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Abstract—Artificial intelligence in biomedical image processing
is approaching human performance at object localization while
saving immense amounts of time for the physicians. These AI
algorithms have the potential to automatically segment anatom-
ical structures for preoperative planning. However, there are
currently no tools such tools on the market. This study propose a
framework of generating effective machine learning algorithms,
applicable on different anatomical structures, to be used to
increase automation in virtual surgical planning software. In this
study a limited data set consisting of 34 CT image volumes was
used to generate labelled training data to a Convolutional Neural
Network (CNN) called Unet. The networks were evaluated with
metric evaluation as well as visually evaluated. The framework
produced two networks for automatic segmentation, one for the
orbital bone and one for the mandibular bone. The orbital
automation made useful segmentations ready for 3D printing
while the mandible automation needs more work to be able
to make printable segmentations. In conclusion this framework
provides a viable approach of generating anatomical models for
virtual surgical planning.

I. INTRODUCTION

RTIFICIAL INTELLIGENCE (AI), is a term used

widely to explain many different programs and systems.
The OECD:s (Organisation for Economic Co-operation and
Development) definition is “an Al system is a machine-
based system that is capable of making recommendations,
predictions or decisions for a given set of objectives”[1]. The
strength of Al is the capability of finding patterns in large
volumes of data. When used in applicable environments it
can contribute towards productivity and accuracy[l]]. A fitting
environment being healthcare, where time-consuming manual
task can be replaced with automation and relieve doctors in
their work[2].

Worth noting is that when provided with biased input the
Al also makes biased recommendations, predictions and deci-
sions. One bias being perception bias, which is when Al pro-
vided with data that over-/under-represents a population would
result in that Al operating better for that population[1]. An-
other issue with Al is the black box machine learning method,
where the black box refers to the underlying incomprehensible
network algorithm. The research concerning explainability of
networks is growing, it is referred to as Explainable Artificial
Intelligence (XAI). XAl seeks to justify decisions made by the
Al and provide transparency and traceability of the black box
algorithm[3]]. The key is to make the network learn the right
way.
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A. Machine Learning

Al and machine learning is closely linked. Machine learning
is when a system adapts and learns from the data that it is
processing. The process of machine learning consists of three
major steps called data exploratory phase, training phase and
validation phase. The purpose of the data exploratory phase
is to find patterns in the data. These patterns will then be
used to construct a hypothesis to be used in the following
steps. The training phase creates a model, ground truth, based
on the hypothesis in hopes that when later tested, in the
validation phase, it produces results towards the hypothesis[4].

There are many approaches to machine learning, one is
the supervised approach. Supervised learning uses labels in
the training data to indicate a predetermined output. The
objective for the system is to find patterns and create rules
for prediction[S]].

B. Neural networks

The artificial neural network (ANN) evolved from inspiration
taken from our biological neural network in the brain. Its
a widely used method of machine learning that is versatile
and fast. Like the biological neural network, ANN uses
interconnected nodes. Each neural network has specific way of
processing signals with weighing between the different nodes
and a specific organization and interconnection between nodes.
An example can be seen in Figure [T[6].
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Fig. 1. Feedforward ANN. Networks can contain different amounts of hidden
layers.

The network “learns” through adjusting the weights between
nodes. During supervised training the weights are set to
minimize amount of faulty prediction of outputs compared to



the provided labeled outputs. The mathematical function used
to minimize this error in prediction is called loss function. The
power of the network increases with the amount of nodes. But
too large networks may risk loosing generalization of unseen
data. The network can be extended by adding hidden layers,
making it deeper and referred to as deep learning. Emperically,
the network is then capable of more generalization and can
learn from less data[7].

C. Convolutional neural networks

Convolutional neural networks (CNN) are used for image
recognition and object localization. An easy explanation of
CNN is ”to reduce the images into a form which is easier
to process, without losing features which are critical for
getting a good prediction”[8]. The CNN is similar to a feed-
forward network but here the layers of the network has three
dimensions. The input could be an image in which case the
dimensions would be width, height and depth. Depth refers
to number of features, specific patterns in the different small
rectangular areas of the image, and width and height refers
to dimensions. There are three types of layers in the CNN:
convolution, pooling and Rectified Linear Unit (ReLU) layer,
each with different operations. The convolutional operation
places filters covering the entire image. The dimensions of
the filter and the amount of filters determine the dimensions
of the next hidden layer, illustrated in Figure 2} Each filter
tries to find a feature thus often resulting in a large amount
of filters to find a large amount of features. When filtering at
the edges of an image information is lost. This is solved with
padding, adding pixels with value O around the border of the
image. Following a convolution is either a pooling or ReLU

layer[7].
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Fig. 2. A convolutional operation between an input of size 32x32x3 and
output of dimension 28x28 when applying a filter of size 5x5x3. The change
of depth is caused by the amount filters applied to the input.

The pooling operation is used to reduce the size of the image
while keeping the information in the image. Max pooling is a
pooling operation that takes a small grid region of each layer
of the image and outputs the maximum value of that grid,

keeping the same depth[7]].

A ReLU layer does not change the dimensions of the image.
It uses an activation function which puts negative values to
zero. This layer increases processing speed, allowing use of
deeper models and generating more accurate networks. It
is so commonly used in CNN that it is often not shown in
network architecture illustrations[7]].

1) Unet: There is always a need for an effective neural
network in biomedical image processing, to localize important
features in the output. Effective networks are built on large
amounts of training images, which is difficult if not impossible
to attain within the biomedical field. Unet is a network that
uses data augmentation to solve this issue and make best
use of the available images. Data augmentation is a process
that helps stretching and enlarging the data pool through
reconstructing the original images with different property
changes, without including more patients. The network
also uses an expanding, upsampling, path increasing the
resolution while applying information from the convolutional,
contracting, path in order to localize features in the high
resolution image[9]]. The high performance of a finely tuned
Unet is underscored in the paper nnu-net: Self-adapting
framework for u-net-based medical image segmentation|10]],
where the results show “nnU-net” surpassing or perform
on par with specialised deep learning networks in multiple
competitions making it a state of the art segmentation
tool. nnUnet uses rotation, scaling, noise and many more
techniques of augmentation in training[/10].

When using Unet to segment a 3D structure a GPU-effective
way is to apply the network to 2D images in all three direc-
tions, returning 3 outputs. The resulting output is generated
through 3D-voting. Here each output “votes” for the pixel to
be of a certain class, the class with most ”votes” win and the
pixel is classified and segmented, see Figure [3]T1].
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Fig. 3.

D. Automated segmentation in surgical planning

Mandible and orbital segmentations are two common seg-
mentation tasks in maxillofacial preoperative planning. There-
fore, these two task was chosen as perfomance test of the
proposed segmentation framework. Studies show successful
segmentation of both mandibular and orbital bones[12[][13]].



The technology is able to perform similarly to manual segmen-
tations by clinicians, with 30 min saved for each segmentation.
These images can be used as a diagnostic tool for orbital
assessment and for creating physical models for pre-bending
orbital implants in patients with fractures[13]]. Companies can
be found applying these algorithms to their Virtual Surgical
planning (VSP) software[14]. But no company markets a
software that automatically segment the mandibular bone,
which advertises the need for such a software. Especially a
comprehensive software containing specialized tools for many
different task.

E. Segment 3DPrint

Segment 3DPrint is a software created by Medviso in Lund,
Sweden[15]. It uses standardized medical dicom-files to
produce printable 3D-models as well as using 3D models to
help plan surgery and reducing operation time. The software
has multiple tools for delineations of structures, adding and
removing of pixels and automatic segmentation of the skull,
fetuses and structures of the heart.

Integrating automatic segmentation in VSP could potentially
reduce the workload for clinicians and their time spent on
manual segmentation tasks. The potential time gained could be
applied to other sections of surgical planning or reduce overall
stress for clinicians, leading to more successful surgeries. In
this study we present a framework for generating machine
learning algorithms, that can automatically segment anatomi-
cal models, and be added to virtual surgical planning software.
This report will present a method of creating machine learning
algorithms segmenting the mandibular and orbital bone. The
purpose was to evaluate the segmented models made by these
algorithms, thus assessing the framework.

II. METHOD
A. Dataset

We managed to gather a dataset consisting of 3D CT scans
centered around the skull and used for 3D-printing of organs
or diagnosis of diverse types of lesions. Images were provided
by 3D Centre at Skane University Hospital. Images were
completely anonymised except for age and sex. Informed
consent was waived by National Ethical Review Board (Dnr
2019-02264). 34 images were acquired.

1) Orbita: Lesions affecting the training data was patients
with orbital fractures. All lesions were included in the training
as it diversifies the networks. For this dataset, 20 CT scans
were generated to be ground truth, 20 were used to evaluate
segmentation visually and 13 were either deemed inadequate
or unfinished for training due to lack of time.

2) Mandible: Lesions affecting the training data was
patients with jaw implants, braces, dentures and no teeth.
All lesions were included in the training as it diversifies the
networks. For this dataset, 15 CT scans were generated to be
ground truth, 1 CT scan was used to evaluate segmentation
statistics and to evaluate segmentation visually and 17 were

deemed inadequate or unfinished for training due to lack of
time.

B. Generating ground truth

This process used 3D CT images as input and the output
is, through segmentation, a labeled image were the target
anatomical structures are delineated and classified, in the
form of .mat-files. Segment 3DPrint and its functions was
used for this. Segment 3DPrint and its tools was taught
by supervisors and experienced personnel along with the
anatomical structures of interest to be outlined manually.
Therefore the delineation and estimation of completeness
of the images could be done by the author. The earliest
images were also inspected by supervisors to ensure the
proper quality and precision. It was also assured that only
one person did the delineation to allow for a similar method
and therefore homogeneous training data.

Images with bad quality, such as varying intensity and
contrast, lots of artifacts and low resolution, are put aside in
order to work on higher quality images.

The manual moments were carefully executed to ensure
precise training data. Tools in Segment 3DPrint were used
to achieve this and also remove unnecessary manual tasks.
The skull segmentation-function was used on all images to
attain correct threshold intensity and label everything over
threshold as Skull and below threshold as Background. This
also provided a stable base method of segmenting the skull.
The images were cropped into the sought after 3D-region-of-
interest (ROI) in order to minimize computational demand
and the 2D slices were similarly aligned in the transversal,
sagittal and coronal view to allow for a consistent delineation
approach.

Medical images always vary in intensity and contrast. In
order to achieve similar characteristics in the different image
segmentations, different tools and methods of Segment
3DPrint were utilized. Grainy images were refined using
smoothing. Artifacts derived from metal implantations
were removed by adjusting threshold intensity, isolating
and subtracting objects and erasing pixels. After this
the delineation process differs between the ground truth
generation for the two networks.

1) Mandible: The mandible was separated and isolated
from the skull and the two different objects were classified as
mandible and bone. The separation was done through erasing
the pixels interconnected between the skull and the mandible
at the temporomandibular joint and, if the patient was biting
down, at the teeth, with the sagittal and coronal point of view.
This allowed for creating a new object from the now isolated
mandible and classifying it. By subtracting the volume of the
mandible-object from the skull-object, the bone-object was
created and classified, giving images the classes: Mandible,
Bones and Background. It was determined that this was the



simplest delineation process and that this would result in a
easier ground truth for the network to train on.

2) Orbita: For the orbita training data, pixels were added
in the areas where the bone was too thin to be segmented
using skull segmentation. Pixel adding was done by drawing
lines in each image slice between visual cues in the underlying
CT-image and some individually segmented pixels. This was
done with the coronal point of view. All pixels were classified
as bones since the orbital bones together with the skull is a
solid mass with no edge in between. Classes in the training
data was Orbita (skull) and Background.

C. Hyper parameters

The tuning of the hyperparameters of the model were in
reference to a previous study by Amanda Nilsson at Lund
University[[L1]. The hyperparameters were encoder depth,
learning rate, loss function as well as some augmentation
parameters not included in Table I}

The different augmentation settings can be seen in Table
together with parameter settings for Image volume and Patch
creation.

TABLE I
DIFFERING PARAMETERS FOR THE TRAINING THE TWO NETWORKS.
Parameters Orbita Mandible
Image volume
IMinV -200 -500
IMaxV 1000 2000
Patch creation
Pdirections [123] [2 3]
PBlackProbability 0.01 0
PGlobalWriteFactor 0.2 0.3
Augmentation
APhantomWriteFactor 0 0.5
AXScaleRange [0.8 1.3] [0.7 1.3]
ATranslate 0.2 0
ATranslateXRange [-0.25 0.25] [-0.5 0.5]
ATranslateYRange [-0.25 0.25] [-0.5 0.5]
ARotateRange [-15 15] [30 30]

The qualifying and subsequently final parameters were estab-
lished by the author and supervisor through rational analysis of
the anatomy and segmentation result. Although it is impossible
to assure that these were the superior settings.

D. Segmentation evaluation

1) Orbita: The images to test the segmentation on, needs
to be unseen by the network. Unseen meaning that the images
was not used as training data, to validate future use of the
network on new patients. We picked 20 CT scans for testing
the segmentation, consisting of patients evenly split between
female and male and representing ages between 23-102yo.

After some testing it was clear that aligning the transversal
and coronal plane as seen in Figure @] resulted in a better

Fig. 4. Optimal alignment of the transversal and coronal plane for automatic
segmentation.

Fig. 5. Optimal ROI, within the yellow borders, for automatic segmentation.

segmentation of the orbital bone. The automatic segmentation-
ROI was chosen to contain the orbital bone together with
some overlap into the surrounding skull, see Figure [3]

Because of the nature of the issue that the automatical orbital
segmentation tries to solve, the best method of evaluation
is a visual assessment. It is difficult to decide, based on
qualitative measures such as Dice Score, if there are any
anatomically incorrect holes in the orbital region. In order
to have a statistical, universal result we created a grading of
the different automatic orbital segmentations. The different
grades are further disclosed in Table

A segmentation assigned the grade 3 can be seen in Figure
[l Figure [7} Figure [8] In this example the holes of Figure
[6] and Figure [§] could easily be filled in and made good
enough for printing within a reasonable amount of time,
which should result in a grade 4. The grade 3 is due to the
hole in Figure [/] It is not fixable in an acceptable time-frame
using simple Segment 3DPrint-tools. Comparing this to the

TABLE 11
GRADING CRITERIA. 5 IS THE BEST AND 1 IS THE WORST.

Grade Criteria
5 Excellent quality, can be printed directly
4 Some holes, acceptable, needs some clicks to prepare for printing
3 Some holes, acceptable, needs work to prepare for printing
2 Some holes, acceptable, needs extensive work to prepare for printing
1 Too many flaws to print, needs extensive work to fix




Fig. 6. Top image, finished segmentation of orbital bone with some holes
marked with yellow. Bottom image after ~30s of clicking to fill holes.

Fig. 7. Proximal view of left orbital bone. Left image, finished segmentation
of orbital bone with hole marked with yellow. Right image after ~30s of
clicking to fill holes.

Fig. 8. Proximal view of right orbital bone. Left image, finished segmentation
of orbital bone with hole marked with yellow. Right image after ~30s of
clicking to fill holes.

grade 5 example, Figure [9] we can see that no work is needed
to cover any holes and the segmentation is ready to print
immediately. All holes and cavities still seen in Figure [J] is
anatomically correct and do not alter the grade.

2) Mandible: The images to test the segmentation on,
needs to be unseen by the network, unseen meaning that
the images was not used as training data, to validate future
use of the network on new patients. We picked 2 CT scans
to validate segmentation visually and 1 CT scan to validate
with evaluation metrics of segmentation accuracy. The small
amount of test data is a consequence of wanting to use as much
classified data as possible for training. The visual assessment

Fig. 10.
image is the same segmentation after some work.

Left image is an automatic segmentation of the mandible. Right

uses the same grading as the orbital evaluation, see Table [l A
visual example is illustrated below in Figure[I0] The automatic
segmentation-ROI was chosen to contain the mandibular bone
together with some overlap into the surrounding skull and
background. Dice and 95%-percentile were used as evaluation
metrics. The Dice coefficient formula is two times the area
of overlap divided by total number of pixels in both images,
resulting in a value O - 1 where 1 is the top score.



A segmentation assigned the grade 2 can be seen in Figure
This example was made ready for printing within a
considerate amount time using different Segment 3dprint-tools.
The segmentation is still acceptable since the segmentation is
useful. If the automation produces a segmentation similar to
the right image of Figure it would need no work and be
assigned grade 5.

III. RESULTS

TABLE III
ORBITAL ACCURACY EVALUATIONS IN TERMS OF GRADING OF
SEGMENTATION IN 20 PATIENTS DIVIDED IN 10 FEMALES AND 10 MALES
EACH REPRESENTING ALL AGE GROUPS EXCEPT ADOLESCENTS. SORTED

BY AGE.

Age Gender Grade Age  Gender Grade
102 Female 5 62 Male 5
101  Female 5 61 Female 5
98 Male 5 52 Female 4
98 Male 5 51 Male 2
92 Female 2 41 Female 4
92 Male 4 41 Male 3
82 Female 4 33 Female 3
82 Male 4 32 Male 5
71 Female 5 24 Male 4
71 Male 5 23 Female 5

A. Orbita

Table |[1I} is sorted by age and no correlation can be found in
the grading. More test data is needed to make any assumptions.
The average grade across all images is 4,2 and for the genders,
the female average grade is 4,4 and the male average grade is
4. Each segmentation took around 15 seconds.

B. Mandible

Test results show that the network creates an average seg-
mentation. The accuracy metrics were a dice score of 85.8%.
The visual evaluation of the segmentation is a grade 2. Each
segmentation took around 30 seconds.

All segmentations were performed on NVIDIA GeForce RTX
2070.

IV. DISCUSSION

Algorithms for automatic mandible and orbital segmentation
has been developed using a shared general segmentation
framework. The results were varying, with the orbital
segmentation being integrated in software directly and the
mandible segmentation needing more work or a bigger dataset
to train on.

A. Orbital segmentation

The visual grading may be regarded as harsh, since many
segmentations would be usable in preoperative planning.
The grading was instead determined in regards to aesthetics
and comparison to ground truth. Perhaps grading could be

determined more based on preoperative usability since this
is what the segmentations will be used for. This would lead
to an easier time motivating the use of this framework in
creating algorithms. Only evaluating the orbital segmentations
visually was more in-line with use in preoperative planning,
but there was also a rationale behind this decision. Evaluation
metrics would not have targeted the orbital bone but the
whole segmented volume, which the orbital bone only was a
part of, resulting in misleading evaluation of the segmentation.

A logical reason for the success of this network is the simple
localization of the sinuses below the orbital bone. The reason
is that since these cavities are air-filled there is no contrast,
making it easier for the network to localize where the contrast
appears, which is where the orbital bone starts.

B. Mandible segmentation

There can be many factors that influence the result of the
mandible segmentation. One plausible factor could be the
unavoidable complexity of the problem of differentiating
between the mandible and the rest of the bone, given that
the mandible is a very unique structure between individuals.
This, as mentioned, is of course unavoidable but can be
compensated as describe below.

In this case the algorithm could perhaps suffer from it’s
limited training data. A machine learning process start with
gathering data and that data is the solid ground on which
algorithms are built upon. This being said there can never
be too much training data, but there can be too little. The
beginning, exploratory phase, of this study should have made
a further use of its resources, the supervisors, in order to have
a more solid base.

The limited data was not the only issue, as there seemed
to be an issue with how the network either trained on or
applied itself onto images. As seen in Table [, the mandible
algorithm trained on images in the sagittal and coronal planes
and, in the code, discrepancies could be found regarding the
reference to different planes. Because of the structure of the
parameters for flipping, mirroring and transposing would be
zero but there was a suspicion of discrepancies here as well.
Dealing with these mentioned issues could potentially yield a
better result.

C. Ethical machine learning

In order for the algorithms to be ethical there need to be
diversity and transparency of the Al There is always a risk of
generating a biased and non-diversified algorithm, and it might
not be intentional. But with the limited amount of images
in healthcare the algorithms are forcefully biased, leading to
mistakes made by the algorithm if its applied to difficult and
odd images.

The advantage of segmentation is that it is visual and do
only give suggestions to the clinicians in their preoperative
planning. This is therefore less of an ethical dilemma.



D. Sustainability

Machine learning involves a heavy use of powerful computers
to make sure training does not take too long. This consumes
a lot of energy since training each network took at least 12
hours, with the specified GPU. There is no assurance that the
network produced is even usable. If it is not it requires a new
training.

But there is a turning point where the automated segmentations
undercuts manual segmentations in consumed energy, since
the automation take much less time.

The algorithms of automating segmentation will simplify the
preoperative process of 3D-printing, resulting in more material
use of 3D-printing materials. But this use of materials allow
for better preoperative planning and thus a better prepared
surgeon, hopefully resulting in more successful surgeries and
a better recovery for the patient. Healthier patients mean less
strain on healthcare and perhaps less use of resources.

V. CONCLUSIONS

The framework shows promise with one generated algorithm
yielding great results and can be integrated in software directly.
Applied to more difficult anatomical structures the generated
algorithm stumbles, requiring more tuning and more nuanced
training data. Concluded the framework is a feasible way
forward in automatic biomedical segmentation.
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