
MASTER’S THESIS 2022

Understanding Deep and
Narrow Tree Search with
GoExplore
Patrik Persson

ISSN 1650-2884
LU-CS-EX: 2022-43

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

Understanding Deep and Narrow Tree Search with GoExplore

Author: Patrik Persson, dat14pp1@student.lu.se
Supervisor: Volker Krueger, volker.krueger@cs.lth.se
Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se
June 29, 2022

Code available at: https://www.github.com/papersson/goexplore

The search space of large game trees can be reduced by restricting the depth or the breadth of the search. Most
game-playing algorithms follow the first approach, where the tree is cut off at some depth and leaf nodes are eval-
uated according to an approximate value function that estimates the outcome of the game from this position. The
approximated value function tends to be inaccurate in sparse reward environments, leading to poor overall per-
formance. GoExplore avoids this problem by doing a deep and narrow search of the game tree, which has led to
state-of-the-art results on sparse reward games such as Montezuma’s Revenge and Pitfall. This thesis illustrates
how GoExplore successfully drives this type of search by expanding the frontier towards novel states in the ab-
sence of rewards, and by re-focusing the frontier around rewards when they do occur. Furthermore, this thesis
improves GoExplore’s time complexity to linear time.

https://www.github.com/papersson/goexplore

understanding deep and narrow tree search with goexplore 2

1. Introduction

Reinforcement learning algorithms have surpassed human-level
performance on board games such as backgammon, chess, and Go.
Recently, artificial agents have also displayed impressive results on
video games such as the Atari games, Dota 2, and StarCraft 2. These
algorithms can be applied to more general domains such as robotics,
but games are interesting to explore for two reasons. First, due to the
rules of the games, they are often quite easy to formalize mathemat-
ically. Second, they provide a natural performance benchmark since
we can compare an artificial agent’s performance against human
performance.

One particular game that these algorithms have struggled with
over the years is the Atari game Montezuma’s Revenge. This is
due to the game’s sparse reward environment: it requires long se-
quences of correct actions for the agent to receive rewards, which
makes learning difficult for reinforcement learning algorithms.

In 2019, the GoExplore algorithm made a breakthrough by mas-
sively outperforming the previous state-of-the-art on Montezuma’s
Revenge. Previous algorithms could barely outperform an average
human, while GoExplore managed to surpass even expert human
players. Moreover, variations of GoExplore that included domain-
knowledge managed to even beat the human world record [Ecoffet
et al., 2019]. Figure 1 summarizes the progress over the past decade
until GoExplore’s publication.

Figure 1: Progress on Montezuma’s
Revenge over the last decade. Grey
markers show results from previous
state-of-the-art algorithms. GoExplore is
highlighted in yellow.

The purpose of this thesis is to understand why this discrepancy ex-
ists, by exploring how GoExplore differs from other game-playing
algorithms. We will do so by analyzing game-playing algorithms
from a tree search perspective, where I will argue that most algo-

understanding deep and narrow tree search with goexplore 3

rithms perform a shallow and wide search of the game tree, while
GoExplore drives a deep and narrow tree search. Concretely, this
thesis makes the following contributions:

• It contrasts GoExplore with common Type A algorithms and dis-
cusses by which principles it successfully drives a deep and nar-
row tree search.

• It provides a practical contribution by improving the algorithmic
time complexity of GoExplore.

2. Tree Search Reduction Strategies

Consider the game tree shown in Figure 2. Nodes define game states,
and edges define actions the player can take. Leaf nodes are known
as terminal nodes. Terminal nodes indicate that the game has ended
and contain a value corresponding to the outcome when following
that particular path.

We are currently in the root node, and we want to figure out
which action we should take. From a bird’s-eye view we see that
the best outcome is at the green leaf node with value 3, so we should
take the action leading to that node. But from the root node’s per-
spective, we do not know how to get there. We only know which
actions we can perform. Which action should we take?

0 0 1 0 0 0 1 0 1 0 0 0 -2 0 3 0

Figure 2: Game tree. Nodes are game
states and edges are possible actions.
Numbers at leaf nodes show the out-
come of following following a trajec-
tory. The green node highlights the best
outcome.

One approach would be to back up the outcomes by recursively
computing the maximum value from searching ahead one step, for
both actions, until we reach the terminal nodes. Figure 3 shows the
resulting backup tree. The values correspond to the values of the
optimal value function, and the policy that greedily chooses the
action that leads to the highest-value successor node, highlighted
in green, is known as the optimal policy (see “Appendix: MDP”).
We select the optimal action from any game state by following the
optimal policy. From our root node, we do so by looking ahead one
step and selecting the action that leads to the highest-value successor

understanding deep and narrow tree search with goexplore 4

node. We repeat this decision-making process until we reach the
terminal node.

3

1 3

1 1 1 3

0 1 0 1 1 0 0 3

0 0 1 0 0 0 1 0 1 0 0 0 -2 0 3 0

Figure 3: Game tree after backing up
values. The highlighted path shows the
optimal trajectory. The numbers are the
values of the optimal value function.

This is a feasible strategy for small trees such as the one in Figure 2,
but most game trees are far larger. For example, consider chess: on
average you can make about 35 different moves from each position,
and games end after roughly 80 moves [Russell and Norvig, 2010].
This leads to 3580 possible leaf nodes, which is an intractable size for
any search algorithm.

The search can be narrowed down by creating a smaller approxi-
mation of the tree, either via depth reduction or breadth reduction.
Claude Shannon referred to these two approaches as Type A and
Type B strategies in his seminal paper on computer chess [Shannon,
1988]. GoExplore differs from most game-playing algorithms by fol-
lowing the Type B strategy.

We will first examine how some popular game-playing algorithms
follow the Type A strategy of reducing depth and evaluating posi-
tions via value functions, and then we will look at how GoExplore
drives a deep and narrow search of the game tree.

2.1. Type A - Tree Search by Depth Reduction

We can reduce the depth of the search by cutting the tree off at some
depth and treating the new leaf nodes as terminal nodes. A terminal
node is defined by having some value corresponding to the outcome
of the game. Given a function that estimates the true outcome of
reaching the new terminal node, we can follow the same procedure
we did in the previous section to determine which action to take
next: we traverse down to the terminal nodes and back up their val-
ues until we reach the root’s successor states, then we choose the
action leading to the highest-value successor state. We will first take
a look at how some popular game-playing algorithms follow this
approach.

understanding deep and narrow tree search with goexplore 5

Minimax Search using Offline Function Approximation.
Minimax is a popular decision-making algorithm in computer chess
[Russell and Norvig, 2010]. It follows a similar approach to the al-
gorithm explained in the previous section, but it has to be adjusted
slightly since we now have an opponent that will try to prevent us
from following our optimal path.

Let us refer to the players as MIN and MAX. A negative outcome
means that MIN won the game, and a positive outcome means that
MAX won. Rather than always backing up the maximum value of the
successor nodes, we now alternate between backing up the minimum
and maximum value every other step. This will result in an optimal
policy for each player: MAX always chooses the action leading to the
highest-value successor node, and MIN always chooses the action
leading to the lowest-value successor node.

The game tree for chess is far too large to search all the way to
the terminal nodes, so we cut off the tree at some depth and treat
the new leaf nodes as terminal nodes by evaluating their positions
using some approximate value function (that approximates the op-
timal value function). This is known as heuristic minimax search. A
common value function is the weighted sum of some features, where
features could be, for example, "Number of white rooks" or "Has cas-
tled", etc. Using these values instead of the true outcome, we search
and back up values as usual and select the action that leads to the
highest-value successor state. Figure 4 shows an example with an in-
accurate value function. We can find the best policy under this value
function by backing up the minimax values, but it is far from optimal
since the value function is a poor approximation of the optimal value
function.

1

1 -3

2 1 -3 0

-5 2 1 -1 -4 -3 -5 0

0 0 1 0 0 0 1 0 1 0 0 0 -2 0 3 0

MAX

MIN

MAX

Figure 4: Heuristic minimax tree.
Grey nodes are terminal states, which
we assume are unreachable using
exhaustive search. Values correspond
to backed up minimax values. The
highlighted path shows the optimal
trajectory given the approximated value
function.

Why do we not just evaluate the values of the successor states
directly? This way we could skip the search altogether. It turns out
that the value function more accurately approximates the true termi-
nal values the deeper you search [Sutton and Barto, 2018], which is

understanding deep and narrow tree search with goexplore 6

crucial for performance.

Monte Carlo Tree Search using Online Function Approx-
imation. Monte Carlo Tree Search (MCTS) [Coulom, 2007] differs
by estimating the value function for relevant states at decision time,
rather the pre-computing the full function approximation offline.
First, we initialize the search tree with just the root node, and then
repeat the following steps for N simulations:

1. Selection: Starting at the root node, we traverse the search tree by
following a selection policy until we reach a leaf node. The selec-
tion policy uses an exploration coefficient to balance exploitation
and exploration. We want to search more efficiently by traversing
the most promising paths we have encountered so far, but we also
want to explore enough such that we can find nodes that poten-
tially could have even higher values. A common selection policy is
to take the action that leads to the node that maximizes the UCB1

score: UCB1(si) = xi
ni
+ α

√
ln N

ni
. The i:th node is denoted by si.

It has a score and a visit count, denoted by xi and ni. N is the
number of simulations, and α is the exploration coefficient.

2. Expansion: We grow the search tree by expanding the leaf node,
i.e. we add its children to the frontier.

3. Simulation: We play out the game using a simulation policy until
we reach a terminal state. A simple simulation policy could be to
take random actions.

4. Backup: For each node that was traversed in the selection phase,
we add the outcome of the simulation to the node’s score and we
increment the node’s visit count.

Figure 5 shows an example of MCTS with 10 simulations. MCTS
reduces depth in a different way: rather than cutting the tree at some
depth, it starts at the root node and adds a new node at every itera-
tion. This leads to shallow and wide trees as long as the exploration
coefficient is non-zero. Note that we end up taking the sub-optimal
action since the estimated values are poor approximations of the
optimal values.

We could just perform simulations directly from the successor
states – which is known as simple Monte Carlo Search – but, again,
we end up with more accurate estimates if we build out a bigger tree
[Russell and Norvig, 2010].

understanding deep and narrow tree search with goexplore 7

Mean: 0.00

Mean: 0.50 Mean: -0.60

Mean: 0.50 Mean: 1.00 Mean: 0.00 Mean: -0.33

Mean: 1.00 Mean: -2.00 Mean: 3.00

N: 10

N: 4 N: 5

N: 2 N: 1 N: 1 N: 3

N: 1 N: 1 N: 1

0 0 1 0 0 0 1 0 1 0 0 0 -2 0 3 0

Figure 5: MCTS tree after 10 simula-
tions. Grey nodes are terminal states,
which we assume are unreachable
using exhaustive search. Nodes that
have been simulated from are shown
in black. The numbers N and Mean
correspond to the number of simula-
tions involving a node and the average
outcome, respectively. The highlighted
edge shows the estimated best action.

2.2. Type B - Tree Search by Breadth Reduction

Another approach to making large tree search tractable is to narrow
down the search, and therefore driving deep search. It is not clear
how to successfully guide this type of search, so we will take a look
at how GoExplore does it.

Sparse reward environments. First we need to expand on the
definition of the game trees we have discussed so far. GoExplore
is run on the Atari Learning Environment (ALE) [Bellemare et al.,
2013], where the outcome of a game is decomposed into intermediate
rewards. After each action, we receive some reward. The reward can
be zero, so we can think of the earlier game trees as implicitly hav-
ing rewards of zero everywhere except for when we reach terminal
states.

A particularly challenging game in the ALE is Montezuma’s Re-
venge. It is a game where the player moves between levels by gather-
ing items and opening doors while avoiding different types of obsta-
cles. See Figure 6 for an example game frame. Few Type A strategies
can outperform an average human, and many struggle to find even
a single reward. GoExplore does not only surpass the average hu-
man, it even outclasses the human world record by over an order of
magnitude [Ecoffet et al., 2019].

Type A strategies struggle with Montezuma’s Revenge due to its
sparse reward setting: even though intermediate rewards are pro-
vided, most of the time we will encounter rewards of zero. Recall
that Type A strategies require a good value function to make good
decisions. When we approximate the optimal value function, we rely
on iteratively backing up some sort of reward signal. We end up with
a poor approximation of the optimal value function if the reward sig-
nal is mostly "nothing at all", which results in poor decision-making.

Why do Type A algorithms not struggle with a game like chess,

understanding deep and narrow tree search with goexplore 8

where non-zero rewards are only present at the end of the game?
This is because Montezuma’s Revenge still requires an even longer
correct sequence of actions between rewards. A game of chess on
average ends after roughly 80 moves [Russell and Norvig, 2010],
while the shortest path to the first reward in Montezuma’s Revenge
requires a sequence of about 110 actions1. 1 This is an empirical measurement

from playing the game myself.

Figure 6: A game frame from Mon-
tezuma’s Revenge.

Figure 7: The corresponding 8x11 cell
with 8 possible colors.

GoExplore. The key idea behind GoExplore [Ecoffet et al., 2019] is
to store encountered states in a table (the "archive"), and then explor-
ing from the most novel among these states in the hope of finding
new novel states. Novelty could be measured by, for example, how
many times the state has been visited.

A state in the ALE is defined by the pixels of the game screen. We
will not be able to add every single state to the archive due to mem-
ory constraints, so we need to reduce the state space somehow. A
reduced state space also speeds up the search since we do not waste
time exploring from too similar-looking states. State space reduction
can be done by downsampling game frames into cells. This is done
by (1) converting the image to grayscale, (2) reducing the resolution
of the image, and (3) reducing the color depth of the pixels. Figures 6

and 7 show an example of a state and its corresponding cell.
GoExplore initializes the archive with the starting cell, and then

repeats the following steps for some number of maximum training
frames:

1. Sample a promising cell from the archive by selecting according
to cell novelty (see “3.2 Cell Selection”). Reset the simulator to the
cell’s game state.

2. Explore randomly for 100 steps. Each step, downsample the game
state we receive from the environment into a cell. The archive will
be modified if one of the following events occur:

• Cell discovery: If a new cell is discovered, add it to the archive.
The cell should store the game state, the trajectory to get to
the game state, the cumulative reward, and the length of the
trajectory.

• Cell update: If a better cell is found, update the archive by
replacing the old cell with the better cell. A cell is considered
better if it has a higher cumulative reward so far, or if it has the
same cumulative reward but a shorter trajectory.

In contrast to the Type A strategies discussed in the previous sec-
tion, GoExplore does not compute value functions or policies. In-
stead, the algorithm outputs the trajectory to the highest-scoring cell.
In this context, since the environment is deterministic, the trajectory

understanding deep and narrow tree search with goexplore 9

is the sequence of actions from the starting state to the cell’s game
state.

How does this relate to game trees? A cell maps to a game state,
so we could view a cell as a node on the game tree. Note that a cell
will correspond to multiple nodes since similar-looking states map
to the same cell. The archive is the set of cells we can explore from,
which we can view as the frontier of the search. The frontier usually
consists of leaf nodes, but in this context the frontier will also contain
nodes in the interior of the tree. A cell can map to multiple nodes, so
the frontier will, for each cell, contain the node corresponding to the
highest-scoring version of the cell encountered so far. Figure 8 shows
an example of a game tree after two 3-step explorations.

Figure 8: GoExplore game tree. Dif-
ferent colors indicate different cells.
Nodes denote game states. The frontier
consists of the nodes highlighted by the
large circles.

Expanding and Re-Focusing the Frontier. How does GoEx-
plore successfully drive deep search, particularly in sparse reward
environments? Let us try to imagine the game tree near the start of
the algorithm. Initially, we expand out in many different directions
by performing 100-step random exploration runs. When we discover
new cells, we add their corresponding node to the frontier. At this
point, most of the frontier will be clustered near the root, see Figure
9a.

At some point, we will encounter our first reward. How will this
affect the search tree? Let us say that we start one of our 100-step
exploration runs, and after 5 steps we find a reward. The current cell
will then have the highest score in the frontier, meaning that any cell
encountered in the remaining 95 steps, whether old or new, will be
moved or added onto this trajectory. Consequently, a large part of
the frontier will be focused near the reward, and so we will be more
likely to start from a cell near the reward next time we perform an
exploration run. This will result in even more cells being moved near
the reward, until the reward node effectively acts as the new "root"

understanding deep and narrow tree search with goexplore 10

node of the tree, see Figure 9c. In other words, rewards re-focus the
frontier near the reward node.

This mechanism of expanding and re-focusing the frontier will
guide the frontier deeper and deeper as the search progresses. Fig-
ure 9d shows how most of the cells have clustered near the terminal
nodes, at which point the algorithm is likely to find at least one ter-
minal node.

Figure 9: Frontier progressing through
the game tree. These plots show the
distribution of cell depths at different
points of the search when playing Pong.

We can draw an analogy to saving and loading from checkpoints
when playing a video game. It is usually too difficult to beat a game
from start to finish in a single run, so it is a common strategy to save
the game near some challenging key events (for example, a boss
fight). When we have progressed past one checkpoint, the remainder
of the game is then clearly easier than the full game. This approach
of progressing by moving checkpoints closer and closer to the end
of the game is in essence how GoExplore guides deep and narrow
search.

GoExplore does this by branching out the tree in many different
directions when exploring and then pruning away branches when
encountering a reward. Recall that cells are also updated even if they
do not encounter rewards, as long as their trajectories are shorter.
This can be seen as another type of (soft) pruning: if we find a cell
with a short trajectory, we will not be able to add any worse version
of the cell to the frontier. This idea is illustrated in Figure 10. If we
end up finding the best red cell in the left sub-tree, the cluster of
red cells in the right sub-tree will never be added to the frontier. We
will then be less likely to explore that part of the tree since our only
chance of exploring it is by starting from the root node. Note that
the right sub-tree is not really being pruned: we can still explore it
deeper if we manage to add the purple cell to the frontier. We are just
more likely to explore the left sub-tree since that is where the frontier
is mostly going to be located.

Finding New Cells by Guided Cell Selection. The search is
mostly driven by cell discoveries since we rarely encounter rewards
in sparse reward environments. We could increase the likelihood
of cell discoveries by simply downsampling less, but then we risk
wasting time exploring from states (and finding states) that are not
meaningfully different.

A better idea is to start exploring from novel cells and hoping that
we will discover new cells this way. Novelty is defined as a weighted
sum of cell novelty and node novelty, measured by how many times
a cell has been visited and how many times a node has been explored
from, respectively. Note that the number of times a node has been
expanded is reset after a cell update since the nodes will be different

understanding deep and narrow tree search with goexplore 11

Figure 10: GoExplore shortest tra-
jectories. The cells with the shortest
trajectories are highlighted by large
circles.

even if they correspond to the same cell.
I run the algorithm over 1 billion game frames on Montezuma’s

Revenge using guided2 versus random cell selection to investigate 2 Stochastic acceptance selection, see
section “3.2 Cell Selection”.whether guided selection increases the likelihood of finding new

cells. The results are shown in Figure 11. Both strategies quickly dis-
cover many cells corresponding to the early levels of the game, but
the discoveries diminish until we reach about 500 million frames.
At that point guided selection finds a cluster of new cells, likely
corresponding to new levels of the game. Random selection, how-
ever, does not manage to find this cluster of cells even after 1 billion
frames. This supports the idea that by starting exploration from novel
states, we are more likely to find other novel states (even with ran-
dom exploration).

Figure 11: Guided selection enhances
cell discovery. The left graph shows the
number of cell discoveries per iteration
using guided (stochastic acceptance)
cell selection, and the right graph
shows the same quantity using random
cell selection.

Further Work. Given this mental framework of understanding Go-
Explore as a systemic way of expanding and re-focusing the frontier,
further research could explore whether more aggressive re-focusing
increases the speed of the algorithm.

One idea is to use some mechanism by which we automatically

understanding deep and narrow tree search with goexplore 12

set a reasonable “search speed” (which draws some inspiration from
learning rate schedules in deep learning). One could start with a
large "step size" by using a large downsampling factor such that the
cell space will be small. Then we search in this cell space until we
have not found any new or better cells for a while. When the search
has saturated, we can decrease the step size by doing a slightly more
fine-grained downsampling, which defines a slightly larger cell
space. This way we exploit the faster search speed afforded by small
cell spaces, and if we get stuck, we make the cell space larger. This
would also remove the need to tune the downsampling parameters
manually.

We could also tune how strongly we re-focus the frontier on re-
wards. One idea is to use "hard" checkpoints – every time we find a
reward, we reset the archive and act as if the reward checkpoint is
the new starting state. This way we commit completely to the first
promising path we encounter. We would risk getting stuck in subop-
timal trajectories, but if the solution is "good enough", the benefits of
the increased search speed might outweigh the costs.

Another way to attract more cells to the reward cell, without re-
moving all old cells, would be to explore longer following a reward.
For example, if we find a reward, we could explore for 10000 more
steps rather than the standard 100 steps. This way we will encounter
more cells which will be moved near the reward cell. Another ap-
proach would be to do a full-width forward search following a re-
ward. So let us say we are at step 60 in our exploration run, and we
find a reward. Rather than just performing random actions for the re-
maining 40 steps, we could instead perform a full-width search from
this point, for however long we can afford to.

3. Algorithmic time complexity

The original GoExplore implementation runs in superlinear time,
meaning that an exploration run takes longer as the algorithm pro-
gresses. This is mainly because cell selection scales linearly with the
number of cells, but also because trajectory tracking becomes more
costly as the trajectories grow larger. In this section, we will discuss
how to make GoExplore’s runtime scale linearly with the number of
exploration runs, by achieving constant-time trajectory tracking and
constant-time cell selection.

3.1 Maintaining trajectories

GoExplore outputs the trajectory to the highest-scoring cell, so we
need to make sure each cell tracks the trajectory needed to get to it

understanding deep and narrow tree search with goexplore 13

from the start state. We can do this by storing the trajectory when
a cell is found or updated, and by loading its trajectory when a cell
is selected. The naïve approach is to store the full trajectory from
start to finish for every cell. Consequently, both storing and loading
will have a time complexity of O(|τ∗|), where τ∗ denotes the longest
trajectory for any cell in the archive. This number will grow as GoEx-
plore progresses.

The main problem is that there is major overlap between stored
trajectories. Consider, for example, that we first find a cell A and then
a cell B in the same exploration run. Cell A will contain the actions
needed to get to A, and cell B will contain the actions needed to get
to B plus the actions needed to get to A.

A better approach is to only store the sequence of actions from
the previous cell as well as a backward pointer to that cell. Then we
can follow the backward links until we reach the start state, while
concatenating all the trajectory partitions found along the way into
the full trajectory. This way trajectory loading and storing will take at
most O(100) time since an exploration run consists of 100 timesteps.
However, we can not link between cells directly due to cycles; if we
find cell A, then B, and finally a higher scoring A, we will end up
with a cycle between A and B. To resolve this, we instead link be-
tween the unique nodes of the game tree and let the cells link to
those nodes, as illustrated in Figure 12.

A1 B1 C1 A2

B C A

Figure 12: Linked trajectory partitions
after cell update. Nodes corresponding
to any discovered or updated cells
are denoted by circles. They contain
a pointer to the previous node, and
an array of the actions needed to
get from the previous node to the
current node. Cells, denoted by squares,
contain a pointer to the highest-scoring
corresponding node. Cell A initially
pointed to node A1, but after finding
node A2, which maps to cell A and
has a higher score than A1, cell A gets
updated and now points to A2.

A third approach, which achieves O(1) loading and storing, is to
store every single action with backward links. This turns out to be
impractical due to excessive memory usage. In my main experiment
setup – 1 billion game frames on Montezuma’s Revenge, resulting in
roughly 20 thousand cells – the second and third approaches resulted
in roughly 1GB and 60GB of memory usage, respectively.

3.2 Cell Selection

Let us analyze the time complexity of cell selection. We maintain an
array of cells and an array of their corresponding novelty weights. A

weight for a cell c is defined as w1

√
1

cvisits
+ w2

√
1

cselected
, where cvisits

and cselected refers to the number of times the cell has been visited and
selected, respectively, and w1, w2 are hyperparameters.

We want to select a cell from the array of cells probabilistically
according to the corresponding weights. Roulette wheel selection (see
Figure 13) is the standard solution to this problem [Lipowski and
Lipowska, 2012]. It consists of two steps:

Figure 13: Roulette wheel selection.
Roulette wheel selection involving three
cells A, B, and C, with selection prob-
abilities 10%, 50%, 40%, respectively.
Each cell gets assigned a fraction of the
wheel according to its selection proba-
bility. The selection consists of picking
a random spot on the wheel and then
returning the cell associated with that
spot.

1. Construct the roulette wheel. First, we normalize the weights into
probabilities by computing the sum of all elements and dividing
every weight by this sum. Then we create the wheel by computing

understanding deep and narrow tree search with goexplore 14

the cumulative sum of the probabilities for each cell – this way the
cells get assigned a fraction of the wheel proportionate to their
weights.

2. Spin the wheel. We generate a random number between 0 and
1 and perform binary search to find out in which fraction of the
wheel the random number ends up. We return the corresponding
cell.

Let n denote the number of cells in the archive. Then the operations
take O(n + n + n + n)3 and O(1 + log n)4 time, respectively, resulting 3 For computing the sum, copying

the array, dividing elementwise, and
computing the cumulative sum.
4 For generating a random number, and
performing binary search.

in a total time complexity of O(n). The first operation would only
need to be computed once if we had a static array of weights, but in
our setting, we need to modify the array after every iteration. This
will lead to superlinear time complexity for GoExplore if the archive
grows as the algorithm progresses, which is commonly the case.

We would like GoExplore’s time complexity to be independent of
the size of the archive, which requires constant-time cell selection.
This is achievable using stochastic acceptance selection [Lipowski and
Lipowska, 2012], which consists of the following steps:

1. Randomly pick a cell from our archive.

2. Compute an acceptance probability paccept = wi/wmax, where wi

is the cell’s weight and wmax denotes that maximum weight in the
archive.

3. Generate a random number p ∈ [0, 1].

4. If p < paccept, return the cell. Else, go back to (1).

I use a maximum bound U ≥ wmax rather than wmax in the im-
plementation, which can still lead to O(1) cell selection in practice
[Lipowski and Lipowska, 2012].

To measure what practical impact stochastic acceptance selection
has on the total runtime, I run GoExplore with both selection algo-
rithms over an increasing number of game frames. As the number
of game frames increases, so does the size of the archive. Figure 14

shows the results. We see that roulette wheel selection takes longer
as the archive size grows, while stochastic acceptance selection leads
to a linear total runtime. For further context on the practical implica-
tions: in my main experiments, GoExplore processed 1 billion game
frames in roughly 2 days using stochastic acceptance selection, and in
slightly less than 3 days using roulette wheel selection.

The results show that the time complexity is independent of the
archive size when we select by stochastic acceptance, but how is Go-
Explore’s performance affected? I measure this by comparing the

understanding deep and narrow tree search with goexplore 15

Figure 14: Stochastic acceptance se-
lection preserves linear total runtime
despite increasing archive size. The
figure compares the runtime of GoEx-
plore using stochastic acceptance vs
roulette wheel selection, sampled over a
varying number of game frames.

raw scores on Montezuma’s Revenge over 1 billion game frames. Ta-
ble 1 summarizes the results. For further context, I also include the
performance from random cell selection, as well as the current state-
of-the-art results achieved by GoExplore [Ecoffet et al., 2019] and
Agent57 [Badia et al., 2020]. There is a large variance in the scores,
but stochastic acceptance performs at least as well as roulette wheel
selection, likely even better. The original GoExplore algorithm by
Ecoffet et al. [2019], using roulette wheel selection, substantially out-
performs this implementation. This can partially be explained by the
fact that no hyperparameter tuning is done during these experiments
(since they are too costly). Still, stochastic acceptance selection leads
to better performance than Agent57, which is the current state of the
art excluding any GoExplore variants.

Algorithm Mean 95% CI

Random 6,900 6,700-7,100
Roulette 12,225 7,650-18,900
StochAcc 22,560 12,980-32,140
Ecoffet 57,439 47,843-67,224
Agent57 9,352 6,413-12,291

Table 1: Scores on Montezuma’s Re-
venge.

4. Discussion

A key limitation with GoExplore is that it only produces a trajectory
from the start state to the goal state. Any deviation from this tra-
jectory would render the algorithm useless. In most games, we will
almost certainly diverge from our optimal path; either due to stochas-
ticity in the environment, or by facing an opponent that will try to
prevent us from reaching the goal state.

GoExplore tackles this problem by also learning a policy (see “Ap-
pendix: MDP”). There exist two variations:

• "Robustified" GoExplore: Use the extracted trajectory as a demon-
stration to learn a policy [Ecoffet et al., 2019, Salimans and Chen,
2018]. We do this by starting near the end of the trajectory, and

understanding deep and narrow tree search with goexplore 16

then interacting with the environment until the policy reliably can
reach the goal state. The agent is then pushed backwards some
number of steps, and then it interacts until it reaches the goal state
again. This process is repeated until the agent is pushed back all
the way to the start state, at which point the policy can beat the
full game.

• Policy-based GoExplore: Learn a goal-conditioned policy that
returns to a selected cell5, and then explores from that point on 5 Rather than using a simulator.

[Ecoffet et al., 2021].

Both these approaches have been tested on Montezuma’s Revenge
with stochasticity injected6, and they have been shown to still out- 6 See “Appendix: Method and Experi-

ment Details”.perform human experts [Ecoffet et al., 2019, 2021]. A key insight
with this thesis is that only a very narrow part of the state-space is
explored during learning. To further test the generality of the policy-
based agents, I suggest further exploring settings where the agent
mainly acts outside the narrow state-space it has been trained on. For
instance, one could use the simulator to change the starting state of
the game. The agent will then start in a completely different part of
the search tree – will it still be able perform well? The ultimate test
would be a multiplayer game, where the opponent will not let the
agent come anywhere near the sub-space that our agent has been
trained on. Can a GoExplore policy perform well in a turn-based
game like chess, for example?

Another direction for future reasearch could be to test GoExplore
on classical search problems since GoExplore is, in essence, an ap-
proximate search algorithm.

5. Conclusion

This thesis shows how GoExplore differs from common game-playing
algorithms by driving a deep and narrow search of the game tree.
GoExplore progresses the frontier by:

• expanding the frontier via cell discoveries in absence of a reward
signal,

• re-focusing the frontier via cell updates following a reward signal,

• and systematically exploring novel parts of the state space using
guided cell selection.

Furthermore, this thesis provides an open-source implementation
of GoExplore. It does not perform as well as the original implementa-
tion by Ecoffet et al. [2019], likely because no hyperparameter tuning

understanding deep and narrow tree search with goexplore 17

is done, but the algorithmic time complexity has been improved to
linear-time. It achieves linear time complexity by only storing inter-
mediate trajectory partitions between cells rather than the full trajec-
tories, and by doing constant-time cell selection using the stochastic
acceptance method. Stochastic acceptance selection does not only
lead to faster runtime, but it also performs at least as well as stan-
dard roulette wheel selection.

understanding deep and narrow tree search with goexplore 18

References

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo
Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, and Charles
Blundell. Agent57: Outperforming the Atari human benchmark. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 507–517. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/badia20a.html.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279, jun 2013. doi:
10.1613/jair.3912. URL https://doi.org/10.1613%2Fjair.3912.

Rémi Coulom. Efficient selectivity and backup operators in monte-
carlo tree search. In H. Jaap van den Herik, Paolo Ciancarini, and
H. H. L. M. (Jeroen) Donkers, editors, Computers and Games, pages
72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-75538-8.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley,
and Jeff Clune. Go-explore: a new approach for hard-exploration
problems, 2019. URL https://arxiv.org/abs/1901.10995.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. First return, then explore. Nature, 590(7847):580–586,
Feb 2021. ISSN 1476-4687. doi: 10.1038/s41586-020-03157-9. URL
https://doi.org/10.1038/s41586-020-03157-9.

Bradley Efron. Nonparametric standard errors and confidence
intervals. The Canadian Journal of Statistics / La Revue Canadi-
enne de Statistique, 9(2):139–158, 1981. ISSN 03195724. URL
http://www.jstor.org/stable/3314608.

Yijie Guo, Jongwook Choi, Marcin Moczulski, Shengyu Feng, Samy
Bengio, Mohammad Norouzi, and Honglak Lee. Memory
based trajectory-conditioned policies for learning from sparse
rewards. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 4333–4345. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/file/

2df45244f09369e16ea3f9117ca45157-Paper.pdf.

Adam Lipowski and Dorota Lipowska. Roulette-wheel se-
lection via stochastic acceptance. Physica A: Statistical Me-
chanics and its Applications, 391(6):2193–2196, 2012. doi:

https://proceedings.mlr.press/v119/badia20a.html
https://doi.org/10.1613%2Fjair.3912
https://arxiv.org/abs/1901.10995
https://doi.org/10.1038/s41586-020-03157-9
http://www.jstor.org/stable/3314608
https://proceedings.neurips.cc/paper/2020/file/2df45244f09369e16ea3f9117ca45157-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2df45244f09369e16ea3f9117ca45157-Paper.pdf

understanding deep and narrow tree search with goexplore 19

10.1016/j.physa.2011.12.0. URL https://ideas.repec.org/a/

eee/phsmap/v391y2012i6p2193-2196.html.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness,
Matthew Hausknecht, and Michael Bowling. Revisiting the arcade
learning environment: Evaluation protocols and open problems
for general agents. J. Artif. Int. Res., 61(1):523–562, jan 2018. ISSN
1076-9757.

Sebastian Raschka. Model evaluation, model selection, and algorithm
selection in machine learning, 2018. URL https://arxiv.org/abs/

1811.12808.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 3 edition, 2010.

Tim Salimans and Richard Chen. Learning montezuma’s revenge
from a single demonstration, 2018. URL https://arxiv.org/abs/

1812.03381.

C. E. Shannon. Programming a Computer for Playing Chess, page 2–13.
Springer-Verlag, Berlin, Heidelberg, 1988. ISBN 0387913319.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning.
Adaptive Computation and Machine Learning. MIT Press, Cam-
bridge, MA, 2 edition, 2018. ISBN 978-0-262-03924-6. URL
http://incompleteideas.net/book/the-book.html.

https://ideas.repec.org/a/eee/phsmap/v391y2012i6p2193-2196.html
https://ideas.repec.org/a/eee/phsmap/v391y2012i6p2193-2196.html
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1812.03381
https://arxiv.org/abs/1812.03381
http://incompleteideas.net/book/the-book.html

understanding deep and narrow tree search with goexplore 20

Appendix: Method and Experiment Details

This thesis follows the methodology outlined in the original GoEx-
plore paper [Ecoffet et al., 2019]: sticky actions are not used, and a
constant (k = 4) frame skipping is applied to the environment. Sticky
actions means that we inject some stochasticity into the environment
by sometimes ignoring the agent’s current action, and instead re-
using the previous one [Machado et al., 2018]. This is incompatible
with simulator-based GoExplore, since any stochasticity would break
the stored trajectories. Frame skipping makes the agent only perform
a decision every k steps. It is applied since it is empirically known
to speed up learning [Machado et al., 2018]. To be consistent with
the original paper, all reported frames refer to game frames, i.e. the
number of training frames times the frame skip constant k. To make
the distinction clear: 1 billion game frames means that the agent in-
teracted with the environment 250 million times, i.e. it processed 250

million training frames.
Furthermore, the exploration is not really random. The agent uses

action repetition, meaning that it will repeat its previous action with
95% probability7 (and otherwise take a random action). The moti- 7 This is different from sticky actions,

where the environment ignores the
agent’s decision.

vation behind this is to explore in a consistent direction, which is
particularly helpful on Montezuma’s Revenge. An ablation study
by Ecoffet et al. [2021] shows that action repetition significantly im-
proves performance on Montezuma’s Revenge, but they still manage
to beat the state-of-the-art even with random exploration.

GoExplore uses five hyperparameters in total: (1) the width w, (2)
height h, and (3) color depth d of the downscaled frame, as well as
(4) a cell novelty weight w1 and (5) a node novelty weight w2. The
reported experiments use the following hyperparameters8: w = 8, 8 This matches the hyperparameters

used by Ecoffet et al. [2019].h = 11, d = 8, w1 = 0.1, w2 = 0.3.
To measure uncertainty, 95% bootstrap confidence intervals are

computed using the percentile method [Raschka, 2018, Efron, 1981]:

1. Produce a sample of n runs with varying random seeds.

2. Compute a bootstrap distribution. Create a bootstrap sample by
sampling with replacement n times, and then calculate the mean
of that sample. Repeat this b times, to get a distribution with b
samples.

3. Define the lower bound, the mean, and upper bound, as the 2.5th,
50th, and 97.5th percentile of the bootstrap distribution.

The main experiments were run on Montezuma’s Revenge for 1

billion game frames. These were costly, so n was at most 5-10 for any
single experiment. All confidence intervals were computed by re-
sampling b = 10000 times. All experiments were run on the Google

understanding deep and narrow tree search with goexplore 21

Cloud Engine, using their Intel Cascade Lake CPU platform with 2

cores and 4GB of RAM.

understanding deep and narrow tree search with goexplore 22

Appendix: MDP

A sequential decision problem, such as a game, can be formalized as
a Markov Decision Process (MDP). The decision-maker is known as
an agent, and it performs decisions inside an environment. The agent
performs an action at in state st at timestep t, and receives a reward
rt+1 and a new state st+1 from the environment.

Formally, a MDP is defined by:

• S, a set of possible states,

• A(s), a set of possible actions from any state s,

• T(s′|s, a), a state transition model,

• and R(s, a), a reward function.

An MDP can have varying levels of complexity. To make it rele-
vant for the Atari Learning Environment [Bellemare et al., 2013], we
make the following assumptions: the model is known and accurate;
the environment is fully observable by the agent; the state and action
spaces are discrete; and the process terminates after a finite number
of decisions.

The solution to an MDP is the sequence of actions that maximize
the expected sum of rewards (or return) G = ∑T

0 ri. The expected
return from any state s is given by a value function V(s). The agent
decides what actions to take by following a policy π(s), which tells
the agent what decision to make in any state s. The maximum ex-
pected return is found by following an optimal policy π∗(s)

Given that the transition model is known and accurate, the optimal
policy can be found by exhaustively sweeping over the full game
tree and backing up the maximum value of the successors for each
node. This is generally memory inefficient and slow. A more efficient
solution can be found using dynamic programming. In the context
of MDPs, the algorithms iteratively compute more accurate value
functions and policies. They initialize the value function and the
policy, and then repeat some variation of the following steps until
convergence:

1. Policy evaluation: Evaluate the value function under the current
policy. This can be done by looking ahead one step under the
current policy, and updating the current value to be the retrieved
reward plus the expected value of the next state:

Vπ
k+1(s) = R(s, π(s)) + ∑

s′
T(s′|s, π(s))Vπ

k (s′).

2. Policy improvement: Improve the policy by acting greedily with
respect to the value function. This can be done by maximizing the

understanding deep and narrow tree search with goexplore 23

policy evaluation equation:

π(s) = arg max
a

(
R(s, a) + ∑

s′
T(s′|s, a)V(s′)

)
.

The Atari games using a simulator can be seen as search problems – a
special case of MDPs where the transition function is deterministic.
The methods mentioned above can still be used to find the optimal
value function and policy. The simulator-based GoExplore can only
be applied to search problems since any stochasticity in the environ-
ment would break the trajectories that are stored in each cell. There
exist policy-based variations of GoExplore [Ecoffet et al., 2021, Guo
et al., 2020], where the agent learns a policy that returns to cells and
then explores, which can be applied to the more general case where
the transition function is stochastic.

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-07

EXAMENSARBETE Understanding Deep and Narrow Tree Search with GoExplore
STUDENT Patrik Persson
HANDLEDARE Volker Krueger (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Hur GoExplore lär sig att spela
Montezuma’s Revenge

POPULÄRVETENSKAPLIG SAMMANFATTNING Patrik Persson

Till skillnad från andra AI-algoritmer så är GoExplore betydligt bättre än någon män-
niska på att spela Montezuma’s Revenge. Detta arbetet förklarar vad som gör GoEx-
plores tillvägagångssätt unikt.

Det finns två generella strategier för att lära sig
att spela spel: man kan antingen utforska spelet
brett, eller djupt. När du lär dig spela schack
kan du försöka lära dig alla de bästa öppningarna,
vilket ger dig bred kunskap om hur du bör spela
öppningsfasen. Nackdelen är att du inte kommer
ha spelat mycket schack efter öppningen. Ett an-
nat alternativ är att välja en öppning, och sen
spela en massa matcher utifrån den, vilket kom-
mer ge dig djup kunskap inom just den här öpp-
ningen.

De flesta AI-algoritmer för spel följer den första
strategin, d.v.s. de försöker lära sig att spela
spelet genom att få en bred och fullständig bild av
hur det bör spelas. Detta fungerar väl för många
spel, exempelvis brädspel som schack och Go, men
även datorspel som Atari-spelen. Men just Mon-
tezuma’s Revenge har visat sig vara en oerhört tuff
utmaning; de bästa AI-algoritmerna kan inte slå
en genomsnittlig människa, och många kan inte
ens ta en enda poäng!

Grunden till inlärning, i det här sammanhanget,
är att använda sig av belöningar och straff. Om
AI:n gör något dåligt, exempelvis förlorar spelet,
så blir den bestraffad. Om den gör något bra
blir den belönad. Över tid lär den sig att und-

vika dåliga beteenden och söka bra beteenden.
Svårigheten med Montezuma’s Revenge är att
man väldigt sällan blir belönad eller bestraffad,
vilket leder till väldigt långsam inlärning.

GoExplore följer den andra strategin. Istället
för att få en bred kunskap om hur spelet ska spelas
så siktar den tidigt in sig på en lovande strategi,
och fördjupar sig sedan i den. Detta kan kopplas
till den tidigare nämnda liknelsen till schack: istäl-
let för att lära sig massa olika öppningar så väljer
vi en öppning och utforskar den fullt ut.

	1. Introduction
	2. Tree Search Reduction Strategies
	3. Algorithmic time complexity
	4. Discussion
	5. Conclusion
	Appendix: Method and Experiment Details
	Appendix: MDP
	Tom sida

