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Abstract

We investigate the problem of risk averse robot path planning using the deep
reinforcement learning and distributionally robust optimization perspectives.
Our problem formulation involves modelling the robot as a stochastic lin-
ear dynamical system, assuming that a collection of process noise samples
is available. We cast the risk averse motion planning problem as a Markov
decision process and propose a continuous reward function design that explic-
itly takes into account the risk of collision with obstacles while encouraging
the robot’s motion towards the goal. We learn the risk-averse robot control
actions through Lipschitz approximated Wasserstein distributionally robust
deep Q-Learning to hedge against the noise uncertainty. The learned con-
trol actions result in a safe and risk averse trajectory from the source to the
goal, avoiding all the obstacles. Various supporting numerical simulations are
presented to demonstrate our proposed approach.
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1
Introduction

Given the continuous increase in the computing power, many computation-
ally expensive control theory problems are increasingly now being addressed
using the deep reinforcement learning approaches [Xie et al., 2019; Yan et al.,
2020]. The need for handling the uncertainty in the robot motion planning
has gained traction given that robots are increasingly now being deployed
to solve many real-world problems. So far, the motion planning problem
with uncertainty has been investigated from two different and yet closed
linked perspectives namely the control theory [Luders et al., 2010] and the
reinforcement learning [Raajan et al., 2020]. When stochastic uncertainties
are considered in the problems such as path planning, both the above said
approaches resort to the powerful stochastic optimization techniques as in
[Kandel and Moura, 2020] and [Renganathan et al., 2022] to ensure satisfac-
tion of specifications with high probability. However, when assumptions of
certain functional forms for the system uncertainties are made in the name of
tractability, they may lead to potentially severe miscalculation of risk when
the uncertain robot is made to operate in a dynamic environment [Majum-
dar and Pavone, 2020]. Such shortcomings can be addressed through carefully
designed risk bounded motion planning approaches using distributionally ro-
bust optimization techniques. The interested readers are referred to these
non-exhaustive list of papers on risk averse motion planning [Aoude et al.,
2013; Subramani and Lermusiaux, 2019; Xiao et al., 2019; Lathrop et al.,
2021].

Risk averse path planning problems emphasize the need for exact propa-
gation of uncertainties. For instance, either the distributions of all the uncer-
tainties or the moments defining the distributions are required to be known
in advance or calculated exactly for all time steps. However, things get easily
complicated when robot dynamics are nonlinear as in [Safaoui et al., 2021] or
in the linear setting when the uncertainty distributions being non-Gaussian
as in [Renganathan et al., 2020]. Similarly, it is an usual practice to associate
a particular distribution to the uncertainty (often Gaussian) just for the sake
of tractability [Luders et al., 2010]. But often in reality, all we have is just a
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Chapter 1. Introduction

collection of samples of the uncertainty and trying to fit a distribution to it
may cause undue risk. In this paper, we stick to the sample based uncertainty
modeling of process noise and investigate the risk averse motion planning
problem. We use the Wasserstein distributionally robust deep Q-learning to
hedge against the system uncertainty and approximately solve the Bellman
equation associated with the deep Q-learning approach [Mnih et al., 2013].
Specifically, we use the Lipschitz constant based approximations advocated
in Theorem 5 of [Kuhn et al., 2019] to learn risk-averse robot control actions.
A similar problem was investigated by [Raajan et al., 2020], albeit with usual
Gaussian assumptions and no formal risk consideration.

1.1 Contributions

This article leverages powerful results in deep reinforcement learning theory
and distributionally robust optimization as described in [Kandel and Moura,
2020] to learn control policies for robots to operate in a risk-averse manner
in an environment. Our main contributions are:

1. we learn safe robot control actions at all the state space positions to
infer a trajectory to move from source to goal by avoiding all obstacles.
We account for the uncertainty due the robot initial states and the
process noise through reward function design and learn the risk averse
control actions using approximated Wasserstein distributionally robust
Q-learning.

2. we demonstrate our proposed approach using a series of numerical sim-
ulations and show the effectiveness of our proposed approach.

1.2 Organization of Thesis

The thesis is organized as follows. In Chapter 2 the necessary background
theory on Probability Theory 2.2, Reinforcement Learning 2.3 and Distribu-
tionally Robust Optimization 2.4 is presented. The risk-averse path planning
problem associated with the uncertain robot system is presented in Chapter
3. The Wasserstein distributionally robust Q-Learning approach is discussed
in Chapter 4. The proposed idea is then demonstrated using numerical sim-
ulations in Chapter 5. Finally the results are discussed in Chapter 6 along
with directions for future research.
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2
Background

In this chapter we describe our notations and the background theory that is
necessary to understand this thesis. This chapter is divided into four sections
namely; 2.1 Notations, where we define the notations used in this paper, 2.2
Probability theory, where we go over the basics of probability theory, 2.3 Re-
inforcement Learning, where we explain the basic idea behind reinforcement
learning, and 2.4 Stochastic Optimization, where we introduce the field of
stochastic optimization where the project is built upon.

2.1 Notations

The set of real numbers, integers are denoted by R,Z. The subset of real
numbers greater than a ∈ R is denoted by R>a. The set of integers between
two values a, b ∈ Z with a < b is denoted by [a : b]. The set of non-negative in-
tegers is denoted by Z+. We denote by B(Rd) and P(Rd) the Borel σ-algebra
on Rd and the space of probability measures on (Rd,B(Rd)) respectively. We
denote the uniform probability distribution over a set X as U(X ). By ∥ · ∥
we denote the 2-norm or the euclidian distance of a vector.

2.2 Probability Theory

Formally, a probability space is defined using the triple (Ω,F ,P), where

1. Ω is called sample space and denotes the set of all possible outcomes.

2. F is called an event space and is a set of events where an event is a set
of outcomes in the sample space.

3. P is called the probability function and assigns a probability between
0 and 1 to each event in the event space.

11



Chapter 2. Background

A random variable X is a measurable function X : Ω→ E that maps a set of
possible outcomes Ω to a measurable space E. The probability that X takes
on a value in a measurable set S ⊆ E is written as

P(X ∈ S) = P ({ω ∈ Ω | X(ω) ∈ S}) . (2.1)

Any random variable can be described by its cumulative distribution func-
tion, which describes the probability that the random variable will be less
than or equal to a certain value. The probability distribution of a random
variable can be characterized by a small number of parameters with a prac-
tical interpretation instead of a known probability distribution. For a distri-
bution P ∈ P(X ) that is defined on a space X ⊆ Rd with random variable
x ∈ X , the probability of x occurring is denoted as P(x) : X → R.

For a discrete X , P(x) represents the probability of x occurring. The
distribution P has to satisfy the following summation property. That is, for
a discrete probability distribution,∑

x∈X
P(x) = 1, (2.2)

and for a continuous probability distribution,∫
X
P(x)dx = 1. (2.3)

The expected value of a random variable x ∈ Rd with distribution P(x) is
denoted as Ex[x] ∈ Rd and is defined as,

Ex[x] ≜

{∑
x∈X xP(x), for discrete X ,∫

X xP(x)dx, for continuous X .
(2.4)

2.3 Reinforcement Learning

Reinforcement learning is a machine learning method that is based on re-
warding desired behaviors and penalizing undesired ones. This method dif-
fers from other machine learning methods such as supervised learning
and unsupervised learning, in not needing labelled input/output pairs.
In reinforcement learning problems, an agent interacts with an environment
by taking actions, and receives a reward each time an action is taken. With
each action the environment changes. The goal is to find the best policy or
decision rule such that the cumulative rewards received from the environ-
ment is maximized. The agent tries to learn the relationship between the
environment states, actions and the rewards. Figure 2.1 illustrates the main
principle in reinforcement learning methods.
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2.4 Stochastic Optimization

Figure 2.1 Illustration of reinforcement learning. The agent performs an action
based on the state of the environment and receives a reward based on how good
the action is. By taking an action the state of the environment changes as well. 1

Reinforcement learning can be especially useful in tasks where the best
action to take is not necessarily known. A common usage of reinforcement
learning is for training agents that can play games [Mnih et al., 2013], since
games usually have a built in reward system. The agent can learn through
experiences and exploit the reward system to achieve a desired behavior.

For an environment with finite states, the experiences can be recorded
on a table [Watkins and Dayan, 1992] and based on these experiences, a
policy can be constructed. However if the number of states is too large, the
required memory can exceed the available resources. For a continuous state
space, a table can not hold all the experiences since virtually infinite states
are possible. A solution to this is to use a neural network as a policy that
learns the experiences rather than record them on a table [Mnih et al., 2013].
This allows to train environments with large or infinite states. The methods
that utilize a deep neural network as the policy are commonly referred to as
Deep Reinforcement Learning.

2.4 Stochastic Optimization

The main idea of a numerical optimization problem is to optimize an objective
function, say L : Rd → R with respect to the decision variable x ∈ Rd in a
space X ⊆ Rd. That is,

min
x∈X

L(x). (2.5)

Solutions to these problems heavily depend on the properties of L and X .
That is, under certain optimization friendly conditions such as L(x) being a
convex function and X being a convex set, the optimization problem given
by (2.5) can be efficiently solved using thoroughly established convex opti-
mization techniques. These optimization problems become interesting when
an uncertainty is introduced into them. For instance, (2.5) can be extended

1 https://vitalflux.com/reinforcement-learning-real-world-examples/
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Chapter 2. Background

into a step further by introducing an uncontrolled variable w into the ob-
jective function as L(x,w). The idea to deal with such a formulation is to
imagine the uncontrolled variable as adversarial and working against us. The
solution to this problem is to plan according to the worst case scenario. Ro-
bust optimization considers the uncertainty w ∈ W with W denoting the
corresponding uncertainty bound set. That is, w is assumed to be equally
likely such that it has a uniform distribution over the space W. A robust
optimization problem can be formulated as,

min
x∈X

max
w∈W

L(x,w), (2.6)

where the distribution Pw := U(W) is uniform over the spaceW. In stochastic
optimization, the variable w has a known distribution Pw ∈ P(W). Since w
is modeled as random, the optimization can be performed over the expected
value of the objective function with respect to w as,

min
x∈X

Ew∼Pw [L(x,w)]. (2.7)

Distributionally Robust Optimization
However, to solve (2.7) exactly, the distribution defining the uncertainty w
has to be known exactly to compute the expected value of the objective func-
tion L(x,w). Assuming a specific functional form for the uncertain random
variable w just for the sake of tractability will cause the resulting decision
x to impose undue risk. Fortunately, under certain specific assumption on
the randomness of the uncertainty w, such unwanted risk can be mitigated
with provable and certifiable guarantees using the distributionally robust op-
timization techniques. Distributionally Robust Optimization (DRO) is a sub-
field of stochastic optimization. In the case of DRO, the stochastic variable
has an unknown distribution Pw but we believe that Pw belongs to some set
consistent with certain features of distributions such as moments, unimodal-
ity etc. This ambiguity in its true distribution makes optimization more com-
plicated. In most DRO problems, it is assumed that some prior information
about Pw is known and is incorporated in an ambiguity set Bw ⊂ P(W) where
the ambiguity set is a set that contains probability distributions defined over
W. The DRO problem can be written as,

min
x∈X

max
P∈Bw

Ew∼P[L(x,w)] (2.8)

The goal of this kind of optimization problems is to solve for the worst case
distribution in Bw and find a robust solution. Solving DRO’s depends on the
properties of the ambiguity set. A comparison between the different optimiza-
tion paradigms can be seen in Figure 2.2. A common type of ambiguity set

2 Figure taken from [Shang and You, 2018]
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2.4 Stochastic Optimization

Figure 2.2 Different optimization paradigms.2

that is used in current literature is a Wasserstein ambiguity set, which relies
on a distance metric between probability distributions called the Wasserstein
distance.

Wasserstein Distance
The Wasserstein distance is a distance metric that is defined between proba-
bility distributions. It can be used to compute how similar two distributions
are. For two distributions Q,Q′ ∈ P(W), the p-order Wasserstein distance is
defined as,

Wp(Q,Q′) :=

(
inf

π∈Π(Q,Q′)

∫
W×W

∥w − w′∥pπ(dw, dw′)

) 1
p

, (2.9)

where Π(Q,Q′) is the set of all joint probability distributions supported
on W × W, with marginal distributions Q and Q′. This distance metric
is also known as the earth mover’s distance, where the distributions Q, Q′

represent heaps of dirt and Π is the set of all admissible transport plans.
The Wasserstein distance represents the minimum required energy to convert
one heap of dirt into the other. The minimizing joint distribution π∗ to
(2.9) is the optimal transport plan that requires the minimum energy for
this conversion. The Wasserstein distance is commonly used in fields such as
Generative Adversarial Networks (GAN) [Adler and Lunz, 2018] and optimal
transport theory. Figure 2.3 shows an illustration of the earth movers distance
that is commonly used in optimal transport theory.

Wasserstein Ambiguity Set
The Wasserstein ambiguity set Bw,p, is defined around a nominal distribution
P̂w ∈ P(W) such that,

Bw,p :=
{
P ∈ P(W) |Wp

(
P̂w,P

)
≤ ϵw

}
, (2.10)

3 https://sbl.inria.fr/doc/group__Earth__mover__distance-package.html
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Chapter 2. Background

Figure 2.3 Illustration of the earth movers distance. 3

Figure 2.4 A Wasserstein ambiguity set with nominal distribution P and radius
ρ is illustrated here. Any probability distribution within this ball has a Wasserstein
distance less than or equal to ρ from the centered nominal distribution P.

where the set Bw,p contains all the distributions supported onW that have a
pth-order Wasserstein distance of at most ϵw ∈ R to the nominal distribution
P̂w. This set is commonly referred to as a Wasserstein Ball since it represents a
ball in infinite dimensional space with P̂w at its center with a radius of ϵw. The
nominal distribution P̂w is usually obtained through some prior knowledge
about w. In some cases, P̂w can be defined as an empirical distribution that
is obtained from samples of w.

Definition 1
For a collection of N ∈ N independent samples of w, ŵ1, . . . , ŵN , an
empirical distribution P̂w is defined as,

P̂w :=
1

N

N∑
i=1

δŵi
, (2.11)

2
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2.4 Stochastic Optimization

where δŵi is the Dirac delta function. Each sample in this distribution
has uniform probability.
The radius ϵw is selected such that the true distribution Pw lies somewhere

inside this ball with a probability greater than 1 − β. The β parameter will
determine the allowed risk factor for a solution. A smaller β will result in a
larger radius. Since the radius ϵw quantifies the amount of trust (distrust)
that we have over the nominal distribution P̂w, it is chosen such that,

P (Pw ∈ Bw,p) ≥ 1− β, β ∈ [0, 1]. (2.12)

Assumption 1
The true distribution Pw is a light-tailed distribution. That is, ∃p > 1
such that,

EPw

[
e∥w∥p

]
=

∫
W

e∥w∥p

dPw(w) <∞ (2.13)

2

Assumption 1 is used in [Chen and Paschalidis, 2020] for the following theo-
rem.

Theorem 1
Based on Assumption 1, for an empirical distribution P̂w, with N atoms,
the radius of the Wasserstein ambiguity set is found as,

ϵw = ρ

√
2

N
ln

(
1

β

)
, (2.14)

2

where ρ = diam(supp(Pw)) depends on the true distribution Pw.

Proof. Based on Assumption 1, a relationship between the parameter β and
the radius ϵw can be found in [Chen and Paschalidis, 2020],

P
(
W1

(
Pw, P̂w

)
≥ ϵw

)
≤

{
c1e

−c2Nϵmax(d,2)
w , if ϵw ≤ 1

c1e
−c2Nϵpw , if ϵw > 1

, (2.15)

where d is the dimension of w ∈ Rd. In order to obtain P(W1(Pw, P̂w) ≤
ϵw) ≥ 1− β, the radius has to be selected as follows,

ϵw(β) =


(

ln(c1β−1)
c2N

)1/max(d,2)

, if N ≥ ln(c1β
−1)

c2(
ln(c1β−1)

c2N

)1/p

, if N < ln(c1β
−1)

c2

, (2.16)
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Chapter 2. Background

where c1, c2 ∈ R are constants that depend on d and N . Both approaches
depend on some unknown constants and do not make use of available data.
Some researchers have proposed to choose the radius ϵw without relying on
exogenous constants [Zhao and Guan, 2015]. According to the authors, for
a discrete nominal distribution P̂w, the radius of the ambiguity set can be
calculated as,

P
(
W1

(
Pw, P̂w

)
≤ ϵw

)
≥ 1− e

ϵ2wN

2ρ2︸ ︷︷ ︸
:=β

, (2.17)

where ρ is the diameter of the support of the true distribution Pw. By solving
for ϵw we can get,

ϵw = ρ

√
2

N
ln

(
1

β

)
. (2.18)

2

Tractable Solutions of the DRO
The inner maximization over the ambiguity set in (2.8),

sup
P∈Bw,p

Ew∼P [L(x,w)] , (2.19)

can be very difficult solve. For ease of notation x will be omitted and the
objective function is referred as L(w). The primal problem of (2.19) can be
written as,

vP = sup
P∈Bw,p

∫
W

L(w)P(dw). (2.20)

This is an infinite dimensional optimization problem where finding a tractable
solution can be unlikely. For certain specific cases with the ambiguity set Bw,p

being a Wasserstein ball centered around a discrete nominal distribution
P̂w =

∑N
i=1 δŵi

with a radius ϵw, the problem holds a strong dual solution,
as explained in [Gao and Kleywegt, 2016].

vD = inf
λ≥0

{
λϵpw +

1

N

N∑
i=1

sup
w∈W

[L(w)− λ ∥w − ŵi∥p]

}
(2.21)

The strong duality property causes the primal and the dual solution to be
equivalent. The dual problem is easier to work with since instead of opti-
mizing over all the probability distributions in the ambiguity set, the opti-
mization is performed over W, which reduces (2.20) to a finite dimensional
optimization problem. However this solution may not be tractable for some
L(·). The problem has solutions for specific cases such as where L is a convex
function. However for functions that are non-convex, different approxima-
tions are available. One solution is to approximate (2.19) by utilizing the
Lipschitz constant of L(·) with respect to w.
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2.4 Stochastic Optimization

Definition 2
A Lipschitz continuous function ϕ : Rd → R has the property,

∥ϕ(x)− ϕ(y)∥ ≤ Kϕ∥x− y∥, ∀x, y ∈ Rd, x ̸= y, (2.22)
2

where ϕ(·) can change at most by Kϕ. Trivially, for a function that is not
Lipschitz continuous, Kϕ →∞, which means that the functions growth
rate is unbounded.

Theorem 2
The DRO (2.19) has a upper bounded approximation that involves the
Lipschitz constant of the objective function L(·) as,

sup
P∈Bw,p

Ew∼P[L(w)] ≤ Ew∼P̂w
[L(w)] + ϵwKL, (2.23)

2

where KL is the Lipschitz constant of the objective function L(·) with
respect to w.

The proof of Theorem 2 can be found in [Kuhn et al., 2019] Theorem 5. If the
objective function L(·) satisfies to be Lipschitz, then Theorem 2 is trivially
satisfied. The upper bounded solution causes the Wasserstein ball radius ϵw
to be larger than intended. This may be favorable for some problems where
a risk averse solution is sought.
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3
Problem Statement

In this chapter, we define the problem that this thesis is built around. Specif-
ically, we define how the uncertain robot is modeled and we specify where it
lives. After the robot and environment modeling, we describe the risk averse
path planning problem statement cast as a Markov Decision Process, where
the robot is expected to find a path from a source to destination without
colliding with obstacles in a risk averse manner.

3.1 Robot & Environment Model

The robot is modeled as a stochastic discrete time linear time invariant sys-
tem and it is assumed to move within a bounded environment X ⊂ Rnx .
There are in total M ∈ Z+ obstacles in the environment, each disjoint with
the other and they are collectively referred as O with |O| = M . Further, each
obstacle is assumed to be static and circular in shape with constant radius
R

(i)
obs > 0, ∀i ∈ O. Then, the free space that the robot can traverse namely
Xfree ⊂ X is given by,

Xfree = X\Xobs, and Xobs :=

M⋃
i=1

X (i)
obs, (3.1)

where X (i)
obs ⊂ X is the space occupied by the obstacle i ∈ O. Similar to the

obstacles, we define a goal region, Xgoal ⊂ X , that is both static and circular
in shape with constant radius Rgoal > 0. All the robot states that are inside
the region Xgoal are considered to be goal states. The robot is limited to move
within the environmental boundaries. Hence, just like the static obstacles, the
environmental boundaries are also treated as terminal states. The position of
the robot at time k ∈ Z+ is formulated as pr,k ∈ Rnr . The state of the robot
at time k is represented as xk ∈ Rnx and it may include the robot’s position,
velocity and other states of interest so that nx ≥ nr. The robot is controlled
through a control input uk which is selected from U such that uk ∈ U ⊆ Rnu .
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3.1 Robot & Environment Model

Given the above description, we define the dynamics (evolution) of the robot
in X as,

xk+1 = Axk +Buk + wk, (3.2)

where A ∈ Rnx×nx is the state matrix and B ∈ Rnx×nu is the input matrix.
The robot is subject to a process disturbance wk ∈ Rnx . The time invariant
true distribution of the process disturbance wk at any time k namely Pw is un-
known, however it is assumed that a collection of N ∈ N independent samples
of wk are available beforehand. That is, an i.i.d sequence ŵ1, . . . , ŵN ∈ Rnr

is assumed to be known in advance. At any time k, the distribution of wk

can be approximated through the following empirical distribution,

P̂w :=
1

N

N∑
i=1

δŵi , (3.3)

where δŵi is the Dirac delta function. Note that, P̂w need not necessarily be
the true distribution of the process disturbance wk. The initial state of the
robot is assumed to be random and it is modelled as x0 ∼ Px0

(x̄0,Σx0
), where

Px0
is assumed to be known with the mean x̄0 ∈ Rnx , and the covariance

Σx0
∈ Rnx×nx also being assumed to be known or estimated from prior

experiments. It is clear from the above setting that Pxk
for k ≥ 1 is not

known exactly despite Px0 being known exactly.

Assumption 2
The set of obstacles and the goal are assumed to be disjoint with each
other and further there exists a minimum separation distance Lmin >
Robs +Rgoal between the goal and any of the obstacle regions. That is
Xgoal ∩ Xobs = ∅ and ∀xgoal ∈ Xgoal, ∀xobs ∈ Xobs, we see that,

∥xgoal − xobs∥ ≥ Lmin. (3.4)

2

Main Problem:
The main problems investigated in this thesis are enumerated as follows:

1. Learn the control actions for the robot at all the state space positions
such that actions should enable the robot to move towards the goal and
avoid the set of static obstacles.

2. Using the learned control actions, find a trajectory, from the initial
position pr,0 to the goal state pg ∈ X without colliding with any of the
obstacles.
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Chapter 3. Problem Statement

3. Learn the control policy and design the trajectory such that the uncer-
tainty due to the random initial condition of the robot states and the
available sample based uncertainty modeling of the process noise are
taken into account.

An illustration of the environment can be seen in Figure 3.1.

Figure 3.1 Example environment with two obstacles(red) and a goal(green). The
red line represents the trajectory of the robot with the initial point of the robot
shown with the green marker.

3.2 Markov Decision Process (MDP) Formulation

The above planning problem can be cast as a Markov decision process that
consists of the tuple ⟨S,A,P, r⟩. Here, S ⊂ RnS is the continuous state
space, A ⊂ RnA is a finite set called the action space with |A| ∈ N+\0,
r : S → R is the reward function and P : S × A → P(S) is the state
transition probability which defines the probability distribution over the next
states. Due to the Markov property of the system, the transition probabilities
only depend on previous state and action such that for a sk and action ak
and the history hk := {s0, a0, . . . , sk, ak}, we see that P(sk+1 | hk) = P(sk+1 |
sk, ak),∀sk+1 ∈ S. At step k, the state sk ∈ S contains the state of the robot
xk, the center of the goal pg, and the centers of the obstacles p

(i)
obs.

sk :=
{
xk, pg, p

(i)
obs

}
∈ RnS , nS = (2 +M)nx, i = 1, . . . ,M. (3.5)

The state sk is referred as a terminal state if xk ∈ Xobs ∪ Xgoal or if
xk /∈ X and as non-terminal state otherwise. The dimensions of MDP
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state sk depend on the number of obstacles on the environment. Increasing
the number of obstacles will cause the dimension of sk to increase as well
1. An action ak ∈ A performed at state sk ∈ S, will cause a transition
to a new state sk+1 ∈ S with the probability P(sk+1 | sk, ak). After the
transition, a deterministic reward rk = r(sk+1) is obtained based on the state
where we land. The actions, ak = π(sk) are chosen based on a deterministic
policy π : S → A. The set of all admissible control policies is denoted by Π.
A sequence τ

(π)
k := (sk, ak, sk+1, ak+1, . . . , sK−1, aK−1, sK) with a terminal

state sK is called a sample path under the policy π ∈ Π. The cumulative
discounted reward for this sample path is,

Rπ(τk) =

K−k−1∑
i=0

γir(si+k+1), (3.6)

where γ ∈ [0, 1] is the discount factor. The discount factor is used in order
to take in to account the future rewards. Due to the randomness in the
transitions, the value function is defined as the expected value calculated for
the discounted returns starting from state s and following policy π. The value
function V : S → R defines the expected discounted returns starting from
the state s and following policy π. That is,

V π(s) := E[Rπ(τk | sk = s)]. (3.7)

We also define the Q-function Q : S ×A → R which represents the expected
discounted returns for taking action a at state s and following policy π,

Qπ(s, a) := E

[
K−1∑
k=0

γkr(sk+1) | s0 = s, a0 = a

]
. (3.8)

The purpose is to find a policy π ∈ Π that maximizes the cumulative dis-
counted rewards for all the states in S. If the Q-function is known for each
state and action pair, a policy can be formulated that chooses the best action
available at each state as,

π(s) := argmax
a∈A

Qπ(s, a). (3.9)

3.3 Reward Function Design

Typically, the reward function depends on the current state s, current action
a and the next state s′. However, we consider rewards that depend on only s′,

1 The increase in dimension of sk is the price that we need to pay to handle potentially
dynamic obstacles.
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that is used in [Raajan et al., 2020]. We consider a penalty for both traveling
and collision with obstacles. Further, there is an incentive for being in the
goal. The reward function r̂ : S → R is defined as,

r̂(s′) = rtravel +

{
rgoal, if s′ ∈ Xgoal,

robs, if s′ ∈ Xobs or s′ /∈ X .
(3.10)

where rtravel is the travel penalty, rgoal is the reward for reaching the goal,
and robs is the penalty for obstacle collision or leaving the environment.
The surface plot of the reward function r̂(·) can be seen in Figure 3.2. The

Figure 3.2 Discontinuous reward function for an environment with 2 obstacles
(pits) and a goal (peak) and rtravel = −0.001, rgoal = 1, robs = −1.

discontinuity in the reward function r̂(·) causes its Lipschitz constant Kr̂ →
∞, which will be important in further chapters. For this reason, it has to
be approximated by a Lipschitz continuous function. The continuous reward
function can be separated into 4 parts namely, 1) constant travel cost, 2) goal
reward, 3) obstacle collision penalty, and 4) penalty for travelling outside the
environment. For the obstacles and the goal, the radial step function can be
approximated with a tanh function with the shape,

f(x) =
Ar

2

(
1 + tanh

(
Rrad − ∥pr − p∥2

δ

))
, (3.11)

where pr ∈ Rnr denotes the position of the robot, p ∈ Rnr denotes either
the center of the obstacle or that of the goal, Rrad ∈ R>0 is the radius of
the obstacle or the goal, Ar ∈ R is the gain and δ ∈ R>0 is the slope. By
using the distance to the border of the obstacle/goal, the resulting function
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becomes a radially symmetric hyperbolic tangent function. A smaller δ will
result in a steeper surface near the border. A similar structure can be used
for the borders that takes the distance to the borders across all the position
dimensions, with the limits of the environment being [p, p] and p, p ∈ Rnr .
Then, the continuous approximation of the reward function in (3.10) can be
written as,

r(s′) = rtravel

+
robs
2

nr∑
j=1

(
2 + tanh

(
p(j)− pr(j)

δ1

)
+ tanh

(
pr(j)− p(j)

δ2

))

+
rgoal
2

(
1 + tanh

(
Rgoal − ∥pr − pg∥2

δ3

))

+

M∑
i=1

robs
2

1 + tanh

R
(i)
obs −

∥∥∥pr − p
(i)
obs

∥∥∥
2

δ4

 .

(3.12)

For simplicity, we let δi = δ, ∀i = 1, . . . , 4. However, this is a tuning param-
eter that one can choose to shape the reward function appropriately. The
continuous reward function can be seen in Figure 3.3. Figure 3.4 shows a

Figure 3.3 Continuous reward function for an environment with 2 obstacles
(pits) and a goal (peak) and rtravel = −0.001, rgoal = 1, robs = −1.

comparison between the reward functions r̂(·) and r(·).
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Figure 3.4 Comparison between the discontinuous and the continuous reward
function.
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4
Method

In this chapter we explain our solution to the problem given in Chapter 3.
We will go over the Q-Learning theory and implementations before we show
our proposed solution Distributionally Robust Q-Learning.

4.1 Q-Learning (DQN)

The Q-values represent the expected discounted returns if action a is taken
at state s. If the Q-values for a system is known, a policy π can be used
to maximize the expected returns. In order to estimate the Q-values, the
standard temporal difference learning based Q-Learning procedure is usually
employed, [Watkins and Dayan, 1992]. Q-learning is a reinforcement learning
method that makes use of interactions between the agent (robot) and the
environment. The purpose is to learn the relationship between the actions
and the expected rewards by utilizing past experiences. From now on we will
drop the superscript π on Qπ(s, a) for brevity of the notation. Similarly we
will denote the current state sk as s, the next state sk+1 as s′ and the action
ak as a. Q-Learning makes use of the Bellman operator T : RS×A → RS×A,
which is defined as,

T Q(s, a) := Es′

[
r(s′) + γmax

a′∈A
Q(s′, a′)

]
, (4.1)

where the expectation is over the next states s′, which come from the tran-
sition probability Ps′ := P(s′ | s, a), where s and a are not included in the
notation for sake of notation.

Definition 3
The operator F is a α-contraction with respect to some norm ∥.∥ and
some argument function X if

∀X, X̄ : ∥FX − FX̄∥ ≤ α∥X − X̄∥ (4.2)
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2

Lemma 1
The Bellman operator T defined in (4.1) is a γ-contraction such that for
two Q-functions Q1 and Q2,

∥T Q1 − T Q2∥∞ ≤ γ∥Q1 −Q2∥∞. (4.3)

2

Proof. For two Q-functions Q1, Q2 : RS×A → R, the infinite norm ∥ · ∥∞ is
defined as,

∥Q1 −Q2∥∞ = max
s∈S,a∈A

|Q1(s, a)−Q2(s, a)|. (4.4)

The infinite norm for the Bellman operator can be written as,

∥T Q1 − T Q2∥∞ = max
s∈S,a∈A

|T Q1(s, a)− T Q2(s, a)|. (4.5)

By substituting the definition of the Bellman operator in (4.1) it can be
proven that,

T Q(s, a) = Es′ [r(s
′ + γmax

a′∈A
Q(s′, a′)]

=

∫ (
r(s′) + γmax

a′∈A
Q(s′, a′)

)
P(s′ | s, a)ds′ (4.6)

max
s∈S,a∈A

|T Q1(s, a)− T Q2(s, a)|

= max
s∈S,a∈A

∣∣∣∣γ ∫ (
max
a′∈A

Q1(s
′, a′)−max

a′∈A
Q2(s

′, a′)

)
P(s′ | s, a)ds′

∣∣∣∣
≤ γmax

s′∈S

∣∣∣∣max
a′∈A

Q1(s
′, a′)−max

a′∈A
Q2(s

′, a′)

∣∣∣∣
≤ γ max

s′∈S,a′∈A
|Q1(s

′, a′)−Q2(s
′, a′)| = γ∥Q1 −Q2∥∞. (4.7)

2

Since the Bellman operator is a contraction operator, the Q-values will
converge to an optimal value Q∗(s, a). At the optimal Q-values Q∗(s, a), the
Bellman operator converges to a fixed point.

T Q∗(s, a) = Q∗(s, a), ∀s ∈ S,∀a ∈ A (4.8)

The optimal point for the Q-values can be found by iteratively applying
the bellman operator T since it is a contraction. At the optimal point, the Q-
function will represent the expected cumulative rewards for taking an action a
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at state s. The Q-values can be updated by interacting with the environment
and gathering experiences in the form of ⟨s, a, r, s′⟩. The simplest implemen-
tation of Q-Learning [Watkins and Dayan, 1992] uses a table to record the
Q-values. However this becomes infeasible if the state space is continuous or
the number of states is simply too large. A method that can handle contin-
uous states as well as discrete states called Deep Q-Learning (DQN) [Mnih
et al., 2013], estimates the Q-values by using a nonlinear function such as a
deep neural network. Specifically, it utilizes two neural networks namely: i)
Q-network Q(s, a; θ) and ii) the target network Q(s, a; θ−), where θ, θ− are
the weights of the networks. The Q-network estimates the Q-values for the
state-action pairs and is used as the policy. The target network is utilized
when generating the targets in the training process. The two networks have
the same architecture and every Γ steps, the weights of the Q-network are
copied to the target network. The reasoning behind this is to have a stable
target during training. If the targets are generated by the Q-network, the
targets can become non-stationary and can cause problems with the meth-
ods stability. The networks have nS inputs and nA outputs such that the
Q-values for each action is calculated in one pass. At each step, the state s,
the action taken a, the reward r, and the next state s′ is stored as an experi-
ence in a memory bufferM. The buffer has a fixed size and once its full, the
oldest experience is replaced by the new one. At each step, the Q-network
is trained with experience replay, where a random batch of experiences are
sampled from the buffer M and with the Bellman equation, the targets are
calculated. For a sampled experience ⟨sj , aj , rj , s′j⟩, the target yj is calculated
as,

yj =

{
rj + γmaxa′∈A Q(s′j , a

′; θ−), if s′j is non-terminal,
rj , if s′j is terminal.

(4.9)

After the targets have been calculated for a batch of Nbatch experiences, the
loss is computed as,

L =
1

Nbatch

Nbatch∑
j=1

(Q (sj , aj ; θ)− yj)
2 (4.10)

The Q-network is trained on L using backpropagation to reduce the loss. This
process is repeated for many steps until the Q-network converges. During
training, the actions are selected with an ϵ-greedy policy, where the action
will be selected randomly from A with probability ϵ ∈ [0, 1], or from the
current policy Q(s, a; θ) with probability 1−ϵ. The reasoning behind this is to
force the agent to explore the state space, rather than exploiting the current
policy. The selection of ϵ is an important matter since it determines whether
the agent will focus more on exploration or exploitation. A common practice
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in reinforcement learning is to explore in the beginning of the training, and
focus more on exploiting in the late stages of training with some small ϵ > 0.
The pseudocode for Deep Q-Learning can be seen in Algorithm 1.

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memoryM to capacity Nmem

Initialize action-value function Q with random weights θ
Set θ− ← θ
for episode= 1 : Nep do

Initialize state s ∈ S
for step = 0 : Nstep do

With probability ϵ select a random action from A, otherwise select
a = argmaxa′ Q(s, a′; θ)

Execute action a and observe reward r and state s′

Store transition ⟨s, a, r, s′⟩ in M
Set s← s′

for j = 1 : Nbatch do
Uniformly sample transition ⟨sj , aj , rj , s′j⟩ fromM

Set yj =

{
rj for terminal s′j
rj + γmaxa′ Q(s′j , a

′; θ−) for non-terminal s′j
Compute loss L = 1

Nbatch

∑Nbatch

j=1 (Q (sj , aj ; θ)− yj)
2

Perform a gradient descent step on L
Set θ− = θ every Γ steps

4.2 Distributionally Robust Q-Learning (DRDQN)

In this section, the Q-function defined in section 4.1 will be formulated as a
DRO problem. As mentioned in section 3.1, the process disturbance w comes
from an unknown distribution Pw. This causes the transitions between the
states to be stochastic. An action a taken at state s will cause a transition to
state s′ with distribution Ps′ := P(s′ | s, a). In order to achieve a risk averse
solution to the MDP in section 3.2, an ambiguity set can be constructed for
the unknown transition distribution Ps′ . Since we have access to N samples
of w, given a state sk and an action ak, an empirical distribution can be
computed by using the samples of w.
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The Wasserstein Ambiguity Set
Given a robot state xk ∈ X and an input ak ∈ A, an empirical distribution
for xk+1 is given by,

P̂xk+1
:=

1

N

N∑
i=1

δ
x̂
(i)
k+1

=
1

N

N∑
i=1

δAxk+Bak+ŵi . (4.11)

By knowing the state of the robot xk, the full state sk can be obtained
by using the positions of the goal and obstacles of the current environment
(which do not depend on the position of the robot), since these stay constant
during an episode. We refer to the samples of s′ obtained from (4.11) as ŝ′(i)
for i = 1, . . . , N .

P̂s′ =
1

N

N∑
i=1

δŝ′(i) (4.12)

When an action a is performed while in state s, the nominal distribution for
the center of the Wasserstein ball will be P̂s′ , and the worst case transition
will be coming from a distribution that is inside this ball. We define the
ambiguity set as Bs,a,

Bs,a :=
{
P ∈ P(S) |W1

(
P̂s′ ,P

)
≤ ϵs′

}
, (4.13)

where P̂s′ is the empirical distribution of the transition given s, a, which is
computed using the empirical distribution P̂w. The Wasserstein ball radius
ϵs′ is chosen such that the true distribution Ps′ lies within this Wasserstein
ball with probability greater than 1 − β. The β parameter will determine
the allowed risk factor for the solution. A smaller β will result in a larger
radius which causes the generated policy to be much more risk averse and
vice-versa. Since, the radius ϵs′ quantifies the amount of trust(distrust) that
we have over P̂s′ , it is chosen such that,

P(Ps′ ∈ Bs,a) ≥ 1− β, β ∈ [0, 1]. (4.14)

As shown in Theorem 1, and given Assumption 1, the Wasserstein radius ϵs′
that satisfies (4.14) as,

ϵs′ = ρ

√
2

N
ln

(
1

β

)
, (4.15)

where ρ = diam(supp(P̂s′)). Although according to Theorem 1, ρ is calcu-
lated with respect to the true distribution Ps′ , since this is unknown to us,
we chose to approximate it with the nominal distribution P̂s′ .

31



Chapter 4. Method

Approximated Solution to the Wasserstein Distributionally Robust
Q-Learning Problem
In order to achieve a risk averse policy, we can modify the Bellman operator
in (4.1) such that it gives the worst case expected returns by turning it
into a DRO problem over the ambiguity set defined in (4.13). We define the
distributionally robust Bellman operator T̂ : RS×A → RS×A to represent
the worst case expected returns, so that risk can be incorporated into the
Q-values. That is,

T̂ Q(s, a) := inf
P∈Bs,a

Es′∼P[h(s
′)], where, (4.16)

h(s′) := r(s′)︸︷︷︸
:=hr(s′)

+ γmax
a′∈A

Q(s′, a′)︸ ︷︷ ︸
:=hQ(s′)

. (4.17)

Since the Q-function is approximated using a neural network with hidden lay-
ers and non-linear activation functions, h(s′) turns out to be a non-convex
function of states. Since an exact solution to the infinite dimensional problem
(4.16) using duality theory (2.21) is difficult to find when the objective func-
tion is non-convex, we resort to the Lipschitz constant based approximation
in Theorem 2.

Lemma 2
The Lipschitz approximation in Theorem 2 has an equivalent solution
for the case when the objective function h is to be minimized and this
results in a lower bound for (4.16), where ϵs′ becomes larger in practice
and the solution can become more risk averse. That is,

inf
P∈Bs,a

Es′∼P[h(s
′)] ≥ Es′∼P̂s′

[h(s′)]− ϵs′Kh, (4.18)
2

where Kh is the Lipschitz constant of h(·).

Proof. The Lipschitz approximation in Theorem 2 can be converted into a
minimization problem by switching the objective function h(·) with −h(·)
and multiplying the result with −1 as,

inf
P∈Bs,a

Es′∼P[h(s
′)] = − sup

P∈Bs,a

Es′∼P[−h(s′)]. (4.19)

If we substitute h(·) with −h(·) in the maximization problem, the Lipschitz
approximation becomes,

sup
P∈Bs,a

Es′∼P[−h(s′)] ≤ Es′∼P̂s′
[−h(s′)] + ϵs′K−h

⇐⇒ − sup
P∈Bs,a

Es′∼P[−h(s′)] ≥ −Es′∼P̂s′
[−h(s′)]− ϵs′K−h, (4.20)
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where K−h is the Lipschitz constant of −h(·). By using (4.18), a minimization
problem can be written as,

⇐⇒ inf
P∈Bs,a

Es′∼P[h(s
′)] ≥ −Es′∼P̂s′

[−h(s′)]− ϵs′K−h

⇐⇒ inf
P∈Bs,a

Es′∼P[h(s
′)] ≥ Es′∼P̂s′

[h(s′)]− ϵs′K−h. (4.21)

The Lipschitz constant K−h is equivalent to Kh since,

∥ − h(x)− (−h(y))∥︸ ︷︷ ︸
=∥h(x)−h(y)∥

≤ K−h∥x− y∥, ∀x, y ∈ S, x ̸= y. (4.22)

Hence,
inf

P∈Bs,a

Es′∼P[h(s
′)] ≥ Es′∼P̂s′

[h(s′)]− ϵs′Kh. (4.23)
2

Calculating the Lipschitz Constant Kh of h(s′)
The Lipschitz constant for hr(s

′) and hQ(s
′) can be calculated or estimated

independently and then combined to get the Lipschitz constant of h(s′).

Lemma 3
Let fi : Rn → R, i = 1, . . . , N be Lipschitz continuous with constants
Kfi . Then the Lipschitz constant of the function g(x) =

∑N
i=1 fi(x) is,

Kg =

N∑
i=1

Kfi (4.24)

2

Proof. We will prove for the case N = 2 and the result for N > 2 follows
similarly. For the two Lipschitz continuous functions f1, f2,

∥f1(x)− f1(y)∥ ≤ K1∥x− y∥, ∀x, y ∈ Rn, x ̸= y

∥f2(x)− f2(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ Rn, x ̸= y (4.25)

To find the Lipschitz constant of the function g = f1 + f2, we see that,

∥g(x)− g(y)∥ = ∥f1(x) + f2(x)− f1(y)− f2(y)∥
≤ ∥f1(x)− f1(y)∥+ ∥f2(x)− f2(y)∥
≤ (K1 +K2)︸ ︷︷ ︸

:=Kg

∥x− y∥, ∀x, y ∈ Rn, x ̸= y (4.26)
2

Given Assumption 2 and the reward function being a sum of tanh functions,
its Lipschitz constant can be inferred by looking at the individual tanh func-
tions.
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Lemma 4
Let Ar ∈ R, δ ∈ R>0. Then the Lipschitz constant of the scalar function
f : R→ R with the shape,

f(x) =
Ar

2

(
1 + tanh

(x
δ

))
, (4.27)

2

is Kf = |Ar|
2δ .

Proof. For the given scalar functional, its Lipschitz constant corresponds to
the maximum magnitude of its slope.

Kf = sup
x∈R

∣∣∣∣ ddxf(x)
∣∣∣∣

d

dx
f(x) =

Ar

2δ

(
1− tanh2

(x
δ

))
︸ ︷︷ ︸

≥0∣∣∣∣ ddxf(x)
∣∣∣∣ = |Ar|

2δ

(
1− tanh2

(x
δ

))
d

dx

∣∣∣∣ ddxf(x)
∣∣∣∣ = −|Ar|

δ2

(
1− tanh2

(x
δ

))
︸ ︷︷ ︸

→0 as x→±∞

tanh
(x
δ

)
(4.28)

By solving for d
dx

∣∣ d
dxf(x)

∣∣ = 0, it can be seen that the maximum slope occurs
when x→ ±∞ or x = 0. Thus the Lipschitz constant can be found as,

Kf =

∣∣∣∣ ddxf(0)
∣∣∣∣ = Ar

2δ
(4.29)

2

Lemma 5
Let Ar ∈ R, δ ∈ R>0, R ∈ R>0 and p, g ∈ R2. Then the Lipschitz
constant of the function f : R2 → R with the shape,

f(p) =
Ar

2

(
1 + tanh

(
R− ∥p− g∥2

δ

))
, (4.30)

2

is Kf = |Ar|
2δ .

Proof. Assume p = [x, y] and g = [gx, gy] and f(p) = Ar

2 (1 + tanh(h(p))),
where

h(p) =
R− ∥p− g∥2

δ
(4.31)
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The maximum slope can be computed by using the absolute value of the
partial derivatives, since f is radially symmetric.

∂f

∂x
=

∂f

∂h

∂h

∂x
∂f

∂h
=

Ar

2

(
1− tanh2(h)

)
∂h

∂x
= −1

δ
2(x− gx)

1

2

1

∥p− g∥2
∂f

∂x
=

Ar

2

(
1− tanh2

(
R− ∥p− g∥2

δ

))
︸ ︷︷ ︸

≥0

(
−1

δ

)
1

∥p− g∥2
(x− gx)

∣∣∣∣∂f∂x
∣∣∣∣ = |Ar|

2δ

(
1− tanh2

(
R− ∥p− g∥2

δ

))
1

∥p− g∥2
|x− gx| (4.32)

As shown in the proof of Lemma 4, the maximum slope occurs at tanh(0),
which corresponds to ∥p − g∥2 = R. The points that satisfy this create a
circle at the border of the obstacle/goal. For any point on this circle such as
|x− gx| = R and y = gy, the magnitude of the slope becomes |Ar|

2δ . Thus the
Lipschitz constant of the function f is Kf = |Ar|

2δ . 2

Theorem 3
Given Assumption 2, the Lipschitz constant of the reward function hr(·)
given by (3.12) is,

Kr =
max{|rgoal|, |robs|}

2δ
. (4.33)

2

Proof. Based on Assumption 2, the individual terms that contribute to the
total reward function r in (3.12) do not interfere with each other. Then, it
follows that the Lipschitz constant of r is equivalent to the maximum of the
Lipschitz constants of the individual terms. 2

The second part of the objective function h(s′) given by hQ(s
′) contains

the Q-function which is approximated by a neural network. The neural net-
work takes state s as an input and returns the Q-values for each action. There
are several methods available to estimate the Lipschitz constant of a deep
neural network with ReLU activations such as FastLip [Weng et al., 2018a],
LipSDP [Fazlyab et al., 2019], CLEVER [Weng et al., 2018b]. As shown in
[Jordan and Dimakis, 2020], a comparison between different methods is avail-
able and can be seen in Figure 4.1 and 4.2. Although an exact computation
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Figure 4.1 Comparison between different Lipschitz estimation methods.

Figure 4.2 Accuracy and computation time comparisons between the different
Lipschitz estimation methods.

of the Lipschitz constant would be ideal, as seen in Figure 4.2 LipMIP* takes
much longer to complete this calculation. Another constraint for selecting the
method for the Lipschitz approximation is that we are defining the Wasser-
stein distance (2.9) with the 2-norm ∥ · ∥. When comparing the methods that
can support the 2-norm, the relative errors and times are taken in to consider-
ation. From the available methods the best option is using LipSDP [Fazlyab
et al., 2019], which gives us an upper bound for the Lipschitz constant of
the deep neural network. The LipSDP package uses the MATLAB engine
for python together with CVX and MOSEK1 to approximate the Lipschitz
constant of a dense neural network by using the weights of the network. In
order to find the Lipschitz constant for each output respectively, we give the
algorithm the weights that contribute to the chosen output. The Lipschitz
constant of hQ can be computed by combining the Lipschitz constant for
each output.

1 A student license was obtained in order to use MOSEK.
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4.2 Distributionally Robust Q-Learning (DRDQN)

Lemma 6
Let fi : Rn → R, i = 1 . . . , N be Lipschitz continuous with con-
stants Kfi . Then the Lipschitz constant of the function g(x) =

max
(
{fi(x)}Ni=1

)
is,

Kg = max{Kf1 , . . . ,KfN }. (4.34)

2

Proof. We will prove for the case N = 2 and the result for N > 2 follows
similarly. For the function g = max{f1, f2}, f1, f2 : Rn → R, where f1 and
f2 are Lipschitz continuous with constants Kf1 ,Kf2 , the Lipschitz constants
can be defined by,

∥∇f1∥ ≤ Kf1 , ∥∇f2∥ ≤ Kf2 , ∀x ∈ Rn. (4.35)

The gradient of g is,

∥∇g∥ =

{
∥∇f1∥, if f1(x) > f2(x)

∥∇f2∥, if f2(x) > f1(x)
≤ max{∥∇f1∥, ∥∇f2∥}. (4.36)

Thus Kg = max{Kf1 ,Kf2}. For a function that is the maximum of N Lips-
chitz continuous functions, this process can be applied inductively to find,

Kg = max{Kf1 , . . . ,Kf2}. (4.37)
2

Theorem 4
Given that hQ(s

′) = γmax{Q(s′, a1), . . . , Q(s′, an)}, where n = |A|, and
the network has the upper bounded Lipschitz constants Kai

,∀ai ∈ A,
the Lipschitz constant of hQ(s

′) is,

KQ = γmax {Ka1
, . . . ,Kan

} . (4.38)

2

Proof. The proof follows by the direct application of Lemma 6 on hQ(s
′).2

Having now found the Lipschitz constants of both hr(s
′) and hQ(s

′), the
following theorem establishes the Lipschitz constant for the objective function
h(s′).
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Chapter 4. Method

Theorem 5
The upper bound of the Lipschitz constant of h(s′) defined in (4.17) is
given by,

Kh ≤
max{|rgoal|, |robs|}

2δ
+ γmax {Ka1 , . . . ,Kan} , n = |A|. (4.39)

2

Proof. Using (4.17), the upper bound for the Lipschitz constant of h(s′) can
be computed by using Lemma 3. The result is an upper bound due to KQ

being an upper bound to hQ(s
′). 2

Since the approximation to (4.16) is available, we can train a model similar
to the DQN method by generating the targets with the distributionally robust
Bellman operator T̂ . However when inspecting (4.9), it can be seen that there
is a separate case for terminal states. This discontinuity can not be applied
to the distributionally robust Q-Learning method since it would violate the
Lipschitz continuity condition. Removing the terminal state condition in (4.9)
has the possibility to cause the robot to ignore the obstacles and go straight
to the goal, since the rewards from the goal spread out due to γ and can
move through the obstacles and cancel out the collision penalties. Here we
propose a solution to this problem.

Null Policy π̂

We propose a null action â := 0 ∈ RnA and define a null action space
Â := A ∪ â. The null action is equivalent to taking no action. We define the
null policy π̂ as,

π̂(s) =

{
argmaxa∈A Q(s, a), if s is non-terminal,
â, if s is terminal.

(4.40)

The null policy causes the robot to remain in the obstacle or goal after a
terminal state is reached. This causes the next state Q-values to also in-
clude the penalty/reward. Similarly to DQN, the targets for an experience
⟨sj , aj , rj , s′j⟩ can be computed as,

yj = Es′∼P̂s′
[r(s′ + γmax

a′∈A
Q(s′, a′; θ−)]− ϵs′Kh. (4.41)

The pseuodocode for the distributionally robust DQN can be seen in
Algorithm 2.
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4.2 Distributionally Robust Q-Learning (DRDQN)

Algorithm 2 Lipschitz Approximated Wasserstein Distributionally Robust
DQN
Require: Disturbance samples ŵ1, . . . ŵN , Learning rate η, Max episodes
Nep, Episode Length Nstep, Batch size Nbatch

Initialize replay memoryM← ∅
Initialize network weights θ, θ−

Estimate Lipschitz constant of network θ−

Compute ϵs by (4.15)
for episode = 1 : Nep do

Initialize s ∈ S
for k = 1 : Nstep do

Select action a with ϵ-greedy policy π̂
Observe next state s′ and reward r
Append experience (s, a, r, s′) toM
Initialize loss L← 0
for j = 1 : Nbatch do

Sample experience (sj , aj , rj , s
′
j) fromM

Compute nominal distribution P̂s′ given sj , aj by (4.11)
Approximate target yj by (4.41) with the target network
Accumulate loss L← L+ (yj −Q(sj , aj ; θ))

2

Compute loss mean L← L
Nbatch

Update weights θ by loss L with backpropagation
Set θ− ← θ and compute Lipschitz constant of network θ− every Γ

steps
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5
Numerical Results

In this chapter we present our experiments with the different models that
were discussed in previous chapters, and the results that we got. This chap-
ter consists of three sections namely, 5.1 Simulation Parameters, where we
define the the simulation parameters that were used in the experiments, 5.2
Results, where we present the obtained results for different methods, 5.3 Im-
plementation Details, where we go over how these simulations and methods
were implemented.

5.1 Simulation Parameters

We consider the robot to be moving in an environment X ⊂ R2 with the
limits being [−10, 10]2 in both dimensions. There are in total two obstacles
and a goal region with equal radius namely, Rgoal = R

(i)
obs = 2, for i = 1, 2.

The robot moves within X according to the following dynamics,

xk+1 =

[
1 0
0 1

]
︸ ︷︷ ︸

A

xk +

[
1 0
0 1

]
︸ ︷︷ ︸

B

uk + wk. (5.1)

The state of the robot xk represents the position of the robot in X ⊂ R2. The
process disturbance wk ∈ R2 shifts the position of the robot by a random
amount in each axis. For simulation purposes we considered 104 samples w
that were sampled from distributions with zero mean and covariance being
equal to 0.15I2. The action space A consists of |A| = 8 actions where each
action is a R2 vector with unit norm, that represents a step that can be
taken in one of the 8 equally spaced radial directions. The robot takes a step
in the specified direction for each action and the process disturbance shifts
the position of the robot by a random amount. The reward function has the
constants rtravel = −0.001, rgoal = 1 and robs = −1. The steepness of the
tanh functions is chosen as δ = 0.1.

40



5.2 Results

Figure 5.1 The available actions are equally spaced vectors on the unit circle
where each correspond to taking a step in that specific direction.

5.2 Results

We have trained two versions of our model, one with the Wasserstein radius
ϵs′ = 0 and another with ϵs′ = 0.067 which was obtained by using N = 104

samples and setting the risk factor β = 0.1.

Table 5.1 The mean and the standard deviation of the total rewards with dif-
ferent noise covariances corresponding to different training models are tabulated
here.

Noise covariance
Σw = 02 Σw = 0.15I2 Σw = 0.3I2

Travel Reward Travel Reward Travel Reward
Models ϵs′ Mean Std Mean Std Mean Std
DQN N/A 0.636 0.545 0.662 0.514 0.627 0.573

DRDQN 0 0.850 0.334 0.811 0.401 0.749 0.510
DRDQN 0.067 0.829 0.356 0.811 0.387 0.756 0.489

Table 5.2 The percentage of trajectories that reached the goal, resulted in col-
lision and those that did neither are tabulated here for different noise covariances
corresponding to different training models.

Reached Goal Resulted in Collision Wandering Around
Σw(×I2) Σw(×I2) Σw(×I2)

Models ϵs′ 0 0.15 0.3 0 0.15 0.3 0 0.15 0.3
DQN N/A 76.7% 82.2% 81.4% 1.5% 3.9% 6.9% 21.8% 13.9% 11.7%

DRDQN 0 97.9% 96.4% 93.1% 0.7% 3.1% 6.5% 1.4% 0.5% 0.4%
DRDQN 0.067 95.3% 95.7% 93% 0.5% 2.4% 5.5% 4.2% 1.9% 1.5%

The hyperparameter details of the training results are made available Ta-
ble 5.3. The resulting policy and the state values for the trained models can
be seen in Figure 5.2. The arrows represent the action that the policy gives
at the respective robot position and goal/obstacle positions. The heatmap
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Chapter 5. Numerical Results

represents the same values with color but in higher resolution to better un-
derstand the decision boundaries. The figures on the right side of Figure 5.2
represent the value of each state s which can be computed by maxa∈A Q(s, a).
It can be seen that the rewards propagate from the goal and the obstacles.
Further, the resulting learned policy restricts the robot moving between the
obstacles and there exists a boundary around the obstacles. When compared
with the DQN model, our solution is more risk averse since it does not prefer
to get close to the obstacles while the DQN policy is allowing some risk. This
difference is due to the fact that DQN learns the expected rewards, while the
DRDQN learns the worst case expected rewards making it to be a more risk
averse solution. Due to the noise samples used in DRDQN model with ϵs′

calculated using (4.15), learning the policy occurs in less steps compared to
the DQN model. However DRDQN can take more time since the computa-
tional load is higher for calculating the targets. The DRDQN with ϵs′ = 0 is
virtually the same as DQN as it learns faster since it calculates the expected
values in (4.1) more accurately compared to that of DQN which uses only one
sample. The models have been evaluated by running 105 episodes each with
random goal/obstacle configurations, for three different noise distributions.
As seen in Table 5.1 both versions of DRDQN have a higher average total
reward compared to DQN with lower variances. Also in Table 5.2, the per-
centage of trajectories that have reached the goal, collided with an obstacle
or border or have not reached the goal or collided, has been provided. It can
be inferred that as the covariance of the noise increases, the DRDQN model
is able to maintain a low collision rate due to the worst case approximations.
In some scenarios, the policy can have loops where the robot can get stuck.
Since the training is done with process noise, the robot has a higher chance
to break free and this can delay the policy learning to fix this issue. However
this can be rectified by training the models for a larger number of steps.

42



5.2 Results

(a) DQN policy (b) DQN values

(c) DRDQN (ϵ′s = 0) Policy (d) DRDQN (ϵs′ = 0) Values

(e) DRDQN policy with ϵs′ = 0.067. (f) DRDQN values with ϵs′ = 0.067.

Figure 5.2 The result of training DQN model and DRDQN model with ϵs′ =
0.067 is shown here. Also, the solution trajectories from a starting position in green
star to the goal region in green color avoiding both the red color obstacles are shown
in both cases. The plot on the left shows the learned control policies and the one
on right depicts the learned Q values. Clearly, the DRDQN model exhibits more
risk averse behaviour given that it minimizes the worst case loss function.
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Chapter 5. Numerical Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.3 Total rewards during evaluations and losses for the trained models are
shown on the left and right plots respectively. The first, second and the third rows
correspond to the DQN, DRDQN (with ϵs′ = 0), and DRDQN (with ϵs′ = 0.067)
respectively.
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5.3 Implementation Details

(a) Lipschitz constant for DRDQN
(ϵs′ = 0.067).

(b) Lipschitz constant for DRDQN
(ϵs′ = 0).

Figure 5.4 The Lipschitz constant of the target network Q(s, a; θ−) during train-
ing for both DRDQN models.

5.3 Implementation Details

The episodes are limited to 50 steps in order to prevent infinite loops during
training. During an episode the positions of the goal and obstacles remain
static. At the start of each episode, the positions of the obstacles are ran-
domly sampled from the environment X while considering Assumption 2.
After the obstacles, the goal is sampled using the free space such that no
overlap occurs with the obstacles or the borders of the environment. Finally
the initial position of the robot is selected randomly from the available free
space such that the distance between the goal and initial position is at most
λ. The reason for this is that since in early stages of training, it is difficult
for the robot to end up in the goal by making taking random actions due
to the exploration phase. By setting the initial position close to the goal,
the agent has a higher chance of experiencing a goal state. As the training
continues, we increase λ such that the goal can be sampled further away.
By starting with an easy problem we allow the agent to learn faster and
progressively make the problem more difficult so in the end the robot has a
higher chance to learn a good and safe policy. This method is also utilized
in [Raajan et al., 2020]. We use a dense neural network with nS = 8 inputs
that correspond to the current states to approximate the Q-values. The net-
work has two hidden layers with 150 neurons each that have ReLU activation
functions. The network has 8 + 1 outputs where each output corresponds to
the Q-value for the state-action pair. We use prioritized experience replay
for both DQN and our method. The hyperparameters α and β′ used in pri-
oritized experience replay are the recommended parameters given in [Schaul
et al., 2015], where α = 0.7 and β′ = 0.5 → 1 is linearly increased during
training. The dueling layer is only used for DQN. During training, collisions
do not end the simulation in order to allow the robot to explore further and
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Chapter 5. Numerical Results

gain experiences that reach the goal. This does not change anything for the
experience replay part since terminal states are handled separately. For all
the models the probability of taking a random action ϵ is reduced from 1
to 0.1 linearly for the first 3/4 of training and kept at 0.1 for the remain-
ing episodes. All the simulations are implemented in Python and use open
source libraries such as NumPy, Pandas and Matplotlib. The neural networks
and the training process was implemented using PyTorch and the PyTorch
Lightning API. The Lipschitz estimation in LipSDP uses the Matlab en-
gine for Python together with CVX and MOSEK, which require a license to
use. For this project, a student license was obtained. All the code and re-
sources used for this project together with instructions to use it can be found
in https://github.com/CemAlpturk/Distributionally_Robust_RL. The
simulations were performed on a Dell R530 with 2 Xeon E5-2620 6-core 12-
thread CPU’s and 132GB of RAM. The simulation time can be improved by
utilizing a GPU during training.

Table 5.3 Hyperparameters used in the simulation results are tabulated here.

Hyperparameters DQN DRDQN (ϵs′ = 0) DRDQN (ϵs′ = 0.067)
γ 0.9 0.9 0.9
η 10−4 10−4 10−4

Steps per episode 50 50 50
Total steps 107 2.4× 105 2.4× 105

Nbatch 32 32 32
β N/A N/A 0.1

N (samples) N/A 104 104

Γ 5000 1500 1500
|M| 5000 5000 5000
ϵ 1→ 0.1 1→ 0.1 1→ 0.1

Dueling Layer and Prioritized Experience Replay
To increase the performance of the algorithm some additions can be made
such as Dueling architecture [Wang et al., 2015], and prioritized experience re-
play [Schaul et al., 2015]. The architecture of the networks consists of hidden
layers followed by a dueling layer which consists of the value and advantage
streams. These streams are combined to compute the Q-values. The logic of
the dueling layer is to estimate the value of a state and the advantage of the
state action pair.

Q(s, a) = V (s) +A(s, a)− 1

|A|
∑
a′∈A

A(s, a′) (5.2)

46

https://github.com/CemAlpturk/Distributionally_Robust_RL
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The reason for using this layer is that, although the Q-values represent the
expected returns, knowing the exact values has no significance for the policy,
since the action that maximizes the Q-values is used. The advantage of each
actions will represent the returns with respect to the other actions, which will
be easier to estimate. These values can be combined with the value stream
to compute the Q-values. As mentioned in [Raajan et al., 2020], the dueling
layer improves the predictions if the Q-values and prevents different actions
having similar Q-values, which can cause the agent to get stuck in loops.
Figure 5.5 shows an illustration of a simple duelling architecture.

Figure 5.5 Duelling architecture illustration.

In reinforcement learning problems where the goal states are rare, the
agent may not be able to find these states and may end up with poor perfor-
mance. Prioritized experience replay tries to tackle this problem by assign-
ing a priority to each experience in the memory buffer. For each experience
< sj , aj , rj , s

′
j >, a priority pj is assigned as such,

pj =

{
1 ifM = ∅
maxi<j pi else

These priorities are updated based on the td-error that occurs during
training. This results in experiences with large errors to be prioritized more
thus having a higher chance to be sampled during training. This way rare
events can be experienced more by the agent.

The probability of sampling experience j, P (j) is found as,

P (j) =
pαj∑
k p

α
k
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where pj is the priority of the experience j and the exponent α ∈ R deter-
mines how much prioritization is used. For the case α = 0, sampling becomes
uniform. The priorities for each experience are kept in a separate data struc-
ture called a SumTree, which is a binary tree whose leaf nodes hold the
priorities for each experience. Each node in this data structure holds the
sum of the values of its children. The root node will hold the sum of all the
leaf nodes. An illustration of a SumTree data structure is shown in Figure
5.6. The SumTree can be used to perform weighted sampling from a set. The
SumTree allows to sample from a set with N elements, with O(log(N)) in-
stead of O(N) complexity based on their priorities. When the memory buffer
M becomes large, repeated weighted sampling can cause serious overhead.

Figure 5.6 Example of a SumTree data structure. The leaf nodes hold the pri-
ority of each experience.1

Since the sampling is not uniform, a bias is introduced. The bias can be
taken care of by weighing the samples accordingly with importance sampling.
The weight for the transition j is computed as,

wj =

(
1

N
.

1

P (j)

)β′

,

where N is the number of elements in M and β′ ∈ R. The weights are nor-
malized by 1/maxi wi. The pseudocode for the prioritized experience replay
can be seen in Algorithm 3.

1 https://www.fcodelabs.com/2019/03/18/Sum-Tree-Introduction/
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5.3 Implementation Details

Algorithm 3 DQN with Prioritized Experience Replay
Initialize replay memoryM to capacity Nmem with minibatch size Nbatch

Learning rate η
Initialize action-value function Q with random weights θ
Set θ− ← θ
for episode= 1 : Nep do

Initialize state s ∈ S
for step = 1 : Nstep do

With probability ϵ select a random action a, otherwise select a =
argmaxa′ Q(s, a′; θ)

Execute action a and observe reward r and state s′

Store transition ⟨s, a, r, s′⟩ inM with maximal priority p = maxi pi
Initialize weight change ∆← 0
for j = 1 : Nbatch do

Sample transition j ∼ P (j) = pαj /
∑

i p
α
i

Compute weights wj = (Nmem.P (j))
−β′

/maxi wi

Set yj =

{
rj , for terminal s′j ,
rj + γmaxa′ Q(s′j , a

′; θ−), for non-terminal s′j .
Compute td-error ζj = yj −Q(sj , aj ; θ)
Update transition priority pj ← |ζj |
Accumulate weight change ∆← ∆+ wjζj∇θQ(sj , aj ; θ)

Update weights θ ← θ + η∆
Set θ− ← θ every Γ steps
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6
Discussion

In this chapter we discuss the results that we have obtained through our sim-
ulations. This chapter consists of seven sections namely, 6.1 Reward Function
Selection, where we discuss about the process of selecting and tuning the re-
ward function, 6.2 Linear Models, where present a potential solution to the
DRO using linear regression, 6.3 Lipschitz Approximation, where we discuss
the stability and accuracy of our solution to the DRO, 6.4 Terminal States,
where we go over our reasoning behind the null policy, 6.5 Limitations, where
we explain the limitations of our solution, finalized with the 6.6 Conclusion
and 6.7 Future Research sections.

6.1 Reward Function Selection

In reinforcement learning, the most crucial part is engineering a good reward
function. Unlike in supervised learning, where we have access to the ’cor-
rect’ labels, we have to generate them ourselves. The reward function should
encourage the model to perform a certain task. In cases where the reward
function does not represent the goal well enough, the model may come up
with a solution or policy that is totally different than expected. One of the
biggest problems we experienced was to tune the reward function such that
it found a safe path to the goal region. In some of our early experiments,
where the travel penalty was relatively higher, the model ended up deciding
that it was better to end the simulation as fast as possible whether by going
to the goal or colliding with the nearest obstacle, rather than trying to find
a safe path to the goal. It took a lot of trial and error until a good reward
function was found.

In the beginning of this project we approximated the reward function
with Gaussians rather than tanh functions, and designed it such that the
the region near the obstacle/goal had non-zero reward in order to encourage
the robot to move towards the goal or steer clear of the regions near the
obstacles. This caused the regions near the goal to have positive rewards,
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6.2 Linear Models

and resulted in the robot moving towards the goal but it never actually
went inside the goal region. Since stepping inside the goal would end the
simulation, the agent would receive a one time reward. However moving close
to the obstacle without entering meant that the simulation would continue
and the cumulative reward it received would be higher. The agent exploited
this mechanic and resulted in a poor policy. For this reason we decided to
use radial tanh functions to approximate the reward function.

6.2 Linear Models

Finding a tractable solution for the DRO in (4.16) is complex for non-convex
objective functions such as h. However for convex functions tractable formu-
lations exist [Chen and Paschalidis, 2020]. We have tried to approximate the
Q-function with linear regression using polynomial features in order to take
advantage of these solutions, but the model was not powerful enough to find
an admissible path to the goal.

6.3 Lipschitz Approximation

One of the main problems we encountered in the Lipschitz approximation
was the stability of our method. For a reward function with a large Lipschitz
constant, the computed targets became large in magnitude, which caused the
weights of the networks to become large as well. This caused the Lipschitz
constant of the networks to increase, which in turn caused the targets to
increase again. This created a positive feedback loop where in the end the
Lipschitz constant of the networks would blow up and LipSDP would fail to
give a result. We overcame this issue by using smaller rewards and initializing
the network weights to small values in order to keep the Lipschitz constant
of the objective function small. With our final results it can be seen that the
Lipschitz constant of the network converges.

It is also important to note that the Lipschitz approximation in Lemma
2 is a lower bound to the DRO. With an upper bound, the results could
be interpreted much better since we could have an idea of how good the
approximation is.

6.4 Terminal States

In order to remove the discontinuation in (4.9) in the DRDQN method, we
have initially tried to ignore the terminal state case, where each state was
treated as a non-terminal state during training. This resulted in the rewards
from the goal spreading out and going through the obstacles, which caused
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the robot to ignore the obstacles and try to go towards the goal in a straight
line.

Another solution we tried was to find a continuous approximation of (4.9)
for the DRDQN method, by changing γ with respect to s′, such that near
terminal states we would get γ = 0 and γ = 0.9 in non-terminal states. This
was done by using the same approximation that we performed for the reward
function (3.12) where rtravel = 0.9 and rgoal = robs = −0.9. This way we
found a continuous transition for the discontinuity in the states. However this
method did not prove to work and resulted in the robot trying to end the
simulation as fast as possible by either going to the goal or going to the near-
est obstacle. The resulting policy can be seen in Figure 6.2. The reason for
this behavior is due to the worst case expected cumulative rewards is much
lower for non-terminal states, and the robot prefers to end the simulation
since the goal reward or the collision penalty is very close when compared to
the Q-values of non-terminal states. We believe that this method could be
improved by tuning the reward function. Another problem with this method
was that it was unstable, where the Lipschitz constant of the network kept
growing exponentially and did not converge, which eventually caused numer-
ical errors with LipSDP.

For these reasons we have implemented the null policy, so that when
the robot enters a terminal state, it can not get out of it, which causes the
cumulative penalty to increase, resulting in a risk-averse behavior.

(a) (b)

Figure 6.1 Continuous approximation for γ, where at terminal states γ = 0 and
γ = 0.9 at non-terminal states.

6.5 Limitations

The Wasserstein distributionally robust deep Q-Learning problem posed in
section 4.2 is an infinite dimensional optimization problem and tractable so-
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Figure 6.2 Resulting policy from the dynamic γ implementation. The robot tries
to move towards the closest terminal state regardless of it being in an obstacle or
goal.

lutions using duality theory can be found only when the objective function
is convex. However, in our case, the objective function being the neural net-
work based approximation of the Q-function, turns out to be non-convex.
This limits our options and leads us to look for tractable approximations like
the Lipschitz or the duality based solutions under some special cases.

The state definition of the MDP can be considered to be not realistic
since the agent knowns the position of the robot and the goal/obstacles with
absolute precision. Initially the state was defined similar to [Raajan et al.,
2020] where the robot had distance sensors pointing in specific directions
that would give the distance of the closest object in that direction, which is
a more realistic approach to a path planning problem. However, since this
distance sensor is a discontinuous function of the position of the robot, this
caused problems in calculating the Lipschitz of the objective function h. Due
to this reason we decided not to use this state definition.

6.6 Conclusion

We proposed a risk averse path planning using approximated Wasserstein
distributionally robust deep Q-Learning approach. Through a carefully de-
signed reward function, we showed how to learn a safe control policy for a
robot with uncertain dynamics in an environment. Our numerical simulation
results demonstrated our proposed approach. Our model is able to find a
safe path in real time for a configuration of the environment, given that the
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model has been trained beforehand.

6.7 Future Research

Although we have chosen relatively simple robot dynamics, our proposed
method can be applied to more complicated dynamics, linear or even non-
linear. The project could be taken further by implementing it on a non-linear
system such as a robot that has steering dynamics.

The states of the system can be improved to consider dynamic obstacles
as well as obstacles that have different shapes than circles such as convex
polygons as long as the reward function is designed appropriately. Another
improvement to the states can be to model sensors on the robot in order to
have a more realistic representation of the environment, rather than giving
the model too much information.

For this project we have chosen a fixed δ for the obstacles and goal in the
reward function. This could be improved by utilizing δ such that it is based
on the covariance of the disturbance samples. This could determine how wide
the region of influence is for each object in the environment.
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