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Abstract

Alzheimer’s disease is a neurodegenerative disease and the most common cause of
dementia. Apart from an early and accurate diagnosis, the ability to track progres-
sive changes is important for the development of disease modifying treatments. Dif-
fusion magnetic resonance imaging is a potential method to detect the microstruc-
tural changes in the gray matter, which appear years prior to cortical atrophy and
clinical symptoms.

In this thesis, multi-tissue constrained spherical deconvolution is used to model
three main tissue classes in the brain (gray matter, white matter and cerebral spinal
fluid) based on the diffusion signal. By comparing the tissue fractions in healthy
elderly with patients in different stages of the Alzheimer’s disease spectrum using
gray matter based spatial statistics, this work demonstrates the potential of the tissue
fractions to investigate microstructural changes. The gray matter fraction was lower
in patients on the AD spectrum, while the cerebral spinal fluid fraction was higher.
These differences are in line with the expected results and appear in pathological
affected areas. Compared to another diffusion based metric (mean diffusivity) the
tissue fractions showed a higher sensitivity and detected differences in an earlier
stage. Overall, this indicates the high potential of these metrics to detect early mi-
crostructural changes in Alzheimer’s disease.
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1
Introduction

1.1 Background

Alzheimer’s disease (AD) is the most common cause of dementia among elderly.
With an aging population, the prevalence of neurodegenerative diseases, like AD,
is rising. This makes AD and dementia research essential to improve the lives of
millions. Within AD research, a timely and accurate diagnosis as well as the ability
of following the progression of the disease is of utter importance. AD pathology
starts up to two decades before clinical symptoms appear, so an early diagnosis is
vital for the development of future treatments [70]. To investigate the progression of
the disease and the potential effects of treatments, it is important to be able to track
the changes in the brain. One way of tracking structural changes is to use magnetic
resonance imaging (MRI).

MRI is a medical imaging method that utilizes the magnetic resonance of pro-
tons and works with a strong magnetic field. It provides great contrast of soft tissues
like the brain. It can be used to access structural information and is used to detect
atrophy of the brain in AD. However, microstructural changes are thought to appear
prior to structural changes [73]. One potential method to detect these microstruc-
tural changes is diffusion MRI (dMRI). By measuring the extent and direction of
diffusion of water molecules, dMRI can give insight into microstructural properties
of the tissue. In AD the microstructure is expected to change due to pathological
processes. Observing and quantifying these changes can provide insight into the
disease process and help in testing the effect of up-coming disease modifying thera-
pies. Several dMRI methods have already shown the potential to detect microstruc-
tural changes prior to cortical thinning and atrophy [74, 72].

1.2 Aim of the Thesis

The aim of this thesis is to investigate methods that could lead to potential biomark-
ers based on dMRI for monitoring the disease progression of AD, by detecting
microstructural changes in gray matter (GM). This thesis will focus on the GM mi-
crostructure since AD in its early stage mainly affects the cortex [10]. To accomplish
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Chapter 1. Introduction

this goal, relevant literature was reviewed in detail to identify metrics of interest and
applicable methods. This review resulted in two main methods:

• Use of multi tissue constrained spherical deconvolution (MT-CSD) [32] to
extract tissue fractions as potential biomarkers.

• Use of gray matter-based spatial statistics (GBSS) [44] for skeletonization
of the GM and subsequent group-wise comparisons between healthy controls
and patients with AD in early stages.

MT-CSD is a signal-based model, which models the three main tissue classes
in the brain (GM, white matter (WM) and cerebral spinal fluid (CSF)) based on
the diffusion signal. By accessing the different tissue fractions, potential changes
in the microstructure can be investigated. GBSS is used to skeletonize the GM and
enable a group-wise comparison. The GBSS pipeline will be altered to work based
on MT-CSD. The main metrics of interest are GM and CSF fraction and they will
be compared to current state-of-the-art biomarkers. This thesis aims to investigate
if these metrics could be a potential marker for detecting microstructural changes in
the GM in the AD spectrum.
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2
Background

This chapter gives an introduction to Alzheimer’s disease and diffusion MRI. Fur-
thermore, an overview of the main methods used in this thesis is given.

2.1 The brain

The brain is part of the central nervous system and processes sensory input, controls
motor skills and regulates our body function. The brain is also the center of learning,
thought and memory.

The brain consists of billions of neurons, which have a cell body (soma), den-
drites and a long axon that is often covered in myelin (Fig. 2.1). On a structural
level, the brain is divided into different tissue classes, gray matter and white matter.
These tissues differ in cell composition and the macro- and microstructural orga-
nization. Gray matter consists mainly of soma, dendrites and unmyelinated axons
while the white matter contains the myelinated axons mostly arranged in bundles.
There are also other types of cells, e.g. glia cells, present. The outer layer of the
brain, the cortex, consists of gray matter and is responsible for most of the informa-
tion processing. The cerebral cortex is between 1 and 4.5 mm thick [25].

Figure 2.1 Schema of a neuron.

Generally, the brain can be divided into the cerebrum, the cerebellum and the
brain stem. The cerebral cortex is the outer layer of the cerebrum, which can be
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Chapter 2. Background

further divided into four lobes: frontal, parietal, temporal and occipital lobe (see
Fig. 2.2). Each lobe has a different function, the temporal lobe for example is mainly
responsible for short-term memory and speech. At the base of the temporal lobes
lies the hippocampus, which supports among others memory and learning.

Figure 2.2 Anatomy of the human brain.

2.2 Alzheimer’s Disease

General
AD is a neurodegenerative disorder and the most common cause of dementia. Cur-
rently, around 50 million people are affected by dementia, where AD accounts for
60-70% of cases [27]. Symptoms of AD include memory impairment, difficulties
with language, problems with vision and spatial issues as well as impaired rea-
soning or judgment. The causes of AD are not fully understood, but age-related
processes, as well as genetic and environmental risk factors, seem to play a role in
the development of AD. Recent studies show that AD pathology starts two decades
before patients show the first symptoms [70], so an early diagnosis (before clinical
symptoms appear) is vital for treatment and a precise diagnosis is needed for clin-
ical trials. Currently, AD is not curable but many disease-modifying treatments are
being tested.

Mild cognitive impairment (MCI) can be an early sign of AD. MCI is a condition
of memory problems and patients with MCI have a greater risk of developing AD.
However, AD is not the only cause of MCI and in many cases, MCI does not lead to
dementia and the symptoms of MCI stay the same or can even improve over time.
For inclusion in AD studies, it is important to diagnose the cause of MCI correctly.
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2.2 Alzheimer’s Disease

Cellular Mechanisms
The exact causes and cellular mechanisms of AD are not yet fully understood. But
the pathology of AD is defined by two major cellular abnormalities occurring, the
accumulation of Aβ protein and neuronal neurofibrillary tangles containing hy-
perphosphorylated tau proteins. The typical pattern of progression of Aβ and tau
pathologies in the brain are different from each other, as it can be seen in Fig. 2.3.
Aβ accumulation starts in the neocortex in medial parietal and frontal areas and
later occurs in other cortical areas. The brainstem and cerebellum are affected last.
Tau accumulation starts occurring in the medial temporal structure, and later in the
hippocampus and the neocortex.

Figure 2.3 Progression of AD pathology in the brain. a Aβ accumulation starts in
the neocortex in medial parietal and frontal areas (red) and then occurs in other cor-
tical areas (orange, yellow). The brainstem and cerebellum are affected last (green).
b Tau-tangles start occurring in the entorhinal cortex (dark-red), followed by the hip-
pocampus (red) and then to the temporal lobe (orange) and to the neocortex (yellow).
Frontal areas (green) and the motor and sensory areas (blue) are affected last. Image
and description from [27].

Aβ is derived from the transmembrane amyloid precursor protein which is con-
centrated in neuronal synapses. This protein is broken down into the Aβ peptide,
which contains 37-43 amino acids. Especially the longer Aβ42 and Aβ43 tend to
aggregate, forming Aβ fibrils that are the main component of plaques found in AD.
There are theories that Aβ drives the tau pathology and neurodegeneration [28].
Studies have shown that Aβ accumulation starts about 20 years before dementia
onset in AD [70].

Tau is a microtubuli binding protein located mainly in the axons stabilizing the
microtubuli (and therefore the axons). In AD, tau detaches from the microtubuli due
to misfolding of the protein and accumulates, which ultimately leads to cell death
and neurodegeneration. It is still unknown what causes the tau pathology and how
exactly it spreads.

These two proteins are the main target for disease modifying therapies. The
detection of these proteins is an important biomarker to diagnose the disease. The
importance of biomarkers is elaborated further in the next section.
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Chapter 2. Background

Biomarkers
Biomarkers for AD are used to diagnose and stage the disease and are crucial for
the development and monitoring of the response to therapies during clinical trials.
According to the National Institute on Aging - Alzheimer’s Association Research
Framework [30] biomarkers for AD can be classified in three groups: markers that
detect Aβ , tau and neuronal injury and neurodegeneration. From these pathologies
Aβ occurs first, followed by tau and changes in the brain macrostructure (atrophy,
degeneration, shrinkage) which tend to be detectable close to the onset of clinical
symptoms (see Fig. 2.4). It is hypothesized that before macrostructural changes
of the brain become visible in structural MRI scans, microstructural changes take
place (earliest in GM), which might be detectable with dMRI (see Chapter 2.4). The
detection of microstructural changes is the focus of this thesis, which could lead to
earlier detection of neurodegenerative changes [73].

Figure 2.4 Sequence of biomarker changes in AD. Aβ pathology appears first,
followed by tau pathology and changes in the brain structure. Clinical symptoms
appear last, well into the progression of AD. The arrows indicate how the use of
dMRI (for detection of microstructural changes) could lead to earlier detection of
structural changes in the brain before macrostructural changes become visible. Image
from [73].

Markers of Aβ and tau are used to define the disease, so they are important
for a timely and specific diagnosis and inclusion in clinical trials. They also have
the potential to predict the disease progression [34, 47, 53]. Currently, the clinical
diagnosis of AD is strongly supported by the detection of these proteins in the CSF,
plasma or with positron emission tomography (PET) [24, 37, 50].

Markers of neurodegeneration are used to stage the disease and its progression
and include for example the atrophy of the brain. The most commonly used met-
ric in this context is the cortical thickness (CTh), which can be measured using
structural MRI scans. Over the progression of the disease, the cortex will degener-
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2.3 Magnetic Resonance Imaging

ate, which becomes visible in thinning of the cortex. The areas of cortical thinning
align with the known regions affected by AD pathology [22]. However, these de-
generative changes are thought to appear years after the pathological changes of Aβ

and tau [70]. With the use of dMRI, it might be possible to detect microstructural
changes in the brain that occur prior to atrophy. These microstructural changes are
expected to occur first in GM, as AD is primarily a cortical disease in its early stages
[10]. Recent studies have shown the potential of dMRI based biomarkers to detect
microstructural changes prior to cortical atrophy [72, 74].

A more comprehensive overview of the use of dMRI in AD research is given in
Chapter 3.

2.3 Magnetic Resonance Imaging

MRI is an imaging technique that uses a strong magnetic field and in contrast to
other imaging techniques, like computed tomography, no ionizing radiation. In-
stead, it leverages the behavior of spins of protons (nucleus of the hydrogen atom)
under a magnetic field. It is especially well suited to show soft tissues, thanks to the
high hydrogen content in water and fat. In the brain, GM and WM can be differen-
tiated with MRI.

Underlying Principles
In a strong external magnetic field of an MRI scanner, protons align with the mag-
netic field (B0), resulting in a longitudinal magnetization along the B0 field. The
protons spin at a frequency (Lamor frequency), which is linearly dependent on B0
and leads to a rotating magnetization. If a radio-frequency pulse (RF-pulse) at Lar-
mor frequency is applied, the magnetization is moved into the transverse plane (per-
pendicular to the B0 field), which can than be measured by conductive coils.

After the application of the RF-pulse, relaxations take place in two principally
different ways: the protons fall out of phase (T2 relaxation), which leads to the
transverse magnetization disappearing, and the protons return to the lower energy
state (T1 relaxation), which causes the longitudinal magnetization to grow back.
These relaxations occur at different speeds depending on the bond of the hydrogen
atoms, which makes it possible to differentiate between free water and different
tissues. For example, the T1 relaxation in fat is faster than in water and the T2
value in free water is longer than in water-based tissues [16]. Images can be T1 or
T2-weighted by altering the pulse repetition time and the echo time.

The structural dephasing1 of protons can be reversed by applying a second RF-
pulse, which flips the protons by 180°. The protons will continue to dephase at
the same rate, leading to the protons being in phase again at the time for read-out,
leading to a greater signal. The second RF-pulse should be applied at half the echo

1 random dephasing can not be reversed
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Chapter 2. Background

Figure 2.5 Use of spin-echo to maximize signal by rephasing protons. On the top
the pulse sequence is depicted. The bottom shows the dephasing and rephasing of
protons leading to signal loss or restoration respectively. TE = echo time.

time to have the largest signal at the read-out. The pulse sequence and dephasing of
protons can be seen in Figure 2.5. This sequence is known as spin-echo sequence
and is of great use in diffusion-weighted imaging (see Chapter 2.4).

In order to reconstruct a 3D image from the MR signal, the signal needs to be
spatially encoded. This is achieved by applying gradient fields in the three main di-
rections. These gradient fields alter the frequency and phase of the protons depend-
ing on their respective positions in the gradient field, which allows for localization
of the signal in a 3D plane.

2.4 Diffusion-Weighted Imaging

dMRI leverages the diffusion of water molecules to create diffusion-weighted im-
ages, which are sensitive to microstructural properties of the tissue. In any MRI
image, there is signal loss due to diffusion of protons. This is caused by the gradi-
ent, that alters the phase of protons depending on their position. If the protons move
along that gradient, it causes them to be out of phase with neighboring protons,
which leads to signal loss. In dMRI this signal loss is used to quantify the diffu-
sion. Diffusion-weighted images can be used to identify areas with changed tissue
properties (and therefore changed diffusion), like tumors or infarcts.

Diffusion
Diffusion is the random movement of particles in a medium, also known as Brown-
ian motion [68]. In a free medium without any restriction this movement is Gaussian
distributed. The mean-squared displacement of a molecule in free diffusion is de-
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2.4 Diffusion-Weighted Imaging

fined by
⟨x2⟩= 2Dt (2.1)

where D describes the diffusion coefficient, which is constant over time in free
diffusion, and t is the diffusion time. In three dimensions this equation becomes

⟨r2⟩= 6Dt (2.2)

In the brain, free diffusion can only be assumed in regions with free water con-
tents, like in CSF, which has the diffusion coefficient of DCSF = 3 mm2

s . In tissues the
diffusion is restricted and hindered. In extra-cellular space, the diffusion is hindered
by cell bodies and axons, which introduces a correlation between random motions
if the particle collides with a cell wall. In closed space, like inside of cells, the dif-
fusion is restricted by the cell walls as particles cannot leave the cell2. In hindered
and restricted diffusion, the diffusion coefficient decreases over time and is lower
than in free diffusion.

Diffusion can also be differentiated into isotropic and anisotropic diffusion,
which is a useful distinction regarding the brain. Isotropic diffusion means that
movements are equally probable in all directions, this is for example the case in CSF
or inside the soma (on short time intervals). Anisotropic diffusion refers to diffusion
where movements are more or less probable in different directions. For example, in
axons the particles are more likely to move along the axons, than perpendicular to
them (into cell walls), which is mirrored in different diffusion coefficients depend-
ing on the direction of movement. Anisotropic diffusion is mostly present in WM,
as WM mainly consists of axon bundles. This property is also utilized to reconstruct
the axon tracts of WM by extracting the direction of diffusion. In GM isotropic dif-
fusion, but with a lower diffusion coefficient than in free water, is prevalent, as GM
is dominated by cell soma. The apparent diffusivity of GM is around 0.9 mm2

s [54].
Utilizing the different types of diffusion, caused by microstructural differences

in tissues, information about the microstructure of the brain tissue can be extracted.
The applications of dMRI include (but are certainly not limited to) identification of
infarcts, reconstruction of pathways of nerve tracts and detection of microstructural
changes in the brain, for example caused by aging or disease.

Imaging
Diffusion can be quantified by measuring signal loss, which occurs because of the
dephasing of protons caused by movement of the protons. As described earlier,
using a spin-echo sequence, dephasing can be reversed leading to restoring of signal.
However, the signal could only be completely restored if the protons stayed in the
same place, which does not happen due to diffusion. By adding a strong gradient
to an MRI sequence, it gets sensitive to diffusion, as it can be seen in Figure 2.6.
Protons along the gradient have different phases and if the protons move along this

2 although this is a simplification that does not take into account e.g., cellular exchange
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Chapter 2. Background

Figure 2.6 Use of spin-echo to image diffusion. Signal from stationary molecules
is unaffected, as they rephase. For moving particles signal is lost, due to dephasing
caused by the movement and the gradient. Image adapted from [4].

gradient, it leads to stronger dephasing with neighboring protons. This dephasing
cannot be reversed by the 180° RF-pulse. The further the proton moves (i.e. the
higher the diffusion coefficient) the more it will out of phase with other protons,
which leads to a higher signal loss. The relation between the diffusion coefficient
and the signal loss is defined by

S = S0e−bD

ln
S
S0

=−bD, (2.3)

where S is the measured signal, S0 is the signal without a diffusion gradient and b
is a measure of diffusion weighting. The b-value is depended on the amplitude of
the gradient field (G), the duration of applied gradients (δ ) and the time between
two gradients (∆) and has the unit s

mm2 (G,δ and ∆ are visualized in Figure 2.6). It
is defined as

b = γ
2
δ

2|G|2(∆− δ

3
). (2.4)

The larger the b-value, the stronger is the diffusion effect, leading to more signal
loss. Commonly, b-values around 1000 s

mm2 are used. The direction of the gradient
field is given by the b-vector.

This relation between signal decay and the diffusion coefficient (2.3), enables us
to estimate D in each voxel (using space encoding gradients). By applying gradient
fields in different directions D can be estimated depending on the direction, giving
important information about the microstructure of the tissue (e.g. fiber-orientation
in WM).
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2.5 Models

2.5 Models

Several reconstruction methods use different models to extract information from the
dMRI signal. There are signal-based models (e.g. diffusion tensor imaging (DTI)
[38], constrained spherical deconvolution (CSD) [66]) and biological models (e.g.
neurite orientation dispersion and density imaging (NODDI) [77]). Some of these
models are described in more detail in the following sections.

Diffusion Tensor Imaging
DTI [38] is one of the most common methods to model diffusion in the brain. In
DTI diffusion is modeled as a tensor

D =

Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

 , (2.5)

which describes the diffusion in all directions. Given the nature of diffusion, D is
symmetric and positive definite (Dxy = Dyx and D > 0). Using singular eigenvalue
decomposition D can be described by its eigenvalues λ1,2,3 and eigenvectors e1,2,3.
The diffusion tensor can be visualized using an ellipsoid, as in Figure 2.7. While
isotropic diffusion is represented by a sphere (since D is equal in all directions)
with no main direction, anisotropic diffusion has a main direction given by the e1
(corresponding to the largest eigenvalue λ1).

Figure 2.7 Diffusion represented by a diffusion tensor ellipsoid. In anisotropic dif-
fusion a main direction of diffusion is given by e1, while isotropic diffusion has no
main direction and is represented by a sphere.

From the DTI model, different measures can be extracted. Two of the main
measures are mean diffusivity (MD) (2.6) and fractional anisotropy (FA) (2.7). MD
is linked to tissue properties and differs between GM, WM and CSF. FA describes
the fraction of anisotropic diffusion, which is high in WM and very low to zero in
GM and CSF. Changes in MD and FA indicated changes in microstructure caused
by for example pathological processes.

MD =
λ1 +λ2 +λ3

3
(2.6)
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Chapter 2. Background

FA =

√
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2

2(λ 2
1 +λ 2

2 +λ 2
3 )

(2.7)

One main drawback of DTI is that only one principal direction can be modeled
per voxel. In reality, voxels may contain crossing fibers that lead to diffusion in
two or more main directions. This crossing can not be modeled in DTI and leads
to inaccurate directions and less accurate reconstruction of fiber pathways in WM.
One approach that solves this problem is described in the next section.

Constrained Spherical Deconvolution
Another way to extract fiber orientations in voxels is spherical deconvolution. It
is based on the principle, that the signal is given by the spherical convolution of
the response function (signal profile for a certain tissue) with the fiber orientation
[64]. This is visualized in Figure 2.8. By performing spherical deconvolution of the
measured signal and the response function, the fiber orientation can be estimated.
To reduce the susceptibility to noise, the constraint of not allowing negative values
(which are physically impossible) is added, giving CSD [66]. CSD is able to model
crossing fibres in one voxel without any biological assumptions.

Figure 2.8 Principal of spherical deconvolution. The measuerd signal (Stot ) is a
combination of the fibre orientations density function (fODF) and the specific fibre
response function (R). Image from [17].

The key part of this method is the response function, which is modeled using a
spherical harmonics (SH) series. SH form an orthonormal basis for functions on a
sphere. It is the equivalent to the Fourier transform in a plane but on a sphere. Since
the diffusion is real and symmetric, a truncated version of the SH can be used, only
including real and even components. The first harmonic orders are visualized in
Figure 2.9. The diffusion signal can be estimated using a truncated SH series of
order lmax with (lmax +1)(lmax +2)/2 coefficients. For example, the WM response
function can be modeled using an SH series of order lmax = 8, which has 45 SH
coefficients.

CSD has been extensively used for WM investigations, especially in studies
based on tractography since it is quite successful in extracting crossing fiber direc-
tions. An extension to CSD is MT-CSD, which adds different tissue compartments
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2.5 Models

to the model, accounting for signal differences in WM, GM and CSF. MT-CSD is
the main method used in this thesis and will therefore be described in more detail
in the next section.

Figure 2.9 Spherical harmonic basis. Visualization of the first elements of the
modified SH for representation of diffusion signal. Each signal can be decomposed
into a sum of SH, as illustrated at the bottom. Image from [18].

Multi-tissue Constrained Spherical Deconvolution
MT-CSD [32] is an extension of CSD, taking into account different tissue types
(WM, GM, CSF) and their corresponding response functions. MT-CSD can produce
volume fraction maps of the tissues and therefore also a segmentation into WM,
GM and CSF solely based on the diffusion signal. An example of this can be seen
in Figure 2.10. By accounting for GM and CSF fractions, MT-CSD achieves better
results in fiber reconstruction than CSD, which is its main application. However,
recent studies also successfully used the tissue fractions as metrics, giving some
more insight into changes in microstructure [43, 33]. In this thesis, MT-CSD will
be the main method used to extract different metrics (for more details see Chapter
4). MT-CSD works with single-shell and multi-shell acquisition, i.e. acquiring MRI
images with one (and b=0) or several b-values. In this thesis, multi-shell images are
used and therefore multi-shell MT-CSD.

The model assumes three compartments, that correspond to the WM, GM and
CSF3. The WM compartment is modeled as anisotropic, while GM and CSF are

3 the model could be extended to an arbitrary number of compartments
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Figure 2.10 Segmentation of the brain based on diffusion signal by MT-CSD.
Green: GM, Red: CSF, Blue: WM.

modeled as isotropic. This is achieved by estimating the WM response function as
an SH series of order lmax = 8 with 45 coefficients, while GM and CSF responses
are estimated by an SH series of order 0 with only 1 coefficient. Each of the re-
sponse functions is estimated directly from the diffusion signal, by selecting voxels
of high WM/GM/CSF content and fitting the SH series to the averaged signal of
these voxels. This process has been optimized over the last years. For more details
on the selection of the voxels and the response function estimation, the reader is
referred to [32, 21, 20]. By basing the response functions solely on the recorded
data, every microstructural property is captured by it. This is one of the advantages
over a biological-based model, since there is no need to consider every cell type
or structure that might be present in WM or GM. This makes this method usable
without imposing any assumptions, but also makes it harder to interpret, since it is
not clear what structural changes cause differences.

For each b-value, the unique response of each tissue is estimated. The GM and
CSF responses are modeled as spheres, reducing in size with higher b-values (as the
signal decreases with higher b-values). The WM response can be represented by a
sphere at b=0 (no diffusion encoding) but has a distinct shape for higher b-values
(see Figure 2.11 bottom). When plotting the response function depending on the
b-value, the different tissues exhibit different behavior (see Figure 2.11 top), which
is caused by differences in diffusion based on differences in the microstructure.

By leveraging the different response functions, MT-CSD is able to separate the
signal into the three compartments leading to three separate tissue maps. While the
GM and CSF tissue maps are scalar, representing the volume fraction, the WM tis-
sue maps are composed of 45 maps, representing the SH coefficients. From these
tissue maps, a contribution map can be retrieved, showing a segmentation into GM,
WM and CSF (see Figure 2.10). The segmentation achieved by MT-CSD is com-
parable to a segmentation based on structural images [32]. Fraction maps can be
formed by normalizing the tissue maps (with the first slice of the WM tissue map,
corresponding to the b=0 acquisition), giving the relative volume fraction of each
tissue in each voxel.

24



2.6 Statistical Evaluation

Figure 2.11 Typical response functions for the three compartments in MT-CSD.
WM fiber responses are visualized at the bottom, dependent on the b-value. GM and
CSF response functions are left out as they are just modeled by spheres decreasing
in size with higher b-values. Image from [32].

2.6 Statistical Evaluation

There are two main approaches when it comes to group-based comparisons of MRI
data, region-based and voxel-based. For comparing regions of interest (ROI) a pre-
defined set of labeled regions (called atlas) is applied to the parametric map and
summary values (usually the mean or the median) of the metric of interest are ex-
tracted for each region. The voxel-based approach compares, as the name suggests,
metrics per voxel, meaning that the same voxel in each subject’s scan is compared
across all subjects. For this approach, the images need to be registered to a common
space to enable the comparison of the same voxel across subjects.

In this thesis, two different processing pipelines are used for the voxel-wise
comparison, voxel-based morphometry (VBM) [6] and GBSS [9]. The GBSS steps
prior to the statistical analysts are also used for a region-based analysis. Both ap-
proaches are described in more detail below.

Voxel-based Morphometry
VBM is an automated technique that performs a voxel-wise comparison between
groups to identify differences between groups. VBM can identify local differences
across subjects and is often used for GM comparisons. This method is used in many
studies and has shown biologically plausible results [75]. VBM can be applied to a
wide range of anatomical attributes, like GM density, and analyze them in a simple
and unbiased way [5]. It relies on spatial normalization and smoothing, which re-
moves any large-scale anatomical differences. The main steps of VBM are shown
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in Figure 2.12, based on [6, 5, 75]. A more detailed description of the steps is given
in Chapter 4.

Figure 2.12 Steps of VBM.

The interpretation of the statistical analysis remains a challenge. Differences can
be explained by multiple circumstances, e.g. thinning or thickening of the cortex,
different folding, and also misregistration of images [5].

VBM is criticized for some problems, like the effects of misalignment, partial
volume effects and differences in kernel size (for smoothing) which make it hard
to compare studies [75]. To overcome some of these problems, another voxel-based
methodology was introduced: GBSS.

Gray Matter based Spatial Statistics
GBSS is a method used to perform a voxel-wise comparison of GM microstructure.
It is based on tract-based spatial statistics [61], a popular method to perform sta-
tistical analysis on WM. GBSS works by skeletonizing the GM and projecting the
metric of interest onto the skeleton. It was first introduced by Ball et al. (2013) [9]
and then altered by Nazeri et al. (2015) [44]. The main steps of GBSS are shown
in Figure 2.13 and are described in the following based on [44]. The segmentation
and skeletonization process was altered in this thesis and is described in the method
section (Chapter 4) in more detail.

Figure 2.13 Steps of GBSS.

In the original GBSS pipeline [44], the GM maps were calculated by subtract-
ing the WM fraction (derived from FA maps) and the CSF fraction (estimated using
NODDI [77]) from 1 (see Figure 2.14). In this thesis, the GM fraction will be esti-
mated directly from the diffusion signal using MT-CSD.

Once all GM maps (and other maps of interest) are registered to the same space,
the GM is skeletonized by only keeping voxels with a GM fraction fGM > 0.7 in
>75% (values were varied here) of the subjects. The metrics of interest are then
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2.6 Statistical Evaluation

Figure 2.14 The estimation of GM fraction maps for GBSS as described by [44].
Image from [44].

projected onto the skeleton by searching perpendicular to the skeleton for the most
probable GM voxel and using that value for the skeleton. This process is done for
every voxel of the skeleton in every subject, ensuring that the comparison across
subjects is done on only GM voxels. This minimizes the partial-volume effect as
well as the effects of slight misregistrations.
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3
Motivation

This chapter aims to give a brief overview of the current research in dMRI based
biomarkers for AD to set this work into context and provide some motivation for it.

3.1 Current Biomarkers

The most commonly used MRI biomarker in clinical studies on AD is cortical thick-
ness (CTh), e.g. [42, 62]. CTh is used to capture cortical thinning and atrophy.
Several studies have shown reduced CTh in areas that align with typical patterns
of disease progression [12]. Atrophy is first observed in the entorhinal cortex and
hippocampus [23], in later stages the whole medial temporal lobe is affected [40].
However, microstructural changes are thought to appear years before atrophy be-
comes apparent. One method with the potential to capture microstructural changes
is dMRI. A few biomarkers based on dMRI seem promising, including MD based
on DTI [38] and metrics based on NODDI [77].

Several studies show elevated MD in cortical areas that correspond with areas
affected by atrophy [56, 63]. There is some controversy if MD is independent of
CTh and if it is more sensitive for early detection of AD. Some studies [57, 74]
reported that MD is independent of CTh and give a better prediction of disease
progression. On the other hand, it has also been reported that the effect size of CTh
remains equal to or even better than MD concerning differentiation between disease
stages [14].

Another recently studied biomarker is the neurite density index and the orien-
tation dispersion index based on the NODDI model [77]. Studies have shown that
these metrics provide additional information compared to cortical thickness and
show differences before atrophy becomes apparent [51, 72]. The neurite density
index reduces in areas that are early affected by Aβ , which makes it a promising
early biomarker [72]. However, NODDI has been criticized for invalid assumptions,
especially in the pathological case.

Even though the dMRI based biomarkers seem promising, cortical thickness is
still the most commonly used biomarker in clinical studies. The proposed metrics
have some drawbacks, especially the interpretation is very challenging. However,
a dMRI based biomarker capturing microstructural changes could potentially be
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very useful to gain a deeper understanding of the disease progression. This thesis
aims to investigate the potential of MT-CSD based metrics as biomarkers. MT-CSD
is a signal based model, which does not impose any biological assumptions like
NODDI. By modelling the different tissue fractions it might also be less sensitive
to partial volume effects than MD.

3.2 Use of MT-CSD and GBSS

While MT-CSD is mainly used for investigations of the WM, a few studies have
started using the GM and CSF fraction as metrics to investigate changes in GM
[33] or pathological changes in WM [43]. Jillings et al. [33] studied macro- and
microstructural changes in the brains of astronauts after returning from space. By
using GM-, WM- and CSF-fraction they showed morphological changes of the GM,
which was not observed to this extent before. Mito et al. [43] used the tissue frac-
tions to investigate and classify WM hyperintensities in AD patients. They showed
that WM hyperintensities exhibited distinct tissue profiles and concluded that it can
be beneficial to use microstructural information (i.e. MT-CSD metrics) for the clas-
sification of WM hyperintensities. These two examples show the potential of these
metrics and how they can add valuable information. To the best of my knowledge,
MT-CSD has not been used to study pathological changes caused by AD in GM yet.

GBSS was first introduced by Ball et al. [9] to study the development of cortical
microstructure in the brain. It has been modified by Nazeri et al. to study changes
in the GM across the human lifespan [44] and GM microstructure changes in neu-
rological disorders [45]. A recent study by Vogt et al. [72] uses GBSS to investigate
GM changes in AD, comparing NODDI metrics with CTh. All these studies have
shown plausible results with the GBSS pipeline in very similar applications to this
thesis. Therefore, the GBSS pipeline was chosen to investigate the potential of MT-
CSD metrics.
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4
Methods

This chapter covers the used methods and explains the constructed pipeline in detail.

4.1 Data

The data used in this thesis is part of the Swedish BioFinder2 study1. The aim of this
study amongst others is to develop methods for the diagnosis of AD and Parkinson’s
disease and examine the underlying mechanisms. The study includes over 1600
subjects (with Parkinson’s disease, Alzheimer’s disease and healthy subjects) that
undergo repeated examinations that include amongst others MRI scans and Aβ and
tau PET scans.

For this thesis, the dMRI scans of 200 subjects (100 healthy controls, 100 on the
AD spectrum) were used. The participants were classified as A-T- (n=100), A+T-
(n=50) and A+T+ (n=50) according to Aβ and tau PET uptake, based on previ-
ously published thresholds [39, 48]. For example, participants with low Aβ (A-)
and low tau (T-) values make up the healthy control group A-T-. An overview of
the participants is given in Table 4.1. The aim was to study microstructural differ-
ences that appear in different stages of AD, defined by the uptake of Aβ (A) and
tau (T). Therefore, A+T- and A+T+ were compared to the healthy controls A-T-.
From each participant only one time-point (i.e. one scan) is included, making this
a cross-sectional study, meaning that only differences between the groups can be
investigated but not direct changes with the progression of AD.

Group # of subjects Avg. Age Sex (f/m)
Healthy Controls (A-T-) 100 66.3 ± 9.5 51/49

Aβ+/Tau- (A+T-) 50 70.7 ± 8.6 25/25
Aβ+/Tau+ (A+T+) 50 71.7 ± 6.7 26/24

Table 4.1 Overview of subjects included in the analysis.

1 https://biofinder.se/
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4.2 Software

MRI scans were performed on a MAGNETOM Prisma 3T scanner (Siemens
Healthcare, Erlangen, Germany), equipped with a 64-channel head coil. A single-
shot echo-planar imaging sequence was used to acquire 104 diffusion-weighted vol-
umes (repetition time: 3500 ms; echo time: 73 ms; resolution: 2x2x2 mm3; field of
view 220x220x124 mm3; b values range: 0, 100, 1000, and 2500 s

mm2 distributed
over 2, 6, 32, and 64 directions; twofold parallel acceleration and partial Fourier
factor=7/8).

4.2 Software

The main softwares used are MRtrix3 [65], FSL [60] and ANTs [7] for the process-
ing and statistical analysis of the images and Matlab for simulations. The pipeline
was partly implemented in nipype [26] and partly as bash scripts (run on Ubuntu
20.02). MRtrix3, FSL and ANTs are advanced software packages for MRI process-
ing, nipype is a framework in python that provides wrappers for many common
functions from these software packages, enabling the combination of them in one
script.

The main functions used are listed in Table 4.2. Note that not all functions used
in this thesis are listed here, only functions for the main steps of the pipeline. The
function of each command will be described in detail in the pipeline section.

part of pipeline command software based on

preprocessing

dwidenoise MRtrix3.0 [69]
mrdegibbs MRtrix3.0 [36]
topup FSL v6.0 [2]
eddy FSL v6.0 [1, 3]
dwibiascorrect MRtrix3.0 [67]

model-
fitting

dwi2response MRtrix3.0 [21, 20]
dwi2fod MRtrix3.0 [32]
dtifit FSL v6.0

template building antsMultivariateTemplate-
Construction2.sh ANTs v2.3 [8]

registration antsRegistration ANTs v2.3
antsApplyTransforms ANTs v2.3

statistical
evaluation

tbss_skeleton FSL v6.0 [61]
randomise FSL v6.0 [76]

Table 4.2 Main functions used in the pipeline.
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Chapter 4. Methods

4.3 Pipeline

The processing pipeline consists of four main steps: the preprocessing of the images,
the extraction of different model parameters of the diffusion images, the alignment
of the images to a template and the statistical evaluation. The first two steps are
implemented in nipype, allowing for parallel execution of the preprocessing steps.
The other steps are executed as bash scripts. An overview of the whole pipeline can
be seen in Figure 4.1 and its steps being explained in detail in the following.

Figure 4.1 Overview of the pipeline.

Preprocessing
The steps of the preprocessing were chosen based on previous publications that
used MT-CSD [33, 31, 43]. The implementation of the preprocessing was based on
an existing preprocessing pipeline, consisting of suspectibility-induced distortion,
motion and eddy correction. In this thesis, additional preprocessing steps (denois-
ing, Gibbs removal and bias field correction) were added to it. An overview of the
preprocessing steps is given in Figure 4.2.

The dMRI images were corrected for several known artifacts2 to improve the
quality and the following analysis. First, denois using random matrix theory [69]
was applied. Next, the Gibbs ringing artifact removal based on local subvoxel shifts
[36] was applied. Then, susceptibility-induced distortions were estimated using re-
versed phase-encoded images [2] and corrected for. Subject motion and eddy cur-
rent induced distortion were also corrected using the method described in [1, 3].
Last, the bias field (intensity inhomogeneity) was estimated and corrected [67]. The
whole preprocessing pipeline is implemented in nipype and takes 24-48 hours to run
for all subjects, depending on the computer. This step was the most time-intensive
one in the whole pipeline.

2 Each artifact and its correction is described in more detail in the appendix.
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4.3 Pipeline

Before continuing with the next steps, all 3D volumes were visually inspected to
ensure a successful preprocessing. Two subjects had to be replaced by other subjects
(same group, age and gender).

Figure 4.2 Overview of the preprocessing steps and the used functions.

Model fitting
From the preprocessed images, five metrics on the GM were extracted, using two
different models: DTI and MT-CSD. From DTI, MD maps of the preprocessed im-
age and of a CSF-regressed image (using MT-CSD) were derived. From MT-CSD,
GM-/WM- and CSF-fraction maps were extracted. These maps were used as met-
rics directly and as tools for masking the image, building the skeleton and for CSF-
regression. The study-wise template and registration of images were also based on
the GM fraction maps.

MT-CSD The main part of the thesis focuses on the MT-CSD model. First, the
response functions for the three tissues (GM, WM, CSF) were calculated. This can
be done either individually for every subject or by using a group-averaged response
function. Since the latter was used in several relevant previous studies [33, 31, 43],
this option was chosen for this work as well. The group averaged response function
was based on 42 representative subjects (21 A-T- (avg 70.5 years), 21 A+T-/+ (avg
70.1 years)). These 42 subjects were also used to build the study-specific template.
The group-averaged response functions were then used as input to the MT-CSD
algorithm for every subject, that outputs the tissue maps. The outputted tissue maps
have relative values, so to enable intra-subject comparisons the tissue maps were
normalized to 1, i.e. the sum of the GM, WM and CSF tissue maps is 1 in every
voxel. These normalized maps are referred to as tissue fraction maps and are used
for all following steps (except for the CSF regression, where the relative tissue maps
are used). An overview of the MT-CSD step is given in Figure 4.3. The whole
process for MT-CSD is implemented in nipype, this step takes approximately 3
minutes per subject.

All tissue fraction maps were visually inspected and no images had to be ex-
cluded in this step. An example of the tissue maps can be seen in Figure 4.4
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Chapter 4. Methods

Figure 4.3 Overview of the MT-CSD model fitting. 42 images are used for the
average response function and the study-wise template. For the analysis, average
response functions are used as input for the MT-CSD algorithm. For the next steps,
all tissue maps are normalized so the fractions of WM, GM and CSF sum up to 1.

Figure 4.4 Tissue fraction maps of one subject.
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CSF regression If a voxel consists of both GM and CSF so-called partial volume
effects can occur. In CSF the diffusivity is higher than in GM. So, in voxels with
a higher CSF fraction, the MD will also be higher. This can confound the GM
diffusivity, which is the actual metric of interest. In this thesis, a new method3 to
remove the CSF signal was tested.

The idea is to suppress signal caused by CSF to minimize partial volume effects
and capture the "true" diffusivity of the GM. First, the CSF tissue map was obtained
with the MT-CSD model (as described above). Then, the process was reversed by
predicting the diffusion signal caused by the CSF by spherical convolution of the
CSF tissue map and its response function (using shconv and sh2amp from MR-
trix3.0). Lastly, the predicted CSF signal is eliminated from the preprocessed image
and the MD map is calculated from the CSF-regressed image. This MD map is re-
ferred to as MDnocs f in the following. In Figure 4.5 the process is visualized and in
Figure 4.6 one example of this regression and the resulting MD map can be seen.

It has to be noted, that in some cases the CSF regression leads to an unstable DTI
fit in areas where no signal is left. This is visible in the ventricles and CSF outside
the brain. This is however not too concerning, as only the cortex is investigated
in this thesis. The cortex should not affected by this problem, as the GM signal is
usually high in this part of the brain.

Figure 4.5 CSF regression of preprocessed images. Note that the unnormalized
CSF tissue map is used for the estimate of the CSF signal in the original preprocessed
image. MD maps are calculated for CSF-regressed images. Add images

DTI The MD maps were calculated using the command dtifit in FSL. This fits
the tensor model to the data and gives amongst other the MD and FA maps as
output. As input, the preprocessed images as well as the CSF-regressed image and a
corresponding brain mask (computed with dwi2mask in MRtrix3.0) were used. This
step was implemented in nipype as well.

3 based on a forum discussion
https://community.mrtrix.org/t/free-water-compartment-analysis
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Figure 4.6 Example of CSF regression. The top row shows the diffusion-weighted
image with and without CSF signal and the bottom row shows the corresponding
MD map.

Template Building and Registration
For the statistical analysis using GBSS or VBM, all the images need to be aligned
in a common space. This can be done using linear and non-linear registration of
the image to a template, which defines a common space to which all images are
aligned. The template can either be a standard template or a study-wise template,
i.e. the average of all subjects or a subset of subjects. Once an image is registered
to the template, other images (e.g. tissue maps, MD maps) from the same subject
(and in the same space) can be aligned with the template by applying the same
transformation.

Template One option for the template would be to use an existing standard tem-
plate. Most standard templates are however based on T1w images and not neces-
sarily suited for diffusion images as used in this thesis. Therefore, the template was
based on the GM fraction maps of the same 42 subjects as used for the group-
averaged response function. To ensure a good template, the 42 subjects were in-
spected carefully. Only subjects with full brain scans and not too enlarged ventri-
cles were included in the template. The template was built using the antsMultivari-
ateTemplateConstruction2.sh script from ANTs (4 (+4) iterations, using rigid, affine
and non-linear registration with greedy SyN model). The final template is shown in
Figure 4.7. This was the most time-intensive step after the preprocessing and takes
around 12 hours to run on CPU, or 5-6 hours using GPU.

Registration After the template was created, the GM fraction maps of all subjects
were registered to the template. The registration was executed using antsRegistra-
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Figure 4.7 Study specific template based on GM fraction maps.

tion. The registration includes three stages: rigid, affine and non-linear (B-spline
Syn) transformation. The registration step outputs the affine transformation matrix
and the non-linear warp field as well as the aligned GM fraction map. The registra-
tion for all 200 GM fraction maps takes around 6 hours to run on CPU.

Using the affine transformation matrix and the non-linear warp field the remain-
ing tissue fraction maps and the MD and MDnocs f maps were aligned to template
space using the command antsApplyTransforms.

After registration and transformation, all images were visually inspected to en-
sure a correct alignment. One subject (A-T-) had to be excluded at this step, as the
registration failed to align the GM fraction map with the template.

Alternative Template An alternative template based on pseudoT1 volumes was
considered, as it is done in previous publications using GBSS [44, 45, 72]. The
pseudoT1 volume was constructed by adding the WM fraction map and the GM
fraction map (weighted with a factor of 2 to get a T1w-typical contrast between GM
and WM). An example of the pseudoT1 image and the pseudoT1-based template is
shown in Figure 4.8. Based on visual inspection of the templates and the resulting
registration routine, the template based on the GM maps was chosen. The pseudoT1
template showed slightly worse alignment and it resulted in four failed registrations
in contrast to one with the GM fraction template.

GBSS
The main statistical analysis is based on GBSS. For GBSS the GM is skeletonized
and all metrics of interest are projected onto the skeleton, which can then be used for
the statistical analysis. For this, the aligned GM fraction maps were first merged and
averaged. Based on the average of all subjects, the GM skeleton was then produced
by running tbss_skeleton with a threshold of fGm > 0.55 (based on [52]). Next, all
metrics (MD, MDnocs f , WM-fraction, CSF-fraction) were projected onto the skele-
ton4, which is done by searching for the most probable GM-voxel perpendicular to
the skeleton and using the value (of the metric of interest) of that voxel. This step
results in a 4D-image for each metric consisting of the skeleton with the projected

4 based on the implementation of Nazeri et al. [44]
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Figure 4.8 PseudoT1 image example (top) and template (bottom).

metrics for all subjects. These files are used for the voxel-wise and region-based
statistical analysis in the next step. For the region-based analysis, an atlas (Desikan-
Killiany atlas [19]) was registered to template space and the skeleton was matched
to the cortical regions.

Separate skeletons and 4D files were produced for both group-wise comparisons
(between A-T- and A+T- or A+T+ respectively). The skeletons only differ in very
few voxels, the 4D files consist only of the subject included in the respective groups.

Figure 4.9 GM skeleton (red) on the GM template.

VBM
For comparison, a voxel-wise analysis based on VBM was performed. For the VBM
analysis, the aligned maps were corrected for volume change during the registration
step and smoothed. The correction for volume change was done by multiplying the
image with the Jacobian determinant of the wrap field, which was calculated using
ANTSJacobian. The images were smoothed using a a Gaussian kernel of size 3mm.
Finally, all GM maps were merged into a 4D file for the statistical analysis. Only
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GM fraction maps were used for a VBM analysis, all other metrics were only used
in the GBSS pipeline.

4.4 Statistical Evaluation

The group-wise statistical analysis was performed both voxel-wise and region-based
for two comparisons: A-T- (healthy) and A+T-, and A-T- and A+T+. All compar-
isons were corrected for age and sex. This enables an investigation of microstruc-
tural changes that occur with the presence of Aβ and tau. For the voxel-wise analy-
sis of the GM-fraction, the GBSS and VBM pipeline were used while all other met-
rics (CSF- and WM-fraction, MD, MDnocs f ) were only compared using the GBSS
pipeline. A region-based analysis for GM- and CSF-fraction, MD and MDnocs f was
done based on the GBSS pipeline with the use of the Desikan-Killiany atlas [19].
For comparison, the region-based analysis for cortical thickness was done using the
software FreeSurfer5.

Voxel-based analysis
For the voxel-based analysis, the 4D files created by the GBSS and VBM pipeline
were used. A non-parametric voxelwise analysis was performed using randomise
with 5000 permutations while controlling for age and gender. Threshold-free clus-
ter enhancement was used [59] and the results are corrected for family-wise error
(FWE) due to multiple comparisons. A p-value of PFWE < 0.05 is considered signif-
icant. Each group-wise comparison was performed twice to test the two hypotheses
A-T- < A+T-/+ and A-T- > A+T-/+.

Region-based analysis
For the region-based analysis, the median value of each metric in every region (de-
fined by the atlas) was extracted from the skeleton of all subjects. For further anal-
ysis regions relevant to AD pathology were chosen (see Table 4.3). This regions
are affected early by Aβ (earlyAb ROI) or correspond to regions affected during
the Braak-stages I-IV (temporal ROI) [11]. For both regions the mean value of all
included ROIs weighted by their size on a subject basis was used for the following
statistical analysis .

For both regions, a statistical analysis was performed using a t-test as well as
ordinary least squares regression with age and gender as confounders. Again, two
group comparisons were performed: A-T- and A+T-, and A-T- and A+T+. Addi-

5 https://surfer.nmr.mgh.harvard.edu
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ROIs
EarlyAb ROI isthmuscingulate, lateralorbitofrontal, medialorbitofrontal,

posteriorcingulate, precuneus, insula
Temporal ROI entorhinal, fusiform, inferiortemporal,

middletemporal, parahippocampal

Table 4.3 ROIs included in the EarlyAb ROI and Temporal ROI. For all ROIs the
left and right regions in the brain are included, all are cortical ROIs based on the
Desikan-Killiany atlas [19].

tionally, the effect size for each metric was calculated, using Cohen’s d [15]:

d =
µ1 −µ2

s
(4.1)

s =

√
(n1 −1)s2

1 +(n2 −1)s2
2

n1 +n2 −2
(4.2)

where µ is the mean of each group, s1,2 the standard deviation and n1,2 the sample
number. The effect size is a quantitative measure, which indicates how large the
difference between two groups is. The exact interpretation of the effect size however
depends on the use case. Generally, effect sizes below 0.3 are considered small and
above 0.8 are considered large [15].

For comparison and validation of the implemented pipeline, the median val-
ues for each ROI were also extracted using an already existing pipeline using
FreeSurfer6. This pipeline segments the cortex based on the T1 image and extracts
the regional median values. This was done for GM-fraction, MD and MDnocs f . The
cortical thickness was also extracted to compare the results to the golden standard
metric.

4.5 Simulation

To gain a deeper understanding of what causes changes in the tissue fractions, sim-
ulations in Matlab were done. For this, several simulations were designed, investi-
gating how the estimated fractions change if the tissue fractions in a voxel change
or the apparent diffusivity of GM changes.

Using an open-source framework for the analysis of dMRI data in Matlab [46],
dMRI signal stemming from WM, GM and CSF was simulated. The parameters
for the simulation were adjusted so the resulting signal matches the mean response
functions of the tissues acquired from the data. The response functions of that the
simulated data and the response functions acquired from the data are similar, as it

6 This part was not implemented by myself and is therefore not described in this thesis, only the values
were used for the statistical analysis.

40



4.5 Simulation

Figure 4.10 Response function of the simulated tissue signal and the response
functions based on the data.

can be seen in Figure 4.10. The final parameters are as follows: WM is simulated
with an axial diffusivity of 2.6 mm2

s and radial diffusivity of 0.3 mm2

s , GM with a

diffusivity of 0.95 mm2

s and CSF with a diffusivity of 3.2 mm2

s .
Three simulations were designed, two with varying the GM-fraction and the

WM- or CSF-fraction and one altering the diffusivity of GM. For all simulations
a 100x100x3 volume was simulated, with the voxels on the diagonal containing
signal composed of simulated GM, WM and CSF signal in varying fractions or GM
signal with varying GM diffusivity. For the first simulation, the simulated signal was
composed of GM and WM signal, varying the fraction of GM from 100-0% and the
WM fraction from 0-100% accordingly. The second simulation was very similar,
just with CSF signal instead of WM signal. The goal of these two simulations was
to give a deeper understanding how the estimated tissue fractions change if the real
(or in this case simulated) tissue fractions change. The third simulation aimed to
investigate the behavior of the model if the diffusivity of GM changes, which is
expected in pathological cases. This simulation was done with 100% GM signal
with varied diffusivity between 0.5 mm2

s −1.5 mm2

s .
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5
Results

This chapter gives an overview of the results of the group comparisons. The com-
parisons were done in a voxel-wise and a region-based analysis. To visualize results
better, the software SurfIce1 was used to project the statistical maps onto a stan-
dard brain surface. A discussion and interpretation of the results can be found in
Chapter 6.

5.1 Voxel-wise Analysis

GBSS
GBSS was used to investigate differences in GM/CSF/WM fraction and MD (with
and without correction for CSF) between the A-T- group and both A+T- and A+T+
in pairwise comparisons. For both groups, a lower GM fraction and a higher CSF
fraction were observed compared to A-T-. The A+T+ group displayed more signif-
icant differences than the A+T- group. In A+T- the GM fraction was lower than in
A-T- mainly on the left frontal and temporal regions (see Figure 5.1 left), in A+T+
the lower GM fraction was more widespread over the brain (see Figure 5.1 right). A
similar pattern can be observed for the CSF fraction (see Figure 5.2), which showed
a higher value for both groups compared to A-T-. The differences for A+T- were
mostly restricted to the frontal lobe (see Figure 5.2 left) but widespread for A+T+
(see Figure 5.2 right). Significant WM fraction changes were only observed for
A+T+, which showed a higher WM fraction mainly in the frontal and temporal lobe
(see Figure 5.3).

For MD significant changes were observed for A+T+, but not for A+T-. MD was
higher over the whole brain (see Figure 5.4 left). When correcting MD for CSF, the
differences disappeared in A+T+ and lead to a decrease in MD in the frontal regions
for A+T- (see Figure 5.4 right).

All changes are summarized in Table 5.1. Additional visualizations of the results
are given in the Appendix in Figures B.1, B.2, B.3.

Note that the top part of the brain was not included in the skeleton, therefore
differences in these areas were not detectable.

1 https://www.nitrc.org/projects/surfice/
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5.1 Voxel-wise Analysis

GM fraction CSF fraction WM fraction MD MDnocs f
A+T- ↓ f t ↑ f - - ↓ f
A+T+ ↓ w ↑ w ↑ f t ↑ w -

Table 5.1 Overview of significant (pFWE < 0.05) differences with respect to A-T-
determined with voxel-wise comparison based on GBSS. ↓: decrease, ↑: increase, f:
frontal lobe, t: temporal lobe, w: widespread, -: no significant changes.

Figure 5.1 GM fraction A-T- vs A+T-/+. For A+T- a decrease can be seen in the
frontal and temporal left lobes (left). For A+T+ the decrease is widespread (right).
Only significant (PFWE < 0.05) differences are shown. The statistical maps were
projected onto a surface in SurfIce.

Figure 5.2 CSF fraction A-T- vs A+T-/+. For A+T- only a small increase in the
frontal regions is apparent (left), for A+T+ the CSF fraction increased over the whole
brain (right). Only significant (PFWE < 0.05) differences are shown. The statistical
maps were projected onto a surface in SurfIce.
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Figure 5.3 WM fraction A-T- vs A+T+. WM fraction increases for A+T+ mainly
in the frontal and temporal lobe. For A+T- no significant differences were observed.
Only significant (PFWE < 0.05) differences are shown. The statistical maps were
projected onto a surface in SurfIce.

Figure 5.4 MD A-T- vs A+T+ and MDnocs f A-T- vs A+T-. For A+T+ MD in-
creased widespread over the whole brain (left), while no significant differences were
observed for A-T- vs A+T-. When correcting for CSF no significant differences for
A+T+ remained and for A+T- a decrease in MD was observed in the frontal region
(right). Only significant (PFWE < 0.05) differences are shown. The statistical maps
were projected onto a surface in SurfIce.

44



5.2 Region-based analysis

VBM
The voxel-wise analysis for the GM fraction was also done using VBM. For A+T-
no differences were observed compared to A-T-. For A+T+ compared to A-T-, the
significant differences are shown in Figure 5.5. The decrease in GM fraction is
not as widespread, as observed with GBSS, it focuses mostly on the frontal and
temporal lobe. Differences can also be seen in the entorhinal cortex, hippocampus
and amygdala, which were also observed with the GBSS pipeline.

Figure 5.5 GM fraction A-T- vs. A+T+ with VBM analysis. Significant (PFWE <
0.05) decreases in GM fraction are shown. Most changes are observed in frontal and
temporal regions. For A+T- no significant differences were observed. The statistical
map is overlayed on the GM template in FSLeyes.

5.2 Region-based analysis

Additionally to the voxel-wise analysis, a region-based analysis was performed. The
two regions investigated are the earlyAb ROI and the temporal ROI, these two ROIs
consist of several regions that are affected by Aβ early or correspond to cortical
regions covered by the Braak stages I-IV [10] respectively. The results are similar
to the voxel-wise comparison. The GM fraction was lower in both ROIs for both
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groups compared to A-T-, being more prevalent for A+T+. The CSF fraction was
higher, again more for A+T+. For MD a higher value was observed for A+T+ in both
regions, but not for A+T-. Only for the temporal ROI, a lower value for MDnocs f was
observed for A+T-. The distributions of GM/CSF fraction and MD and MDnocs f are
shown in Figure 5.6 for the earlyAb ROI and in Figure 5.7 for the temporal ROI.

The significance levels and effect sizes are presented in Table 5.2. The differ-
ences in the temporal ROI were larger than in the earlyAb ROI, which also shows
in the effect sizes. Significant differences were mainly found for A-T- vs. A+T+,
which showed differences in both ROIs and all metrics except for MDnocs f . For
the comparison of A+T- with A-T- only one significant difference was found after
correcting for age and gender, a lower value for MDnocs f in the temporal ROI.

For comparison, the same analysis was also performed using values generated
by the pipeline based on FreeSurfer. The same results were observed, except for
MDnocs f being insignificant for both ROIs and groups. Cortical thickness was also
analyzed using the FreeSurfer pipeline. It shows a significant decrease in both
groups and ROIs with high effect sizes. The highest effect sizes for A+T- vs. A-
T- were observed for GM fraction (Cohen’s d=0.55 in the earlyAb ROI, Cohen’s
d=0.6 in the temporal ROI) and CTh (Cohen’s d=0.56 in the earlyAb ROI, Cohen’s
d=0.6 in the temporal ROI) and for A+T+ vs. A-T- in CSF fraction (Cohen’s d=1.03
in the earlyAb ROI, Cohen’s d=1.39 in the temporal ROI).

Figure 5.6 Distribution of GM fraction, MD, MDnocs f and CSF fraction in the
earlyAb ROI.
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Figure 5.7 Distribution of GM fraction, MD, MDnocs f and CSF fraction in the
temporal ROI.

earlyAb ROI temporal ROI
A+T- A+T+ A+T- A+T+

GM
fraction

p-value 0.071* 0.0002 0.0534* 5.07E-5
effect size 0.55 0.88 0.60 0.95

CSF
fraction

p-value 0.2852 7.54E-6 0.8778 2.72E-10
effect size 0.39 1.03 0.25 1.39

MD p-value 0.9714 0.0106 0.2309 2.66E-05
effect size 0.07 0.57 0.08 0.92

MDnocs f
p-value 0.2698 0.5197 0.0462 0.3766
effect size 0.33 0.23 0.41 0.11

CTh p-value 0.0116 1.65E-4 0.0114 1.68E-10
effect size 0.56 0.83 0.60 1.38

Table 5.2 Summary of the GBSS ROI based statistics (and CTh from a FreeSurfer
analysis). p-values are corrected for age and gender, bold values are significant
(p<0.05), values denoted with * are significant when not controlling for age and
gender. Effect size calculated with Cohen’s d, values in italic are the highest effect
size for that group and ROI.

5.3 Simulation

Three simulations were designed to gain a deeper understanding of how the tissue
fractions react to changes in signal. For the first two simulations, the GM fraction
was varied from 0-100% with the rest of the signal being WM or CSF respectively.
In the resulting tissue fraction maps, the WM fraction estimated with MT-CSD is
higher than it was in the simulated input signal (see Figure 5.8 left). The CSF frac-
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tion, however, is underestimated (see Figure 5.8 middle). For example, at simulated
GM and WM fractions of 50% each, the GM fraction was estimated at 20% and
WM at 78%. For 50% simulated GM and CSF fraction, GM was estimated at 64%
and CSF at 36%. The last simulation was 100% GM with varying diffusivity for
GM. With lower diffusivity, the WM fraction was rising, while for higher diffusiv-
ity the CSF fraction was rising (see Figure 5.8 right). The GM fraction was close to
100% for a diffusivity of 0.9-0.93x10−9 mm2

s .

Figure 5.8 Simulation 1 (left): WM fraction 0-100% and GM fraction 100-0% and
CSF fraction 0% . An overestimation of WM fraction is visible.
Simulation 2 (middle): CSF fraction 0-100% and GM fraction 100-0% and WM frac-
tion 0%. An underestimation of CSF fraction is visible.
Simulation 3 (right): GM fraction 100% and CSF and WM fraction 0%, the diffusiv-
ity of GM is varied between 0.5 and 1.5x10−9 mm2

s . With lower diffusivity the WM
fraction increases, with higher diffusivity the CSF fraction increases.
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Discussion

The goal of this thesis was to investigate the use of MT-CSD metrics to capture
GM microstructure alterations in AD. Tissue fractions (GM, WM and CSF) were
compared with MD (with and without correction for CSF) and CTh using voxel-
wise and ROI based analysis, based on GBSS. Group differences between groups
defined based on evidence of Aβ and tau accumulation (A-T-, A+T-, A+T+) were
analyzed.

In the following, the results are critically discussed including an attempt to give
explanations for the observed results.

Tissue fractions A reduction in GM fraction with an almost matching increase in
CSF fraction can be observed for A+T- and A+T+ in comparison with A-T-. While
the differences for A+T- are mostly located in the frontal and temporal lobe, the
changes are widespread for A+T+. The reduction of the GM fraction is focused on
the frontal lobe, which is an area relatively early affected by Aβ pathology, however
no changes are observed in the medial parietal areas, which are also early affected
by Aβ [27, 41, 49]. The VBM analysis shows a GM fraction decrease for A+T+ in
areas that correlate well with the progression of tau pathology, like the entorhinal
cortex, hippocampus and amygdala and the temporal lobe [13, 27, 71].

The increase in CSF fraction is also as expected, since an increase in diffusivity
should lead to a higher CSF fraction (as also suggested by the simulations). This is
however contrasted by an increase in WM fraction for A+T+ as well, which indi-
cates more anisotropic diffusion or lower diffusivity. This can potentially be caused
by inflammatory responses, which could involve microstructural changes, leading
to more restricted diffusion.

Overall, the tissue fractions reflect expected microstructural changes. It was to
be expected that the differences for A+T+ are more pronounced than for A+T-,
as they are further along on the AD spectrum. The tissue fractions show higher
significance levels and effect sizes than MD, the current standard metric to measure
microstructural changes. Especially for the comparison of A-T- and A+T+, CSF
fraction showed high effect sizes (i.e. Cohen’s d > 1). However, compared to CTh
no major improvements are evident. CTh is the only metric that shows significant
differences between A-T- and A+T- in the ROI analysis after correcting for age and
gender.
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Mean Diffusivity As expected from previous studies [56, 74], MD increased in
A+T+ compared to A-T-. However, no increase in MD for A+T- was observed.
This observation aligns with a study by Rodriguez et al. [55] that also reported an
association between MD and tau but not for MD and Aβ .

Even though, the results are as expected, the choice of using GBSS might have
influenced the sensitivity towards changes in MD. GBSS is based and tailored to-
wards GM fraction both in the definition of the skeleton and in the selection of the
relevant voxel. This approach could bias the analysis selecting the “most” healthy
GM voxels i.e., voxels with the highest GM fraction. Moreover, the most sensitive
voxel for the analysis of tissue fractions might not be the best candidate for assess-
ing difference in MD.

MD without CSF To reduce possible partial volume effects from the analysis, a
new method to eliminate CSF from the signal was developed. These CSF regressed
maps were used in a DTI analysis, where MD was extracted (called MDnocs f ). The
analysis showed no significant differences for MDnocs f for A+T+. One possible ex-
planation would be, that the change in MD was mainly caused by partial volume ef-
fects, as also suggested by [29]. However, with GBSS partial volume effects should
already be reduced. Therefore, the more plausible explanation is that by trying to
regress CSF, small microstructural changes that lead to higher diffusivity were also
eliminated, as they would be reflected in a higher CSF fraction. This problem is also
discussed in the next section (Interpretation of Tissue Fraction). For A+T-, MDnocs f
even decreased compared to A-T-. This effect is in the opposite direction than ex-
pected, which indicates the flaws of this method.

VBM vs. GBSS The VBM analysis showed significant differences for GM frac-
tion in plausible areas (corresponding to tau pathology) for the comparison of A-T-
and A+T+. However, no significant differences were detected between A-T- and
A+T-, whereas GBSS showed differences. Overall, the VBM analysis showed less
significant differences in the GM fraction than the GBSS analysis, suggesting that
GBSS is more sensitive to group differences. Nevertheless, the results of VBM seem
more defined and contained to plausible anatomical regions, thus it remains debat-
able if GBSS is more sensitive to actual changes or also to false-positive results.

Effect size GM and CSF fraction seem like promising biomarkers as they show
high effect sizes similar to CTh (see Table 5.2). However, the metrics should not
be judged solely based on the effect size. The effect size does not capture effects
of other confounders, which becomes clearer when comparing significance levels
as well. For example, for CTh the significance levels are higher than for the GM
fraction (especially after correcting for age and gender), even though the effect sizes
are very similar.

Simulation The results of the simulation support the observed results. With an in-
creased diffusivity, the CSF fraction is expected to rise according to the simulation.
This is exactly what can be observed in the data. In the simulations, an overesti-
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mation of WM fraction and an underestimation of CSF fraction (compared to GM
fraction) became apparent. According to Jeurissen et al. [32], the overestimation of
WM should be mostly eliminated by the use of MT-CSD. So, it remains unclear if
this is an actual behavior of the MT-CSD model or caused by deviations in the sim-
ulated data from the response functions. If it is caused by the simulated data, this
indicates an unstable fit of the model, if the signal from the tissue differs slightly
from the estimated response function.

Interpretation of Tissue Fraction
It is important to note that the tissue fractions are hard to interpret and are certainly
not equivalent to the exact biological tissue [43]. So for example, a high CSF frac-
tion does not necessarily mean that actual CSF is present in this voxel, only more
’CSF-like’ tissue properties, i.e. a higher diffusivity compared to GM. The increase
in CSF fraction in the cortex indicates a higher diffusivity, which coincides with the
higher MD observed. Equally, a higher WM fraction indicates not actual WM tissue
present but more an increase in anisotropic diffusivity.

This leads to a possible problem with the CSF-regression step. As mentioned be-
fore, the CSF tissue maps do not necessarily represent CSF, but also ’CSF-like’ tis-
sue. When regressing CSF based on the CSF tissue map, not only signal from actual
CSF might be eliminated but also any signal stemming from tissue with higher dif-
fusivity. Since the hypothesis is that the diffusivity in GM increases due to cellular
changes, it might not be the optimal to remove all signal stemming from ’CSF-like’
tissue. This approach should be compared with already established CSF reduction
methods in the future, to fully understand its potential and problems.

Another critical point are the group-averaged response functions. The tissue
properties might vary across subjects but also within one subject, which could lead
to locally different response functions. So, it should be discussed if group-averaged
or even global tissue-specific response functions are a reasonable assumption. Con-
sidering how much the estimated tissue fractions differed from the ’ground truth’ in
the simulations, a slightly wrong response function can lead to drastic changes in
the tissue fractions. This would make the direct interpretation of the tissue fractions
even more complicated.

Pipeline
The main part of this thesis was to build a pipeline using the MT-CSD model. Every
part of the pipeline was motivated by interpretation of advantages and potential
pitfalls of previous studies. Nonetheless, some changes of the pipeline might be
worth considering. The most critical steps are discussed in more detail below.

Preprocessing The preprocessing was based on previous studies using MT-CSD
[31, 33, 43]. Since there was a large agreement on the prepocessing steps across
these studies, there was no apparent reason to change this. However, the prepro-
cessing took the longest time to complete, so it might be worth considering to drop
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some preprocessing steps to save time if it does not impair the results. This would
need some extra work to compare the influence of different preprocessing steps on
the tissue fractions. Overall, the preprocessing yielded acceptable results (based on
visual inspection) and only failed in two cases, which were replaced by two other
subjects.

Template and Registration The template building and registration step was one
of the most work and time-intensive steps of this thesis.

A bad template can influence the results heavily, especially in voxel-based anal-
ysis where the results depend on a good alignment of the anatomical structures.
Therefore, several different templates (with subsequent registration) were tested and
the best visual result was chosen in the end.

The registration step was modified several times. In the beginning, multiple im-
ages didn’t align with the template, varied a lot in size or the registration failed. By
carefully tuning the parameters of the rigid, affine and non-linear registration and
adding a third iteration to every step, the final results aligned well with the template
and the skeleton included the major sulci (indentations) of the brain. To visualize
this improvement, the mean of all GM fraction maps with the initial and the final
registration is shown in Figure 6.1.

However, the registration still could need further improvement and might be an
important factor influencing the results. The function used for the registration is
normally used for T1w images, which have a higher resolution and contain more
anatomical information than the diffusion maps. This might lead to sub-optimal
performance when using GM fraction maps as input. The effect of the registration
on the skeleton and the results should be investigated in the future and if deemed
necessary this step needs to be further improved.

Figure 6.1 The mean GM fraction map across all aligned subjects with the initial
registration (top) and the final optimized registration (bottom). A clear improvement
is visible. In the final mean more anatomical details can be distinguished.

GBSS This part of the pipeline has the greatest variation from previous studies.
Instead of basing the skeleton on NODDI metrics [44] or T1w images [9, 52], the
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tissue fraction maps extracted with MT-CSD were used. From visual inspection, the
skeleton seemed of similar quality as skeletons from other studies using NODDI
based GBSS [44, 45, 72]. This should however be investigated further by comparing
the skeletons empirically, which will be done in the future. The threshold of the GM
fraction is also chosen arbitrarily. In previous studies this threshold varies between
0.55 and 0.75 (here 0.55), the influence of this threshold on the results should also
be investigated further.

Limitations and Future Work
One of the most obvious limitations is the quality of the skeleton, it is missing the
top part of the brain. This is due to several subjects with cut-off scans. For our
purposes, this is acceptable, since the top part of the brain (sensory-motor areas)
is not heavily affected by AD in early stages. However, the missing top part of
the skeleton should be resolved for more complete results. Apart from the missing
part of the skeleton, the skeleton was also not compared to skeletons from already
established methods [44, 52], due to time limitations. This will be done in the future.

While this thesis suggests, that GM and CSF fraction are more sensitive than
MD, it still remains unclear, if it is also more sensitive than CTh. Further analysis
will be needed, especially a statistical analysis corrected for CTh should be done to
investigate the independent value of the tissue fractions.

Furthermore, the different statistical comparisons resulted in slightly differ-
ent outcomes in some cases (e.g. GBSS and FreeSrufer region-based analysis of
MDnocs f ). If the differences found by GBSS are actually significant or false posi-
tives should be confirmed by a larger study cohort.

Some other general limitations include the influence of partial volume effects
and the lack of longitudinal comparisons. Even though GBSS was used to try to
reduce the effect of partial volume effects, they cannot be ruled out completely.
Furthermore, only cross-sectional data was used (i.e. one timepoint per subject).
Therefore, it is not directly possible to make connections between disease progres-
sion and the tissue fractions (or any other metric). A longitudinal study in the future
could give more insight on the usefulness of GM and CSF fraction as a biomarker
to track disease progression.
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Conclusion

The main goal of this thesis was to investigate methodological aspects that could
lead to metrics sensitive to pathological processes occurring during the early stage
of the AD pathological cascade. This was done by examining the microstructure of
GM with the MT-CSD model.

This thesis demonstrates that GM and CSF fraction are promising biomarkers,
that reflect expected microstructural changes during early stages of AD. The results
suggest that GM and CSF fraction are more sensitive than MD to group differences,
especially for A+T+ patients compared to healthy elderly. While the results seem
promising, more work is needed to verify the results. The MT-CSD metrics need
to be compared to other metrics to identify if they add unique information to the
disease progression.

From both the analysis on empirical data and the simulations the use of the CSF
correction employed appears questionable. By eliminating “CSF-like” signal, the
analysis could have been biased since this step may have removed all the signal
from tissue with high diffusivity.

Another contribution of this thesis is the adaption of GBSS to MT-CSD
based metrics. The resulting skeleton looks comparable to skeletons emerging
from NODDI-GBSS and the following statistical analysis yielded plausible results.
This indicates a successful adaption, however direct comparisons to other GBSS
pipelines are still pending.

Future work will include comparing GM and CSF fraction to cortical thickness
to identify their potential value. Furthermore, the adapted GBSS pipeline will be
compared to already established GBSS versions, to evaluate the quality and maybe
advantages of the proposed alterations.
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A
Image artifacts

MR images have several known artifacts that originate in the image acquisition
and reconstruction. These can be corrected to improve the image quality and any
following analysis. The corrections used in this thesis are described in the following
section, this is however not an exhaustive list of all artifacts and corrections. This
chapter is supposed to give a rough overview of the methods and concepts, not a
detailed explanation of every method. For more in-depth explanations the reader is
referred to the referenced publications [2, 1, 36, 69, 67].

A.1 Denoising

The first preprocessing step is to remove noise from the images. When fitting diffu-
sion models to the data, it is especially relevant to denoise the images, as the Rician
distribution of the noise biases the diffusion parameters [35]. The most common
method used for denoising is MP-PCA (Marchenko-Pastur principal component
analysis) [69]. The signal is transformed into the PCA domain, where the noise
is given by the Marchenko-Pastur distribution, which is a closed distribution (con-
trary to a Gaussian distribution with infinitely long tails). With the MP distribution,
the noise level can be determined and filtered by setting thresholds (λ−,λ+) on the
eigenvalues. The noise distribution in the PCA domain is shown in Figure A.1. It is
important to implement denoising as the first step in the preprocessing pipeline, as
the next steps can corrupt the noise leading to non-Gaussian properties.

A.2 Gibbs Artifact Removal

Gibbs-ringing is an artifact that occurs near sharp image gradients at tissue bound-
aries as spurious oscillations. This artifact is caused by the truncated (i.e. discrete)
sampling of the k-space. This grid-like sampling of the k-space is equivalent to a
convolution with a sinc-function in the image domain. On sharp edges, this leads to
oscillations in the reconstruction. The strength of this oscillation (i.e. ringing) effect
depends on the relative location of the edge to the sampling grid. In the worst case,
the samples are taken at the maxima of the sinc-function, leading to the maximal
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A.3 Susceptibility-induced Distortions Correction

Figure A.1 Eigenvalue spectrum of DW data. The noise components follow an
MP-distribution and can be filtered out by setting a threshold on the eigenvalues.
Image from [69].

amplitude of the ringing. When sampled at the zero-crossing of the sinc-function the
ringing disappears (see Figure A.2). To remove the Gibbs ringing, local sub-voxel
shifts are used to sample the sinc-pattern at its zero-crossing [36]. This is done by
finding the optimal voxel-shift for each voxel that minimizes the oscillations in its
neighborhood.

Figure A.2 Reconstruction of an image with an edge (black) with discrete sam-
pling. The reconstructed image (blue) shows oscillations near the edge (Gibbs ring-
ing) if it is sampled at the maxima (a) of the sinc-function (red) and no oscillations
if sampled at the zero-crossings (b). To remove the Gibbs ringing, sub-voxel shifts
are used to always sample at the zero-crossings. Image from [36].

A.3 Susceptibility-induced Distortions Correction

A problem occurring with diffusion weighted images is geometric and intensity
distortions caused by local gradients near junctions of tissues of different magnetic
susceptibility. This leads to distorted diffusion tensors, this should especially be
corrected if one is interested in the geometry of the brain. These distortions can
be estimated by obtaining two images for each diffusion gradient in opposite di-
rections. These two images will exhibit the same distortions in magnitude, just in
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opposite directions. With these images and the information about the image acqui-
sitions process, the field inhomogeneities can be estimated and corrected [2]. Often,
the susceptibility field is just estimated in this step and corrected for in the next step,
together with the eddy current and motion correction.

A.4 Motion and Eddy Correction

Two other important artifacts that need to be corrected are motion artifacts and eddy
current (EC) artifacts. These are corrected in one integrated approach [1]. Motion
artifacts are caused by (involuntary) movement of the subject during the scan. Eddy
currents are induced by a changing magnetic field, which is always the case in MR.
These eddy currents cause time-varying gradients and shifts in the magnetic field
which lead to blurring, shading, ghosting effects and misregistration of the images.
To correct for these artifacts an iterative algorithm is applied, where each iteration
consists of two steps: the prediction step and the estimation step. The main idea is to
predict what the data should look like and compare this prediction to the observed
data. The error is then used to update the EC field and movement estimation. The
susceptibility field can be incorporated in this approach, so the data only needs to
be resampled once to correct for all three artifacts. An overview of this algorithm is
given in Figure A.3, for more details on each step the reader is referred to [1].

Figure A.3 The correction algorithm for eddy current- and susceptibility-induced
distortions as well as subject movement. The algorithm is run for 5 iterations. Image
from [1] (for more information on the exact steps the reader is referred to this publi-
cation).

A.5 Bias Field Correction

The bias field is a low-frequency intensity non-uniformity in the images. The inten-
sity varies smoothly across the image, which can impact automated segmentation,
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A.5 Bias Field Correction

estimations of model parameters and ultimately statistical analysis, so it should be
corrected. An example of a bias field correction can be seen in Figure A.4. The cor-
rection of the bias field is done by estimating the bias field based on the intensities
of the image, smoothed and compared to earlier field estimates. This iterative pro-
cess is stopped once the field converges. The image is then corrected by dividing
the original image with the estimated bias field, leading to uniform intensities across
the image. This algorithm was first developed by [58] and then further improved by
[67].

Figure A.4 Example of a bias field correction on a lung MRI. Top: uncorrected
images. Middle: estimated bias fields. Bottom: corrected images. Figure from [67].
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B
Additional results

Figure B.1 GM fraction A-T- vs A+T-.
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Figure B.2 GM fraction A-T- vs A+T+.

Figure B.3 CSF fraction A-T- vs A+T-.
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