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Abstract

The purpose of this report is to implement and compare the two Basel III
standard methods on how to calculate the capital requirement for finan-
cial institutions, related to counterparty credit risk. The models being
the Standardized Approach for Counterparty Credit Risk (SA-CCR) and
the Internal Model Method (IMM). The SA-CCR model is a simpler and
more standardized model with prescribed methods while the IMM model
is a more flexible model optimized to the specific portfolio. Because of
this, the IMM model requires more work to implement. The comparison
of these two models is done by looking at a small number of transactions
from the Bank’s trading book and computing the Exposure At Default
(EAD) that these would give. Both models are used to compute this, and
these results are compared. To obtain EAD the transactions need to be
priced and their Net Present Value (NPV) needs to be calculated. One
need simulated interest rates to do so, which is done using Monte Carlo
simulations. For this, a Hull-White process is used to simulate the interest
rates and the parameters of this process is calibrated using market data.

Out of the two models, the IMM model is the more complex one. It
requires both normal and stressed data as input parameters and it also
needs to be validated. The validation of the model is done by doing some-
thing called ”backtesting” on it, which investigates if the model created
does give the expected results. Backtesting is performed by taking the
interest rate for one day and then creating a confidence interval using
this date, predicting where the rate will be 10 days into the future. This
confidence interval is then compared with the true value 10 days into the
future to see if the prediction does in fact cover the actual value. If so,
the prediction does give us a credible result, so this is a way of checking
how good the model is.

The result was that the usage of the IMM model, instead of the SA-
CCR, would lead to the institute being required to hold 11 % less capital.
However, this result is based on only one type of instrument and tested
for only a fraction of the institute’s total trading book, so it would re-
quire some testing on a bigger scale to really ensure this result. Another
thing that could improve this work is if a different simulation process,
other than Hull-White, would be used. Some alternative methods that
could potentially give a better result and other future improvements are
discussed.
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1 Glossary

D: Day
W: Week
M: Month
Y: Year

Portfolio: A collection of trades.

Tenor: The time remaining of a transaction or financial instrument. When
we talk about tenor on loans, and therefor Intrest Rate Swaps, the tenor repre-
sents the time left for the next payment on the loan.

Maturity: The date where the life of a transaction or financial instrument
ends.

Basis point (bp): 1 bp = 0.01%

Monte Carlo simulation with mean reversion: Monte Carlo simulation is
a method to estimate expected value for some known distribution by random
sampling N paths from that distribution. The method is then based on that the
average of the paths will converge to the actual expectation when N is large.
When we use mean reversion, we do not draw random samples. Instead, a term
is added that draws the samples towards a chosen mean reversion.

Q-measure: Also known as risk neutral measure. It is a measure where the
value of a financial asset is the sum of future pay-off discounted with the risk-
free rate.

P-measure: Also known as the real-world measure. It is a measure where
the value of a financial asset is the sum of future pay-off discounted with their
own rates that reflects the risk of the asset. Instead of the assumption of risk-
free rate a probability based on historical data is used.

Hedge: A hedge is an investment made with the purpose of reducing the cur-
rent risk held. A common method is obtaining assets with similar security but
with opposite position.

Haircut: It is defined as the difference in percentage between an assets market
value and its amount that could be used as collateral in for example a loan [8].
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2 Introduction

Since the financial crisis 2008 many more regulations and requirements are im-
posed on financial institutes, trying to prevent such a crisis from occurring
again. Two of the main regulators for this are the European Union (EU) and
the Basel Committee on Banking Supervision (BCBS). Members of BCBS are
all the countries in G20 along with Sweden and some more. The BCBS has
created a framework for financial institutions to be more financially secure and
sustainable, a framework that the EU has taken a lot of inspiration from. Ris-
ing from this was different methods on how to model the capital requirement
a financial institution must hold when trading derivatives. The capital require-
ment are based on the risk of the counterparties traded with. Since the financial
crisis 2008, financial institutes are required by the EU regulations to calculate
this risk, and the Capital Requirements Directive IV implementing the Basel III
standards has presented a few different methods that can be used for this. The
two methods currently in use are the Standardized Approach for Counterparty
Credit Risk (SA-CCR) and the Internal Model Method (IMM), and these are
the ones that will be considered and investigated further in this report.

We will come back to defining what counterparty credit risk is more in depth
later in the report, but just to understand the context, it is the risk that the
counterparty of a trade would default before the last settlement of the transac-
tion is made [12].

The SA-CCR method was introduced by BCBS 2017 to replace the older meth-
ods SM and CEM, with the aim to be more risk-sensitive while still being quite
simple, compared to the two preceding ones. This approach is easier to imple-
ment since it is computed using prescribed formulas, while the other method,
the IMM method, is more tailored to that specific portfolio since it is computed
using a range of complex, sophisticated modelling assumptions of all the under-
lying risk factors. This model is quite advanced, and it is therefore very costly
to implement, and maintain, so generally it is only the largest banks globally
who have gained approval and uses this approach today.

2.1 Background

These models are in place to determine the required capital the financial in-
stitute must hold. Capital requirements are standardized regulations that de-
termines how much liquid capital the bank must hold, based on their overall
holdings. Liquid capital considers securities or assets that easily could be sold.
The capital requirement is expressed as a ratio determined by the weighted risk
of the bank’s portfolio. This is determined by regulatory agencies. It is nor-
mally affected and altered as a consequence of pressure from the public or if
there is an uncertain investment climate. The financial crisis of 2008 is such
an example that lead to a lot of regulatory interventions [8]. The capital re-
quirements are therefore in place to secure that the impact a possible defaulting
counterparty may have to the financial institute, and everyone affected by it,
are not devastating.
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2.1.1 The need of modelling the risk

After the financial crisis in 2008 the absence of an awareness of the counterparty
risk was emphasised. Counterparty risk is the risk that the counterparty may
not be able to fulfil their part of the contract before or at the time of maturity.
Counterparty risk in derivatives can be seen as a combination of the market risk
of the underlying asset and the risk of the counterparty defaulting.

When counterparty risk is not fully considered in over the counter (OTC) deriva-
tives markets it can lead to substantial losses. Before the crisis 2008 some larger
financial institutions in USA such as the Lehman Brothers were assumed to have
no counterparty risk so the risk that they would not be able to fulfil their end
of a contract was not considered. This had large effects on the financial market
later when they filed for bankruptcy. The crisis led institutions such as the
European Union to enforce new regulations regarding OTC derivatives, central
counterparties and trade repositories [8], [4].

In 2012 EU, with assistance of the BCBS, presented new regulations on how
banks and financial institutions manage counterparty risk. In 2014 the BCBS
on Banking Supervision published a revised paper on standardised approach of
measuring counterparty credit risk (SA-CCR). SA-CCR is the updated model
that is in use today. Beside SA-CCR financial institutions can apply to use
an Internal Model Method (IMM) instead. To be allowed the use of an IMM
model, financial institutions in Sweden must get approval for their model from
Finansinspektionen (FI) [10].

IMM is generally more expensive and require more work for the financial in-
stitution to create and maintain. The reason to change and use IMM is that it
can lower the financial institution’s capital requirement because the institution
can more accurately represent the exposure for their specific trade book in the
model. When calculating the capital requirement, the financial institutions need
to use either SA-CCR or IMM to calculate the Exposure At Default (EAD) for
each counterparty. That is then multiplied with the specific risk factors for that
counterparty [5].

2.2 Project description and aim

In this project we will implement and compare the two Basel III standard meth-
ods on how to calculate the capital requirement based on counterparty credit
risk. To do this, we start by doing a literature study of counterparty credit risk
and present relevant concepts related to this and explain why it is an important
factor for a bank to take into consideration when trading. To be more resilient
towards any unforeseen risks or volatility in the market financial institutions are
required to hold some liquid capital stated by the EU commission. As mentioned
above, credit institutes today have two model options on how to calculate how
much of their total trading book they must hold as a liquid buffer, the SA-CCR
model or the IMM model. Each of the two models will be discussed more in
depth in section 3, and then be compared to each other.

The aim of the project is to study the Bank’s trading book, and more specifically
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interest rate swaps, investigate and analyze the difference in the Bank’s capital
requirements using the internal model method (IMM) over the standardized ap-
proach for measuring counterparty credit risk (SA-CCR) prescribed by BCBS.
To do the analysis and identify potential differences, calculations on the capital
requirements are made, using both methods, and some simulations of possible
market movements.

As it is now, the Bank analyzed does not have an IMM-model so one of the
aims in this project is to look into the requirements put up by Finansinspektio-
nen [6] and the EU commission of such a model to better know what this would
mean for the Bank, if they were to develop and implement one in the future.

The data from the Bank’s trading book are classified so the data used in the
results will be anonymous and altered for this reason. The calculations of cap-
ital requirements are based on two factors. One factor is the Bank’s valuation
of counterparty risk factor that is classified information and will not be taken
into consideration in this report. The risk factor is equal in both models, it only
depends on the counterparty traded with, so we do not need it to compare the
two models. Instead, we only look at the second factor Exposure At Default
(EAD) for both models.

2.3 Structure of the report

After this short introduction and description of the project, the following chap-
ter, chapter 3, will present all relevant theory needed to implement these models.
The implementation of the models is described in chapter 4. Thereafter the re-
sults found are presented in chapter 5, followed by a discussion and further
analysis of the results in chapter 6. Finishing up, the conclusions are found
in chapter 7 and then in chapter 8 and 9 the references and appendices are
presented.
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3 Theory

In this chapter we will present the theory that we found interesting and relevant
to know to understand the research topic better. On top of this we have also
had several meetings throughout the project with people at the Bank who have
knowledge in relevant fields, especially when it comes to how to implement this
theory on the portfolio of the Bank.

3.1 Derivatives

A derivative is a financial contract between two or more parties that derive its
value from an underlying asset or a group of assets. The price of the derivative
depends on the fluctuations of the underlying asset. These contracts can be
traded on an exchange or over the counter. Exchange-traded derivatives are
heavily regulated and more standardized. OTC derivatives are traded between
two private parties and are unregulated. Because of this OTC derivatives are
viewed to carry larger risk.

Derivatives are commonly used to access certain markets and hedge positions.
For example hedge against risk by complimenting the portfolio with trades with
the opposite risk [8]. Because the value of a derivative is derived through the
changes in the underlying asset the price is exposed to similar market risk fac-
tors. Underlying risk factors affect the market risk which means that it affects
the counterparty risk for a derivative since this is market risk driven. The
market risk is the risk that the underlying risk factors changes in a way that
decreases the value of the derivative. If the risk factors changes so the value of
the derivative instead increase, the risk of the counterparty not being able to
fulfil their part increase as well [10].

Another useful term to be acquainted with is what a clearing house is and
its function. It works as an intermediary between the two parties selling and
buying financial instruments and takes the opposite position of each side of the
trade. This is a way of avoiding counterparty credit risk for the institute and
instead let a middle party take the risk. The clearing house also improves the
efficiency of the markets and adds stability to the financial system. To trade
using clearing houses one has to be a member of that house, and the members
pay fees which works as a buffer to pay back the losses for the transactions
lost if one of the members were to default. In return the clearing house help
the members trade with each other, trades that normally would not have been
possible to do, or very complicated to initiate [11].

3.2 Interest rate swap

A forward contract where a stream of future interest payments is exchanged for
another based on a predetermined amount is called an interest rate swap (IRS).
It is usually an exchange between a fixed interest rate and a floating rate. The
purpose of the exchange is to decrease or increase exposure to changes in interest
rates or to obtain lower interest rate. This is a tool for companies to manage the
risk that accompanies having floating rate. There exist three different variants
of interest rate swaps, fixed-to-floating, floating-to-fixed and float-to-float [2].
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Fixed-to-floating

An example of fixed-to-floating consider a company which can issue a bond
at a good fixed interest rate to their investors. To achieve this, they therefore
enter a swap with a counterparty where the company is paid a fixed rate and
pay the counterparty a floating rate. The swap is designed to follow the matu-
rity and cash flow of the fixed-rate bond the company issued and is netted with
the fixed-rate payment to the counterparty. Let the chosen floating rate be the
preferred floating-rate index, that usually is equal the regions IBOR-rate one-,
three- or six-month tenor. The company will then receive the chosen IBOR-rate
either added or subtracted with a spread that represent the conditions in the
market for both interest rate and its credit rating [2].

Floating-to-fixed

A common case of floating-to-fixed interest rate swap is when companies in-
stead of getting a fixed-rate loan take a loan with floating rate and enters a
swap to achieve a fixed rate. The counterparty take on the risk that follows
having floating rate and make all payments based on the floating rate. The
fixed-rate part of the swap is the borrowing rate for the company [2].

Float-to-Float

Companies usually enter a float-to-float swap if they want to change the type
or tenor of their current floating rate. For example, they can swap from a
three-month to six-month tenor to either get a more attractive rate or a better
matched payment flow. It can also be used to change the index of the floating
rate [2].

3.2.1 Zero coupon rate

The simplest interest rate derivatives are zero coupon bonds. A zero coupon
bond is a bond that pays full face value at time of maturity T . The price of the
bond is defined as following if we have continuous compounding:

p(t, T ) = e−R(t,T )(T−t) (1)

where t is the current time, T is the maturity and R(t, T ) is the yield to maturity.
The price at maturity is assumed to be p(T, T ) = 1. The yield to maturity is
given by

R(t, T ) = − ln p(t, T )

T − t
. (2)

The yield is different for each maturity T [16].
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3.2.2 Term Structure

Term structure is the relationship between the rate and different maturities.
Using the calculations above we can see the term structure as the collection
of yields, R(t, T ) introduced in equation 2, for different maturities T where
T = t, ...,∞. This collection is used to predict future trajectories of the rate.
These future expected changes in interest rate are used to predict future rate.
The current long-term rates are used to predict short rates. The term structure
is created using either long-term zero rates, forward rates or discount factor.
Given a term structure the zero rates, forward rates as well as discount factors
can be found for different tenors and a zero-rate-curve, forward-curve and dis-
count curve can be created [2].

The term structure can be created with different tenors, denoted τ . When creat-
ing a swap, a tenor for the forward-curve and discounting-curve is assigned. The
forward-curve is used for estimation of the forward rate. The discounting-curve
is used for discounting the cashflows to get the present value [2].

3.2.3 Valuating an interest rate swap

An interest rate swap has two legs. The first leg represents the original future
interest payments, and the second leg is the exchanged future interest rate
payments. The present value of the interest rate is the sum of future interest
payments, also called cashflows, for both legs. Calculating future cashflows for
fixed rates is simple because the future rate is known and constant. When
calculating future cashflows based on floating rate is more complicated. To be
able to evaluate the future cashflows the floating rate needs to be estimated.
A common method is to estimate the short rate, r(t), through Monte Carlo
simulations based on Hull-White dynamics presented below.

dr(t) = (θ(t)− ar(t))dt+ σdW (t), (3)

where θ(t) is the time varying mean reversion, a control how fast the simulation
converges to the mean reversion and σ is the standard deviation. The strength
of the Hull-White models is its simplicity while still being able to fit the interest
rate term structure without introducing arbitrage. By keeping the parameter a
and σ constant we keep the model and calibration simpler [2].

3.2.4 Netting

Most financial institutions, such as the Bank, have many different trades with
various counterparties which is referred to as the Bank’s portfolio or trading
book. When evaluating the exposure towards one counterparty it is usually the
netted value of the portfolio of trades towards the counterparty that is evaluated.

Netting is a collection of trades that are grouped into a netting set and evaluated
as the combined values of each trade within the netting set. In case of default
the value that will be owed is the net value of all trades with the counterparty.
The total exposure will be reduced because the positive and negative values
within the set will offset each other. Netting sets are based on legal agreements
between the parties involved and usually follow the recommendations from the
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International Swaps and Derivation Association. It is not uncommon that there
exist multiple netting sets between counterparties [8].

3.3 Measuring Risk

3.3.1 Risk

Market risk represents the effect changes in market price has on a portfolio.
Market prices fluctuation will affect the value of the portfolio. Depending on
how the market prices change the portfolio has positive or negative changes,
such as an increase or decrease in value. Market risk represent the result with
negative changes.

Credit risk is the default risk for cash products such as mortgages or loans.
These risks are usually known in advance and therefore simple to calculate.
Counterparty credit risk (CCR) or counterparty risk represents the default risk
that follows trading of derivatives. The future value of derivatives is unknown
and therefore we can only calculate an estimation of the value. Counterparty
credit risk is usually viewed as a combination of market- and credit risk.

Exposure is defined as the value that the party would lose in case of a de-
fault. The risk of default can be influenced by market risk. Another feature
of counterparty risk is the asymmetry of potential losses that is not a part of
market risks. This depends on the net value of the outstanding transactions
after reviewing netting and collateral agreements. The resulting net value can
be positive or negative. A positive net value means that the defaulted coun-
terparty will not be able to fulfill their part of the contract. The surviving
party will have a claim on that value from the time of default and can expect
to get a fraction of the claim. The resulting value the surviving party gets is
unknown and usually not included in the calculations of exposure. If the net
value is negative the surviving party is forced to pay the counterparty the owed
amount.

3.3.2 Exposure At Default

The exposure at default (EAD) is a key component when calculating the re-
quired capital a bank must hold in relation to counterparty risk. It can be seen
as the notional of a bond or a loan, or the size of the position concerned. EAD
is calculated on the netted portfolio.

The calculation of EAD differs depending on if the transaction considered has a
rather fixed exposure, such as loans, or a more uncertain underlying exposure,
such as transactions in derivative portfolios. If the underlying exposure is more
towards the uncertain kind, which makes the calculation more challenging com-
pared to if the exposure would be fixed, then it is quite trivial to calculate. The
reason that EAD calculations for derivative portfolios are more complicated is
because the credit exposure is mainly driven by changes in risk factors. Risk
factors being interest rates and FX rates, for example. And the correlation and
rules regarding netting and collateral make the calculation more complex and
difficult to present in one simple regulatory formula.

13



3.3.3 Effective Expected Positive Exposure

The definition of Expected Positive Exposure (EPE) is the average exposure over
all time horizons. It can also be viewed as the weighted average of the Expected
Exposure (EE), where the expected exposure is the estimated exposure. Because
EPE is an average it will not be able to effectively capture large exposures over
small time periods. Usually, EPE gives an underestimation of the exposure
on short dated transactions and does not properly capture the ”rollover risk”.
To avoid these problems another metric was introduced, Effective Expected
Positive Exposure (EEPE) for regulatory capital calculations. EEPE is the
average of the effective PE, which is a non-decreasing representation of EPE as
shown in figure 1. Broadly speaking EEPE operate under the assumption that
a decreasing EPE is the result of a maturing transaction that will be replaced
[8].

Figure 1: The figure shows the effective expectation as the orange line calculated
on the EPE, presented as the blue line. As we can see in the figure the effective
expectation is a non-decreasing representation of EPE.

3.3.4 Wrong-way risk

Wrong-way risk (WWR) is a term that describes the positive co-dependency
between the considered counterparty’s exposure and credit quality. This means
that an increase of the probability of default of the counterparty would give an
increase of the exposure as a result, for example. This term is usually divided
into two sub-groups, called General WWR and Specific WWR. General WWR
concerns risks that are driven by macroeconomic behaviours, and specific WWR
is more related to the structure of specific trades or counterparty exposures. An
example of specific WWR can be a company who is writing put options on its
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own stock. BCBS describes specific WWR as normally being caused by badly
designed transactions and that they should not have been made in the first
place. This type of risk requires that there are procedures for identifying, mon-
itoring and controlling transactions where specific WWR could appear.

WWR is very important for banks using the IMM approach to consider. For
them, general WWR is partly represented through the stressed EPE calculation,
but they may have to model the general WWR with macroeconomic factors be-
ing the primary risk drivers as well. But it could be included in the estimated
α-parameter used when calculating EAD too, where α is determined by the
choice of capital requirement method.

However, WWR is important to consider for banks who do not use the IMM
approach also. These banks do not have to model WWR, but they instead need
to put more effort into identification and management related to general WWR
[8].

3.3.5 Replacement Cost

The value of the Replacement cost (RC) is dependent on whether the transaction
is margined or not, but generally it is introduced to capture the loss occurring if
a counterparty were to default and all the transactions with it ceased immedi-
ately [15]. A transaction is considered margined if the transaction requires the
parties to make regulatory deposits in collateral to reduce the exposure of the
transaction. In most cases cash is the collateral used for this [9]. An unmargined
transaction, on the other hand, does not have a margin based on the present
value of the transaction regularly exchanged between the counterparties. Col-
lateral may however exist in the transaction, but it will not be considered to
be a margined transaction if the collateral is not a regular asset and exchanged
between the counterparties. When two parties enter a contract the terms of the
margin agreement are determined and often a clearing house is used for holding
the collateral during the term of the contract.

Variational margin is controlled by a clearing house where the members make
variable margin payments that is based on the price movement of the transac-
tions. The payment works as collateral to decrease the exposure the transaction
holds. If the counterparty would default the buyer is only exposed to the change
in value since the last collateral payment made, and not the entire value of the
transaction. For example, consider company A entering a contract with com-
pany B with an initial value of 1000 SEK. Company B would then pay company
A 1000 SEK as collateral. If the value then increase to 1200 SEK to the next
payment date company B needs to pay company A the difference in value be-
tween the last evaluation date and the current one. This results in company B
paying company A 1200− 1000 = 200 SEK. If the value instead would decrease
company A will pay back company B the collateral difference. This evaluation
continues to be made at pre-determined dates until the contract has reached its
maturity [8].

If the transaction is unmargined, the RC would be the loss in place if a coun-
terparty were to default and all transactions be stopped completely. The value
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would therefore be defined as the greater of either the current market value
of the derivative contracts subtracted by the net haircut collateral held by the
bank or zero. In other words, this means that RC is a measure of the bank’s
current exposure, so if the bank owes a counterparty money there is no exposure
towards them as long as the bank can replace all trades and sell all collateral at
current market prices instantly. Mathematically this is expressed as:

RCunmargined = max (V − C, 0) (4)

where V is the value of derivative transactions in the netting set and C being
the haircut value of net collateral held. These are calculated using the NICA
methodology. NICA stands for Net Independent Collateral Amount and consid-
ers the amount of collateral that the bank can use to compensate its exposure
if the counterparty of the contract where to default.

If the transactions instead are margined, the RC is the loss occurring if a coun-
terparty defaults at a present or future time, under the assumption that the
closeout and replacement of transactions are made instantaneously. But in this
case, there may also be the margin period of risk, which would be the period from
that the last change of collateral is made before default until the replacement
of the trades in the market have been made. So in this case, RC is defined as
the highest exposure allowed without triggering a need for the variation margin.
Mathematically this is expressed as:

RCmargined = max (V − C, TH +MTA−NICA, 0) (5)

with V and C being the same as in the unmargined case. TH being the posi-
tive threshold that determine whether the counterparty need to give the bank
collateral or not. MTA being the least amount applicable for the counterparty
to transfer.

What separates the two calculations of RC from each other in the unmargined
case compared to the margined case is the TH + MTA − NICA term. That
expression represents the highest exposure allowed before triggering a call for
the variation margin, and it depends on the value of collateral that must be
maintained. When subtracting NICA from TH + MTA it makes the calculation
more accurate and reflects the real level of exposure that do not trigger a margin
call as well as the effect of the collateral involved [13].

3.3.6 Potential Future Exposure

The other parameter needed to calculate the EAD for the SA-CCR model, other
than RC, is the Potential Future Exposure (PFE). This add-on represents the
potential change of a trades value during a certain period in time. How to
calculate the PFE also varies depending on if the transactions are margined or
unmargined.

For the unmargined case, the PFE represents a conservative potential increase
in exposure over a one-year time period seeing from the present date. For the
margined case the PFE is put together by an aggregated add-on component con-
sisting of add-ons calculated for each asset class and a multiplier taking excess
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collateral or negative mark-to-market values for the transactions into account.
The function of the multiplier is to allow for partial recognition of excess col-
lateral and therefore scales down the aggregated add-on when excess collateral
is present [13]. Mathematically this is expressed as:

PFE = multiplier ·AddOnaggregate (6)

where AddOnaggregate is the aggregate add-on component and multiplier is de-
fined as a function of the three inputs: V, C and AddOnaggregate which can be
seen below in more detail.

The PFE also shows the risk-reducing property of excess collateral. The BCBS
added the multiplier component as a safety measure to the PFE which decreases
as the excess collateral increases but without ever reaching zero since the multi-
plier is floored at five percent of the PFE add-on. How the collateral held affects
the replacement cost depends on whether the collateral is less or greater than
the net market value of the derivative contracts. If the collateral held is lower,
the current replacement cost will be positive, and the multiplier will equal one.
That means that the PFE in this case equals the full value of the aggregate
add-on. If the collateral held instead is greater, the current replacement cost
will be zero and the multiplier be less than one. That means that the PFE in
this case is less than the full value of the aggregate add-on. If the current value
of the derivative transaction is negative that will also trigger the multiplier to
be activated [8]. Mathematically this is shown as:

multiplier = min (1;Floor + (1− Floor) · exp( V − C

2 · (1− Floor) ·AddOnaggregate
))

(7)
where Floor is the floor of the PFE add-on set to be 5 %, V is the value of
the derivative transactions in the netting set, and C is the haircut value of net
collateral held.

When calculating the add-ons there are no consideration taken however the
diversification of different asset classes may be beneficial but one simply ag-
gregates the respective add-ons for each asset class. Mathematically this is
expressed as:

AddOnaggregate =
∑
a

AddOn(a) (8)

where a represents a specific asset class. A derivative transaction is grouped
into the asset class based on its primary risk driver [13].

3.4 Internal Model Method

Under Basel II 2004 the Internal Model Method (IMM) was developed to al-
low banks and financial institutions to improve their measures of capital re-
quirements for a variety of counterparty credit risk scenarios. At this time the
alternative would be to use the standardized method (SM) that was highly crit-
icized because of its reliance on external rating-based information. Many larger
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institutions would rather use scenarios and information tailored to the firm.
Therefore, the IMM was introduced as an alternative approach that is more
risk-sensitive and better aligned with the firm’s internal risk management.

To be allowed to use the IMM approach the bank needs to gain regulatory
approval of their model. The model needs to fulfil several requirements due to
its complexity compared to the standardized model. One of the most important
parts of the requirements is to be able to recognize, measure, control and vali-
date the counterparty credit risk one year into the future. This is referred to as
Potential Future Exposure (PFE) by BCBS and differs from the potential future
exposure presented in section 3.3.6 that is used in the standardized approach
that only considers credit risk for current default value.

The most common method used to calculate expected exposure is Monte Carlo
simulation and diverse stress tests. Stress tests are different scenarios based on
the trading book such as market swings or varying interest rates. The regulatory
agency FI has its own stress scenarios that the derived model will be regularly
subjected to. If the Bank’s IMM does not pass the agencies test the Bank loses
its approval of using its IMM model until the model is re-calibrated and meet
the required standards.

The IMM requires advanced modelling of all underlying risk factors that needs
to be resilient to extreme market scenarios. Such a model is expensive for banks
to both create and maintain. However, an IMM model allows the bank to more
accurately model all underlying risk factors and the future exposure of trans-
actions. It also allows full netting among asset classes, given that legal and
operational requirements are met, and collateral benefits, such as threshold and
initial margin, and modelling of future collateral. Once this is obtained, the
exposure at default can be calculated, and this is done by using the following
formula,

EAD = α · EEPE (9)

where EEPE is the Effective Expected Positive Exposure and α is normally set
to be 1.4, a value determined by the BCBS [8]. However, when it comes to the
IMM model the institute can apply to FI and obtain permission to use another
value of the α parameter. In some cases, FI could also require an institute to
use a higher α as well. This is usually enforced when FI determine that the
WWR is poorly validated. If an institution wants to use its own estimation of
α it should ”equal the ratio of internal capital from a full simulation of CCR
exposure across counterparties and internal capital based on EPE”. When es-
timated like this, α can never be lower than 1.2 [18].

The α factor is there to account for deviations that might occur in the calculated
situations and ”corrects for the finite size and concentration of the portfolio in
question”. However, it is rather uncommon that institutions use any other value
than what is predetermined. Aspects that could lower the α value used is if the
institute holds a very large portfolio, if the average default probabilities are
larger, if the correlations are larger or if the confidence levels are higher [8].
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According to BCBS the IMMmodel has some minimum requirements that needs
to be fulfilled. The regulations we will focus on in this report are stressed EPE
and Backtesting.

3.4.1 Stressed Expected positive exposure

EPE needs to be calculated using parameters derived based upon stressed data.
This is to prevent procyclicality which is a problem that can occur when using
recent historical data where there exists a tendency of quiet periods being fol-
lowed by major crisis. Because of this the risk measures are exceptionally low at
the worst times. The low-risk measures can lead to higher leverage levels that
in turn can increase the likelihood and amplitude of a crisis.

To prevent procyclicality it is necessary for the bank to evaluate the EPE with
stressed inputs. If the model is calibrated on historical data that dataset must
include three years of historical data where one-year period is taken from a
stressed period. These datasets should cover more economic conditions. The
exposure at default needs to be calculated with the set of parameters that gives
the highest EPE at the portfolio level. The use of stressed data should reduce
the likelihood of artificially low EPE during quiet periods and therefore reduce
the appearance of procyclicality problems [8].

3.4.2 Backtesting

Backtesting is used to evaluate how well a model perform on historical data.
It allows the trader to analyze potential risk and to see profitability that the
strategy or model may have. According to BCBS the EPE must be backtested
which comes with several considerations to cope with realistically. This is usu-
ally done by backtesting the underlying risk factors. In addition, the model
needs to run for a year and be regulatory evaluated of its accuracy on modelling
underlying risk factors before it can be used [1].

To simplify the large OTC derivative books that large financial institutions
may have it is possible to use something called ”representative portfolios”. It
is important that these portfolios are chosen so that they reflect the important
risk factors and correlations the bank may be exposed to [8].

3.5 Standardized Approach for Counterparty Credit Risk

The SA-CCR model was developed by the BCBS with the purpose to replace
the two previous models in use, the Current Exposure Method (CEM) and the
Standardized Method (SM) and to address some deficiencies that the previ-
ous methods had. The Standardized Approach for Counterparty Credit Risk
(SA-CCR) has been effective since 1 of January 2017. The main metric that
SA-CCR wishes to measure is the Exposure At Default (EAD) for the counter-
party credit risk. This approach was developed to be suitable for most types of
derivatives, to be easy to implement and to improve the risk sensitivity of the
capital framework [13]. As can be read in [8], SA-CCR was developed to be ”A
new, more risk-sensitive approach that aims to balance simplicity and risk sen-
sitivity”. In order to give a fair result the SA-CCR method has been calibrated
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using benchmark results obtained with the IMM method from various banks [8].

The EAD is calculated by adding the two components Replacement Cost (RC)
and Potential Future Exposure (PFE) together and multiplying this by a factor
called α. For this model α equals 1.4 based on the α-parameter set by the
BCBS normally used in the IMM model [13]. The PFE used in the calculation
is, just like for the CEM method, closely linked to AddOn factors, but it is also
sensitive to the maturity in the contract [8]. Below we present the formula for
calculating the EAD using the SA-CCR model.

EAD = α · (RC + PFE) (10)

When calculating PFE for the SA-CCR model there are four important dates
to consider, i being the considered instrument.

• The maturity date, Mi, being the date when the contract may still be
active at latest. This appears in calculations in the maturity factor which
scales down adjusted notional for all asset classes when considering un-
margined trades.

• The start date, Si, being the first date of the time period specified by an
interest rate or credit contract.

• The end date, Ei, being the last date of the time period specified by an
interest rate or credit contract. The start and end date are used in the
definition of supervisory duration, and the end date also specifies which
maturity category a certain interest rate contract would fall into.

• The latest contractual exercise date, Ti, which is used for determining the
delta of the option.

If the derivative considered are referencing another underlying interest rate or
credit instrument the time period will always be the one determined by the
underlying instrument.

To calculate the trade-level adjusted notional amounts for interest rates and
credit derivatives one would multiply the trade notional amount, converted to
the domestic currency, and the supervisory duration SDi. The SDi is given by
the following formula:

SDi =
e−0.05·Si − e−0.05·Ei

0.05
(11)

This formula is floored by ten business days and if the instrument considered
are already ongoing, the start date is set to zero. The parameters used in this
formula are defined at the trade level and considers both the size of the position
and its maturity dependency, if there is one.

When calculating PFE using the SA-CCR model there is also the minimum
time risk horizons to consider. This includes the lesser of either one year or the
remaining maturity for unmargined transactions, also floored at ten business
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days. So, for these transactions the adjusted notional at the trade level must
be multiplied by:

MF
(unmargined)
i =

√
min(Mi; 1 year)

1 year
(12)

where Mi is the remaining maturity of transaction i floored by 10 business days.

If the transaction instead is margined, one must consider the type of deriva-
tive to determine the minimum margin period of risk. If the transaction is a
non-centrally cleared derivative affected by daily margin agreements the Margin
Period Of Risk (MPOR) is at least ten business days. When considering a cen-
trally cleared derivative affected by daily margin agreements between clearing
members and their clients, the MPOR is five business days. This means that
for a margined transaction the adjusted notional at the trade level should be
multiplied by:

MF
(margined)
i =

3

2

√
MPORi

1 year
(13)

with MPORi being the margin period of risk for the margin agreement contain-
ing transaction i.

When it comes to add-ons for interest rate derivatives, they are in place to
capture the risk of maturities being imperfectly correlated between different
derivatives. To cope with this, the interest rate derivatives are divided into
different maturity categories, also called buckets, based on the end dates of the
transactions. Normally the ones considered would be transactions less than one
year, transactions between one and five years and transactions over five years.
Within the same category the SA-CCR model fully recognizes offsetting posi-
tions and across categories it partly recognizes offset. Summing the add-ons for
each hedging set together of interest rates derivatives transacted with a coun-
terparty in a netting set gives us the add-on for interest rate derivatives. A
hedging set in this context is a set where all the transactions in it would have
similar risk sensitivities [8]. Then the add-on for a hedging set of interest rate
derivatives needs to be calculated in two steps. First, the effective notional

D
(IR)
jk is calculated for time bucket k of hedging set j according to:

D
(IR)
jk =

∑
i∈(Ccyj ,MBk)

δi · d(IR)
i ·MF

(type)
i (14)

where the notation i ∈ (Ccyj ,MBk) refers to trades of currency j that belong

to maturity bucket k. δi denotes the supervisory delta adjustments and d
(IR)
i

represents the trade-level adjusted notional for trade i of the asset class IR.
This means that the effective notional for each time bucket and currency is the
sum of the trade-level adjusted notional amounts multiplied by the supervisory
delta adjustments and the maturity factor.

Secondly, the aggregation across maturity buckets for each hedging set is calcu-
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lated using the following formula:

EffectiveNotional
(IR)
j = [(D

(IR)
j1 )2 + (D

(IR)
j2 )2 + (D

(IR)
j3 )2+

1.4 ∗D(IR)
j1 ∗D(IR)

j2 + 1.4 ∗D(IR)
j2 ∗D(IR)

j3 +

0.6 ∗D(IR)
j1 ∗D(IR)

j3 ]1/2

(15)

However, banks can choose to not recognize offset between different maturity
buckets, and if so, the following formula should be used instead.

EffectiveNotional
(IR)
j = |D(IR)

j1 |+ |D(IR)
j2 |+ |D(IR)

j3 | (16)

Then the add-on on the hedging set level is calculated by multiplying the effec-
tive notional and the interest rate supervisory factor together.

A supervisory factor is a predetermined factor based on what asset class the
transaction being made belongs to and reflects the volatility of the asset class.
The factor converts the effective notional amount into Effective EPE, EEPE,
based on how volatile the asset class is [13]. The table showing all supervisory
factors for the different asset classes is presented in appendix 9.1 below.

AddOn
(IR)
j = SF

(IR)
j · EffectiveNotional

(IR)
j (17)

And aggregation across hedging sets is calculated by simply summing them
together:

AddOn(IR) =
∑
j

AddOn
(IR)
j (18)

What can be worth noting here is that RC is calculated at the netting set level,
whereas PFE is calculated for each asset class within a given netting set and
then aggregated [13].
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4 Methodology

The implementation of the two models has been made in python, using mainly
the package QuantLib which is an open-source package developed for financial
purposes. For the SA-CCR model we also found a package online called sa-ccr
which we could use to implement a lot of functions from [3].

In order to calculate the required capital the Bank must hold, stated by regu-
lations, one must consider the Bank’s exposure and how risky the counterparty
of the trade is. The formula for doing so is:

Capital = EAD · risk factor (19)

where the risk factor represents counterparty credit and market risk of the
portfolio and EAD is the exposure at default. EAD refers to the exposure
the Bank may have if the given counterparty would default for that specific
trade. How to calculate it varies depending on if you are using SA-CCR or
IMM. The risk factor is equal for both models. So, since the risk factors are
equal for both models and classified information we will not present them in
this report, and we will therefore move forward with analyzing and comparing
the EAD for each model. The portfolio and calculation of the net present value
(NPV) is the same for both methods.

4.1 Portfolio

The portfolio that will be evaluated in this report is Swedish IRS where both
legs have corresponding payment schedule. This means that all future cashflows
for both legs are made on the same dates. In addition we will only look at cur-
rently active IRS. Further, we will not consider any other type of trades in our
calculations.

We need to begin with creating the portfolio we want to evaluate. This will
be done by creating swap objects for each trade and putting them in a list that
will be our portfolio. For each trade we need to define the schedule for both the
floating and fixed leg that tells us which dates the cashflows will be calculated
and then payed. To accurately valuing the swap, we need to know the swap’s
day counter. Then we need to assign a term structure for the forward rate, the
Ibor-index and latest fixing rate that will be used when evaluating the future
floating rate. The term structure is created using zero rate market data that is
interpolated using linear interpolation. In addition to this information, we need
the notional value and fixed rate.

We decided to use QuantLibs VanillaSwap objects to represent our swap ob-
ject in the code. The term structure, Ibor index and schedule is created with
QuantLib methods as well.

When calculating the interest rate of a derivative the choice of accrual method
in the contract is important to take into consideration. Mainly, there are three
different methods:

• 30/360, saying that there are 30 days each month and 360 days in a year.
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• Actual/365, where the interest rate is divided by 365 days in a year,
and then multiplied by the actual number of days in a month to get the
monthly accrual rate.

• Actual/360, calculated similarly to the Actual/365 method, but using 360
days for a year and multiplying it by the actual amount of days in a given
month.

Using the 30/360 method results in a daily accrual amount slightly higher than
the Actual/365 method since the interest rate is divided by 360 days and not by
365 days, which more resembles the actual number of days in a year. However,
the total amount of interest is lower using 30/360 since it only accrues for 30
days, even in months where there are 31 days, compared to Actual/365 which
is slightly higher since the interest is accrued over more days. Then comparing
these two with the Actual/360 one can see that the Actual/360 is the method
resulting in the highest amount of interest paid since it has the highest daily
accrual rate being divided by a lower number of days per year, and the highest
monthly accrual amount since it is accrued over the actual number of days in a
month [7].

4.2 Net Present Value of Swaps

When we calculated the present value of the trade today, we need to address
a swap-pricing-engine for each swap that is based on the chosen discounting
term structure. The term structure is created using market data that is in-
terpolated in the same manner as the term structure used when we create the
swap objects. However, the term structure is usually based on market data with
different tenors for the forward rate and discount factor. This discounting term
structure is used to find the present value of the future cashflows.

When finding the NPV for an interest rate swap we sum all discounted cash-
flows for both legs. For a floating leg we use the floating rate that is fixed before
every payment date. This fixed floating rate is used for the calculation of the
cashflow. Consider a Interest Rate Swap with on fixed leg and one floating leg
that begins at timepoint s = 6M and mature at time T = 51M if today is t = 0.
A cashflow scheme is presented in the figure below where we have payments
every 3M.
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Figure 2: The figure represents the cashflow for the fixed respective floating leg
for an Interest Rate Swap (IRS). The begin looking at time t = 0 where the IRS
begin at time s = 6M and end at T = 51M.

The PV, or NPV, is obtained by looking at the difference between the sum of
every floating cashflow, green line, respective fixed cashflow, red line. Worth
noting, in this report we only evaluate active IRS which means that t ∈ [s, T ].

4.3 Method for IMM

For IMM we want to find the exposure at default (EAD) that is calculated
by equation 9. As mentioned before the α factor is set to 1.4 and EEPE is
calculated by simulating future market scenarios and calculating an effective
expectation of the positive net present value of all scenarios. We do this process
for both market data and stressed data where the process with the highest EAD
is the process we are required to use.

To validate our method, we will use backtesting. According to European Central
Bank the best way to evaluate our model is to look at our underlying riskfactors.
Because we evaluate a portfolio of IRS our underlying risk factor is interest rate
[1].

4.3.1 Simulating interest rate

The one factor Hull-White method, presented in section 3.2.3, under risk neu-
tral measure has the following dynamics

drt = (θ(t)− ar(t))dt+ σdWQ(t), (20)
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where θ(t) is the mean reversion over time, a is the mean reversion speed, and
σ, the historical volatility. The θ(t) parameter is time dependent and is based
on the forward rate term structure. The term structure is crated using zero
rates with linear interpolation.

The mean reversion speed, a, and historical volatility, σ, is calibrated using
ATM swaption data. We use the tenor, maturity and implicit volatility from
the ATM swaption to create swaption helper objects. These swaption helpers
are assigned a Jashmidean discount pricing engine and is then used in Quantlib’s
Levenberg Marquardt optimization method to calibrate the parameters a and σ.

Levenberg Marquardt optimization method, also known as damped least squares
method, is commonly used to solve least square curve fitting problems. It is an
iterative procedure where we give a function f(xi, β) replace the parameter vec-
tor β with a new parameter vector β + δ. This function is then approximated
as

f(xi, β + δ) ≈ f(xi, β) + Jiδ (21)

where Ji = ∂f(xi,β)
∂β is the gradient. The expression for the sum of all square

errors is presented below, where y is the real value.

S(β + δ) ≈
m∑
i=1

[yi − f(xi, β)− Jiδ]
2 ≈ ||y− f(x, β)− Jδ||2, (22)

It has its solution in the zero gradient with respect to the parameter vector β.
If we differentiate S(β+ δ) with respect to β and put it equal to zero we get the
following equation.

(JTJ)δ = JT [y− f(x, β)] (23)

Levenberg’s contribution to this equation is adding a non-zero dampening term,
λ which yields the following expression

(JTJ− λI)δ = JT [y− f(x, β)], (24)

where I is the identity matrix. The λ parameter is updated at each iteration.
Because we solve this problem by finding the minima it is important to have
good initial guesses for the parameters so we find the global minima and not
the local minima [17].

Using this method, we derive our parameters that are used to create our one-
factor Hull-White process which the simulated paths are drawn from using a
Gaussian random sequence generator. All the mentioned methods are imple-
mented using the QuantLib library.

4.3.2 Pricing for all scenarios

Further, we want to calculate the net present values for each path by calculat-
ing the discounted cashflow at each payment date for every floating leg in the
portfolio. The cashflow is dependent, as can be seen in figure 2, on the floating
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rate. Since the floating rate is not known we want to estimate the forward rate.
The forward rate is found through the respective curve. With the estimated for-
ward rate we can calculate the cashflow. The cashflow needs to be discounted
back to the present value. Discounting factors for each future payment date is
found through the discount curve. Both curves are derived from the respective
term structures which are created by calculating Hull-White zero bond price,
P (t, T ), based on the simulated short rate. The forward- and discount curve
used to price an IRS are specified in the contract for a trade. We calculate the
Hull-White zero bond price that we then scale to correspond with the chosen
tenor, τ , on the term structure. The Hull-White zero bond prices P (t, T ) are
given by the following equation:

P (t, T ) = eA(t,T )−B(t,T )rt , (25)

where A(t, T ) solve

At(t, T ) = θ(t)B(t, T )− 1

2
σ2B2(t, T ) (26)

A(T, T ) = 0, (27)

and B(t, T ) solve

Bt(t, T ) =
1

a

{
1− e−a(T−t)

}
(28)

B(T, T ) = 0. (29)

The solutions of A(t, T ) and B(t, T ) therefore look as follows

A(t, T ) =

∫ T

t

{1
2
σ2B2(s, T )− θ(s)B(s, T )

}
ds (30)

B(t, T ) =
1

a

{
1− e−a(T−t)

}
. (31)

The observed forward rate curve is given by f∗(t, T ) = −∂ log(P∗(t,T ))
∂T where

P ∗(t, T ) is the observed bond price. Since both A(t, T ) and B(t, T ) are deter-
ministic functions our model have an affine term structure. It follows that the
forward rates are given by

f(0, T ) = BT (0, T )r0 −AT (0, T ) (32)

= e−aT r0 +

∫ T

0

e−a(T−s)θ(s)ds− σ2

2a2
(1− e−aT )2. (33)

Given a θ(t) that solves equation 33, we calculate the theoretical bond price for
a Hull-White model under martingale measure according to the equation below.

P (t, T ) =
P ∗(0, T )

P ∗(0, t)
exp {B(t, T )f∗(0, t)− σ2

4a
B2(t, T )(1− e−2at)−B(t, T )rt},

(34)
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where B(t, T ) is given by equation 31 [2]. Further, we want to find the zero
bond price for tenor τ , which is given by scaling the zero bond price as follows.

Pτ (t, T ) = P (t, T )
P ∗
τ (t, T )

P ∗(t, T )
, (35)

where P ∗ and P ∗
τ are the observed bond prices. With the estimated bond prices

we create both the forward- and discount curve.

Doing this for all simulations, for all evaluated time points, will result in two
matrices, one with the discounting term structure and one with the forward
term structure. Each row will represent one simulated path and each column a
time point, as demonstrated in figure 3 below.

Figure 3: The resulting matrix of term structure curves for every simulation at
every time point. Each node Snk

(ti, T ) represent a term structure curve based
on the discount factors calculated for path nk at time point ti. The matrix has
the shape N × T where N is the number of simulated paths and T the size of
the time grid.

At every node in this matrix we have a term structure curve, either a forward-
or a discount curve. We create a new exposure matrix with the same dimensions
where every node represent the exposure for that path, at that time point. For
every node in the exposure matrix we calculate the present value by calculat-
ing the future discounted cashflow using the forward- and discount curve for
the respective node. The present value calculated on date ti to maturity T is
calculated with the following formula:

PV =

T∑
t=ti

ft
M

Ndt (36)
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where ft
M is the forward rate for that period and dt the discount factor for each

payment date t.

In the code we use the swap object’s own NPV method. We find the forward
curve and discount curve and link them to the swap object. The swap object
will then use these curves and the previously assigned pricing engine to find
all future cashflows and discount them back to the present value. The pricing
engine used is a discounting pricing engine.

4.3.3 Stress calibration

Stress tests are an important tool to understand the bank’s weaknesses and it
means that we want to analyze the NPV under certain stressed market scenar-
ios. In this report we used stressed input data that we obtained by shifting
the current zero rates a fixed number of basis points. The shifted input data
represents a current market scenario that is less optimal than what the actual
market today looks like. In this report we chose to shift the input data so it
reflects the market scenario taken from our simulated rate one year ahead at
quantile 80%. An 80% quantile should capture a market scenario that is con-
sidered being worse than today, but at the same time being realistic. This will
affect the mean reversion of our simulation of the future rate. According to
BCBS we need to use the input data, real or stressed, that results in the highest
EAD [18].

4.3.4 Calculating EAD

EAD is given by equation 9

EAD = α · EEPE.

From the methods presented above we get the net present value of each trade.
The exposure is equal to the net present value in this case. However, we want
to find the netted exposure for the entire portfolio. The methods for the IMM
mentioned above is done per trade and the resulting exposure is then netted.
The netting is done by taking the sum over all simulated exposures for every
trade. Because we are only interested in the positive exposures of the portfolio,
we floor to zero the exposure after netting, so all negative exposures are put to
zero.

To derive the EAD we need to calculate the EEPE for the first year of future
exposure. If the derivative matures in less than a year, we look at the average
for the remaining time of the contract. EEPE is calculated as a weighted aver-
age of effective EPE as:

EEPE =

min (1Year,T )∑
k=1

EEPEtk ·∆tk (37)

where ∆tk is the time step. We use a constant time step which makes the
weights constant 1

N , where N is the number of time steps. With these changes
the above equation becomes equal to a standard average over the number of
time steps taken during a year or for the remaining time of the contract.
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4.3.5 Backtesting

The risk factor present in our model is the simulated rate and therefore the
factor we want to backtest. We use historical zero rate data and will compare
this to the simulated zero rate. Given a time point t as evaluation date we re-
calibrate our model using the market data at time t. We then simulate 10 000
paths t + 10 days ahead and find the discount factors for different tenors to
create term structures as before. From the term structure we draw zero rates
for the different tenors and create a confidence interval. Then we repeat this
process at date t+ 10 days until we have looked at the entire data set. Finally,
we look at how often our real zero rate is not within our confidence interval.
The tenors we evaluate are [7D, 2W, 1M, 3M, 6M, 1Y, 2Y, 5Y, 10Y ] and the per-
centiles [1%, 5%, 25%, 75%, 95%, 99%].

To further validate our interest rate simulation we will analyse spreads using
backtesting as well. The spreads are based on the same historical dataset. A
spread is the difference between two zero rates with different tenors. For exam-
ple a spread with tenor 10Y − 5Y is derived as following:

spread10Y−5Y (t) = r10Y (t)− r5Y (t), (38)

where rτ (t) is the zero rate for tenor τ . Using the simulated zero rates, from
the same simulation as for backtesting zero rates, we create a spread for each
simulation by taking the difference between the two zero rates with the speci-
fied tenors. The confidence interval for the simulated spreads are calculated and
compared with the real spread. The spreads we will look at are the following
[10Y − 5Y, 10Y − 2Y, 5Y − 6M ] and we will use the same percentiles as we use
for zero rates.

Because we have few samples of zero rates, we cannot assume that only 1%
of the samples will be outside of the confidence interval. We assume a binomial
distribution as a sum of a Bernoulli process, where a 1 represent the sample to
be outside and 0 if it is within the interval. Below a table of the number of
exceptions that will be allowed for 84 samples at 99% confidence level is pre-
sented. The colors represent if the number of exceptions were expected or not.
A green color means that it is within the interval of expectation, yellow means
that it is more exceptions than expected but not too far off. Red means that we
have more exceptions than expected for the distributions. This type of table is
called a traffic light table.

30



Figure 4: Example of how a traffic light table works for 84 samples at a con-
fidence interval of 99%. To the left is the number of deviations and to the
right the binomial distribution of that number of deviations given the number
of samples and confidence level.

As we can see from figure 4, we expect 0 − 2 exceptions, and 3 − 5 exceptions
are within the scope of reasonable exceptions but slightly higher than what we
expected. If the number of expectations is 6 or higher, we have too many excep-
tions and our model does not capture the realized rate at a 99% confidence level.

During the simulation we introduce noise to our estimations. This noise can
affect our confidence interval. We assume it to have the following composition,
where xτ is the data we have got, and x̂τ is the true value, without noise.

x̂τ = xτ + eτ (39)

We assume the noise, eτ , to be uniform distributed and for the spreads we adjust
the confidence interval by removing the variance of the noise.

4.4 Method for SA-CCR

Just as we did above for the IMM-method we want to calculate the EAD, but
for the SA-CCR method it is calculated using a different formula, 10. Just as
for IMM, α is set to 1.4 and then we need to calculate the replacement cost
(RC) and the potential future exposure (PFE).

Starting off, we read in the supervisory factors used for interest rate deriva-
tives from the table presented in appendix 9.1. Then we start with calculating
the add-ons determined by the type of derivative the instrument considered is.
In our case we have only considered interest rate swaps so far, so we will use
the specific add-on formula and supervisory factor for that type of derivative.
To get the final add-on, we sum all the individual add-ons together.

We calculate a trade supervisory delta based on the volatility, which we use
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to calculate a single trade add-on by multiplying this with the maturity factor
of the trade and the adjusted notional. The trade specific supervisory delta
adjustment is a parameter used to reflect the direction of the transaction, if the
position of the trade is long or short, and its non-linearity. It is applied at trade
level to the adjusted notional amount, which is a value used to show the value
of an option [13]. Finally, doing this results in an effective notional amount.

We calculate the single trade add-on for every leg in the trade and these become
our time buckets. The total add-on is then the sum of all these together. To
get the currency add-on we weigh the add-ons for every leg in the time bucket
by the following formula, 15. Then the sum over all of these multiplied by a
supervisory factor becomes the add-on.

Once we have got the add-ons, we can calculate the replacement cost and the
potential future exposure, which makes out the basis in the standardized ap-
proach. One calculates the replacement cost a bit different depending on if the
transaction is margined or not. If it is an unmargined transaction the replace-
ment cost is either the value of the derivative transactions in the netting set
minus the haircut value of the net collateral held, or 0, whichever is the great-
est, as seen in equation 4. If it is margined it is either one of the two above
or the positive threshold before the counterparty must send the bank collateral
added together with the minimum transfer amount applicable to the counter-
party minus the net independent collateral amount, whichever is the greatest of
those three, as seen in equation 5.

The calculation of the multiplier of the potential future exposure also varies
depending on if the value of the derivative transactions in the netting set minus
the haircut value of the net collateral held is greater than zero or not. If it is
not, we would calculate it using the following formula:

multiplier = min(1, 0.05 + 0.95 · exp((V − C)/(1.9 ·AddonAggregate))

where V is the derivative transactions in the netting set, C the haircut value of
the net collateral held and the aggregated add-on. This term is then multiplied
by the aggregated add-on which would result in the potential future exposure.
We add 0.05 to the multiplier term because the floor is set to be five percent. If
however, V −C > 0 the multiplier equals one and the potential future exposure
would therefore just be the aggregated add-on.

Then finally to get the exposure at default amount we add the potential fu-
ture exposure together with the replacement cost and multiply it by an alpha
parameter set to 1.4.
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5 Results

5.1 Input Data

The chosen evaluation date for these calculation is 28 February 2022. The values
for the input parameters for all swaps are presented in table below.

Parameter Value
Start date 18 June 2019
End date 29 February 2028
Notional 600 000 000

Spread in % 0
Fixed rate in % 2.0595
Fixed tenor 3M

Floating tenor 3M
Currency SEK
Ibor-index SEKLibor

Forward term structure SEK 3M
Discount term structure SEK OIS

Accrual method Actual/360

Table 1: The input data used for one trade that is used to create the swap
objects and schedule.

Parameter First trade Second trade Third trade Fourth trade
Start date 18 June 2019 18 June 2019 1 Feb 2021 14 June 2021
End date 29 Feb 2028 9 March 2029 3 Feb 2031 16 June 2031
Notional 600 000 000 600 000 000 500 000 000 500 000 000

Spread in % 0 0 0 0
Fixed rate in % 2.0595 2.053 0.443 0.785
Fixed tenor 3M 3M 3M 3M

Floating tenor 3M 3M 3M 3M
Currency SEK SEK SEK SEK
Ibor-index SEKLibor SEKLibor SEKLibor SEKLibor

Forward term structure SEK 3M SEK 3M SEK 3M SEK 3M
Discount term structure SEK OIS SEK OIS SEK OIS SEK OIS

Accrual method Actual/360 Actual/360 Actual/360 Actual/360

Table 2: The input data used for the portfolio that is used to create the swap
objects and schedule.

From the calibration we get the parameters for our Hull-White process that are
presented below in the table. These are the parameters that we will use in each
case throughout the report.
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Current market data a 0.02510
σ 0.009051

Stressed +24 bp a 0.02480
σ 0.009058

Stressed -24 bp a 0.02520
σ 0.009039

Table 3: The table present the optimized parameters from both calibration of
the Hull-White parameters. The calibration is done for both the stressed in-
data and actual data. These parameters are used in the respective Hull-White
process during our calculations.

Because the parameters are calibrated on the term structure as well as volatil-
ity surfaces the parameter will depend on whether or not we use stressed input
data. The θ(t) parameter is set to the term structure that is based on the cur-
rent market data. In the result presented in figure 5 the following zero rates
are used to create the term structure, the forward respective the discount term
structure. In the case of stress calibration, we parallel shift the zero rates ±24
basis points. The zero rates used to create the two term structures are presented
in figure 5.

Figure 5: The plot shows the input data used. The blue line is the zero coupon
rate for SEK 3M that is used as the term structure for forward rate. The orange
line is the zero coupon rate for SEK overnight index that is used for discounting.
Both are taken from the chosen evaluation date, 28 February 2022.
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5.2 Simulation of interest rate

From the process created with the optimized parameters and term structure for
forward rate and discount factor we draw 10 000 samples of short rates 30 years
into the future. The first 100 simulated paths are presented in the plot below.

Figure 6: The plot shows the first 100 paths of the total 10 000 paths simulated.
The simulated rate is drawn from the Hull-White process with the calibrated
parameters.

The stress calibration was chosen as the difference between the rate at time
t = 0 and 80% quantile at time t = 1Y. The difference between these two rates
are 24bp. The simulated interest rate is presented below. Since we only shift
the zero rates, the mean reversion θ(t) is the only part that will change.
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Figure 7: The plot shows the first 100 paths of the total 10 000 paths simulated.
The simulated rate is drawn from the Hull-White process with the calibrated
parameters and +24 basis points stressed input data.
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Figure 8: The plot shows the first 100 paths of the total 10 000 paths simulated.
The simulated rate is drawn from the Hull-White process with the calibrated
parameters and -24 basis points stressed input data.

5.3 Resulting EAD

Since we need to use the process that gives the highest EAD, the EAD will be
calculated for IMM using both simulated interest rates and then evaluated. The
resulting EAD from SA-CCR and both scenarios for IMM are presented in the
table below. We start by looking at only one interest rate swap, and then we
scale up looking at a portfolio with 4 interest rate swaps. Worth noting is that
all the plots showing simulations only present the first 100 market scenarios
out of the 10 000 simulated ones. This is solely done to make the plots easier
to interpret and for visual aspects. The parameters and data used to produce
these plots are presented above.

5.3.1 One Trade

First, we use the simulated interest rate to calculate the net present value for
each path for one trade. Out of the 10 000 paths the first 100 are presented in
a plot below.
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Figure 9: The figure presents the first 100 paths of the calculated exposure
based on the 10 000 simulated rates paths. The exposure is calculated for one
trade that is presented in table 1. All graphs start at the present value of the
one trade presented in table 4 and then end after 7 years having a value of 0.
The different graphs represent potential future market scenarios.

The present value for the single trade is shown in the table below.

Present value 33 179 575 SEK

Table 4: The present value at the evaluation date for one trade presented in
table 1 and the input data presented in figure 5.

The resulting EAD for the two different models, SA-CCR and IMM, are pre-
sented in the table below.

Model Resulting EAD
SA-CCR 78 316 719
IMM 49 539 399

Table 5: The resulting EAD for both IMM and SA-CCR model for one trade.

5.3.2 Portfolio

Further we want to use the same simulated paths presented in figure 6 to calcu-
late the net present value of our portfolio. Below is the net present value netted
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over the portfolio of the first 100 paths out of the 10 000 paths presented.

Figure 10: The figure present the first 100 paths of the netted calculated expo-
sure for each trade based on the 10 000 simulated rates paths. The exposure is
calculated for the entire portfolio that is presented in table 2. The exposures
for each trade is netted over the portfolio. All graphs start at the present value
of the portfolio presented in table 6 and then end after 10 years with a value of
0. The different graphs represent potential future market scenarios.

The netted present value for the portfolio is presented in the table below for the
±24 bp stressed case and the non-stressed calibration.

Present Value 351 665
Present Value stressed with -24bp 44 015 597
Present Value stressed with +24bp -36 554588

Table 6: Present Value of the portfolio.

Below the table over resulting EAD for the three IMM calculations and the
SA-CCR model are presented. These results are for the entire portfolio, doing
10 000 simulations.
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Model Resulting EAD
SA-CCR 119 852 713
IMM 36 594 783

IMM Stressed -24bp 107 454 743
IMM Stressed +24bp 8 988 675

Table 7: The table present the resulting EAD for both SA-CCR and IMM for
the entire portfolio presented in table 2. For the IMM we present the resulting
EAD for calibration based on current market data and the stressed data. The
values in bold are the values that we need to use in order to calculate the capital
requirement later on.

In table 7 we see that the highest EAD is given by IMM calibrated on -24bp
stressed input data, marked with bold text in the table. This is the resulting
EAD we need to compare with the EAD from SA-CCR, also marked with bold
text.

5.4 Backtesting

Further to validate our model for simulating interest rates we perform backtests.
The backtesting is done on historical data of zero rates and spreads which is
compared to the confidence interval from our simulated rate. The model is
re-calibrated on the market data from the new evaluation date at every new
simulation. We have picked plots from the backtesting for the following tenors
and spreads.

tenor = [7D, 3M, 6M, 5Y ]

spread = [10Y − 5Y, 5Y − 6M ]

The data used for backtesting is around 3.5 years of historical data, ranging
between December 2018 and April 2022. The number of data points per year
is 250, since there is normally around 250 banking days per year, and therefore
we in total have zero rates for approximately 840 dates. Since we validate the
model every 10 days we will only be able to use 84 data points out of the dates
from the dataset as validation.

5.4.1 Backtesting Zero Rate

The plots for the specified tenors for the three different confidence intervals,
[75%, 95%, 99%], are presented below.
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Figure 11: The plots show the backtest of the zero coupon rate with the tenors
[7D, 3M, 6M, 5Y ] at 99% confidence level. The blue line is the realized zero
coupon rate in basis points. The black dashed line represents the estimated
99% confidence interval.
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Figure 12: The plots show the backtest of the zero coupon rate with the tenors
[7D, 3M, 6M, 5Y ] at 95% confidence level. The blue line is the realized zero
coupon rate in basis points. The black dashed line represents the estimated
95% confidence interval.
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Figure 13: The plots show the backtest of the zero coupon rate with the tenors
[7D, 3M, 6M, 5Y ] at 75% confidence level. The blue line is the realized zero
coupon rate in basis points. The black dashed line represents the estimated
75% confidence interval.

The number of exceptions from the confidence interval for the different confi-
dence intervals for all tenors are presented below in the table.

Figure 14: The values in the table present the number of exceptions from the
confidence interval for the specified confidence level and tenor. The color shows
whether or not the number of deviations is accepted based on a binomial dis-
tribution of 84 data points.

If the cell in table 14 is green it means that the model were able to capture the
realized zero rate in the specified confidence interval. Yellow cell means that we
have more exceptions than expected from the distribution. The red cell implies
that the number of exceptions is more than the given distribution allows us to
have, given the confidence level. We see from the table 14 that we have only
red cells for higher tenors. For the lower tenors we get fewer exceptions.

When comparing the traffic light table to the plots presented above, we see
that we have some exceptions but they are spread apart from each other and
they are not far from the estimated confidence interval. It seems to be able to
follow the realized zero rate well but being a bit slow. Given a change in the
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zero rate our model needs a few days to react to the given change. This causes
some exceptions in the beginning of big fluctuations.

Comparing the figures 11, 12 and 13 for the different tenors we see that larger
tenors such as ’6M’ and ’5Y’ seem to have more exceptions.

5.4.2 Backtesting Spread

Further we want to analyse how well our model can predict spreads. The spec-
ified spreads above are presented in plots below for the different confidence
intervals.

Figure 15: The plots show the backtest of spreads with the tenors [10Y −
5Y, 5Y − 6M ] at 99% confidence level. The blue line is the realized spread in
basis points. The black dashed line represents the estimated 99% confidence
interval.

Figure 16: The plots show the backtest of spreads with the tenors [10Y −
5Y, 5Y − 6M ] at 95% confidence level. The blue line is the realized spread in
basis points. The black dashed line represents the estimated 95% confidence
interval.
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Figure 17: The plots show the backtest of spreads with the tenors [10Y −
5Y, 5Y − 6M ] at 75% confidence level. The blue line is the realized spread in
basis points. The black dashed line represents the estimated 75% confidence
interval.

The number of exceptions from the specified confidence interval for all different
spread are presented below in the table.

Figure 18: The values in the table present the number of exceptions from the
confidence interval for the specified confidence level and spread-tenor. The color
shows whether or not the number of deviations is accepted based on a binomial
distribution of 84 data points.

We see that our model is substantially worse at handling spreads. This result is
expected when using a one factor model and we will discuss this further in the
discussion chapter of the report.
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6 Discussion

6.1 Optimization of parameters

We have optimized the parameters using current implicit volatility data using
a damped least square method. The resulting parameters seem to create good
simulated rates. We want simulated rates that converge to our mean reversion
as well as having a relatively high variance. The high variance is important to
make sure that we capture the extremes. At the same time, we want realistic
market scenarios that are likely to occur which implies that the variance cannot
be too large either.

The speed of how fast the simulated path converges to the mean reversion,
θ(t), is called the a parameter. A high a parameter will result in the simulated
path quickly converging to the chosen term structure. This will cause our sim-
ulated rates to be close to each other and our ability to capture a wide range of
future market scenarios will decrease.

The size of the deviation from one step to another is determined by the σ
parameter. With a high σ value we can have large changes between the steps
which will cause larger deviations from the chosen term structure. As men-
tioned above we do not want our simulations to have a to high variance, which
means that both of our parameters should be quite small. Based on the result-
ing simulated rates in figure 6 we are pleased with the calibrated parameters.
The simulated paths follow the mean reversion structure, but we still have some
variance.

In reality we would calibrate the model using historical data so that our Hull-
White process is analyzed under P-measure. The advantage of using a model
under P-measure is that the model will variate less over time. This is because
the current market fluctuations will be damped by adding historical data. Due
to not using P-measure, our model will be more sensitive to current data. The
reason for P-measure not being the risk measure used here is simply due to
lack of time. As we will discuss in section 6.7, this is something that we would
recommend to be done if one would continue this work further.

When comparing the plots for the simulated paths, both short rate and ex-
posure, we need to be careful due to the fact that only the first 100 out of the
10 000 paths are shown in the figures. This means that we should only draw
conclusions from the plots based on the overall appearance of the figures and
not specific paths or extreme values.

Comparing the simulated short rates for both the stressed and non-stressed
calibration we see that they look very similar. This follows from the Hull-White
process being calibrated on the same implicit volatility data. The difference be-
tween the two cases is the mean reversion being shifted with ±24 basis points.
We can see the parallel shift in the mean reversion in the three figures for non-
stress, figure 6, and stress calibrated, figure 7, figure 8. The difference in the
figures are subtle and if we look at the calibrated parameters in table 3 we see
again that the difference is very small.
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6.2 Looking at EAD for the two models

The calculated present value for both the trade and the portfolio are very sim-
ilar to the value that the Bank gets. The small change in the present value is
due to differences in market data used in the calculations. Further in section
6.4 we will discuss the difference in data.

First comparing the EAD for one trade we see that the IMM gives a lower
EAD than the SA-CCR does. The IMM gives a decrease in value at ≈ 36.75%.
Worth noting here is that we do not look at stressed EAD for a single trade,
so if doing so that could result in a higher EAD than what we are seeing right
now. However, we can see a clear decrease in EAD when changing model, this
is shown in the table below. Below the final EAD values are presented. These
are the EAD we must use when calculating the capital requirement.

Model One trade Portfolio
IMM 49 539 399 107 454 743

SA-CCR 78 316 719 119 852 713

Table 8: The final EAD values that will be used for the different models.

Further we will compare the EAD for the portfolio. The scenario that gave the
highest EAD, and is presented in the table above, is the IMM model calibrated
on −24bp stressed input data. In all further calculations of capital requirements
in this report it is the values presented in table 8 that will be used.

We see that using the IMM model would result in a ≈ 11% decrease of EAD
compared to what the SA-CCR gives for the portfolio. This is a substantial
decrease considering the large amounts we are analysing. For this portfolio the
Bank would approximately save 11% this quarter on a portfolio with a PV at
approximately 350 000 SEK by changing model.

We have a portfolio that netted have a low PV. Following from this the portfolio
has a relatively low exposure. One can see this as the portfolio being hedged
compared to the one trade we began looking at that has a larger PV . This
means that we have reduced the risk for the Bank by complementing the in-
vestment of derivatives with opposite stake, in this case IRS with negative PVs.
The IMM model simulates possible market scenarios and analyze the exposure
at the worst potential market scenario. This worst exposure is then increased
with 40%, due to the α parameter, and this is our final EAD. This approach
tailors the EAD to the specific underlying risk factors relevant to the portfolio.
The SA-CCR model is a general template that is created to work on all types of
derivatives. This model does not benefit large hedged portfolios. Our result is
in line with the theory that an IMM model normally lower the capital require-
ments.
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6.3 Backtesting

The purpose of backtesting is to show that our simulated rates manage to cap-
ture the actual rate, which we succeed with for shorter tenors. For longer tenors,
longer than 6 months, our model seems to have narrow confidence intervals that
do not manage to capture the realization. As mentioned in the result, the ex-
ceptions are not far outside of the confidence intervals. Further, the exceptions
seem to be far apart which is a positive thing compared to if they would all have
been at the same place. Even though we do have some exceptions, the plots
presented in figure 11, 12 and 13 show a promising result.

Both the rates and spreads seem to have a delayed reaction to the changes
in the market. We can see this by the confidence intervals being skewed to the
right compared to the realization. This is normal and quite common that fore-
casts tend to be a bit behind real fluctuations. However, this could be caused by
the a value being too high and the σ parameter being too low. A high value of a
and a low value of σ will create a process that strongly follows the mean rever-
sion. Our result may suggest that our process has a too strong mean reversion
dependence. It may therefore be worth looking into altering the parameters a
bit, by altering the calibration, for this reason.

The result from the spreads shows that our model is not good at capturing
the realized spread. However, we were expecting this result since we are using
a one factor model. To improve the result for the spreads one can consider a
two factor Hull-White model or a time series model. Using for example a two
factor Hull-White model instead could improve the fluctuations a bit, this would
especially improve the result of the backtesting of the spreads.

The confidence intervals are very narrow, especially for the spreads, which we
find to be a bit surprising. We suspect that we introduce noise into our sim-
ulation which dampens the variation between the different paths. We chose to
calculate the variance of the noise for the spreads which has been added to the
confidence interval, as we presented in the methodology. This increased the
distance between the upper and lower limit. We still get poor results from the
spreads which suggest that either we calculate the noise variance wrong, or the
introduced noise was not the underlying issue.

Another aspect to take into consideration when evaluating backtesting is that
the historic data used contain two stressed periods. From the data we can see
two pronounced peaks at the beginning of 2020 and 2022 which corresponds to
Covid-19 respectively the Russian invasion of Ukraine. It is more difficult to
model and predict stressed periods which will have a substantial effect on the
backtesting results and probably gives us more exceptions than if it would have
been a ”normal” period. The effect these stressed periods has can be seen by
repeating the backtesting on data before the Covid-crash. Unfortunately, we
did not have access to more data so we could not fully determine the effect of
this.
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6.4 The data used

Throughout the report we have used the 28th of February as our evaluation
date, for all results reported above. The reason this specific date is used is
solely because this is the day we first happened to get data for, and then we
just continued using this date since. A date relatively far back in history was
beneficial for us to use to make sure that we could present all the data with-
out something being censured by the bank secrecy, but this specific date was
just chosen at random. However, the choice of evaluation date should not af-
fect the overall results noticeable since historical data and set rates are used etc.

We faced some challenges in obtaining the market data. We obtained two
sets of data. At first, we got current market data for the chosen evaluation
date. During the backtesting we used historical market data instead to be able
to evaluate our model in the past. It is not routine for the Bank to access
historical market data like this and therefore there were no previous methods
for obtaining this. The historical data gathered from the Bank was compared
against the data previously obtained, for the same date, and unfortunately they
did not match.

When using the first dataset introduced, our simulated rate and PV corre-
sponded with the Bank’s result. In our model we need to use historical market
data which caused our result to be different from the result from the Bank.
To be able to compare and analyze the result we have only used the historical
dataset in this report.

6.5 Potential sources of errors and simplifications

One of the major sources of errors found in our model is the use of Hull-White
under risk neutral measures, Q-measure, instead of under P-measure. Doing
the calculations under Q-measure results in the model to better follow current
market changes. Because of this, our result would probably change if we used
a P-measure model instead. The EAD could increase due to the P-measure not
being able to follow market fluctuations as well.

The change of measurement would affect the backtesting as well. As we can
see in figure 11, 12 and 13 our model follows the market fluctuations well. But
it has got some delayed reactions to market fluctuations. This would probably
become even worse when changing to P-measure.

As mentioned above the result presented in this report are not based on the
same market data the Bank uses in their calculations. The valuation of the
swaps and simulated zero rates are based on market data and because of this
the results will be different depending on which data is used. This could be
good to be aware of, but in this report, we are mainly interested in comparing
the two models to each other and not the specific value so it should not affect
the comparison of the two models too much.
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Further some simplifications we made of the calculations are that we only looked
at Interest Rate Swaps in SEK without any collateral agreements. This is one
of the easier form of transactions from a calculation point of view. To further
validate the results and compare the two models more thoroughly a wider range
of transactions should be considered, including different types of transactions
and for different currencies. If we would have had the time this would definitely
have been one of the main aspects we would focus to expand the models for.

We did not look at any company specific netting agreements, instead we netted
all counterparties by just summing the NPV for all trades. When backtesting
for trades without collateral normally you would have a longer range of days
than 10, which is what we have used now. But due to already a small number
of data points the decision to use 10 days periods, which is normally used for
secured transactions, were made for this case too. This is assumed to give a
good enough validation anyway.

6.6 Fulfillment of purpose

As we expected, the IMM model gave a lower EAD than SA-CCR. We thought
that we would get this outcome because IMM allows a more tailored risk mea-
surement of the trading book. However, the IMM model is a more expensive
approach for a financial institution to implement and uphold. Considering this
cost, the decreased percentage of the capital held because of a change in meth-
ods, the cost of changing the method must be lower for this to really be cost
efficient for the Bank. We believe that our results show promise of a lowered
capital requirement and is worth further investigation.

During this project we have had some difficulties with python licenses and mar-
ket data which delayed our implementation of the exposure calculations. The
license for our computers supplied by the Bank could not install Quantlib, so the
implementations has been done on our personal computers. Since the Bank’s
trading book, evaluation of counterparties, market predictions and a lot of other
data are classified we have not been able to use that in our work. This meant
that we needed to implement all methods from scratch. However, we have been
able to compare some parts of the implementations such as the present value
at the evaluation date and the simulated interest rates. On the original dataset
our results have corresponded to the Bank’s values. With the new historical
dataset we see substantial differences in IMM.

6.7 Further research and improvements

For future work we would advise one to start by modifying the calibration
method of the Hull-White process. We calibrate our model on current market
data which does not fulfill the requirements of an IMM model, an IMM model
needs to be calibrated on historical market data. Another aspect we would want
to explore is looking at different models, other than Hull-White. A one-factor
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Hull-White model is a simple model that only needs one input parameter. This
limits the model’s ability to correctly follow the zero rate. An alternative to
a one-factor Hull-White process is a two-factor Hull-White, Cox-Ingersoll-Ross
(CIR) model or a filter method such as a Nelson-Siegel term structure model.

With the new calibrated model we would analyze it by backtesting. Usually, we
would not expect an improvement on the backtesting with a historical calibrated
model. Neither would we expect an improvement for the spreads. Because of
this, we decided to look at another method to model zero rates.

We looked at modelling the yield term structure using an arbitrage-free Nelson-
Siegel term structure model that showed promise. The calibration was done
with a Kalman filter where we updated the parameters based on minimizing a
likelihood function. We adjust the functions to be under P-measure and add
an adjustment term to make it arbitrage free. The calculations are based on
the following article [14]. In the lack of time that was experienced we did not
manage to analyze the model enough to present it as a result in this report.

Further, exposure calculations for different types of derivatives and currency
modelling should be implemented. Adding a model for currency will introduce
a new risk factor that will need to be evaluated with backtesting. These are
necessary to evaluate the entire portfolio of the Bank.

As it is now, this model does not implement or take the wrong way risk into con-
sideration in any way. This is a very important factor to consider, as described
in the theory section above, so should this work be developed in the future this
is something that we strongly advise to be done. As described, WWR can be
represented through the stressed EPE calculation, or even through the choice
of α parameter. But since all financial institutions, regardless of which capital
requirement model is in use, should have procedures in place to identify and
manage WWR, the lack of it in this report should not have a major impact on
the decision of which model to use for the institute. However, since WWR can
be represented through the stressed EPE calculation this may affect and give
another result than the one presented in this report, should WWR be taken into
consideration.
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7 Conclusions

In the process of judging how trustworthy our built IMM model is, one of the
tools used for this was backtesting. Since we chose to implement a simple short
rate model, a one factor Hull-White model, we did not expect perfect result
either. Looking at the plots of the confidence intervals our model seems to fol-
low the real data quite well, there are no large deviations from the real dataset.
Then, looking at the traffic light table the shorter tenors does perform quite
well as predicted, and as assumed the longer tenors perform a bit worse because
the longer into the future we get the harder it is to predict market fluctuations
and movements.

The purpose of this project has been to see if an IMM model would lower
the capital requirements of the Bank and therefore be a good investment for
the Bank to start creating their own IMM model. This has been done by com-
paring this model with the SA-CCR one, currently used by the Bank today.
Based on our result, our IMM model results in a lower EAD compared to the
SA-CCR. The IMM model would decrease the EAD with approximately 11%
for the entire portfolio and 36.75% for one trade. This result shows promise
that our model can decrease the capital requirement for the Bank’s portfolio, so
based on these results we believe that changing model to an IMM model would
be worth looking into.

We have concluded this report by some suggestions on how to improve and
develop this work further. The major changes we would advise one to do is
using a different, more precise, model for the simulation process and make sure
that this is calibrated using historical data. In addition, using a bigger dataset
would be beneficial since we have had to do a few adjustments due to a shortage
of data points.
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9 Appendix

9.1 Table of supervisory factors

[3]
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10 Popular scientific summary

10.1 Comparing the two major models of capital require-
ments for financial institutions

In this work we have implemented and compared the two Basel III standard
models of how to compute the capital requirement for financial institutions.
These models being the Standardized Approach for Counterparty Credit Risk
(SA-CCR) and the Internal Model Method (IMM). This work has been carried
out working together with one of the major banks in Sweden, using their data
and trades to obtain the results. The SA-CCR model is currently used by the
Bank, and this model is seen as an easy way of calculating the capital require-
ment, but quite blunt. The IMM model offers more flexibility and is tailored
to the Bank’s trading portfolio, which means that potentially the usage of this
model instead could save the Bank a sizeable amount of money. The result
found was that the change of models could lower the capital requirement cost
for the Bank by approximately 11 %.

The capital requirement means the amount of capital the institution is required
to hold based on the counterparty credit risk. The counterparty credit risk
meaning how large the exposure is towards the counterparty and how much risk
the counterparty implies.

Since the IMM model enables more flexibility, it also comes with a great deal of
responsibility and guidelines to follow. One of these is to backtest the model,
which means that one uses historical data to predict the interest rate a certain
time period into the future, and then compare this prediction with the actual
value of that day. This shows how accurate the model created is, and therefore
strengthens the result.

This work was done upon request of the Bank, to do a first investigation of
if the change of methods would be beneficial for the Bank and something worth
further looking into. This could potentially mean a lot of money saved by the
Bank, money that would not be tied up and instead could be invested and hope-
fully lead to a more prosperous Bank.

References on how to implement an IMM model has been difficult to find, these
models are as mentioned above quite closely linked to the transactions of the
portfolio and therefore confidential information most of the times. This report
can therefore be seen as a brief introduction on how to implement an IMM
model, and important aspects to consider.
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