron output. The number of channels is equal
to the number of points in space. The input size to the ANN models is the number
of frames times the number of channels. The number of frames per utterance and
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the number of channels can be seen in Table 4.1 for every feature type used. In
the table one can also see the window length and window step taken to calculate
each feature.

Table 4.1: The number of frames per utterance and the number of
channels. The window length and window step is also presented
in seconds (s).

Feature
type Frames Channels Window

length [s]
Window
step [s]

CN 297 100 0.025 0.01
MFCC 299 20 0.023 0.01
MFB 299 40 0.023 0.01
STFT 302 62 0.023 0.01

The size of the MFCCs, MFBs and STFT features was chosen based on the stan-
dard used in the speaker verification field. To find the optimal number of excita-
tory neurons different amounts of excitatory neurons were tested on the regularised
LSTM model. The EER result is shown in Figure 4.1, the number of excitatory
neurons used is 50, 100, 150, and 200. The number of inhibitory neurons is a third
of the number of excitatory neurons motivated by (Rongala, & Jörntell 2021).
According to these findings the optimal number of excitatory neurons is 100, and
the the optimal number of inhibitory neurons is 33.

Figure 4.1: The EER for the regularised LSTM model for the clean
test data set, for 50, 100, 150, and 200 excitatory neurons. The
number of inhibitory neurons used is a third of the number of
excitatory neurons.
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4.1 ANN models

4.1.1 One dimensional CNN model

The one dimensional CNN is based on the same network that created the original
x-vector (Snyder et al. 2018). It has five convolutional layers with BN after each
convolutional layer. The details of the convolutional layers can be found in Table
4.2. All convolutional layers use the rectified linear unit (ReLu, f(a) = max(0, a))
as activation function. The convolutional layers all have a stride of one. After the
last convolutional and BN layer there is a statistical pooling layer, that calculates
the mean and variance of an utterance (in time) and then concatenates the two
resulting vectors. So, after the convolutional layers and the statistical pooling
layer an utterance of about 300 time steps is reduced to a single vector consisting
of the mean and variance of the utterance. After the statistical pooling layer there
are two fully connected layers with ReLu activation functions. The number of
nodes of these fully connected layers are 512 and 300 respectively. The speaker
embedding (x-vector) is extracted from the last fully connected layer. The output
layer has the same number of nodes as the number of speakers and uses the softmax
activation function, defined as

f(a) =
eai∑K
j=1 e

aj

, (4.1)

where i is the current node and K is the number of speakers.

Table 4.2: The architecture of the convolutional layers. After each
convolutional layer a BN layer is applied (not shown in the
table).

Convolutional layer Nbr of filters Kernel size Dilation
1 512 5 1
2 512 3 2
3 512 3 3
4 512 1 1
5 1536 1 1

4.1.2 Regularised & unregularised LSTM & RNN models

The unregularised LSTM network is based on Apples paper about speaker veri-
fication for Siri from 2018 (Marchi et al. 2018). The first layer of the network
consists of 512 LSTM nodes. The output from this layer is generated from the
last frame in an utterance. The output from earlier frames in the utterance is only
used to create the three different gates. In Figure 3.6 this would mean that if the
features had three frames only the ht+2 output would be fed to the next layer.
This means that the the first layer of the network effectively reduces an utterance
to a single output vector. The activation function of the LSTM layer is the tanh
function. After the LSTM layer comes a BN layer. The next layer in the network
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is a fully connected linear layer with 128 nodes with a linear activation function.
The speaker embedding is extracted from this linear layer. After the linear layer
comes a BN layer. The output layer has the same size as the number of speakers
in the data set and has a softmax activation function, see equation (4.1).

The regularised LSTM network has the same general structure as the unregu-
larised LSTM model. The differences are the following; instead of 512 LSTM
nodes there are 64 LSTM nodes. The batch normalisation layer after the LSTM
layer is removed. The output from the LSTM layer is fed directly into the linear
layer. Dropout is also used on the linear layer, with a dropout probability of 30
%. The differences between the two models can be seen in Table 4.3.

Table 4.3: The differences between the unregularised and regularised
LSTM/RNN models.

Unregularised Regularised
512 recurrent layer 64 recurrent layer
BN layer No BN layer
linear layer linear layer
No dropout layer 30 % dropout layer
BN layer BN layer
softmax layer softmax layer

The traditional RNN implementation is similar to the LSTM network above, ex-
cept that instead of the first layer (with 512 LSTM nodes) there are 512 ordinary
nodes with a simple feedback connection as illustrated in Figure 3.4. Although,
as in the LSTM network only the output generated from the last frame in an
utterance in the RNN layer will be fed in to the next layer. The regularised RNN
model is similar to the regularised LSTM model, in this case the LSTM layer is re-
placed with 64 ordinary nodes with a simple feedback connections. The differences
between the two models can be seen in Table 4.3.

4.1.3 Hyper parameter settings

The following is true for all five networks. The Adam optimisation algorithm is
used to update the weights with TensorFlow’s default parameter settings, so the
learning rate is η = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−7. The loss function
to be optimised is the categorical cross entropy function (see equation (3.13)), with
the number of categories being the same as the number of speakers during training.
The Adam optimisation method and the categorical cross entropy function was
chosen since these were used in the original models and they are almost always
used in all stage-wise implementations. A mini batch size of 32 is used, and only
clean data is used to train the networks. Early stopping is used, the network
stops training if the validation loss has stagnated for five epochs. Otherwise, the
network is allowed to train for 200 epochs.
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4.1.4 Testing of ANN model

When the ANN model has finished training, the model is saved from the input
layer to the embedding layer. This embedding model is then tested on a data
set that only contains new speakers. Five utterances from each speaker is used
to create template embeddings for every speaker. The rest of the utterances are
transformed to embeddings. The similarity score is computed, with the cosine
similarity, between the current embedding and a template embedding (see equation
(3.5)), if the score is above a certain threshold then the embeddings are considered
to belong to the same person otherwise not. This threshold is not predetermined
and needs to be optimised. The optimisation process calculates the similarity
scores for each template embedding and utterance embedding, then every true
positive and true negative, and false positive and false negative is recorded. If the
false rejection rate is is larger than the false acceptance rate then the threshold
gets lowered and vice versa. If the difference of the false rejection rate and the false
acceptance rate is lower 0.1 then the optimal threshold value has been considered
reached. After this, the speaker verification model is complete.

4.1.5 Data sets

Training data set

The training data set consist of data without noise and consists of 97 thousand
samples where 80 % is used for training and 20 % is used for validation. There
are a total of 921 different speakers in this data set.

Test data sets

The trained ANN models are tested on seven different data sets. One of the test
sets named "test" is a data set without any noise. The data set "test" contains
40 new speakers, not included in the train data set. The other six test sets are
modifications of the original "test" data set, the modification being that different
types and levels of noise are superimposed on the original "test" set. The level
of the noise is measured with the signal to noise ratio (SNR), in decibel (dB),
defined as SNR = 10 · log10

(
Psignal
Pnoise

)
, where Psignal and Pnoise is the average power

of the signal and the noise. The noise that is added is active noise, and can for
example be other people talking in the background or a washing machine in the
background. Three of the six data sets with noise contain only people talking in
the background at different SNRs, which are 20 dB, 10 dB, and 0 dB. This three
types of data sets are named as the "chatter" data sets. Then the other three of
the six data sets with noise contain all types of active noise, with SNRs being 20
dB, 10 dB, and 0 dB, the data sets are named "active".
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4.2 Statistical analysis of feature types

Three different types of feature analysis was performed, listed below:

1. Pairwise cross correlation for zero lag between feature channels, for all fea-
tures, the result was then averaged. This was done for both the clean test
data set and the chatter SNR 10 dB data set.

2. The average activity for each feature was measured by taking the sum over
all channels at each time step and then taking the average of the result, this
was done for the clean test data set and the chatter SNR 10 dB data set.

3. Calculating the entropy within the features by calculating how probable a
channel output is at each time step. The result was then averaged. This
was done for both the clean test data set and the chatter SNR 10 dB data
set.

Each of these feature analysis methods will be explained a bit more in depth in
the following sub sections.

4.2.1 Cross correlation

Assume that ci is the ith channel of a feature and that i = [1, n] where n is the
number of channels that the feature has. Then the pairwise cross correlation Ci,j

of the ith and jth channel of this feature is calculated as

Ci,j =
cTi · cj√

(cTi · ci) · (cTj · cj)
. (4.2)

The cross correlation is the scalar product of the two channels, the denominator
is the square root of the auto correlation for the two channels and normalises the
output.

Calculating and interpreting correlation for the MFCCs

It is important to understand the general shape of the different feature types to
be able to interpret the correlation result. In Figure 5.6 to Figure 5.9 one can
see the different features for the same sample. Looking at Figures 5.6 and 5.7 one
can see that both CN feature and the STFT have outputs larger than zero and
that many channels are active at the same time. This will cause the correlation
for these features to be somewhat high. In Figure 5.9 we can see an example
of the MFB, here we see that the general shape of the feature is such that all
channels generally have a value that is above zero or below zero making the total
correlation high. According to the theory the MFBs are log transformed before
they are used. Applying the log transform means that all the values of the MFB
that were between zero and one before the log transform will be mapped into a
value between minus infinity and zero. A MFB having a value between zero and
one before log transformation means that there generally is silence. So all the
outputs of the MFBs that has a value less then zero (post log transformation) is
equivalent to there being silence. This probably one of the down sides of the MFBs
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since the negative amplitude is generally as large as the positive, giving a larger
than necessary correlation result. In Figure 5.8, we can see that the MFCCs also
take on both positive and negative values, and most of the time there are channels
that are positive and negative at the same time, unlike the MFBs. This shape
of the MFCC feature results in some of the pairwise correlations being negative
and some being positive, and so these results when summed will cancel each other
gaining a correlation mean close to zero. The negative output of the MFCCs is not
to be confused to the negative MFB outputs, since they mean different things. A
negative MFCC value still means that there is activity there. According to theory,
the MFCCs are obtained from the DCT of the MFBs, see equations (3.3)-(3.4).
Where the DCT returns spectrum of the MFBs, but only with respect to cosine.
So, an negative value corresponds to the MFB being shifted π radians, compared
to the cosine in equation (3.3). In other words a negative value means that there
is activity in the same frequency as if the value was positive. So, when calculating
the correlation for the MFCCs they have to be filtered with the absolute value, so
that the feature only has non negative outputs, otherwise the result will be miss
leading. This was done in the cross correlation results in chapter 5.2.1

4.2.2 Average activity

Assume that at,i is the output of channel i at time t then the activity A of one
feature is calculated as

A =
1

T

T∑
t=1

n∑
i=1

at,i. (4.3)

Where T is the number of time steps in the feature, and n is the total number of
channels in one feature.

4.2.3 Entropy

Assume that pt,i is the probability of at,i occurring at time t on channel i, then
the entropy E for one feature is calculated as

E = − 1

T

T∑
t=1

n∑
i=1

pt,i · log2(pt,i). (4.4)

Where T is the number of time steps in the feature, and n is the total number of
channels in one feature. A high entropy generally means that the predictability of
the feature type is less certain, and a lower value means that the predictability is
more certain.
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Chapter 5
Results

5.1 ANN performance

In Figures 5.1 - 5.5 the EERs for the different test data sets is plotted for all
models and features. In Figure 5.1 one can see that the CNN model manages to
perform well on all features, where the MFCCs are performing best on the clean
data and for active SNR 0 dB. The STFT feature performs best on active noise
for SNR 10 and 20 dB, and on all chatter data sets. In the figure one can also see
that the CN features have the highest EER on the clean data set, but performs
better than some other features on the noise data sets.

Figure 5.1: The EER results for the CNN for the different features
and test sets.

In Figure 5.2 one can see that the performance of the unregularised LSTM model
for the different features vary. Here one can see that the unregularised LSTM
model does not have good performance for the CN features and the STFT. The
MFBs are performing best for all test sets except on the active noise with SNR 0
dB test set where the MFCCs perform best.
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Figure 5.2: The EER results for the unregularised LSTM for the
different features and test sets.

In Figure 5.3 one can see the EER for the regularised LSTM model are in the same
order for all features, where the MFBs are performing best on the clean data set
and chatter data set with SNR 20 dB. On active noise with SNR 10 and 20 dB,
and chatter SNR 0 and 10 dB the STFT seems to be performing best, while for
chatter SNR 0 dB the MFCCs seems to be performing best. One can also see the
the CN features have similar relative performance as for the CNN model.

Figure 5.3: The EER results for the regularised LSTM for the dif-
ferent features and test sets.

In Figure 5.4 one can see the EER results for the unregularised RNN model, the
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results vary quite a bit from feature to features, with the MFCCs performing best
on all data sets. Here one can see that the unregularised RNN model is performing
poorly having an overall worse EER than all other previous models.

Figure 5.4: The EER results for the unregularised RNN for the
different features and test sets.

The regularised RNN model can be seen in Figure 5.5, where the MFBs seem to
be performing best on the active noise data sets and on chatter 0 dB, and on the
clean data set. On chatter the STFT seems to be performing best for SNR 20 dB
and 10 dB. Both RNN models are behaving poorly compared to the other models.

Figure 5.5: The EER results for the regularised RNN for the different
features and test sets.
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5.2 Statistical analysis of feature types

In Figures 5.6 - 5.9 one can see all the different feature outputs for the same clean
three second sample. Looking at the different features in the Figure one can see
that the CN feature and the STFT look similar, while the MFCCs and MFBs do
not quite have a similar resemblance to the STFT.

Figure 5.6: An example of the CN feature.

Figure 5.7: An example of the STFT feature.
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Figure 5.8: An example of the MFCC features.

Figure 5.9: An example of the MFBs.
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5.2.1 Correlation

In Figure 5.10, one can see the mean and standard deviation of the pairwise cross
correlation of the clean test data set and for the chatter SNR 10 dB test data set,
for all features. The correlation on the clean data set have the following results:
From the figure one can see that both the CN feature and the STFT have a mean
correlation between 0.3 and 0.4. While the MFCCs have a correlation result of
about 0.63 and the MFBs have correlation result of about 0.51. From these correla-
tion results one can say that the CN features and STFT have a similar correlation
measure and that the MFCCs and MFBs have similar correlation measure. The
CN features and the STFT also have medium correlation meaning that the out-
puts of the different channels have overlapping outputs. The MFCCs and MFBs
have the the highest correlation meaning that the channels overlap more within
a sample in comparison. The variance is the smallest For the MFCC meaning
that the amount of overlap stays the same for all MFCC features. The variance
is largest for the MFBs meaning that the amount of feature overlap varies a lot
between samples. For the correlation on the chatter SNR 10 dB data set one can
see that this correlation is always lower for the conventional features compared to
the correlation on the clean test data set, but for the CN features this correlation
is slightly higher.

Figure 5.10: The pairwise cross correlation for zero lag. Here the
mean and standard deviation of all samples in the respective
test set is shown.



Results 33

5.2.2 Adaptation of the CN features

Performance of CN model V1 and V2 with and without filtering

In Figure 5.11 one can see the correlation and performance result of CN model V1

with the feature modifications described in chapter 3.3.7 in point 2. The perfor-
mance is shown for the CNN model and the clean data set and the chatter SNR
10 dB data set. Here one can see that the correlation on the clean data grows
for each feature on the x-axis. The features filtered with the power of two have
the lowest correlation, the no filtered features have the next to highest correlation
and the log filtered features have the highest correlation. The EER on the clean
test data set is the highest for the power of two filtered features, next to lowest
on the no filtered features, and lowest on the log filtered features. Here one sees a
relationship between the correlation on clean data and performance on clean data,
where a higher correlation gives lower EER and vice versa. Although, this is not
true for data with noise, since one can see that for example the log filtered features
have the highest EER on the data with noise. The correlation on the noise test
data set does not give any indications of how the performance on noise should
behave. On the clean data the EER improved with one percent point.

Figure 5.11: Results from CN model V1 with 100 excitatory neurons
and 33 inhibitory neurons, for both clean data and chatter SNR
10 dB. (Left) The cross correlation of the features. (Right)
EER performance of the features.



34 Results

In Figure 5.12 one can see the correlation and performance results of CN model
V2 with the feature modifications described in chapter 3.3.7 in point 2. The per-
formance is shown for the CNN model. In this Figure one can make the same
observations as in Figure 5.11. From both figures one can see that CN model V1

has better performance results than CN model V2. Here the performance of the
regularised LSTM model is not shown since it had similar results.

Figure 5.12: Results from CN model V1 with 100 excitatory neurons
and 33 inhibitory neurons, for both clean data and chatter SNR
10 dB. (Left) The cross correlation of the features. (Right)
EER performance of the features.
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Changing amount of inhibitory neurons

In Figure 5.13 one can see the performance result of CN model V1 with the feature
modifications described in chapter 3.3.7 in point 3. The performance is from the
CNN model on the clean data set and the chatter SNR 10 dB data set. For all
features that have the same amount of inhibitory neurons one can observe the same
behaviour as in Figure 5.11. The same can be said for correlation (which is not
shown). One thing to note in the figure is that the amount of inhibitory neuron
does not change performance, it neither changes the correlation. This is true for
both CN model V1 and CN model V2 for both the CNN model and regularised
LSTM model. For this reason the the performance for other CN models and ANN
models is not shown.

Figure 5.13: The performance of CN model V1 with 100 excitatiory
neurons and 11, 33, 66 inhibitory neuron, for both clean data
and chatter SNR 10 dB.
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5.2.3 Average activity

In Figure 5.14 one can see the average activity of the CN features from CN model
V1, MFCCs, MFBs and and STFT, and the standard deviation. The activity is
calculated for the clean test data set and the chatter SNR 10 dB data set. Here,
one can see that the CN features have high average activity and a large variance.
The large variance implies that different samples of the features vary in the amount
of total activity they output. One can also see that the activity is higher for the
noise data set and lower for the clean data set. The MFCCs and MFBs have zero
activity with zero variance, this means that for every sample the feature extractor
puts out a constant amount of activity. The STFT also has low activity and
variance, although higher than the MFCC an MFBs. Here the variance of the
activity is a more important result than the mean, since it tells how much the
energy changes from sample to sample.

Figure 5.14: The activity of different features for both the clean
test data set and the chatter SNR 10 dB data set.
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5.2.4 Entropy

In Figure 5.15 one can see the mean entropy of the CN features from CN model
V1, MFCCs, MFBs, and STFT, and their standard deviation. The entropy is
calculated for the clean test data set and the chatter SNR 10 dB data set. Here,
one can see the the MFCCs and MFBs have a higher entropy then the other
features, and that they have the lowest variance than the other features. A higher
entropy means that there is more uncertainty of the next outcome. The low
variance indicates that the uncertainty is the same for each sample. The CN
features and the STFT have lower entropy then the other feature, meaning that
there is a higher certainty of what will happen next. This certainty varies from
sample to sample. One can also see that the entropy is higher for the noise data
indicating that there is less certainty of what happen next. Here, the variance is
more important than the mean since it tells how much the certainty varies from
sample to sample.

Figure 5.15: The entropy of different features for both the clean
test data set and the chatter SNR 10 dB data set.
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Chapter 6
Discussion

6.1 ANN performance

From the performance results in Figures 5.1 - 5.5, we found that the CNN model
and regularised LSTM model perform better than the two RNN models and the
unregularised LSTM model. The reason for the RNN models performing poorly is
due to their inherent difficulty of capturing long term dependencies (further briefed
in Section 6.1.1). We can see in Figure 5.2 that the unregularised LSTM model
does not perform well for CN features and STFT. The unregularised LSTM models
poor performance on CN features and STFT is due to overfitting (further briefed
in Section 6.1.2). For these reasons the two RNN models and the unregularised
LSTM model are not suited to be post processors to the CN features. The CNN
model and regularised LSTM model perform better on all the different features,
therefore we only use these two models to further analyse other parameters in
this thesis study. From Figures 5.1 and 5.3, we can see the performance result of
the CNN model and the regularised LSTM model. We observe that these models
performed better with MFCCs and MFBs for clean data, compared to the CN
features and STFT. In contrast, the models performed better with CN features
and STFT for noise data, compared to the MFCCs and MFBs.

Since the CNN model and regularised LSTM model had similar performance, it
was decided that analysing and understanding the information content in the fea-
tures was more important for boosting performance than trying to decide which
of these models is more optimal through hyper parameter optimisation. Realising
this, a statistical feature analysis work started.

6.1.1 RNNs and long term dependencies

From Figure 5.4 and Figure 5.5 we can see that the traditional RNN is performing
poorly. One reason for this is that the vanishing gradient problem causes the
models to be bad at capturing long term dependencies, see chapter 3.3.1. This
result is not particularly surprising and is the reason why LSTM networks are used
instead of RNNs in state-of-the-art speaker verification approaches.
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6.1.2 Unregularised LSTM model overfitting

In Figure 5.2 we can see that the unregularised LSTM model is overfitting to the
CN features and the STFT since the EER is higher for these features compared
to the MFCC and MFBs. This was also seen during training. Overfitting means
that the unregularised LSTM overtrains on the training data set, resulting in a
good training performance but bad validation and test performance. One reason
for why overfitting occurs is due to a too large ANN model, and a simple solution
is to reduce the size of the network. A large network is more prone to overfitting
since it has more parameters that can fit the background noise of the training data
set.

6.2 Statistical analysis of feature types

6.2.1 Correlation

The correlation results from Figure 5.10 show that the MFBs have a higher av-
erage correlation and also the highest variance compared to the other features,
(on the clean test data set). The reason for this is that when the Mel-filter banks
are created, there are overlaps between the bins (Figure 3.3). This overlap causes
the bins to be artificially correlated. The CN features and STFT have similar
correlation level, for both clean and noise test data sets. These results suggest
that the CN features and the STFT can be comparable in terms of information
content they output to the post processors.

From Figure 5.10 and 5.1, we see that a feature that is overlapping between dif-
ferent channel outputs (has a higher correlation on clean data), tends to perform
better on clean data than features that overlap less. Based on these results a
hypothesis was formed that if the correlation of the CN features on clean data
were to increase, in other words if the feature overlapped more between different
channel outputs then the performance on clean data should increase. The reason
why a broader feature output is to be preferred to a narrower feature output is
that a broader feature can compensate for the natural variance that occurs when a
person speaks. Although, a feature cannot be too broad since then the feature will
not be specific enough to be able to distinguish between different people. To test
the hypothesis, different modifications were made to the CN feature to try and
increase the correlation on clean data, and then they were tested on the different
ANN models to see if this changed the performance.

6.2.2 Adaptation of the CN features

To be able to make the CN features broader, we explored different model configu-
rations differing by; final weight distributions, output activity filtering, & number
of inhibitory neurons.
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Performance of CN model V2

First, CN model V1 was modified. From Figure 3.8, we can see that the weights
of CN model V1 are sparsely distributed. While looking at the weights of CN
model V2 (Figure 3.9), we can see that each excitatory neuron picks a range of
frequency bands; leading to features with relatively high correlation, similar to the
MFBs. The performance did not increase compared to the CN features created
by CN model V1 even if the correlation did increase. The CN model V2 performed
about one percentage point worse compared to the CN model V1, on clean data,
for the CNN model (Figure 5.11 & 5.12). In the same figures we can see that the
chatter SNR 10 dB data set, the performance of CN model V2 got worse by seven
percentage points, for the CNN model. The correlation however did increase for
CN model V2 compared to CN model V1 by 0.04 percentage points (clean test
data set).

Filtering of CN output features

Another method, log filtering the output CN features of CN model V1 and V2, was
also tested. The log filtering increased performance and the correlation on clean
data compared to non filtered CN features. The log filter has a smoothing effect
and makes the outputs broader than they were before filtering. In other words
applying log filtering would give a higher correlation because of the smoothing ef-
fect. The same filtering approach was used in the state-of-the-art models that use
MFBs. The correlation hypothesis seems plausible considering the performance
and correlation results for the CN features of CN model V1 and CN model V2 with
and without log filtering.

In order to test the effect of decreased correlation the CN features were filtered
with the power of two to make the feature output narrower. This filtering would
make every output sharper in turn decreasing the correlation. These modifica-
tion yielded in results that strengthen the hypothesis (a decrease in correlation
worsens the performance). The performance and correlation results for the CN
features of CN model V1 and CN model V2 with and without filters (log & power)
can be seen in figures 5.11 and 5.12 respectively. In both figures we see that the
cross correlation index increases with each filter type as expected, we can also
see that the EER of the clean data set also decreases for the respective features.
However, the performance on the chatter SNR 10 dB data set is not following the
same behaviour as the performance on the clean data set. Here the log filtered
features have the highest EER, the power filtered features the next highest EER
and the non filtered features the lowest EER. This behaviour in the features is the
same as we saw in Section 6.1, where a specific feature type either has relatively
better performance on clean data and relatively worse performance on noise data
compared to the other feature types or it is the other way around. So here we
see that the log filtered CN features have the same behaviour as the MFCCs and
MFBs in both correlation and performance results. We also see that the power
filtered CN features have the same behaviour as the non filtered CN features and
the STFT in both correlation and performance. This relationship is interesting
since a higher correlation on the clean data seems to indicate that the performance
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will improve for clean data, but the performance on the noise data set will worsen,
and vice versa.

CN model V1 performed better overall compared to CN model V2, especially on the
noise data set. This indicates that CN model V1 is better than CN model V2. The
log filtered CN features of CN model V1 improved the EER with one percentage
point on the CNN post processor, compared to the non filtered CN features on
clean data. Although, this results are still worse than for any other conventional
feature.

Changing amount of inhibitory neurons

In order to improve the EER, the CN features of CN model V1 and CN model V2

were modified further. This was done by increasing and decreasing the number
of inhibitory neurons (the number of excitatory neurons were always 100). The
numbers of inhibitory neurons tested were 11, 33, and 66 for CN model V1 and
V2. These features were also tested after log and power filtering. All the results,
for the same CN model and number of inhibitory neurons, confirm the hypothesis,
in that a higher correlation tends to improve the EER, see Figure 5.13. In these
results we can also see that the log filtered CN feature has the best performance
on clean data compared to the other CN features, but that they perform the worst
under noise conditions. The power filtering decreases the performance of the clean
data set, where these features performed the worst, but they do not perform the
worst on the noise data. A final remark on the performance is that the amount of
inhibitory neurons do not seem to affect the performance of the CN feature. The
number of inhibitory neurons does not change the correlation result significantly
either, raising the question of how they affect the CN model and if they are needed
for speaker verification.

6.2.3 Average activity

The activity results in Figure 5.14 shows that the MFCC and the MFBs always
have the same activity for each sample, because of the zero variance. This is true
for both data with and without noise. This means that no matter what type of
input was given to the feature extractor, its total output activity will always be
the same, this is true even for silence. This could be one reason for the higher
cross correlation index for these two features than compared to the CN features
and STFT (Figure 5.10). The average activity for the STFT was similar to that
of the MFCCs and the MFBs. From Figure 5.14, we can then also say that the
CN features are fundamentally different than the MFCCs and MFBs, since the
amount of activity in the CN features is not fixed. Here we can observe that the
CN features have a higher activity for input data with noise compared to clean
data, indicating that the level of activity of CN output features are dependent on
the auditory input data.
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6.2.4 Entropy

Figure 5.15 presents the entropy measure of the different feature extractor outputs.
The MFCC and MFBs have a higher entropy and a lower variance than both
the the CN features and STFT. The larger entropy value means that there is
less certainty in the next output of these feature extractors, and vice versa for
a smaller value of entropy. In the same figure, we see that the entropy values
for the CN features and the STFT have a lower entropy and a higher variance
than both the MFCCs and the MFBs. However, the large variance of the entropy
indicates that the entropy changes for each sample, meaning that there actually
is less certainty of the next outcome, and this makes these features harder to
train on for a conventional ANN. This is reflected in the training of the ANN
post processor were the CN features and STFT always took longer to train to get
as good validation results as for the other features. This could also explain why
traditional ANNs undertrain / overtrain on CN features.

6.3 Conclusion

We conclude that the main findings of this Master’s thesis work below:

1. The CNN model and the regularised LSTM model performed the best for CN
features compared to the other ANN models. The CN features and STFT
performed better on noise and worse on clean compared to the MFCCs and
MFBs.

2. Features with lower cross correlation index on clean data will lead to poor
performance on the clean data, but this will also improve performance on
noise data, and vice versa.

3. Features with high variance in average activity and entropy is difficult for
a conventional ANN to train on, and the performance on clean data will be
poor for these features. However the fact that there are fewer limitations
on the activity and entropy allows the noise to be modelled in unique ways,
and this facilitates for the post processor to perform better on noise data.
The opposite is also true.

4. Because of the dynamics in the CN features, a conventional ANN will only
reach a certain level of performance. Going forward, the above points need to
be considered when building a biologically inspired post processor that can
utilise the dynamics of the CN features to achieve better speaker verification
performance.
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