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Abstract

The alignment process of beamlines at MAX IV takes up a lot of the scientists
time, which instead could be used for experiments. In the beamline, mirrors are
modeled at micro scales in order to produce the correct light. This thesis ex-
plores possibilities and pitfalls in using machine learning for aligning the optical
elements of a beamline. Three different approaches are evaluated: Variational au-
toencoders, reinforcement learning and Bayesian optimization. Where promis-
ing results were obtained from the variational autoencoder and the Bayesian op-
timization, while the results from the reinfrocement learning methods were in-
conclusive. The autoencoder managed to quite well reconstruct and create new
data, and the optimizer could improve a poorly aligned beam substantially. The
project contributes with valuable insights for future work of this complex prob-
lem.
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Chapter 1

Introduction

This report presents work carried out at the MAX IV laboratory in Lund, Sweden. It includes
an initial approach to applying machine learning in the beamline alignment process and
suggests what work could be done in the future.

1.1 Background
Light is one of the most important tools for the scientific pursuit of understanding nature.
From Röntgen’s discovery of X-rays in 1895, and the later foundation of crystallography,
which can unravel the atomic structure of materials, the use of electromagnetic waves in
experiments have only increased. Scientists tool of choice has more and more become syn-
chrotron radiation, which is the bright emission of photons when charged particles travel
in curves and experience the centripetal force. These curves are called storage rings and can
have diameters ranging from ten to several 100 meters [Altarelli and Salam, 2004].

MAX IV is the first of a new generation of storage rings, providing scientists with state-
of-the-art X-rays ranging from 0.1 keV to 100 keV in photon energies. The facility consists
of two storage rings which accelerate electrons at different energies, one at 1.5 GeV and one at
3 GeV. They are both fed by a 3 GeV linear accelerator which also connects to a short-pulse
facility (see figure 1.1). The 1.5 GeV ring has a circumference of 98 meters and is used for
lower photon energies (soft X-rays and ultraviolet light). The 3 GeV has a circumference of
528 meters and optimized for hard X-rays (greater than 5 keV in photon energy) . Every new
project requires exact properties of the rays, which are achieved by sending them through the
beamline. In the beamline, light travels through a series of precisely modeled, measured and
aligned X-ray optics and aperatures [Tavares et al., 2014]. This project will be focused on the
VERITAS beamline, which is located on the 3 GeV ring operating in the soft X-ray domain
(see figure 1.1).
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1. Introduction

Figure 1.1: The MAX IV facility [MAX IV, nd]

Just like visible light, X-rays are electromagnetic waves with the only difference that the
photons have higher energy and travel with down to a millionth of the wavelength of visible
light. This will cause the X-rays to interact very differently with matter, and accordingly the
optical elements will look very different from how they would look for visible light. Due to
the high frequency of the X-rays they will have a refractive index very close to 1.0 for most
materials, which means that they will penetrate without changing direction much. To aviod
the X-rays from eventually getting absorbed they have to meet the conditions for total exter-
nal refraction which occurs at very small “grazing" angles [Cremer, 2012]. To achieve small
focal spots, the beamlines can become very long (the longest at MAX IV is over 100 meters)
and they also have to be in vacuum since the rays can get easily attenuated in air. When well
aligned, the light will have high energy resolution and hit the target sample at the smallest fo-
cal point. The placement and settings of the optical elements are typically designed through
geometric ray tracing in computer simulations.

The mirrors of the beamline are operated in vacuum where all motorized axes are run by step-
per motors. The motion is monitored by a set of linear absolute and incremental encoders.
The steps that the mirrors are moved by are on scales down to 0.01 mRad and nanometers in
linear motion. Vibrations, temperature and the state of the electron beam in the accelerator
are all external parameters that will impact alignment and introduce an uncertainty in the
setting of the mirrors. This means that the variable space for a single mirror is large and
when multiple mirrors are introduced the alignment problem becomes complex. As there
are practically no fixed, absolute reference points, the alignment process of the beamline can
take many hours depending on the quality of light required. To achieve good performance, a
beamline scientist will have to gain a lot of experience of working with the beamline which
may take several months of daily tweaking to obtain. Today, the scientists spend a big part of
their time on the alignment, time that they could be using to do the actual experiments. With
the application of even more complex optical systems1 the topic of automatic alignment with

1e.g. CoSAXS with 4 Kirkpatrick Baez mirrors [Kirkpatric and Baez, 1948]
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1.2 Aim

computers is discussed frequently.

1.2 Aim
The area of machine intelligence has increased rapidly in recent years. Naturally, the question
of if and how machine learning can aid the optical alignment at MAX IV rises. Which, given the
complexity of the problem, is a very broad question and could never be answered fully by a
master thesis project. The aim of this project was rather to answer it at least partially. Each
of the 16 beamlines have different optical instruments and achieving a general model for all
of them would be impossible. This project focuses thus on one beamline, VERITAS, and
uses only simulated data for training and predicting. The input parameters are the physical
settings of the optical elements and the output consists of intensity maps of the light (see
section Beamline and Simluation). An ideal model would give answers to:

• Where are we? - Given the output intensity maps, what are the settings of the optical
instruments in the beamline?

• Where are we going? - What should we change to achieve the desired focal point

Achieving a robust model, fully integrated to the operational beamline would have been
optimistic for a master thesis project. This project was rather aimed at giving indications
in what directions to move. What sort of models would be fit for the problem and what are
their pitfalls and possibilities? This would contribute with valuable insights in using machine
learning in the alignment process at MAX IV and pave the way for future work.

1.3 Methodology
The aim of the project was to conduct an empirical evaluation of a couple different machine
learning approaches to the alignment problem. In order to be sure that the ML methods were
well chosen, the first step of the project was to do a system identification.

• “What do we want to predict?”

• “How do the available data look?”

• “Which parts of the data are relevant for our purpose?”

were some questions raised. The next step was to select appropriate data and create a suitable
dataset for training and evaluating our models (see section Dataset). Then the models were
built, trained and evaluated. Based on the evaluations, conclusions were drawn to if the
models were good or bad approaches to the problem and how this project could be built
upon in the future. Three types of models were tested and evaluated: variational autoencoder,
reinforcement learning and Bayesian optimization.

9



1. Introduction

1.3.1 Contribution
This thesis contributes with an initial approach to achieving an automatic alignment process
at the MAX IV facility. It shines a light on the three methods, how they could be imple-
mented for the problem and how well they work. The groundwork for setting up a machine
learning algorithm is done, with a system identification, data analysis and creation of data
sets. Suggestions for future work are made along with ideas of how the project could be scaled
up. This project is an initial look into a field which could have big impact on, not just MAX
IV, but for storage rings in general.

1.3.2 Outline
The basic concepts and theory behind the methods are presented in chapter 2 along with prior
work on the subject. In the next chapter (3) the approach to the problem is addressed, with
details about the beamline and data in section 3.1 and how the architectures of the different
models were designed. Specific implementations and evaluations of the models performance
are presented in the following chapter (4). Lastly, conclusions and ideas for future work are
presented.
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Chapter 2

Theory

In this chapter all the relevant theory behind the evaluated methods to apply ML to the
problem of beamline alignment is presented. It includes the scientific ground from which
this project is built upon with background information on where automation and machine
learning have been attempted at other synchrotron facilities.

2.1 Prior Work
Machine learning in the calibration process had not been explored before at MAX IV. Similar
projects have been done at other facilities, but since MAX IV is one-of-a-kind, finding prior
work was difficult. [Nash et al., 2020] at RadiaSoft LCC in Boulder, USA presented work
on a reduced model for beamline control. The paper was mostly about creating a model for
simulating the beamline but in the final part, the model was used to form a ML algorithm.
The algorithm learned the misalignments from intensity data following a simple mirror sys-
tem using a CNN. They give ideas for future development of the model and plan to expand it
to use more paramaters of the beamline [Nash et al., 2020]. The paper was seen as inspiring
in constructing the Variational Autoencoder (VAE), in which both the encoder and decoder
consists of convolutional layers (see section 2.2.1). [Maffettone et al., 2021] also at the NSLS-
II, presented work about ’gamifying’ the beamline using reinforcement learning methods.
However, in their case, the focus is not on the alignment process but on analysing the sam-
ples of materials. They managed to classify bad seeds based on their scattering characteristics
right in almost 100% of possible cases [Maffettone et al., 2021]. The paper showed the pow-
erful potential of RL to increase the scientific output of beamlines and was an inspiration to
try reinforcement learning on the alignment process.
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2. Theory

Figure 2.1: General design of a variational autoencoder
[Ohlsson and Edén, 2020]

2.2 Variational Autoencoder
The variational autoencoder is a generative model which means that it can create its own
data. The general design can be seen in figure 2.1. The VAE is a generalization of the au-
toencoder where the data is downsampled through a series of layers into the “bottleneck”
(also called latent space) and then upsampled to the same size again. What is special about
the variational autoencoder, compared to the regular autoencoder, is that the VAE learns a
probabilistic distribution in the latent space which then can used to generate new data syn-
thetically. The latent space is represented by a mean and standard deviation vector, which
represents a normal distribution. The training is conducted in the following steps:

• A data sample is fed into the encoder network and downsampled to form the distri-
butions of the latent space (the mean and standard deviation).

• From the resulting distributions, a point is sampled. This is the sampled latent vector.

• The sampled latent vector is fed into the decoder which scales it up to the same shape
as the input.

• The reconstruction error between the input and decoded data is calculated and back-
propagated through the networks.

After training, data can be sampled directly from the distributions in the latent space and
then reconstructed in the decoder to generate new samples [Ohlsson and Edén, 2020].

2.2.1 Layers
A deep learning model consists of several layers with, in many cases, millions of nodes. The
basic idea of how a node works can be seen in figure 2.2, weights are applied to the input
values which are then summed up and put through an activation function. The activation
function introduces a non-linearity and without it the network would just be a series of
linear transformations which could be collapsed to one single layer [Ohlsson and Edén, 2020].
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2.2 Variational Autoencoder

Figure 2.2: Basic idea of a node in a neural network
[Bennström and Winzell, 2021]

A popular activation function in deep learning is the rectified linear unit (ReLU), it just a
ramp function

f (x) =
 x, x ≥ 0

0, x < 0
. (2.1)

Some reasons of its popularity lies in the simplicity of implementation and that it has been
shown to accelerate convergence. However, it can cause neurons to “die". The “dead neuron"
problem can occur when a large gradient is flowing through the neuron which can cause the
weight to update in a way that the output is never greater than zero. The output of the
neuron then irreversibly always becomes zero due to the ReLU. A solution to this problem is
the Leaky-ReLU

f (x) =
 x, x ≥ 0

kx, x < 0
, (2.2)

for some small, positive k. It allows the neuron to calculate the gradient even if the output is
negative and prevents it from “dying" [Xu et al., 2020].

(a) MLP (b) Convloutional layer

Figure 2.3: Two common types of layers in a neural network
[Ohlsson and Edén, 2020]
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2. Theory

The layers of the VAE can be fully connected, dense layers (multi-layer perceptron, MLP)
or convolutional layers. Usually the encoder and decoder networks consist of a combination
of the two. An example of a multi-layer perceptron can be seen in figure 2.3a, all nodes are
connected from one layer to the next and the information is passed through while weights
are applied at each node. The convolutional layer can be seen in figure 2.3b, the input layer
is convoluted by a kernel with a defined size. Each node in the hidden layer is connected
to the same amount of input nodes as the size of the kernel. The size of the hidden layer is
detmined by the size and stride of the kernel. For fast data manipulation, the weights of the
kernel can be fixed and not trained, then the layer becomes a pooling layer. A common way
of downsampling is using a max pooling layer which just takes the max value in the kernel
for each node.

2.2.2 Loss
The loss plays a key role in any ML algorithm, it is through minimizing the loss the model
“learns” by optimizing the weights. Any training dataset can be seen as a sample from a
distribution p(D), which, assuming indipendent samples, can be written

p(D) =
∏

n

p(tn, xn), (2.3)

where p(tn, xn) is the joint distribution for the target tn and input xn. The network produces
an output y(x,ω), where ω denotes the parameters (weights) of the model. The probability
of getting sample D from the model (given ω) is called the likelihood and gives

p(D|ω) =
∏

n

p(tn, xn|ω). (2.4)

The learning process means basically determining the unknown parameters of the model by
maximizing this likelihood [Ohlsson and Edén, 2020]. When working with images, which
are big input spaces, the product of all the probabilities can be numerically difficult for the
computer to handle and might lead to underflow. This is solved by taking the logarithm
which converts the product to a sum. This leads us to our reconstruction loss function which
is that we want to minimize the negative log-likelihood, we get the cross-entropy

E(ω) = − log p(D|ω) = −
∑

n

tn log(yn) + (1 − tn) log(1 − yn). (2.5)

Ensuring zero-loss reconstruction for every possible data point is in most cases near impos-
sible and will lead to overfitting, where some reconstructions will not make any sense. To
prevent the VAE from overfitting, it is important that the distributions in the latent space are
kept close to normal. Thus sampling from the latent space will give data that makes sense in
the context. To enforce the normal distributions, a regularization term on the latent space is
added to the loss function. The loss then consists of the reconstruction error and the regular-
izer. This regularizing term is expressed as the Kullback-Leibler divergence [Odaibo, 2019].
The KL divergence is defined as:

DKL(p||q) =
∫

p(x) log
(
p(x)
q(x)

)
dx, (2.6)
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2.3 Reinforcement Learning

which, when both p,q are Gaussian distributions can be simplified to

DKL(p||q) =
∫

p(x) log p(x)dx −
∫

p(x) log q(x)dx

=
1
2

log(2πσ2
2) +
σ2

1 + (µ1 − µ2)2

2σ2
2

−
1
2

(1 + log(2πσ2
1))

= log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

2σ2
2

−
1
2
. (2.7)

In our case, the distribution q(µ2, σ
2
2), which we are comparing to should have zero mean

and unit variance. This gives

DKL(µ1, σ
2
1) = −

1
2

(1 + logσ2
1 − µ1 − σ

2
1). (2.8)

The total loss is then taken as a sum of the cross-entropy and KL-divergence [Bishop, 2006].

To update the weights (while minimizing the loss) methods using gradient descent are com-
mon, i.e.

∆ωi = −η
δE
δωi
.

However, for efficient and reliable optimization the update formula has to be a bit more
advanced. In this project the adaptive moment estimation (Adam) optimizer will be used in
all VAE and RL models. The method runs averages mk and vk , which depend of the gradient
gk as:

mk(t + 1) = β1mk(t) + (1 − β1)gk(t)
vk(t + 1) = β2vk(t) + (1 − β2)g2

k(t).

With m̂k(t + 1) = mk(t + 1)/(1 − βt
1) and v̂k(t + 1) = vk(t + 1)/(1 − βt

2) we get the update
formula:

∆ωk(t + 1) = −η
m̂k(t + 1)

√
v̂k(t + 1) + ϵ

. (2.9)

Typical parameter values are β1 = 0.9, β2 = 0.999 and ϵ = 10−8 [Ohlsson and Edén, 2020].

2.3 Reinforcement Learning
Reinforcement learning is a specific area of machine learning which consists of an abundance
of methods for various tasks. The basics of a RL model is that we have an agent which takes
actions in an environment. The environment gives the agent rewards and penalties as a result
of the outcome of the agent’s actions. The agent then tries to learn how to maximize its
rewards. The way the agent acts at a given time is governed by the policy. The policy is a
mapping from the observation space to the action space and can be anything from a simple
look-up table to complex computations. The policy makes up the core of a reinforcement
learning agent with the general goal to find the optimal policy for completing the given task
[Sutton and Barto, 2018].
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2. Theory

2.3.1 Policy Gradient Methods
Policy gradient methods is a set of RL methods that learn a parameterized policy without
consulting a value function1. This means that the model predicts the action directly instead
of first predicting the reward. The policy is based on the expected future rewards from the ac-
tion using gradient descent. Some policy gradient methods are methods that also learns an ap-
proximate value function, these are called Actor-Critic methods. The actor part is a reference
to the learned policy and will give probabilities for each action in the action space. The critic
part is the learned value function which estimates future rewards. An advantage of policy gra-
dient methods is that they can deal with continuous action spaces [Sutton and Barto, 2018].
The Deep Deterministic Policy Gradient method is an extension of the Actor-Critic which allows
the use of continuous action spaces. The DDPG also has actor and critic with the same re-
sponsibilities. However, it also has two target networks which are updated slowly. The target
networks give stability to the learning process and allows the model to learn a bit at a time
instead of trying to learn the whole policy for every move. How fast the targets are updated
is governed by the hyperparameter τ. A discount factor, γ, is used for weighting the imme-
diate next predicted states higher than the ones far in the future. The following pseudo code
describes the algorithm: [Lillicrap et al., 2016]

Algorithm 1 DDPG Algorithm

Randomly initialize critic Q(s, a) and actor µ(s) networks
Initialize target network Q′ and µ
Initialize replay buffer R
for episode = 1, M do

Initialize a random noise process N for exploring the action space properly
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st) + Nt according to current policy and exploration noise
Execute action at and retrieve reward rt and new state st+1 from environment
Store the transition (st, at, rt, st+1) in R
Sample a random batch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ(si + 1))
Update critic by minimizing the loss: L = 1

N
∑N

i (yi − Q(si, ai))
Update the actor using the sampled policy gradient
Update the target network weights, ω:

ωQ′ ← τωQ + (1 − τ)ωQ′

ωµ
′

← τωµ + (1 − τ)ωµ′

end for
end for

The state can consist of images and the actor and critic networks can have convolutional
layers, in this project they were implemented as dense layers (see section 2.2.1). ReLU was

1A value function returns the expected reward from doing a certain action, in a certain state and then
following the current policy [Sutton and Barto, 2018]
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2.4 Bayesian Optimization

used as activation function and Adam as the optimizer. The noise process N is important for
forcing the model to explore the action space properly.

Another policy gradient method is the Proximal Policy Optimization [Shulman et al., 2017],
which has been shown to perform well on continuous control tasks. It is an extension of
trust region methods in which the optimal policy is found though minimization of a surro-
gate loss function constrained in a region of trust [Shulman et al., 2015]. In PPO the region
of trust constraint is dropped for a penalty on the loss function. Given policy π with weights
θ, we denote the probability ratio

rt(θ) =
πθ(at |st)
πθold(at |st)

.

The surrogate loss is then defined as

L(θ) = Êt
[
min

(
rt(θ), clip(rt(θ), 1 − ϵ , 1 + ϵ )

)
Ât

]
(2.10)

where ϵ is a hyperparameter and Ât is the estimation of advantage (future rewards) for
timestep, t. The expectation Êt indicates the empirical average over a finite batch of samples.
The clipping in the second term means that we penalize changes to the policy that move rt(θ)
away from 1, thus keeping the changes to the policy small. The algorithm is decribed through
the following pseudo code [Shulman et al., 2017]:

Algorithm 2 PPO Algorithm

Initialize policy parameters θ for policy π
for iteration=1,2,... do

Run policy πθold in environment for T timesteps
Compute advatage estimates Â1, ..., Ât through some method of advantage estimation
Optimize surrogate L w.r.t. θ with K epochs and minibatch size M ≤ NT , typically via
Adam
Update policy parameters θold ← θ

end for

2.4 Bayesian Optimization
Bayesian optimization is a class of optimization methods, based on machine learning. The
BOA (Bayesian optimization algorithm) is derivative free for global optimization of black-
box2 problems. BOA is typically well-suited for objective functions that take long time to
evaluate and for which only a couple of hundred evaluations is possible. The algorithm is
focused on solving the problem:

max
x∈A

f (x) (2.11)

Where A should typically be a hyperrectangle {x ∈ Rd : ai ≤ xi ≤ bi} and d ≤ 20. f
should also be a continuous function, in the sense that any two values x1 and x2 which are

2Where the structure of the objective function and/or constraints is unknown
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2. Theory

Figure 2.4: Example of objective and acquisition functions through
iterations of Bayesian optimizaion. The red, dashed curve is the ob-
jective. The blue is the approximated function with the shaded re-
gion being the Gaussian process posterior. The green curve is the
expected improvement.

close should mean that f (x1) and f (x2) also are close. The BOA works in two steps: first,
a Bayesian statistical model is applied to model the objective function, then an acquisition
function decides where to evaluate next. For the statistical model, a Gaussian process is used
to provide a posterior probability. The posterior is updated every time a new observation of
the objective function is made. The acquisition function measures evaluation of the objective
function based on the posterior distribution. There are many alternatives for the acquisition
function, the most commonly used is the expected improvement. We define it as:

EIn(x) := En[max( f (x) − f ∗n , 0)] (2.12)

Where f (x) denotes a new evaluation of the objective function at x, f ∗n is the current ob-
served maximum value. En[·] = E[·|x1:n, y1:n] is the expectation taken under the posterior
distribution given previous evaluations of f at x1, ..., xn. The posterior is a Gaussian process
with mean µn(x) and variance σ2

n(x). The expected improvement is evaluated in closed form
using integration by parts, resulting in the following expression:

EIn(x) = max(∆n(x), 0) + σn(x)ϕ
∆n(x)
σn(x)

− |∆n(x)|Φ
∆n(x)
σn(x)

(2.13)

Where ∆n(x) = µn(x) − f ∗n is the expected difference in quality between the new point and
the previous best. The algorithm then evaluates at the point with the largest expected im-
provement. A simplified example can be seen in figure 2.4. At t=1 an initial guess is made. At
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that point we know the exact value of the objective function and will have low uncertainty
around it, the expected improvement is low for points that are close. The acquisition func-
tion gives the point with the highest probability of improvement and we sample there. The
algorithm keeps iterating and eventually finds the maximum [Frazier, 2018].

2.4.1 HyperMapper
HyperMapper 2.0 is a optimization tool, based on Bayesian optimization [Nardi et al., 2019]
. It is multi-objective which gives the opportunity to optimize functions with more than
one output, where there might be a trade off between them. Since it is based on Bayesian
optimization it is derivative free, which is positive since derivatives can be tricky to work
with. The mono-objective formulation of HyperMapper is the problem of finding a global
minimizer of an unknown (black-box) objective function f :

x∗ = arg min
x∈X

f (x) (2.14)

where X is the decision space of interest and f : X → R is a deterministic function over a
domain of interest that imposes lower and upper bounds on the input variables. HyperMap-
per allows the user to add prior knowledge on the distribution of the input parameters, e.g.
if the user expects the optimal choice to be towards the middle but still wants to explore the
whole domain the parameter can be set to follow a Gaussian distribution [Nardi et al., 2019].
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Chapter 3

Approach

Here follows the approach taken to address the questions raised in section 1.2. Detailed in-
formation about the beamline and how the alignment process works is presented along with
which data was chosen for the different methods and how they were designed.

3.1 Beamline and Simulation
The alignment process is aided though sophisticated computer simulations. This project was
focused on simulated data where the MAX IV developed Python package XRT is used for all
the simulations [Klementiev and Chernikov, 2014]. In XRT all parameters of the beamline
are set and a specified number of rays are traced though the beamline. Anywhere along the
beamline, 2D intensity maps and 1D histograms can be generated by counting each traced
ray. The output from a simulation run can be seen in figure 3.1. The simulator is built upon
geometric raytracing, which means that each individual ray will be traced through the beam-
line. In order to achieve realistic results a lot of rays1 have to be traced through the system
which will require computational power and time2. The real data will look different from the
simulated since it is not possible to take images of the real beam, due to the small size. The 2D
images have to be constructed from intensity data (see figure 3.5) and will have lower resolu-
tion (in the simulation there is no resolution limit). The 1D histograms of the beam intensity
will, on the other hand, have comparable values (with some uncertainty due to temperature,
vibrations etc.) to the simulated.

110000 is acceptable but should preferably be more than 100000 rays
2≈ 5 s per tracing with 10000 rays running on several CPU cores
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Figure 3.1: Typical output from a xrt simulation. The three plots to
the left display the 2D intensity map and the two histograms on the
axes (Notice that the z-axis here will be the y-axis in our coordinate
system). The labels on the axes also shows the location of the beam
with respect to the nominal axis through the target. The plot to the
right shows the energy spectra of the beam, and looking at the colour
of the beam in the 2D plot we can see that the different energies of
the light is distributed evenly.

Figure 3.2: The optical elements and their position in the VERITAS
beamline at MAX IV. EPU stands for elliptically polarazing undula-
tor, which is the source from which the radiation from the storage
ring is fed. The monochromator filters out different energy levels
such that all light that hits the target is within the desired energy
range. M1-M4 are the mirrors in the system. The beam hits the
sample at the target and the resulting radiation is collected in the
spectrometer for analysis [Samuli et al., 2017].

All simulations of this project were from the VERITAS beamline. VERITAS operates in the
275-1500 eV energy range (soft X-rays). It is almost 60 meters from the source to the target,
the positions of the optical elements can be seen in figure 3.2. The experimental goal of the
alignment process is to find the minimum focal spot size at the desired target position. The
achieved focal spot from the real mirror depends on several factors: the position of the mirror,
the size of the source and its angular distribution, the optical surface shape, size and the
surface errors and the coating roughness. For this investigation the impact of the upstream
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3.1 Beamline and Simulation

Table 3.1: Parameters and their limits of the M4 mirror

Parameter Pitch Yaw Roll Lateral transl. Vertical transl.

Unit mRad mRad mRad mm mm
Limit ±3.0 ±1.0 ±1.0 ±1.5 ±2.5

elements from M4 was not included. Similarly, the vertical size of the exit slit3 was fixed in
this investigation at 50 µm. The distance of M4 from the exit slit was also fixed in modeling
(14500 mm) and the target position was defined by the ideal optical placement at 700 mm.
The shape of the mirror is absolutely critical for the performance of the beamline. In this
case the surface curvature was calculated from the given ellipse geometry (see appendix D for
details), figure error and surface roughness parameters were added from measurements of the
real surface. These measurements have an error of magnitude 1%, so even if they potentially
could introduce a difference between the simulation and reality, it will be small. The shape
parameters were fixed, thus leaving only the position of the mirror for exploration. This gave
the system five degrees of freedom: Three angles of rotation, namely pitch, yaw and roll; two
directions of translation, namely lateral and vertical. See figure 3.4 for a overview of the M4
mirrors placement in the coordinate system. By keeping all the upstream optics fixed, we
are limiting ourselves to a fine tuning scenario, which will restrict the possible movement of
the M4. The parameters were limited to prevent the mirror from moving off the beam. Each
parameter and limit can be seen in table 3.1. The coordinate system that was used can be seen
in figure 3.3, where the z-axis was fixed along the optimal direction of the beam. It is worth
noting that the labels of the axes are different in XRT where the y and z have switched places.

Figure 3.3: 3D visualization of the beam around the target, with xrt
simulated 2D intenisty maps at the cross sections. The images are
from a perturbed alignment.

3The exit slit acts here as a secondary source to be imaged onto the target by M4 (see figure 3.2)
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Figure 3.4: The position of the M4 mirror in the defined coordinate
system. The green, dashed line represents the nominal axis directly
from the mirror to the target (B). The five parameters are set as off-
sets from the pre-calculated ideal position which is handled by XRT,
thus they have no meaning in the defined coordinate system in the
image.

Figure 3.5: Resulting 2D image of beam intensity from a
pinhole scan at the focal spot of the VERITAS beamline
[Ekholm and Tokushima, 2022].
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3.1.1 Dataset
In experiment, the scientists reconstruct the beam profile in three dimensions using a scanned
blade or small pinhole which is moved through the beam. This is very different from in the
simulation where the exact shape of the beam can be instantly retrieved by defining screens
at desired positions, however, they can yield comparable properties. Just like in figure 3.3,
screens were placed along the beam for recording data from the simulation. A total of nine
screens4 were used at equally spaced distances along the z-axis (y in XRT) starting from 14 mm
ahead of the mirror focal point to 14 mm behind it. Each screen would record the following
information about the beam: two 1D histograms of the intensity of the light along both x
and y axis, one 2D intensity map of the beam on the screen. A total of 256 bins were used
for both axes, resulting in images of 256x256 pixels, which was deemed to be an adequate
resolution. The nine 2D maps of a data sample from one single ray tracing are displayed in
figure 3.6. Corresponding histograms of the middle screen (at focal point) can be seen in
figure 3.7. More 2D plots and scaling data can be seen in appendix B.

Figure 3.6: Result from simulation in XRT. The grayscale images of
the 2D maps, later used in training, taken from 9 screens along the
z-axis, where z=0 is the target focal point. All 2D maps are rescaled
to fit to the image, the scaling of the middle image is printed as dx
and dy. The alignment is slightly perturbed with offsets: pitch =
0.6 mRad, yaw = 0.7 mRad, roll = -0.9 mRad, lateral = -0.3 mm and
vertical = 0.7 mm

4This would give us a good view of the beam in all dimensions, without having to save too many images per
sample.
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Figure 3.7: Full width half maxima calculated for the 1D histograms
of the middle image (at z = 0.0 mm) in figure 3.6, from simulation
in XRT.

The 2D maps were used as gray scale images for direct input into the desired model. The 1D
histograms were not used as is, but could be reduced to one single number, without loosing
any relevant information. The number is the full width half maxima which will be referred to
as FWHM. The FWHM is the width of the peak at the half of the maximum, and is calculated
for a gaussian curve as:

FWHM = 2
√

2 log 2σ,
where σ is the standard deviation. An example is visualized in figure 3.7. Plotting the
FWHMs along the beam provides us with valuable information about the quaility of the
alingment in a very comprised way. One sample would consist of only 18 values5, compared
with the 2D maps which would add up to 256x256x9=589824 values.

Where and how big the impact of the beam on the target is varies a lot for different settings
of the mirror. When perfectly aligned, the dot will be smaller than 0.01 mm in diameter, and
when it is not, it could spread more than 2 mm. In addition to this the displacement in space
could be as much as ±6mm in the lateral direction and ±3mm in the vertical. Thus, to con-
tain all possible tracings within images of fixed sizes in space, the images would need to be
around 16 mm wide and 10 mm high, such an image would need a resolution of 1600x1000
pixels for the perfectly aligned dot to be visible, even as one pixel. This clearly would not
work, the networks would have to be very big to handle that big input space and would not
be able to recognize one white pixel. The solution for this was that all images were re-scaled
to fit only the beam within the image and we kept using images with a 256x256 resolution.
The four6 scaling parameters were then also saved with the images.

5FWHMs for both x- and y-axis with nine z-positions each
6Width, height and center location in space (x,y)
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3.1 Beamline and Simulation

For training and evaluating the VAE a total of three data sets were used, two for training
and one for testing. All sets were created by setting the mirror position at random settings
and then tracing 100000 rays through the virtual beamline. The first training set was created
with parameter limits slightly bigger than what is presented as reasonable in table 3.1. Yaw
and roll were set between ± 20 mRad and the lateral translation between ± 5 mm. This was
done to give the model a clear initial view of the differences in the data. Uniform distribu-
tions were used for the sampling of the pitch, yaw and roll offsets while the lateral and vertical
translations were sampled from normal distributions. A total of 1064 samples were gener-
ated, resulting in 9576 different images for this set. For the second training set the limits were
all reduced to the ones in table 3.1, uniform distributions were used for all parameters. A total
of 366 samples were generated which gave 3294 images. In training, the sets were split 80-20
to training and validation. For accurate, unbiased evaluations you need a separate test set
which the model never “sees” during training. The test set was generated using the same set-
tings as for the second training set and consisted of 266 samples (2394 images). No pre-made
sets were needed for the reinforcement learning or Bayesian optimization algorithms since
the ray tracing was integrated into the learning process. A summary of the folder structure
in which the data was ordered can be seen in figure 3.8. All information about the beamline
and M4 settings for each sample was collected in the file named “data.xml", see appendix A
for an example.

Figure 3.8: Structure of the data sets. Each data folder was named
with a timestamp for when it was created, the histograms and images
were saved with naming convention <timestamp>_<sample num-
ber>_<screen number>.
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Figure 3.9: How the FWHMs of the beam from the x-axis are plotted
around the target focal point. The image is from a well aligned beam.

3.1.2 Alignment
From looking at figure 3.4, the purpose of alignment becomes clear: we want to redirect
the rays coming from the source (point A) to become centered again at the target (point B).
This is done though reconstructions of the beam around the focal spot. Even if the process of
reconstructing the beam is very different from the real to the simulated case, the measurement
of quality of alignment is similar. The FWHM of the light intensity histograms plays a key role
in both real and simulated cases. As the beam is reconstructed (see figure 3.9), the FWHM for
the lateral and veritcal axes are calculated for points along the z-axis and collected in plots.
We end up with two plots as in figure 3.10, where we want both of the minima close to the
center. Typically, the points in the lateral direction should follow a second degree polynomial
while in the vertical they should be in a V-shape. The plots in figure 3.10 display a well aligned
beam. To quantify the measure of how good an alignment is, the following values could be
used:

• The minimum value of the FWHMs for the x-axis (lateral).

• The minimum value of the FWHMs for the y-axis (vertical).

• The gap on the z-axis, between the occurrence of the two minimum FWHMs (x and y).

• The distance from the origin (target point) to the center of the current focal point of
the beam).

In our case (for VERITAS beamline with one M4 mirror) the FWHMs should be below 0.01
mm and 0.005 mm for the lateral and vertical axes respectively. The gap should not be big-
ger than 1 mm (not a hard limit) and the origin should be within 2-3 standard deviations of

28



3.1 Beamline and Simulation

the histogram for both axes. If all values are close to these boundaries the beamline can be
considered well aligned, the parameters are presented in table 3.2. These boundaries result
in constraints on the input parameters, as can be seen in table 3.3, the beam becomes well
aligned at around 1% of the maximum offset.

Table 3.2: The parameters of the alignment space, their ranges and
criteria for a beam to be considered well aligned. All parameters are
in mm

Parameter min. lat. FWHM min. vert. FWHM FWHM gap Target distance

Range ∼ 0.007 − 0.12 ∼ 0.002 − 0.2 0 − 1000 0 − 5
Well aligned < 0.01 < 0.005 ≲ 1 ≲ 0.2

(a) The lateral x-axis (b) The vertical y-axis

Figure 3.10: FWHM plots from a well aligned beam. The blue dots
are the FWHM values, the curves has been fit to follow their typical
pattern. The orange dots are the calculated minima from the curves

To get an idea of the shape of the alignment space the five parameters of the M4 mirror
were iterated over their ranges, while keeping the others at zero. Ray tracings were made at
each step and the alignment parameters were calculated and presented in figure 3.11.

Table 3.3: Resulting parameters of the alignment space from dif-
ferent offset levels in the input parameters. The offsets are set as
percentages of their maximum value (see table 3.1). Green values are
below the well-aligned limit in table 3.2, red are above.

Offset FWHMx FWHMy Gap Target dist. Well aligned

10% 0.0139 0.0049 11.69 0.3882 No
3% 0.0097 0.0066 4.010 0.1165 No
2% 0.0094 0.0056 0.0090 0.0776 No
1% 0.0093 0.0034 0.5175 0.0388 Yes

29



3. Approach

Figure 3.11: Plots of the FWHMs, distance from target and their
sum, for the complete ranges of the five parameters of the M4 mirror.
The output parameters have been scaled to produce similar values,
which is why the y-axis was left unlabeled.
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(a) Encoder

(b) Decoder

Figure 3.12: The architecture of the 2D VAE

3.2 Variational Autoencoder
A functioning variational autoencoder could be useful for our purposes in many ways. The
generative aspect could help us to extend our data sets and to get new data samples much
faster than doing the ray tracing. Data could also be stored in encoded format to save space.
Another possibility is to map the latent space to the actual parameters of the mirror through
another network and thus get an answer to the question Where are we?

The variational autoencoder can be implemented to use images in three dimensions which
would be tempting for our problem since the beam contains valuable information in all di-
rections. However, as an initial approach the VAE was implemented to take only 2D images.
The implementation was adapted from [Chollet, nd] and the architecture was inspired by
[Gad, nd]. The full architecture can be seen in figure 3.12 (see appendix C for a full sum-
mary). To avoid the “dead neuron” problem, Leaky ReLU was used as activation function for
all layers, ADAM was used as optimizer (see section 2.2.1).

The attentive might realize that the model has two inputs and two outputs, one of which
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is the image of the 2D intensity map, while the other is not quite as obvious. The second
term is due to the scaling issue discussed in the 3.1.1 Dataset section, that images of fixed
sizes would be impossible due to the different sizes of the beam. The resulting re-scaling of
the images means however, that a lot of important information is lost, both the spread and
the location of the rays in space. Input 2 represents this lost information, it is a vector of 4
values: the x and y coordinates of the center of the image in the global coordinate system (the
origin is at the ideal focal point) and the scale of the x and y axis i.e., how high and wide the
image is in the global coordinate system. Input 2 is therefore very important for the model
to have meaning.

To achieve good image reconstructions, we need the non-zero pixels to be correct. How-
ever, since a lot of the images are black, zero-valued pixels, we do not want to reward our
model as much from getting them right. Therefore a weighting of the reconstruction loss
was added where the term handling targets close to one was weighted much higher. This
gives the weighted cross-entropy in equation 3.1 which was used for the reconstruction loss
of the images [Brock et al., 2016].

ϵ = −
1
N

N∑
n

αtn log yn + (1 − α)(1 − tn) log(1 − yn) (3.1)

The VAE is regularized through a second loss term, the Kullback-Leibler divergence
which keeps the probabilistic distributions close to normal with zero mean and unit vari-
ance (see section 2). An important part of designing a functional VAE is to have correct
weighting between the KL-divergence and the reconstruction loss. If the KL-divergence is
weighted too highly, the model will be heavily regularized and the decoded images will be
averaged into the same image which fits to all the inputs. An example of how this would look
for our case can be seen in figure 3.13. On the other hand, if the KL-divergence is too low,
the model will overfit and a lot of the output will not have any reasonable connection to the
input. The optimal weighting was found through trial-and-error.

In our case the model converged when the KL-divergence was multiplied by a factor of 0.1.
The α parameter of the weighted cross-entropy (see equation 3.1) was set to 0.95, which
means that 95% of the reconstruction loss would be constituted of pixels with values close to
1 (white). The value was chosen from balancing noise (too high) and neglected shapes (too
low) in the reconstructions [Brock et al., 2016].

The network was first trained on the bigger dataset with 9500 images (see section 3.1.1
Dataset) for 200 epochs. Then it was retrained on the smaller, 3300 image, set for another 300
epochs. In the initial set, the optical parameters had bigger ranges than what was eventually
decided as reasonable in our case. However, the data set was used as a pre-training step, to
give the model a better initial view of the differences in a good and bad alignment. For both
training sets, 20% of the data was taken for the validation set, which then is used for testing
the model during training7.

7The validation loss is what we try to minimize
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Figure 3.13: Decoded 2D intesity map from highly regularized VAE.
All decoded images would have a similar appearance, independent
of the sampled latent space

3.3 Reinforcement Learning
The idea behind the reinforcement learning models was to answer the question where are we
going? To improve an alignment by tweaking the parameters of the optics. The first step in
building a RL model is creating the environment. The environment will consist of an ac-
tion space, an observation space, and a reward function. The action space is spanned by the
parameters of the beamline and their limits, in our case the M4 mirror (see table 3.1). The ob-
servation space contains all the information that the agent ’sees’ before choosing what action
to do. The initial approach to the observation space was to use the quality measurements of
the alignment (see section 3.1.2) i.e. give the model the minimum FWHMs, the gap between
them and the distance from the target center. This would remove a lot of information about
the beam away from the target, which could be important. Thus, the observation space was
changed to take all 18 FWHM values from the screens. The reward function was determined
from the alignment parameters in table 3.2

r =

300 , if all parameters below alignment limit
− fx − fy − g− d , else

(3.2)

Where fx, fy denotes the minimum FWHMs, g the gap and d the distance from target center.
In this way the agent would receive small negative rewards for each step that did not lead to a
well aligned beam. The rewards would go towards zero as the agent got closer to the solution.

The learning process was set up as the following, giving one episode:

• Initialize mirror in random state within parameter ranges (see table 3.1)

• Let the agent evaluate the state and take steps to counteract the initial offset

• Calculate rewards from actions and update weights of the agent network that chooses
what action to do next

• Let the agent keep taking steps until a well aligned beam is achieved, or a predefined
limit of steps is reached

• Reset the mirror and try again
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The algorithm was then run for a defined number of episodes.

Due to the nature of the problem, a model with discrete actions was deemed to be unfit.
The size steps of the parameters would have to be very small which in turn would require a
lot steps to find the optimum, and since each step requires a new ray tracing this would take
very long time for the model to learn. Policy gradient models are good with dealing with
continuous actions, of which two models were implemented.

The fist choice of model was the Deep Deterministic Policy Gradient (see section 2.3.1). The
model architecture was taken from [Singh, nd] and modified to take multiple actions. [Lillicrap et al., 2016]
used the Ornstein-Uhlenbeck process as the noise process, which generates a temporally cor-
related process, suitable for physical problems with inertia. The beam does not depend on
previous settings, i.e. we have zero inertia, which is why another noise process was imple-
mented. The second process was chosen as white (uncorrelated) noise from a normal dis-
tribution with zero mean and decreasing standard deviation. The algorithm was run for 20
episodes with a maximum of 1000 steps per episode. It resulted in 20000 ray tracings which
took more that 24 hours to complete.

The second model was the Proximal Policy Optimization, of which the implementation was
taken as is from Stable Baselines3. Stable Baselines3 is a set of open-source implementations
of deep reinforcement learning methods in PyTorch. All implementations are well tested and
have been benchmarked against reference codebases [Raffin et al., 2021]. The PPO model was
loaded with policy model: “MlpPolicy", which means that the policy was decided through a
multi-layer perceptron (see section 2.2.1). It was trained, without resetting the environment
for 12000 timesteps (or until the conditions for a well aligned beam were met).

3.4 Bayesian Optimization

The Bayesian Optimization was done with the tool HyperMapper [Nardi et al., 2019] (see
section 2.4.1). The same principle like in the RL models were used, where the mirror was set
in a random state and the goal of the algorithm was to align the beam again by counteracting
the offset. The input parameters were the M4 settings which were normalized with respect
to their ranges. For simplicity, the objective function were chosen to only have one output
value. The objective function has a crucial role in the Bayesian optimization and is the main
design area. For a good optimization we want it to have a clear global minima with steep
slopes leading to it, but since we are working in a multidimensional space visualizing it is
hard. The metrics presented in 3.1.2 was a staring point in forming the function. The gap
parameter was eventually dropped in the optimization since gave rise to a non-smooth curve
with lot of local minima. It was just used as a validation for classifying the beam as well
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aligned. The optimization problem was then formulated as the following:

Minimize q(p, y, r, l, v) = α1 fx + α2 fy + α3t (3.3)
Subject to |p| ≤ 0.003

|y| ≤ 0.001
|r| ≤ 0.001
|l| ≤ 1.5
|v| ≤ 2.5

Where p, y, r, l, v denotes the pitch, yaw, roll, lateral- and vertical translations respectively,
and fx, fy, t denotes the minimum FWHMs and the distance from the target (see section
3.1.2). αi is a pre-defined weighing parameter, which was picked as normalization values
towards the range defined in table 3.2. They were chosen using the graphs in figure 3.11
and such that their values would all fall in approximately the same range: α1 = 8.3, α2 = 20,
α3 = 0.2. The prior knowledge of HyperMapper was kept at the default uniform distribution
since the offsets also are picked from uniform distributions.

3.5 Evaluation
The variational autoencoder was evaluated on the separate test set with 2400 images. The
images and their scales were fed into the encoder, then one sample was decoded from the la-
tent space. The resulting lateral and vertical FWHMs and scales were compared, the resulting
errors are presented in table 4.1. The FWHM errors are calculated as

e =
| ft − fp|

ft
,

where ft is the true FWHM of the original image and fp is the calculated FWHM from the
reconstructed image. Along with the FWHM errors are also the absolute errors from the
scaling parameters presented.

The reinforcement learning models were only evaluated through their average reward curves
(which should increase) and plots of their actions taken. Since the models never achieved
their goal (a well aligned beam) in training, no further testing was made.

The Bayesian optimization was evaluated though how well the found parameters and the
original offset would cancel each other. The errors were calculated as the absolute value of
the resulting offset and are presented in table 4.3 along with the objective function error.
New tracings were made with the resulting offsets and the alignment parameters from table
3.2 were calculated, their averages are presented in table 4.4, with the results from the best
points found by the DDPG as comparison.

35



3. Approach

36



Chapter 4

Implementation and Results

In this chapter the technical choices for the implementations of the methods (VAE, Rein-
forcement learning and Bayesian optimization) are presented along with the evaluations of
their performance.

4.1 Variational Autoencoder
Plots of the reconstruction-, scaling-, KL- and total loss propagation throughout training
is displayed in figure 4.1. The model has clearly reached a stationary point without getting
overtrained. The jump in the loss at 200 epochs is from the switching of training data set.
After training, the model was evaluated on the test set (see section 3.1.1 for details). Error data
from the reconstructions of the test data is presented in table 4.1. Some of the reconstructed
images can be seen in figure 4.2 while the histograms corresponding to sample number 1 are
plotted in figure 4.3.

Table 4.1: Absolute reconstruction errors from 2D VAE on the test
data. FWHM error presented as fraction of true value, center and
width values are in millimeters.

Lateral (x) Vertical (y)
FWHM Center Width FWHM Center Width

0.4624 0.1056 0.0165 1.0854 0.0698 0.0305
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(a) KL loss (b) Reconstruction loss

(c) Scaling loss (d) Total loss

Figure 4.1: Loss throughout training of the 2D VAE

Table 4.2: Average FWHM errors from 2D VAE on test data. Values
taken as the difference between true and predicted values (no abso-
lute value), divided by the true value

Lateral FWHM Vertical FWHM

−0.3527 −1.015

From looking at the reconstructions two things were concluded, firstly; the reconstruction
was working well and managed to capture most of the shapes of the input images, secondly;
there was a constant error in the FWHM since the reconstructed images seems brighter with
sharper edges. The constant error in the FWHM was further confirmed when the absolute
value of the differences between true and reconstructed FWHMs was removed, the results are
presented in table 4.2. The error could possibly originate from the high penalization in the
weighted cross-entropy (see C), but could be fixed in a post-processing step. Again, letting ft
represent the true FWHM, fp the predicted and ϵ the average constant error, the following
mathematical trick was applied:

ft − fp

ft
= −ϵ ⇔ ft − fp = −ϵ ft ⇔ ft =

1
1 + ϵ

fp

⇒
ft − ( fp + x)

ft
= 0 ⇔

1
1 + ϵ

fp − fp − x = 0 ⇔ x = −
ϵ

1 + ϵ
fp
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Figure 4.2: Some images and their reconstructions from the 2D VAE

Figure 4.3: Intensity histograms for both axes of sample number 1
in figure 4.2
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Thus, using f ∗p = fp−ϵ /(1+ϵ ) fp as the predicted FWHM would get rid of the stationary error.
Applying this got the average absolute FWHM error fractions down to 0.29 and 0.45 for the
lateral and vertical respectively, to be compared with the values in table 4.1. Histograms of
the modified lateral and vertical FWHM errors are displayed in figure 4.4. It is evident that
a few big outliers are affecting the mean, and that a majority of the samples appear below
the mean, they are not normal distributed. Upon further investigation of the outliers, the
cause of the errors was determined to be a faulty reconstruction of the width. The problem
is that for the smallest dots an error of 0.01 mm will be big and thus throw off the FWHM.
For reliable reconstructions the average width errors should be smaller than the smallest dots
which are 0.005 mm in the lateral- and 0.001 mm in the vertical direction. We need to have
high demands on the reconstructions to be sure that the generated data is close to reality and
to get accurate answers to the question where are we? (see 1.2).

(a) (b)

Figure 4.4: Histograms for FWHM reconstruction errors from the
VAE. The errors are calculated as the absolute value of the difference
between the true and reconstructed value, divided by the true. The
values have been modified to remove the constant error.
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4.2 Reinforcement Learning
For the DDPG, the discount factor was set to 0.99, and the target network update rate τ was
set to 0.005. The learning rates were set to 0.001 and 0.002 for actor and critic respectively,
which was all the default values given in the implementation [Singh, nd]. For policy gradi-
ent methods like DDPG, it is custom that the critic learning rate is set higher than that of
the actor. Having an actor that changes faster than the critic means that the estimated fu-
ture reward will not fully represent the action taken, this could eventually lead to overfitting
[Lillicrap et al., 2016]. Initially the Ornstein-Uhlenbeck process was used for the exploration
noise.

The average reward through the first 20 episodes of training is plotted in figure 4.5, if the
model is trained properly the average reward should increase but it is evident that this was
not the case. Plots of the actions taken in the last episode are displayed in figure 4.6, they
saturate a lot with some big oscillations, the model had been overtrained. To solve the over-
training issue, L2 regularization was introduced to the actor network. The L2 regularizer
forces the weights to decay towards zero by penalising the loss function with the L2 norm
of all the weights [Ohlsson and Edén, 2020]. The regularizer did not solve the problems so
then gradient clipping was introduced in the optimizer. This means that the gradients in the
Adam optimizer (see section 2.2.2) was forced to stay in a defined range. The noise process
was also changed to the uncorrelated normal distributed. The overfitting was, however, still
present and the DDPG algorithm was abandoned due to lack of time.

Figure 4.5: The average reward throughout training the DDPG
model

No design choices were made for the hyperparameters of the PPO model, it was left to
the Stable-Baselines implementation. A plot of the average reward, taken every 600th step
in training, can be seen in figure 4.7, along with the last 600 actions taken in figure 4.8.
Over the course of the 12000 iterations the algorithm did not achieve a beam which could be
considered well aligned. However, the average rewards did increase which indicates that the
model is learning. Unfortunately due to lack of time no further training was possible.
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(a) Rotational parameters (b) Transitional parameters

Figure 4.6: Actions taken for the alignment by the DDPG model in
the 20th episode of training

Figure 4.7: The average reward throughout training the PPO model

(a) Rotational parameters (b) Transitional parameters

Figure 4.8: Actions taken for the alignment by the PPO model in
the 20th episode of training
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4.3 Bayesian Optimization
Two different setups of HyperMapper were tested. Setup 1 was run for 150 iterations, with all
αi = 1 in the objective function (see equation 3.3). In setup 2 the iterations were increased to
250 and with weighting α1 = 8.3, α2 = 20, α3 = 0.2. The average resulting errors are presented
in table 4.3. The different setups had little to no effect on the resulting parameter errors. The
objective function error was, however, lower in the second setup which had higher weighted
FWHM and lower target distance. This tells us that the target distance is the parameter that
is the most off when getting close to the best focus position.

Table 4.3: Average M4 parameter errors from HyperMapper with
two different setups, five runs in each setting. The objective func-
tion error is given as a fraction of the best possible value. The errors
from setup 2 are also presented as percentages of their maximum
value.

Setting Pitch Yaw Roll Lat. t. Vert. t. Objective fcn
Unit mRad mRad mRad mm mm fraction

Setup 1 0.241 0.093 1.064 0.296 0.058 8.6
Setup 2 0.204 0.034 1.150 0.266 0.068 0.37

S.2 as % 6.8 3.4 115 17.7 2.7 37

Table 4.4: Average values for the alignment parameters from the
best points found by the Bayesian optimization runs. For compari-
son, the average values from the last 5 runs of the DDPG model are
included. Green values are below the well-aligned limit in table 3.2,
red are above

Model FWHMx FWHMy Gap Target dist. Well aligned

Setup 1 0.0150 0.0049 12.09 0.0929 No
Setup 2 0.0096 0.0036 15.80 0.1078 No

DDPG 0.0662 0.1294 389.5 3.947 No

The optimizer was good at aligning the pitch, yaw and vertical translation parameters. The
errors were all lower than 10% of the maximum limit (see table 3.1). The roll and lateral trans-
lation errors were at 20% and 100% of the maximum limit respectively, which is not where we
want them. This difference in performance can be explained by recalling the objective func-
tion, plotted in figure 3.11. The yaw and vertical translation both have clear minima at the
target spot with steep slopes, which makes it easy for the algorithm to find the correct value.
On the other hand, looking at the roll, it does not have a distinct minima in the objective
function which in return results in big errors (bigger than the actual alignment limit at 1.0
mRad). Through further analyse of the data and objective function in the scatter plots 4.9 we
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can see where the issue lies, there is a very big spread towards the bottom where some settings
with offsets gets very small values from the objective function. This imposes difficulties on
the optimizer and requires more iterations.

Figure 4.9: Scatter plot of data points from the test data set, with
the euclidean distance of the offsets from the origin on the x-axis
and the output from the objective function on the y-axis. Marked in
the figure is the area where the BOA runs roughly end up
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Chapter 5

Discussion

With the overall goal of an automated alignment process at MAX IV, three different ML
approaches were designed, implemented, tested and evaluated. The methods were varia-
tional autoencoder, reinforcement learning (more specifically policy gradient methods) and
Bayesian optimization. Only simulated data was used, and data sets had to be structured. In
this chapter follows the discussion about the performance of the models with respect to the
aim of the project.

5.1 Variational Autoencoder
The VAE managed to reconstruct the images visually quite well. It managed to capture most
shapes and it was clear to see which image was the input. There is, however, room for im-
provement in the average FWHM errors which are 29% and 45% off the true value. From
plotting the histograms in 4.4 we can see that the averages are affected by big outliers which
mostly comes from reconstructing the very small focal spots with errors in the scaling pa-
rameters. Even if the scaling parameters seem to have small errors they are too big compared
to the small focal spots. Achieving better reconstructions of the scaling would improve the
resulting FWHMs. The results are not perfect but promising for future work. The architec-
ture could be expanded, especially the network for the scaling inputs which could potentially
decrease the errors by a lot. The model could also be expanded to take 3D images and take
in the whole reconstruction of the beam, which would require a lot more data. The next
immediate step is however to link the latent space to the real parameters through another
network. The latent space has no relation to the actual parameters and physics, but consist
only of parameters found in the unsupervised training of the VAE. If a connection to the real
parameters could be made, we would have a robust model for predicting the set parameters
from the output images - an answer to the question where are we?.
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5.2 Reinforcement Learning
Using RL algorithms in the alignment process is an interesting approach which looked promis-
ing in the beginning of this project. Especially in application to the actual beamline where
outside factors are affecting the alignment which is something a RL model could handle.
One potential advantage of RL is that the agent can learn how to cope with a changing en-
vironment. However, the first step was to get it working on the simulated data, which is
not a changing environment. Not once, through thousands of ray tracings, did any of the
algorithms achieve a well aligned beam. Due to the long time taken for each action1, they
were hard to train and evaluate. The overfitting problem of the DDPG was not resolved and
the PPO was not fully evaluated due to lack of time. The PPO model did show positive signs
that the average rewards was increasing, it also did a good job of exploring the whole action
space compared to the DDPG. It would be very interesting to see how it would get on with
more training. The idea of using RL for automation of the alignment process should not be
ruled out completely, it is just going to require more work.

5.3 Bayesian Optimizaion
The Bayesian optimization gave mixed, but promising results. The algorithm worked well for
the pitch, yaw and vertical translation, but got big errors for the roll and lateral translation.
The reason behind the big errors is mostly due to the parameters having little effect on the
objective function. The worst parameter in this aspect is the roll which basically could be set
to anything within the range and still not affect the output value by much. Still, disregarding
the weak parameters, the others still have some room of improvement with errors of magni-
tude around 5% of the maximal offset. From table 3.3 we see that the average errors should be
around 1% to give us an accurate answer to the question of where are we going? (see section 1.2).

The solution possibly lies in designing a new objective function of which the roll and lat-
eral translation have a greater influence. From table 4.4 we see that the gap parameter, which
was not present in the objective function, is the only one that is way off for both setups. In
other words, the beam was to be considered well aligned in terms of the parameters used in
the actual optimization. However, the gap parameter was omitted for a reason, it gives the
objective function a very non-smooth behaviour and will either dominate the function, or
if suppressed enough, not affect it at all. The results prove that the optimization algorithm
works and if a better objective function were to be found it would improve them. A big
advantage of the BOA is that it requires no initial training, thus the jump from simulation
to the real world would go easier than with the deep learning methods which require tons of
data. It is also easy to understand and could potentially be integrated into more sophisticated
algorithms. A new algorithm could be specifically designed for aligning beamlines and give
the model some sort of “memory" instead of having to re-learn the optimization every time.
Further ideas for improvement could be to confine the parameters by tightening the limits
throughout the optimization or to design separate objective functions for the parameters and
optimize them one at a time.

120 episodes would take more than 24 hours even when running on several cores
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Chapter 6

Conclusion

Concluding comments from the discussion of the models performance will be presented in
this chapter along with suggestions for future work.

Using ML for alignment is a very complex task and we are quite far from a complete auto-
matic process. In this project, the problem was quite heavily simplified compared to reality,
but still it was difficult to find a working solution. It is important that the models get the
beam data they need in order to make the predictions as accurate as our requirements. Iden-
tifying what parts of data is useful and what is not is a crucial step. The complexity and
difference between beamlines impose big difficulties since new models probably have to be
made for each beamline. The lack of real data is another big obstacle which has to be solved
if the algorithms are to be implemented on the real beamline. The problem might seem a bit
overwhelming, but there has definitely been some positive signs.

6.1 Future work
All models presented in this project could be futher developed and improved. There is room
for improvement with the current VAE model which could be fine tuned. The network could
also be expanded to take 3D images which would result in a new model. More testing is needed
for the RL models and clever ways of defining a better objective function for the BOA should
be explored.

Furthermore the transition from simulation to reality needs to be further looked upon. The
question of how an actual automatic alignment process would work needs to be assessed,
with more questions following: How and what data would be needed? How many evalua-
tions of the quality of alignment is reasonable? How fast would the alignment model need
to work? What are the differences in data between different beamlines? These questions all
need answers in order for the automatic alignment to work on the actual beamlines. For a
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6. Conclusion

ML based automatic alignment process to be achieved, a database would need to be set up
and alignment data from beamlines should be collected as soon as possible. In section 3.1.1,
I propose a way of organizing the data, which worked very well for training and evaluating
the VAE.

48



References

[Altarelli and Salam, 2004] Altarelli, M. and Salam, A. (2004). The quest for brilliance: Light
sources from the third to the fourth generation. Europhysics News, 35(2):47–50.

[Bennström and Winzell, 2021] Bennström, A. and Winzell, F. (2021). Automated 3d bone
segmentation using deep learning in scoliosis. Master’s Theses in Mathematical Sciences.

[Bishop, 2006] Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer New
York, NY.

[Brock et al., 2016] Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2016). Gener-
ative and discriminative voxel modeling with convolutional neural networks. CoRR,
abs/1608.04236.

[Chollet, nd] Chollet, F. (n.d.). Retrieved February 21, 2022 from https://keras.io/
examples/generative/vae/.

[Cremer, 2012] Cremer, J. (2012). Introduction to neutron and x-ray optics. Advances in
Imaging and Electron Physics, 172.

[Ekholm and Tokushima, 2022] Ekholm, V. and Tokushima, T. (2022). Data from pinhole
scan at veritas beamline. MAX IV.

[Frazier, 2018] Frazier, P. (2018). Bayesian optimization. Informs, pages 255–78.

[Gad, nd] Gad, A. (n.d.). How to build a variational autoencoder in keras.
Retrieved February 21, 2022 from https://blog.paperspace.com/
how-to-build-variational-autoencoder-keras/.

[Kirkpatric and Baez, 1948] Kirkpatric, P. and Baez, A. (1948). Formation of op-
tical images by x-rays. Journal of the Optical Society of America, 38(9):766–74.
doi:10.1364/JOSA.38.000766.

[Klementiev and Chernikov, 2014] Klementiev, K. and Chernikov, R. (2014). Powerful
scriptable ray tracing package xrt. Advances in Computational Methods for X-Ray Optics III,
9209:60–75. doi:10.1117/12.2061400, Online documentation at xrt.readthedocs.io.

49

https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/
https://blog.paperspace.com/how-to-build-variational-autoencoder-keras/
https://blog.paperspace.com/how-to-build-variational-autoencoder-keras/


REFERENCES

[Lillicrap et al., 2016] Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., and Wierstra, D. (2016). Continuous control with deep reinforcement learning.
International Conference on Learning Representations. doi:10.48550/ARXIV.1509.02971.

[Maffettone et al., 2021] Maffettone, P., Lynch, J., Caswell, T., Cook, C., Campbell, S., and
Olds, D. (2021). Gaming the beamlines—employing reinforcement learning to maximize
scientific outcomes at large-scale user facilities. Machine Learning: Science and Technology,
2(2).

[MAX IV, nd] MAX IV (n.d.). Retrieved May 25, 2022 from https://www.maxiv.lu.se/
accelerators-beamlines/beamlines/.

[Nardi et al., 2019] Nardi, L., Koeplinger, D., and Olukotun, K. (2019). Practical design space
exploration. IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pages 347–58.

[Nash et al., 2020] Nash, B., Goldring, N., Edelen, J., Federer, C., Moeller, P., and Webb, S.
(2020). Reduced model representation of x-ray transport suitable for beamline control.
Advances in Computational Methods for X-Ray Optics V. doi:10.1117/12.2568187.

[Odaibo, 2019] Odaibo, S. (2019). Tutorial: Deriving the standard variational autoencoder
(vae) loss function. Retrieved May 24, 2022 from https://arxiv.org/pdf/1907.
08956.pdf.

[Ohlsson and Edén, 2020] Ohlsson, M. and Edén, P. (2020). Lecture Notes on Introduction to
Artificial Neural Networks and Deep Learning. Lund University.

[Peatman, 1997] Peatman, W. (1997). Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray
Synchrotron Radiation Sources. Taylor Francis Ltd.

[Raffin et al., 2021] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dor-
mann, N. (2021). Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research.

[Samuli et al., 2017] Samuli, U., Såthe, C., Grizolli, W., Agåker, M., Head, A., Andersson,
M., and Huang, S. e. a. (2017). The species beamline at the max iv laboratory: a facility for
soft x-ray rixs and apxps. Journal of synchrotron radiation, 24(1):344–53.

[Shulman et al., 2015] Shulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel, P. (2015).
Trust region policy optimization. International conference on machine learning.

[Shulman et al., 2017] Shulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.
(2017). Proximal policy optimization algorithms. OpenAI.

[Singh, nd] Singh, H. (n.d.). Retrieved April 19, 2022 from https://keras.io/
examples/rl/ddpg_pendulum/.

[Sutton and Barto, 2018] Sutton, R. and Barto, A. (2018). Reinforcement learning: an introduc-
tion. Westchester Publishing Services.

50

https://www.maxiv.lu.se/accelerators-beamlines/beamlines/
https://www.maxiv.lu.se/accelerators-beamlines/beamlines/
https://arxiv.org/pdf/1907.08956.pdf
https://arxiv.org/pdf/1907.08956.pdf
https://keras.io/examples/rl/ddpg_pendulum/
https://keras.io/examples/rl/ddpg_pendulum/


REFERENCES

[Tavares et al., 2014] Tavares, P., Leemann, S., Sjöström, M., and Andersson, (2014). The
max iv storage ring project. Journal of synchrotron radiation, 21(5):862–77.

[Xu et al., 2020] Xu, J., Li, Z., Du, B., Zhang, M., and Liu, J. (2020). Reluplex made more
practical: Leaky relu. 2020 IEEE Symposium on Computers and Communications, pages 1–7.

51



REFERENCES

52



Appendices

53





Appendix A

Data XML file layout
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Appendix B

Misaligned samples

Figure B.1: Misaligned samples from XRT with maximum offset in
one parameter. Images from nine screens at equal distances from 14
mm in front of the target to 14 mm behind. Presented along with
scaling data for the center image (at target). cx = center of image
on x-axis, dx = spread of image on x-axis, cy = center on y-axis, dy =
spread on y-axis.
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Appendix C

VAE architecture summary

ENCODER
Model : " e n c o d e r _ m o d e l "
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L a y e r ( t y p e ) Output Shape Param # Connected t o
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

e n c o d e r _ i n p u t ( I n p u t L a y e r ) [ ( None , 2 5 6 , 2 5 6 , 1 0 [ ]
) ]

e n c o d e r _ c o n v _ 1 ( Conv2D ) ( None , 2 5 4 , 2 5 4 , 8 ) 80 [ ’ e n c o d e r _ i n p u t [ 0 ] [ 0 ] ’ ]

e n c o d e r _ n o r m _ 1 ( B a t c h N o r m a l i z a ( None , 2 5 4 , 2 5 4 , 8 ) 32 [ ’ e n c o d e r _ c o n v _ 1 [ 0 ] [ 0 ] ’ ]
t i o n )

e n c o d e r _ l e a y r e l u _ 1 ( LeakyReLU ) ( None , 2 5 4 , 2 5 4 , 8 ) 0 [ ’ e n c o d e r _ n o r m _ 1 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ c o n v _ 2 ( Conv2D ) ( None , 2 5 2 , 2 5 2 , 8 ) 584 [ ’ e n c o d e r _ l e a y r e l u _ 1 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ n o r m _ 2 ( B a t c h N o r m a l i z a ( None , 2 5 2 , 2 5 2 , 8 ) 32 [ ’ e n c o d e r _ c o n v _ 2 [ 0 ] [ 0 ] ’ ]
t i o n )

e n c o d e r _ l e a y r e l u _ 2 ( LeakyReLU ) ( None , 2 5 2 , 2 5 2 , 8 ) 0 [ ’ e n c o d e r _ n o r m _ 2 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ c o n v _ 3 ( Conv2D ) ( None , 2 5 0 , 2 5 0 , 8 ) 584 [ ’ e n c o d e r _ l e a y r e l u _ 2 [ 0 ] [ 0 ] ’ ]

m a x _ p o o l i n g 2 d ( MaxPool ing2D ) ( None , 1 2 5 , 1 2 5 , 8 ) 0 [ ’ e n c o d e r _ c o n v _ 3 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ n o r m _ 3 ( B a t c h N o r m a l i z a ( None , 1 2 5 , 1 2 5 , 8 ) 32 [ ’ m a x _ p o o l i n g 2 d [ 0 ] [ 0 ] ’ ]
t i o n )

e n c o d e r _ l e a y r e l u _ 3 ( LeakyReLU ) ( None , 1 2 5 , 1 2 5 , 8 ) 0 [ ’ e n c o d e r _ n o r m _ 3 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ c o n v _ 4 ( Conv2D ) ( None , 1 2 3 , 1 2 3 , 16 1 1 6 8 [ ’ e n c o d e r _ l e a y r e l u _ 3 [ 0 ] [ 0 ] ’ ]
)

e n c o d e r _ n o r m _ 4 ( B a t c h N o r m a l i z a ( None , 1 2 3 , 1 2 3 , 16 64 [ ’ e n c o d e r _ c o n v _ 4 [ 0 ] [ 0 ] ’ ]
t i o n ) )

e n c o d e r _ l e a y r e l u _ 4 ( LeakyReLU ) ( None , 1 2 3 , 1 2 3 , 16 0 [ ’ e n c o d e r _ n o r m _ 4 [ 0 ] [ 0 ] ’ ]
)

e n c o d e r _ c o n v _ 5 ( Conv2D ) ( None , 6 1 , 6 1 , 1 6 ) 2320 [ ’ e n c o d e r _ l e a y r e l u _ 4 [ 0 ] [ 0 ] ’ ]

m a x _ p o o l i n g 2 d _ 1 ( MaxPool ing2D ) ( None , 3 0 , 3 0 , 1 6 ) 0 [ ’ e n c o d e r _ c o n v _ 5 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ n o r m _ 5 ( B a t c h N o r m a l i z a ( None , 3 0 , 3 0 , 1 6 ) 64 [ ’ m a x _ p o o l i n g 2 d _ 1 [ 0 ] [ 0 ] ’ ]
t i o n )

e n c o d e r _ l e a y r e l u _ 5 ( LeakyReLU ) ( None , 3 0 , 3 0 , 1 6 ) 0 [ ’ e n c o d e r _ n o r m _ 5 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ c o n v _ 6 ( Conv2D ) ( None , 1 4 , 1 4 , 3 2 ) 4640 [ ’ e n c o d e r _ l e a y r e l u _ 5 [ 0 ] [ 0 ] ’ ]

m a x _ p o o l i n g 2 d _ 2 ( MaxPool ing2D ) ( None , 7 , 7 , 3 2 ) 0 [ ’ e n c o d e r _ c o n v _ 6 [ 0 ] [ 0 ] ’ ]

e n c o d e r _ n o r m _ 6 ( B a t c h N o r m a l i z a ( None , 7 , 7 , 3 2 ) 1 28 [ ’ m a x _ p o o l i n g 2 d _ 2 [ 0 ] [ 0 ] ’ ]
t i o n )

e n c o d e r _ l e a y r e l u _ 6 ( LeakyReLU ) ( None , 7 , 7 , 3 2 ) 0 [ ’ e n c o d e r _ n o r m _ 6 [ 0 ] [ 0 ] ’ ]
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C. VAE architecture summary

f l a t t e n ( F l a t t e n ) ( None , 1 5 6 8 ) 0 [ ’ e n c o d e r _ l e a y r e l u _ 6 [ 0 ] [ 0 ] ’ ]

e x t r a _ i n p u t ( I n p u t L a y e r ) [ ( None , 4 ) ] 0 [ ]

d e n s e _ 1 ( Dense ) ( None , 1 5 6 8 ) 2 4 6 0 1 9 2 [ ’ f l a t t e n [ 0 ] [ 0 ] ’ ]

d e n s e ( Dense ) ( None , 4 ) 20 [ ’ e x t r a _ i n p u t [ 0 ] [ 0 ] ’ ]

c o n c a t e n a t e ( C o n c a t e n a t e ) ( None , 1 5 7 2 ) 0 [ ’ d e n s e _ 1 [ 0 ] [ 0 ] ’ ,
’ d e n s e [ 0 ] [ 0 ] ’ ]

encoder_mu ( Dense ) ( None , 1 0 ) 1 5 7 3 0 [ ’ c o n c a t e n a t e [ 0 ] [ 0 ] ’ ]

e n c o d e r _ l o g _ v a r i a n c e ( Dense ) ( None , 1 0 ) 1 5 7 3 0 [ ’ c o n c a t e n a t e [ 0 ] [ 0 ] ’ ]

s a m p l i n g ( S a m p l i n g ) ( None , 1 0 ) 0 [ ’ encoder_mu [ 0 ] [ 0 ] ’ ,
’ e n c o d e r _ l o g _ v a r i a n c e [ 0 ] [ 0 ] ’ ]

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
T o t a l params : 2 , 5 0 1 , 4 0 0
T r a i n a b l e params : 2 , 5 0 1 , 2 2 4
Non−t r a i n a b l e params : 1 7 6
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DECODER
Model : " d e c o d e r _ m o d e l "
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L a y e r ( t y p e ) Output Shape Param # Connected t o
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

d e c o d e r _ i n p u t ( I n p u t L a y e r ) [ ( None , 1 0 ) ] 0 [ ]

d e c o d e r _ d e n s e _ 1 ( Dense ) ( None , 1 5 6 8 ) 1 7 2 4 8 [ ’ d e c o d e r _ i n p u t [ 0 ] [ 0 ] ’ ]

r e s h a p e ( R e s h a p e ) ( None , 7 , 7 , 3 2 ) 0 [ ’ d e c o d e r _ d e n s e _ 1 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 1 ( Conv2DTra ( None , 1 5 , 1 5 , 3 2 ) 9248 [ ’ r e s h a p e [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ n o r m _ 1 ( B a t c h N o r m a l i z a ( None , 1 5 , 1 5 , 3 2 ) 1 2 8 [ ’ d e c o d e r _ c o n v _ t r a n _ 1 [ 0 ] [ 0 ] ’ ]
t i o n )

d e c o d e r _ l e a y r e l u _ 1 ( LeakyReLU ) ( None , 1 5 , 1 5 , 3 2 ) 0 [ ’ d e c o d e r _ n o r m _ 1 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 2 ( Conv2DTra ( None , 3 1 , 3 1 , 1 6 ) 4624 [ ’ d e c o d e r _ l e a y r e l u _ 1 [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ n o r m _ 2 ( B a t c h N o r m a l i z a ( None , 3 1 , 3 1 , 1 6 ) 64 [ ’ d e c o d e r _ c o n v _ t r a n _ 2 [ 0 ] [ 0 ] ’ ]
t i o n )

d e c o d e r _ l e a y r e l u _ 2 ( LeakyReLU ) ( None , 3 1 , 3 1 , 1 6 ) 0 [ ’ d e c o d e r _ n o r m _ 2 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 3 ( Conv2DTra ( None , 6 3 , 6 3 , 1 6 ) 2320 [ ’ d e c o d e r _ l e a y r e l u _ 2 [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ n o r m _ 3 ( B a t c h N o r m a l i z a ( None , 6 3 , 6 3 , 1 6 ) 64 [ ’ d e c o d e r _ c o n v _ t r a n _ 3 [ 0 ] [ 0 ] ’ ]
t i o n )

d e c o d e r _ l e a y r e l u _ 3 ( LeakyReLU ) ( None , 6 3 , 6 3 , 1 6 ) 0 [ ’ d e c o d e r _ n o r m _ 3 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 4 ( Conv2DTra ( None , 1 2 6 , 1 2 6 , 8 ) 1 1 6 0 [ ’ d e c o d e r _ l e a y r e l u _ 3 [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ n o r m _ 4 ( B a t c h N o r m a l i z a ( None , 1 2 6 , 1 2 6 , 8 ) 32 [ ’ d e c o d e r _ c o n v _ t r a n _ 4 [ 0 ] [ 0 ] ’ ]
t i o n )

d e c o d e r _ l e a y r e l u _ 4 ( LeakyReLU ) ( None , 1 2 6 , 1 2 6 , 8 ) 0 [ ’ d e c o d e r _ n o r m _ 4 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 5 ( Conv2DTra ( None , 2 5 3 , 2 5 3 , 8 ) 584 [ ’ d e c o d e r _ l e a y r e l u _ 4 [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ n o r m _ 5 ( B a t c h N o r m a l i z a ( None , 2 5 3 , 2 5 3 , 8 ) 32 [ ’ d e c o d e r _ c o n v _ t r a n _ 5 [ 0 ] [ 0 ] ’ ]
t i o n )

d e c o d e r _ l e a y r e l u _ 5 ( LeakyReLU ) ( None , 2 5 3 , 2 5 3 , 8 ) 0 [ ’ d e c o d e r _ n o r m _ 5 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ c o n v _ t r a n _ 6 ( Conv2DTra ( None , 2 5 6 , 2 5 6 , 1 ) 1 2 9 [ ’ d e c o d e r _ l e a y r e l u _ 5 [ 0 ] [ 0 ] ’ ]
n s p o s e )

d e c o d e r _ d e n s e _ e x _ 1 ( Dense ) ( None , 4 ) 44 [ ’ d e c o d e r _ i n p u t [ 0 ] [ 0 ] ’ ]

d e c o d e r _ o u t p u t ( LeakyReLU ) ( None , 2 5 6 , 2 5 6 , 1 ) 0 [ ’ d e c o d e r _ c o n v _ t r a n _ 6 [ 0 ] [ 0 ] ’ ]

d e c o d e r _ d e n s e _ e x _ 2 ( Dense ) ( None , 4 ) 20 [ ’ d e c o d e r _ d e n s e _ e x _ 1 [ 0 ] [ 0 ] ’ ]

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
T o t a l params : 3 5 , 6 9 7
T r a i n a b l e params : 3 5 , 5 3 7
Non−t r a i n a b l e params : 160
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Appendix D

Elliptic geometry

Figure D.1: The coordinate system for the optical path function

We define three points, point A,Pξ,ω,l and B, where rays travel from A, hits the mirror
on P and reflects to B (see figure D.1). Fermats principle states that if the point A were to
be imaged at B, then all paths from A via the mirror surface P(ξ, ω, l) to B must be equally
long. This is the challenge for the mirror.

The surface of the mirror is described generally by the equation

ξ =

∞∑
i=0

∞∑
j=0

ai jω
il j

and a00 = a10 = 0; j = even
An arbitrary path is given by F = ĀP + P̄B and all rays that lead to a focus must fulfill the
following:

δF
δω
= 0;

δF
δl
= 0
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D. Elliptic geometry

An ellipse is given by:
x2

a2 +
y2

b2 = 1

where a =
1
2

(r + r′)

b =
√

a2 + d2

d =
1
2
√

r2 + r′2 − 2rr′ cos 2θ.

The coefficients ai j will be obtained numerically, and all definitions recast in terms of P(ξ, ω, l)
in the Cartesian system shown in figure D.1. The optical paths can be defined as:

ĀP =
√

(ξ − r cosα)2 + (ω − r sin α)2 + (l − z)2

B̄P =
√

(ξ − r′ cosα)2 + (ω − r′ sin α)2 + (l − z′)2.

For the central ray
(
δF
δl

)
ξ=ω=l=0

= 0 leading to z
r =

z′
r′ . F can be defined by a polynomial series

employing the coefficients of the surface [Peatman, 1997].
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Applying machine learning for alignment
of X-ray beams at MAX IV

POPULAR SCIENTIFIC SUMMARY Emil Winzell

At MAX IV, X-ray emissions are used for analysis of materials, to unravel atomic
structures and much more. Each new experiment requires exact properties of the
light which has be perfectly aligned by several apertures and optics. This thesis
explores the possibility of using machine learning in an automatic alignment process,
trough an empirical investigation.

X-ray radiation behave very differently from visi-
ble light. The rays will rather attenuate than re-
flect from most materials and X-ray mirrors can
only move the beam by letting it slightly graze of
the surface by small angles. For good alignments,
the mirrors are configured on scales down to micro
radians and nano meters. The process is affected
by many outside factors such as temperature and
vibrations, as a result it takes a lot of time and
experience for the scientists to perfectly align the
beam. The aim of this thesis was to do an empir-
ical investigation of ML models, designed to pre-
dict and optimize the optical parameters, given
properties of the beam.
Simulated data from the MAX IV developed pro-
gram XRT was used. The beamline was simplified
to a fine-tuning scenario where only the position
of last mirror was tweaked, which had a total of
five degrees of freedom: pitch, yaw, roll, lateral
and vertical translations. From the simulations,
the beams propagation through space could be
reconstructed through plots of the light intensity
(see figure). A variational autoencoder was imple-
mented in order to predict the optical parameters
from the output 2D images and to investigate the
possibility of generating new data synthetically in-
stead of using the time consuming simulation.
The mirror was given a random offset and two
different types of models were implemented to
try to counteract the change and align the beam

Figure 1: Output data from a slice of the beam in
XRT

again. The first model was reinforcement learning
where an agent learns a policy from taking ac-
tions (tweaking the mirror) and receiving rewards
for how good its actions are. The second was a
pure Bayesian optimization, which used a statis-
tical model to find the optimum settings and thus
not using any actual learning. The reinforcement
learning models never really worked and were out-
performed by the Bayesian optimization which
managed to get quite close to the optimal solu-
tion. However, the problem was heavily simplified
and even if the results were promising there is a
long way to go for achieving an automatic align-
ment process.
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