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Abstract

Speech is an important way of communication all over the world. The speech infor-
mation is encoded both aural and visual. More than 1.5 billion people have hearing
loss and for those the visual information is even more important than for people
with normal hearing. Lip reading is therefore an important research topic.

In this master thesis, machine learning algorithms were used to identify speech
activity in realistic video with monologues and dialogues. Each video contained
three persons speaking: one performing a monologue and two performing a dia-
logue. Support vector machines for linear, radial basis function, sigmoid and poly-
nomial kernels were used to classify the audio as either speech or non-speech based
on faces from realistic videos. A speech envelope was calculated and resampled
to four Hertz. Based on a threshold of the envelope, the ground truth was created
and each audio data point was selected to be either speech or non-speech. Convo-
lutional neural networks using max-margin object detection were used to extract
facial landmarks from the videos. Six different video features were calculated and
used: the mouth opening distances, the variance of the mouth opening distances and
the difference of mouth opening distances between several frames, the mouth area,
the variance of the area and the difference of area between several frames.

The mean accuracy for the speech activity in the monologues were low. This
was probably due to the unbalanced data in the monologues, since most data in the
ground truth were classified as speech. For the dialogues, the accuracy were slightly
higher than classifying everything as the most frequent class. The variance of the
mouth area was the best performing feature. The performance varies between the
videos and combining the best mouth opening distances feature with the best mouth
area feature for the two best kernels, increased the accuracy for the best performing
videos.
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1
Introduction

1.1 Motivation

Speech is the most common way humans communicate with each other. Most of
the information gathered from speech is collected via the ears but some of the infor-
mation is also gathered via the eyes and the visual cues a person emits. This makes
it possible for hearing-impaired persons to use their vision to understand speech.
The ability of using visual perception to understand speech is called lip reading.
Lip reading can be a useful tool since more than 1.5 billion people worldwide are
affected by hearing loss and 430 million of these people have moderate or high
levels of hearing loss in the better hearing ear according to World Health Organi-
sation. Without any help people with higher levels of hearing loss are more likely
to be negatively affected. If hearing loss is not addressed it can have several severe
negative effects on many aspect of a person’s life. These aspects can for example
influence communication, the development of language and speech in children, cog-
nition, education, employment, mental health and interpersonal relationships. One
solution suggested to combat hearing loss is the usage of sensory substitutions like
sign language and lip reading. Lip reading is therefore a relevant and important
topic [World report on hearing: executive summary 2021].

1.2 Aim of project

It is well-established that listeners with hearing loss have more difficulties follow-
ing conversations when there are multiple speakers talking at the same time, than
listeners with normal hearing [Shinn-Cunningham and Best, 2008; Lee et al., 2018].
Oticon, one of the largest manufactures of hearing aids in the world, and their re-
search center Eriksholm Research Centre (ERH) are interested in investigating if
these difficulties can be overcome by developing new algorithms that can support
hearing-aid users during selective attention tasks.

The aim of this project is to investigate if there are some facial features that
correlate to speech activity and how well these features perform. This is achieved
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1.3 Previous research

by using machine learning algorithms to classify speech/non-speech, given access
to only video files with the audio recordings as ground truth of speech and non-
speech.

1.3 Previous research

The last few years there has been an increase in models and systems for lip reading.
There has been a push for systems with automatic lip reading and with it methods
based on deep learning have become popular and advanced the achievable perfor-
mance. Traditionally, automatic lip reading has mainly been based on the extrac-
tion of visual features and the classification and modeling of the spoken sequence.
These systems addressed simple recognition tasks like alphabet or digit recogni-
tion. With the shift to more advanced deep learning architecture, more complex and
realistic recognition tasks became possible, for example situations with lip read-
ing. These advances were also possible with the increase of large-scale databases
like the Lip Reading Words database and Lip Reading Sentences database that are
based on recordings of BBC programs from 2010 to 2016 [Chung et al., 2017]. Most
databases include only one face in every video and the face looks directly towards
the recorder. However, other databases have been produced that include recordings
of the face from different angles. The majority of databases are in English. Other
languages like French and Spanish are much less frequent and for smaller languages
it is hard to find even one database where both audio and visual data is included
[Fernandez-Lopez and Sukno, 2018].

Most lip reading systems start by detecting face in the video and extracting
the area of the mouth and areas surrounding it. Feature extraction is then applied
to the speaker’s lips. There are several techniques of feature extraction for visual
speech recognition and there is no exact consensus of what is the best technique.
Therefore, researchers have proposed several different visual features based on im-
age transform, motion (optical flow), geometry (width and height of the mouth) and
statistical model [Fernandez-Lopez and Sukno, 2018].

The shift to systems dealing with words and sentence recognition has both been
seen in traditional automatic lip reading and in deep learning. Most of the traditional
systems use image features with hidden Markov-model or support vector machine
(SVM) as classifier while the deep learning systems have moved toward end-to-end
deep neural network architectures. These are dominated by convolutional neural
networks (CNN) features in combination with long short-term memories (LSTM)
[Fernandez-Lopez and Sukno, 2018]. One of the leading end-to-end models is Lip-
Net. It performs prediction on sequences of sentences for visual speech recognition.
It uses a spatio temporal convolutional neural network, recurrent neural networks,
and the connectionist temporal classification loss. When LipNet was performed on
the database GRID which uses sentences as data, it gave an accuracy of 95.2 % of a
sentence [Assael et al., 2016].
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2
Background

2.1 Cocktail-party problem

The cocktail party phenomenon refers to our ability to focus on a single talker of
interest in the presence of other competing speakers in noisy and complex environ-
ments [Cherry, 1953]. In most cases it is relatively easy for our brains to segregate
and follow a sound source of interest while filtering out other voices [Bronkhorst,
2000]. The sounds of the environment are summed together linearly into a single
sound stream per ear and the auditory system processes the single sound stream.

Only by separating features from different sources and by grouping together fea-
tures origination from the same spatial source, can a listener single out the specific
sound stream to listen to. This mechanism is called sound segregation [Marinato
and Baldauf, 2019]. Intertwined with sound segregation is the ability to direct at-
tention to the sound source of interest while ignoring others and switching attention
between different sources, for example when following two conversations. The cog-
nitive process can often only operate on one thing at a time and therefore selects a
particularly sound source to focus on [McDermott, 2009]. For direct attention the
binaural hearing, hearing from both ears, gives better ability to detect the location
of incoming sound. This ability is reduced when one ear or both have the hearing
capability reduced [Tris Atmaja, 2019].

However, these abilities to tune out other voices and focus on one specific voice
or “selective hearing” is something not everybody can do. Since selective hearing
uses the auditory system to understand speech in multiple-talker situations it can be
difficult for hearing-impaired people to understand speech in these kinds of situa-
tions. These difficulties are often associated with the term cocktail-party problem or
cocktail-party effect. The cocktail-party problem asks, in essence, the simple ques-
tion “How do we recognise what one person is saying when others are speaking
at the same time?” [Bronkhorst, 2000]. The problem was originally mentioned by
Cherry (1953). Behavioural studies have attempted to answer this problem since
the 1950s. There have been several attempts to solve the cocktail-party problem
since then and progress has been made but there are still many things that are un-
known and issues that are not explained in understanding how the activity of the
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brain creates selective hearing. Reiss and Molis (2021) used stimulation of differ-
ent stimuli in each ear with a variation in fundamental frequency to explore the
presence of speech fusion (that is the blending of stimuli between the two ears).
This was performed with two groups of listeners with normal hearing or hearing
loss. Most participants from both groups reported hearing only one vowel (fused
the vowels) when the stimulation did not differ in fundamental frequency in both
of the ears. When vowel fundamental frequency increased between ears, listeners
with normal-hearing sensitivity indicated the presence of two vowels, while listen-
ers with hearing loss continued to report only one vowel. The authors concluded
that this spectral blending between ears may degrade speech recognition in noisy
cocktail-parting settings with competing talkers. This study showed the issue of the
cocktail party problem and highlights the importance of finding ways for patients
with hearing loss to manage these challenging listening situations.

2.2 Linguistics

A key part in visual speech processing and lip reading is the understanding of the
movements of the mouth and tongue and how it creates speech. The classification
of the sounds of the speech is called phonology. The classification is different for
each language but all are structured around phonemes. Phonemes are the smallest
detectable unit of sound in a language. It serves to distinguish words from another.
Not all phonemes can be seen via the movements of the mouth and face. These
visually distinctive units are called visemes and the number of visemes is much
smaller than the number of phonemes.

This is because some phonemes are produced inside the mouth and throat, and
cannot be seen. This means that several phonemes have the same viseme, for exam-
ple /p/ and /b/ when spoken in English. Words that have the same visual distinction
but have different phonemes are called homophones, for example the words "pet",
"bell" and "men" all have the same movements but sound differently. Homophones
are a crucial part of the problems lip reading has as a means of understanding what
a person is saying without the usage of hearing. Even though the visual movements
of the mouth are the same, other factors can contribute to the understanding of what
is said, for example the timing and duration during the actual speech in terms of
visual "signature" of a given gesture that cannot be captured with a single pho-
tograph. Conversely, some sounds which are hard to distinguish acoustically are
clearly distinguished by the face in a frame [Chen, 2001]. For example, acousti-
cally speaking English /l/ and /r/ can be quite similar especially in clusters, such as
"grass" compared to "glass", yet visual information can show a clear contrast. This
is demonstrated by the more frequent mishearing of words on the telephone than in
person. Some linguists have argued that speech is best understood as bimodal (aural
and visual), and comprehension can be compromised if one of these two domains
is absent [McGurk and MacDonald, 1976]. Studies have shown that when English-
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Chapter 2. Background

speaking subjects were tested on their ability to interpret lip reading, the accuracy
of correct understood words was only 30 %. This was mostly due to homophones
[National Deaf Children’s Society, n.d.]

The number of phonemes in different languages is still highly debatable but in
spoken English there are approximately 44 phonemes. The number of phonemes is
not decisive and different numbers are given by different sources [Grønnum, 2005;
Basbøll, 2005]. However, according to [Grønnum, 2005] there are eleven vowel
phonemes (/i e a y ø œ u o /) and fifteen consonant phonemes (/m n p t k b d
g f v s h l r j/) in spoken Danish. The vowel phonemes often have different, so
called, allophones depending on length, especially in conjunction with /r/, while
consonants phonemes have many different allophones. Allophones is when a letter’s
sound changes based on the word, for example, /ø/ is lowered when it occurs either
before or after /r/, and /a/ is pronounced /æ/ when it is long. This adds another
difficulty in differentiating vowels and consonants from each other in speech.

2.3 Sound processing

Sound is almost in every case a mono-dimensional signal or as it is also called
function of time and it is supposed to represent the air pressure in the ear canal.
When doing the digital audio sampling, an analogue-to-digital conversion, storage
and transmission is needed. To perform processing on the audio signal it needs to
be digitised and that means it must be converted to discrete samples of a discrete-
time domain. This operation of turning a signal to discrete time from continuous
time is called sampling. It is performed by picking values from the continuous time
signal with an interval of T . From this a sampling rate Fs can also be calculated
via equation (2.1). The unit of sampling rate is Hertz (Hz) or samples per second.
This means that when interval of T decreases, the sampling rate increases and one
get a more similar version of the discrete-time signal to the continuous-time signal
[Rocchesso, 2003].

Fs =
1
T

(2.1)

The fundamental rule of sampling is the equation (2.2). It describes the sam-
pling of a continuous-time signal with a sampling rate and produces a discrete-time
signal. The discrete-time signal frequency spectrum is a periodic replication of the
spectrum of the original signal, and the replication period of Fs. The angular fre-
quency ω for functions of discrete variable is converted to the frequency variable f
as described by equation (2.2) [Rocchesso, 2003].

ω = 2π f T =
2π f
Fs

(2.2)

In the conversion from continuous-time signals to discrete-time signal, the
Nyquist-Shannon sampling theorem limits how high the sample rate can be to allow
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a discrete sequence of samples to represent all the information of continuous-time
signal. To correctly represent the information of the continuous signal x(t) that has
spectral content limited to frequencies smaller than Fb the sampling rate needs to be
Fs > 2Fb [Rocchesso, 2003].

Another factor that affects the analogue-to-digital conversion is the bit depth. It
is the number of bits of information in each sample and it directly corresponds to
the resolution of the sample.

When dealing with extracting features of an audio signal x(m), where m is the
discrete index, one can do it both in the time-domain but also in the frequency
domain. An example of a feature in the time domain is short-term energy, En. It is
a simple and effective parameter for classifying speech and non-speech segments.
Signal energy is described in equation (2.3), where E represent the energy of the
audio signal x(m) [Jalil et al., 2013].

E =
∞

∑
m=−∞

x(m)2 (2.3)

The signal energy of a short-term speech signal can be described according to
equation (2.4), where w(n−m) is the window, n is the sample the analysis window
is centred on and N is the window length [Jalil et al., 2013]. The window can be
several different window types but in this project it is a hamming window and is
defined according to equation (2.5) [Oppenheim, 1999]. The result En is the energy
of N samples of a signal at index m, where the last sample has index n. In equation
(2.4) n−N +1 represents the length of the signal.

En =
n

∑
m=n−N+1

[x(m)w(n−m)]2 (2.4)

w(n−m) = 0.54−0.46cos(2π
n−m

N
) (2.5)

To get access to features in the frequency domain the audio signal needs to be
converted from a function of time to a function of frequency X . This can be done
with Short-term Fourier transform (STFT). STFT basically works as Fourier trans-
form but the time domain signal is divided into smaller windows and the Fourier
Transform is calculated for each window section to get the frequencies, see equa-
tion (2.6) where n is the time index [Sairamya et al., 2019].

Xn(e jω) =
∞

∑
m=−∞

x(m)w(n−m)e− jωm (2.6)

An example of features from the frequency domain is the spectral spread St
of the signal. It is derived from the spectral centroid Ct , see equation (2.8), where
Xt(k) is the magnitude of the discrete Fourier Transform coefficients of the t:th
audio frame and WL is the window length. The magnitude of the discrete Fourier
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Chapter 2. Background

coefficients, Xt(k), is defined in equation (2.7) can be treated as a measure of the
intensity with which the respective frequency participates in the signal x(m) [Gian-
nakopoulos and Pikrakis, 2014].

Xt(k) = |
N−1

∑
m=0

x(m)e−
j2π

N km|, k = 1, ...,WL (2.7)

Ct =
∑

WL
k=1 kXt(k)

∑
WL
k=1 Xt(k)

(2.8)

The spectral spread is used as a measure of distribution around the spectral
centroid and it defines the variance from the spectral centroid. Spectral spread can
be calculated using the equation (2.9) [Krishnamurthi et al., 2022; Giannakopoulos
and Pikrakis, 2014].

St =

√√√√∑
WL
k=1(k−Ct)2Xt(k)

∑
WL
k=1 Xt(k)

(2.9)

2.4 Image processing

A pixel is short for "picture element" and is the smallest, controllable part of an
image visible on a screen. Each pixel in an image has a colour and the colour can be
manipulated with different algorithms. An algorithm that transforms the pixel value
independent on the pixel’s neighbours is called a point operator. If the algorithm is
using some of the values from the pixel’s neighbours to change the pixel’s value, the
algorithm is a neighbourhood operator. A general image operator takes an image,
or multiple ones, as input and returns an output image. Mathematically, this can
be expressed as in equation (2.10) for the discrete domain, where x = (i) is pixel
location, h is the image processing operator, f is the input image and g is the output
image [Szeliski, 2021; Russ, 2008].

g(i) = h( f (i)) (2.10)

The point operators are algorithms that affect all pixels the same, no matter
where in the image the pixel is located or how the surrounding of the pixel looks
like. Examples of popular point processors are algorithms to adjust the contrast or
the brightness in the image. The contrast and the brightness of the image could be
adjusted according to equation (2.11), where a changes the contrast of the image
and b adjusts the brightness of the image [Szeliski, 2021].

g(x) = a f (x)+b, a > 0 (2.11)
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A commonly used neighbourhood operator is the linear filter. When using a
linear filter, each pixel value becomes a weighted sum of the pixel values from the
close surrounding to the pixel. This can be done as described in equation (2.12),
where x = (i, j) is pixel location. This can also be denoted as in equation (2.13)
[Szeliski, 2021].

g(i, j) = ∑
k,l

f (i+ k, j+ l)h(k, l) (2.12)

g = f ⊗h (2.13)

2.5 Machine Learning

Traditional programming is a sequence of instructions which a computer is follow-
ing step by step. Programming using machine learning is a computer science area,
where the computer is programmed to learn from data based on different mathe-
matical models. The computer is handling new data based on what it has learned
from the data it has previously seen. Tom Mitchell’s definition of machine learning
is commonly used and is as follows: "A computer program is said to learn from ex-
perience E with respect to some task T and some performance P, if its performance
on T , as measured by P, improves with experience E" [Mitchell, 1997]. The com-
puter is programmed to learn to do some task, often classifying between different
classes. This is done by exploiting mathematical models. These can be improved
by learning from some experience, in machine learning referred to as the training
data. More training data improves the model and hence the performance of the task.
The model is evaluated by using validation data. The validation data is new data
which the model never has seen before. Based on some performance measure, for
example accuracy or precision, the model is adjusted and fine-tuned to improve
the performance of the task. When the developer is satisfied with the model, the
model’s performance is tested on a test set with new, previously unseen data, to see
how good the model actually is.

Overfitted and underfitted models
If the performance of the validation data is good but the performance on the test data
is not as good, the model is probably overfitting the training data. The overfitted
model is often complex and has parameters that have found a pattern where there is
no pattern. The model is therefore well adjusted to the specific cases in the training
data but not as good at classifying the unseen test data. To avoid overfitted models,
it is good with a large dataset and a flexible model with fewer parameters. A large
dataset means that the machine learning model has learned from more data and is
less adjusted to a specific training data point. Fewer parameters make the model less
adjusted to the specific data points, minimises the number of irrelevant parameters

17



Chapter 2. Background

and makes the model more general. In practice, overfitting cannot be completely
avoided and is something the developer should be aware about and try to avoid as
much as possible [Géron, 2019; Zhou, 2021].

An underfitted model is a model that cannot perform the task as well as it could
do. The model is so generalised that it cannot tell much about the data. It has not
learned the general properties of the training data good enough to be able to han-
dle the test data as good as possible. Making the model more complex by adding
parameters to the model, makes the model less underfitted. Using better features to
train the model can also decrease the underfitting of the data [Géron, 2019; Zhou,
2021].

Supervised and unsupervised learning
In supervised machine learning, the data is labelled. In unsupervised learning the
data is not labelled. For example, a collection with images is going to be classified
as either an image of an animal or an image of a plant and then the algorithm will be
evaluated. For supervised learning, all the images have a label that states if the image
is representing an animal or a plant. After the classification is done, the images will
have been classified in two classes, one representing "animal" and one representing
"plant". Since each image also has a label, the evaluation of the model can be done
by for example calculating the accuracy, the precision or the recall.

If the animal and plant images were to be classified by unsupervised learning,
this means that the images are not labelled "animal" or "plant". The algorithm then
returns a number of clusters. The user often specifies how many clusters should get
returned, in this case two, or how large distance it should be between the different
clusters. If a distance measurement is used, a number of classes could be returned. In
the animal/plant case, three clusters based on for example plants, sponges and other
animals could be returned. Since the data were unlabelled, it is not possible to tell if
an image were correctly or incorrectly clustered. The performance of unsupervised
learning is not as easy to measure as the performance of the supervised learning.
Different statistical measurements are usually used to verify that there are patterns
in the data which could be clustered based on some non-random features. It is also
checked whether the number of clusters which were created from the model are the
same as the number of true clusters or not. Statistics from the data from each cluster
are also compared and see if they match what would be expected from the clusters.
Finally, the results from different models could also be visually compared. In the
animal/plant case, the clusters with images could be compared between the models
to see which model seems to perform best [Palacio-Niño and Berzal, 2019].

In this project, when using the video landmarks to predict the audio, the audio is
labelled as either speech or non-speech. Therefore, methods for supervised learning
are used in the classification. In this project, support vector machine (SVM) is used.
Both the accuracy, the precision and the recall were studied for the different models.
The accuracies for the models are presented in this thesis since it was from that the
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2.5 Machine Learning

main conclusions were made.

Balanced and unbalanced data
Ideally, the dataset should contain equally many samples from each class. However,
that is often not the case in practice. The dataset is often unbalanced, with one class
occurring more frequently than another. This can lead to an algorithm having a high
accuracy not because it is performing great at the classification task, but only since
it classifies everything or almost everything as the most common class. There is no
easy solution to this, but three methods are commonly used to reduce the problem
of unbalanced data. The first solution, undersampling, is simply to ignore some of
the data of the most common class to obtain a more balanced relationship between
the classes. The problem of this is that the algorithm is not trained on as much data,
which could become a large problem if the dataset is small. Another method is to
oversample the data with the least common class, to increase its occurance. The
problem with this solution is that is could easily lead to an overfitted model. A third
solution is to change the threshold for a data point being classified as either class.
This could lead to the data being wrongly classified, even though it with the original
threshold was correctly classified [Zhou, 2021].

Cross-validation
Cross-validation (CV) is a popular way to avoid overfitting. One of most popular
cross-validation methods is k-fold cross-validation. When using k-fold cross vali-
dation, the data is first divided into k subsets or folds as they also are called. The
subsets will be, if it is possible to split the data that way, of equal size and disjoint,
meaning that the data is not occurring in several folds. Then the model is trained
with k−1 folds at a time, with the final fold serving as test data. This is then done k
times, so that all folds have been used as a test data at some point. This is illustrated
in Figure 2.1, where blue represents the unseen data and the red represents the seen
data for the model. The variable V in the figure stands for validation data. This way,
the model is tested on unseen data several times, which decreases the risk of the
model to overfit. The test scores are then averaged for the different test folds and
used as a final test score. The large disadvantage of CV is the computational time
[Zhou, 2021; Suthaharan, 2016].

Deep learning and convolutional neural network
Deep learning is a subset of machine learning and tries to mimic the human brain by
creating an artificial neural network with artificial neurons that perform a weighted
summation of its incoming signals and outputs a new signal. The artificial neuron is
the basic element that the neural networks are built with. The nodes are connected
with each other and this is called network architecture. There are two major groups
of network architectures: feed-forward architecture and feed-back architecture. In
feed-forward networks, there are no closed loops for signal transfer. They are often
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Figure 2.1 Drawing of a k-fold cross-validation. Blue represents the unseen data
and the red represents the seen data. V stands for validation data.

structured to just let input values propagate forward through the layers of nodes to
an output layer. For feed-forward networks one can view the input as a "question"
and the output as the artificial neural networks "answer" [Goodfellow et al., 2016].

A form of feed-forward network is convolutional neural network (CNN) which
is designed to handle the spatial relation between inputs. In convolutional networks
the first argument to the convolution is called the input and all the other arguments
are called kernels. CNNs consist of an input layer, hidden layers and an output layer.
The hidden layers include not just the input and output masked by the activation
function and final convolution but also layers that perform convolutions. The con-
volutional layers consist of three blocks: the convolution stage, the activation stage
and the pooling stage. The first two blocks are of high importance while the pool-
ing stage is not always necessary. One key attribute of convolutional networks is its
use of sparse connectivity. It means that the kernel is smaller than the input, which
decreases the number of parameters in the network. This leads to smaller memory
requirements and the output requires fewer operations. These improvements make
the CNN more efficient so it can better handle larger input datasets than fully con-
nected feed-forward neural networks. This also allows units in the deeper layers
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Figure 2.2 Multiple hyperplanes can separate the data points from the two classes.
The optimal hyperplane to separate the blue and red data points is coloured green.

to indirectly interact with a larger part of the input and makes the network able to
describe more complicated relations between many variables [Géron, 2019; Sutha-
haran, 2016; Goodfellow et al., 2016].

SVM
Support vector machine (SVM) is a supervised method often used in classification
problems. The method is commonly used in brain-computer interface related ma-
chine learning problems. The idea of SVM is that the data points form clusters based
on their classes. By drawing a hyperplane, these clusters can be separated from each
other with each cluster representing one class. In two dimensions, the hyperplane is
a straight line and in three dimensions the hyperplane is a plane. In other words, the
hyperplane is a straight line in multiple dimensions [Noble, 2006]. There is never
just one hyperplane that separates the points, there are be multiple as illustrated in
Figure 2.2.

The optimal hyperplane is obtained by maximising the distance to the data
points. In Figure 2.2, the hyperplane that maximises the distance to the data points
in red and blue is coloured green. The data points closest to the hyperplane have
the largest impact on the position of the hyperplane. Since the hyperplane is "sup-
ported" by the data points with the minimal distance to the hyperplane, these data
points are called "support vectors". The aim is to maximise the distance between
the support vectors while minimising the prediction error.

A soft margin in the algorithm makes the classifier accept some outliers even
though the prediction error increases. The regularisation parameter C regulates how
sensitive the SVM should be to miss-classification of the training data points. A
larger value on C will chose a smaller margin between the support vectors and the
hyperplane if that increases the amount of correctly classified training data points.
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However, to obtain the optimal hyperplane, a single outlier data point should not
have too large impact on the position of the hyperplane. A large value on C there-
fore improves the accuracy, but at the same time increases the risk of overfitting the
model. The parameter C is often set to a lower number at first and then gradually in-
creased, and by trial-and-error the best value on C is selected [Marius, 2020; Noble,
2006; Géron, 2019; Suthaharan, 2016; Pedregosa et al., 2011].

The data points cannot always be separated by a straight line. By adding dimen-
sions to the data, it could be possible to separate the data points from the different
classes by a straight line. This is mathematically done by a kernel function. The
linear, the polynomial, the sigmoid and the radial basis function (rbf) kernels are
some of the most common kernel functions [Noble, 2006].

The linear kernel function The linear kernel function is the simplest one. When
using many different features, the linear kernel is often applied to avoid the use of
a complex, overfitted model. The large benefit of the linear kernel, compared to the
other kernel functions, is that it is not computational heavy.

A linear hyperplane, described by equation (2.14), divides the data points into
two subspaces D1 and D2, defined according to equation (2.15). The feature data
points is denoted as x. Each feature has a weight and the weights are denoted by
w. The intercept b is the bias. A linear combination of all features and their cor-
responding weights predicts the classification label . The hyperplane described in
(2.14) is also known as the max-margin hyperplane [Suthaharan, 2016].

wx′+b = 0 (2.14)

D1 = {x : wx′+b ≤ 0}
D2 = {x : wx′+b > 0}

(2.15)

The max-margin hyperplane should have as large distance as possible to D1 and
D2. This is done by having two linear hyperplanes which serve as boundaries for
the subspaces. These two hyperplanes are described by equation (2.16) [Suthaharan,
2016].

wx′+b = 1,x ∈ D1

wx′+b =−1,x ∈ D2
(2.16)

The distance d between the parallel hyperplanes described in equation (2.16)
can be calculated according to equation (2.17). The largest distance d is searched
to create the max-margin hyperplane. Maximising d is the same as minimising the
term ∥w∥2. The weight vector is easy to derive, since its derivative is w, which
makes it easier to minimise the the weight vector instead of maximising the distance
[Suthaharan, 2016].
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The polynomial kernel function The polynomial kernel functions can be used if
there is a linear relationship between the classes of data, when more dimensions
are added to the data. The polynomial kernel function can be described as equation
(2.18), where x is the feature vector, w the weight of the vectors, b some constant
and d the degree of the polynomial. When comparing equation (2.18) with the lin-
ear hyperplane in equation (2.14), the main difference is the degree d [Suthaharan,
2016].

φ(x,w) = (x′w+b)d (2.18)

The mathematical method used to add more dimensions to be able to separate
the data is often called the "kernel trick". The problem with adding dimensions,
is that the more dimensions that are added, the more overfitted the model could
become. However, if the polynomial degree is too low, the model will not be able
to handle a more complex dataset. It is therefore common to start with a low degree
on the polynomial function and increase it gradually [Géron, 2019].

The radial basis function (rbf) kernel The rbf kernel is often used for non-linear
data. The downside of this method is that it for large datasets can require a lot of
computational power. The rbf kernel function can be described by equation (2.19),
where ∥x−w∥ is the euclidean distance between each data point x and each data
point l.

φγ(x,w) = exp(−γ ∥x−w∥2) (2.19)

The rbf kernel function contains the parameter γ , which is a measure on how
large distance each support vector has influence on. A low value on γ means that
the distance is large and a high value means that the influence distance is small. This
means that if γ is low, points from far away are considered when the position of the
hyperplane is calculated. A low value on γ therefore decreases the risk of overfitting
and a large value on γ increases the risk of overfitting [Géron, 2019; Pedregosa et
al., 2011].

The sigmoid kernel function The sigmoid kernel function, or hyperbolic tangent
kernel function which it also is called, can be described by equation (2.20), where
x is the feature vector, w is the weight of the vectors, b is some constant and γ

is related to the distance from which a training data point has influence. An SVM
classifier with the sigmoid kernel works as a neural network with two layers [Géron,
2019].

φ(x,w) = tanh(γ x′w+b) (2.20)
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2.6 Facial landmarks detection

There are several different methods for facial landmark detection. The landmarks
are either unique key locations in the face or interpolated points between these key
points. The aim of the landmark detection method is to predict the locations of D
landmarks x = x1,y1,x2,y2, ...,xD,yD, where x is the coordinate in horizontal di-
rection and y is the coordinate in vertical direction of each facial landmark in the
image.

Deep learning based methods, often based on CNN, for facial landmarks detec-
tion have recently become more popular than traditional algorithms such as holis-
tic methods, constrained local methods (CLM) and regression-based methods. The
deep learning facial landmark detection algorithms can be dived into pure-learning
methods and hybrid deep learning methods. The pure-learning methods use only
deep learning and the hybrid deep learning methods use both some 3D computer
vision method and the deep learning methods. The advantage of the hybrid deep
learning methods is that the computer vision detection algorithm often is better at
handling faces from different angles than deep learning methods [Wu and Ji, 2018].

All methods is searching for a face and placing the facial landmarks coordinates
within a bounding box given by some face detector. The algorithm is searching for
different key points in the face which are easier to find. The unique key locations
is often somewhere in the face where there is a sharp edge, since edges because of
discontinuities are easier to detect. An example of key points, which thanks to the
discontinuities of the colours in the image are easier to detect, is the corners of the
eyes. The other landmarks around the eyes are then interpolated between the key
points that marks the corners of the eyes [Wu and Ji, 2018].
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3.1 The Dataset

The dataset was created at Eriksholm Research Centre (ERH) by Sascha Bilert for
his master thesis [Bilert, 2020]. The dataset is owned by Oticon and is not pub-
licly available. The dataset consists of the stimuli (including audio and video), eye-
tracking data and EEG data. In this thesis, only the stimuli is used.

The stimuli from the dataset consists of 24 different videos, with the correspond-
ing audio, of monologues and dialogues in Danish. The dialogues and monologues
are performed by four professional Danish actors (two males and two females). All
video clips contain three of the Danish actors, of which one performed an impro-
vised monologue at the same time as two the others performed a dialogue. The two
actors who performed the dialogue were given an image each and were asked to
find the twelve differences between the two images without showing them for each
other. In Figure 3.1, the setup for video 1 can be seen, where the first person is per-
forming a monologue and the second and third person are performing the dialogue.
The position every actor has in each video can be seen in Table 3.1.

Figure 3.1 One frame from video 1 in the stimuli with the monologue to the left
and the dialogue to the right.
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Table 3.1 Description of the videos from the stimuli. Every actor has been given a
number from 1 to 4. The letters M and D represent what type of speech the actor is
performing in the video, where M represent a monologue and D represent a dialogue.

Position 1 Position 2 Position 3
Video Actor M/D Actor M/D Actor M/D

1 1 M 2 D 3 D
2 3 D 2 D 1 M
3 3 D 2 D 1 M
4 2 M 3 D 4 D
5 2 M 3 D 4 D
6 2 M 3 D 4 D
7 4 D 3 D 2 M
8 4 D 3 D 2 M
9 3 M 4 D 1 D

10 3 M 4 D 1 D
11 4 M 1 D 2 D
12 2 D 1 D 4 M
13 2 D 1 D 4 M
14 2 D 1 D 4 M
15 1 M 2 D 3 D
16 3 D 2 D 1 M
17 1 M 4 D 3 D
18 1 D 4 D 3 M
19 1 D 4 D 3 M
20 1 D 3 D 4 M
21 4 M 3 D 1 D
22 4 M 3 D 1 D
23 1 D 3 D 4 M
24 3 M 4 D 2 D

The videos were recorded until all differences in the images were discovered
by the actors performing the dialogue, meaning that length of the different video
clips are not the same. The videos have a frame rate of 25 frames per second. All
actors were asked to try to keep the attention of the listeners by talking as engaged
as possible. All actors wore microphones that recorded the audio with a sampling
rate of 48 kHz. The actors who performed the dialogues sat directed toward each
other and therefore there is a larger amount of noise in the dialogue audio files. All
audio files have been preprocessed to only contain the audio from the actor who
wore the microphone even if other people were talking next to the actor. However,
the audio files of the dialogues still contain small levels of noise from the opposite
speaker [Bilert, 2020].
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Figure 3.2 An overview of the CNN/MMOD algorithm for facial landmark detec-
tion.

3.2 Facial landmarks extraction from videos

Different facial landmarks were extracted from the faces in the videos using an al-
gorithm for face detection from the software library dlib [King, 2009]. There are
two different face detection algorithms implemented in dlib, one using histogram
of oriented gradients (HOG) and linear support vector machine (SVM) and one
based on a convolutional neural network (CNN) using max-margin object detection
(MMOD). The CNN-algorithm using max-margin object detection is better at de-
tecting faces that are turned away from the camera than the HOG/SVM algorithm.
The downside of the CNN/MMOD method is that it is not as computational effi-
cient as the HOG/SVM method. The computational power has not been a problem
and we have therefore chosen to use the CNN/MMOD algorithm and are able to
more thoroughly detect faces in the frames of the video. The algorithm has success-
fully been used on several different face detection and face recognition databases
[Rosebrock, 2021; Sharma et al., 2016].

There are other facial landmarks extraction methods that are more complex.
However, since the objective is to only classify speech activity and not for example
words or sentences, a more simple method was chosen. The dialogues from the
stimuli were turned towards each other and not towards the camera. This led to a
requirement for a robust algorithm that could handle faces that were not centred
in the image and turned towards the camera. The CNN/MMOD algorithm fulfilled
these criteria and was therefore used in this project.

The CNN/MMOD algorithm is described with a drawing in Figure 3.2. The
method first does some preprocessing to the input image. The image is normalised
based on colour, brightness and contrast and is then upsampled. The algorithm then
first finds the locations of the faces, then aligns the faces, crops the image to become
an image for each face which just covers the face and finally extracts the facial land-
marks from the cropped images. The first three layers in the CNN are downsampling
the input images. After that, there are four convolutional layers which finds features
in the image. Each convolutional layer takes the input and, based on the input, gives
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Figure 3.3 Facial landmarks marked with white on a face.

a feature map as output. These layers uses local receptive fields, which gives each
neuron a small area of the input to focus on. The convolutional layers are also shar-
ing weights for the features for different parts of the image. There are also pooling
layers which downsamples the feature maps. The last layer extracts the features
[Sharma et al., 2016; King, 2009].

The CNN model is using the loss function Max-Margin Object Detection loss.
This optimises the chances that a face is correctly found in an image. The function
maximises the margin and chooses the alternative with the largest predicted margin
to have a correctly classified image [King, 2015].

In total 68 landmarks were extracted from each face, of which 20 were around
the lips. Twelve of the landmarks track the exterior side of the lips while the other
eight landmarks track the interior side of the lips. Only the exterior landmarks have
been used in this project. The landmarks consists of an x and an y coordinate. A
drawing of the landmarks of the exterior lips together with the number of the coor-
dinate of each landmark can be seen in Figure 3.4. These landmarks were later used
to create the video features.

3.3 Processing of audio

To be able to classify speech and non-speech in the video it was necessary to have
a ground truth. This ground truth came from the recorded audio from each actor in
the video used to detect when there is speech and when there is not speech in the
audio files. There are multiple ways of detecting speech in an audio file.
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Figure 3.4 A drawing of the structure of the exterior facial landmarks around the
lips.

Speech envelope using moving root mean square
One of them is by extracting the envelope of the speech and examine it. In order
to extract the envelope of the speech several methods were studied, both on a ten
second period and the entire audio file of one of the actors speaking in a monologue.
The methods tested for extraction of the envelope of the audio signal were Hilbert
transformation, moving root mean square (RMS) and peak envelope. These methods
were first tested in MATLAB because all of them were available in the MATLAB
function envelope. This made it easy to switch between them by only changing the
input parameters to the function and a quick comparison could be made of the plots
of different methods on the audio file.

Hilbert transformation [Oppenheim, 1999] gave an envelope that was too de-
tailed for the case of only needing to know if the actor was speaking or not, see
Figure 3.5. A too detailed envelope can cause some part of words with lower ampli-
tude to be classified as non-speech as the ground truth, despite it still being speech.
The issues with the Hilbert transformation were the opposite for the peak envelope
method. It had the problem of sometimes not reaching lower amplitudes between
the sounds as can be seen in Figure 3.6. Moving RMS gave a result that followed
the envelope of the audio while still detecting periods when there was no sound, see
Figure 3.7. This meant that the best method was moving RMS.

Moving Root Mean Square The method moving RMS is used to provide an es-
timated temporal evolution of the signal energy [Caetano and Rodet, 2011]. The
envelope amplitude can be estimated with a sliding window to the RMS equation
(3.1).

xRMS(t) =

√
1
N

N

∑
i=1

wi(t)x2
i (t) (3.1)

In equation (3.1) the xi(t) is the i:th sample of the data centred around t as seen
through the window wi(t). The variable t is the number of samples the analysis win-
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Figure 3.5 Speech envelope using Hilbert transform over 2.5 seconds of the mono-
logue from video 1. Blue line: original audio. Red line: unfiltered speech envelope
on top of the original audio.

Figure 3.6 Audio envelope using peak envelope method over 2.5 seconds of the
monologue from video 1. Blue line: original audio. Red line: speech envelope.
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Figure 3.7 Audio envelope using moving RMS over 2.5 seconds of the monologue
from video 1. Blue line: original audio. Red line: speech envelope.

dow moves and N is the length of the window. Different kinds of windows can be
used with this method but in this project the most common is used, which is the
rectangular window [Caetano and Rodet, 2011]. The moving RMS method func-
tions as a moving average and a low-pass filter that smooths the signal. The length
of the window gives a trade-off between the temporal sample rate of the envelope
and how much information it represents. Small window sizes create an envelope
that is sensitive to smaller changes in the audio file, for instance sudden changes in
amplitude while presenting ripples in more steady regions. Larger window values
smooth out the ripples but tend to lag behind abrupt energy changes. The moving
RMS is calculated for each position in the data vector resulting in a moving RMS
and a vector of several RMS. To compute the moving RMS at the edges of the data,
where the algorithm does not have enough data to fill the window, the algorithm
fills the empty slots in the window with zeros. This continues until the window has
moved enough to be able to fill an entire window with data.

Calculating speech and non-speech The moving RMS was calculated for all the
recorded audio files of the actors speaking in the videos. Since there was no right
length of the window several lengths were calculated and tested. The best perform-
ing window length was 5000 data points, which corresponded to 104 milliseconds.
To be able to compare it with the video it needed to have the same sample rate as
the video’s frame rate of 25 frames per second. The audio envelope was resampled
by collecting every 1920:th value, because the sampling rate of the audio is 48 kHz.
A vector was then created with 25 values of the audio envelope for each second.
This was performed for every audio file with the window length of 5000 data points
from each person in the video and resulted in 72 data files.
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These 72 data files were later changed and updated after the realisation that with
25 frames per second it became to detailed and if the goal was to only separate when
there is speech and non-speech a lower sample rate was needed. This sample rate
was four frames per second. The resampling process was also changed from pick-
ing every 12000:th value of the audio envelope to calculating the mean value over
every 12000 values without any overlap between the windows that the mean was
calculated over. This resulted in a vector with four values for every second and each
value representing the mean of 12000 data points of the audio envelope. A thresh-
old was used to differentiate between speech and non-speech. Several values of the
threshold was tested, for example the median value of the audio file. However, ulti-
mately a constant threshold was chosen since with the median value it changed too
much between monologue, dialogue and it became difficult to find a good solution.

Speech detection using short-term energy and spectral spread
When these 72 data files were later used as ground truth in the machine learning
models they performed poorly and it was suggested that the decision making be-
tween speech and non-speech needed to detect the smaller details in the audio, for
example letters in spoken words. Therefore, another algorithm was tested to see if
it performed better. The difference between this algorithm and RMS windowing in
Speech envelope is the addition of using spectral spread (2.9) for determining the
threshold instead of only using moving RMS as was the case in Speech envelope.

The algorithm is called detectSpeech and has been modified from the original
algorithm to use short-term energy and spectral spread as features instead of short-
term energy and spectral centroid [The MathWorks, 2020; Giannakopoulos, 2009].

The algorithm can be seen in Figure 3.8. The algorithm is implemented by first
converting input, the audio signal, to a time-frequency representation using STFT,
see equation (2.6). The window length WL and the percentage of allowed overlap
OL between windows in the STFT was 0.025 seconds and 20 %. From the converted
audio signal short-term energy and spectral spread is calculated and saved into fea-
ture segments for every frame in the audio file. These segments are marked as En-
ergy and Spread in Figure 3.8. Histogram are then created from each segment and
a smoothing filter is applied on both histograms. Based on the respective smoothed
histogram a threshold is determined according to equation (3.2). The variables M1
and M2 in the equation are the positions of the first and second local maxima of the
specific histogram and the variable W is set to five. The two feature segments are
then compared to their respective threshold. If the threshold is lower than the feature
value the corresponding audio frame is added to a segment with only speech in it.
As a post-processing step the detected speech segments are lengthened by five short
term windows, which corresponds to 250 milliseconds, on both sides. Regions that
are declared as speech are merged together if the distance between them are less
than MD of accepted distance between two areas of detected speech. For this al-
gorithm the parameter MD was set to 0.1 seconds. An audio sequence is plotted in
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Figure 3.8 A drawing of a high-level overview of the detectSpeech algorithm. The
variables WL, OL and MD stand for the length of the window, what kind of percent-
age of the windows are allowed to overlap, and the longest distance two speech areas
are allowed to be apart in order to merge them into one area of speech.

Figure 3.9 Plot of 2.5 seconds of audio where the blue area is classified as speech
and the non-blue area is classified as non-speech.

Figure 3.9, where the blue areas are declared as speech according to the algorithm.

T hreshold =
W ×M1 +M2

W +1
(3.2)

Since the separation of speech and non-speech was already made in the algo-
rithm, the data files of all audios could quickly be made with ones representing
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speech and zeros representing non-speech.

Final speech envelope
The method finally used was the moving RMS. This was then resampled to four
frames per second. A constant threshold was used to differentiate if the data points
from the audio envelope were classified as speech or non-speech. This method was
chosen as the final version because it gave the best result when dividing the audios
into speech and non-speech by visually comparing the different methods results to
each other.

3.4 Video feature processing

Different features based on the landmarks from the lips were tested during the
project on a couple of videos. The feature that worked best were the mouth open-
ing distances and the area of the mouth opening. These features have been used
just as they are, that is the area or the mouth opening distances for each landmark.
The variance of these features has also been looked into as well as the difference of
these features over time. To be able to later match the video features with the audio
envelope features, the video features were resampled to four samples per second.

Feature 1 (F1). Mouth opening distances
The first feature, F1, used was the distances of the mouth opening in number of
pixels. Three distances were calculated in horizontal direction and three in vertical
direction. Originally, only the vertical mouth opening distances were used as part
of the feature. However, after testing on a couple of videos it became clear that
also the horizontal mouth opening distances are important in order to classify the
speech activity. The mouth opening distances in x direction were calculated from
the coordinate pairs 49-53, 48-54, 59-55 which were the coordinates in the vertical
middle according to Figure 3.4. These coordinate pairs consist of one coordinate on
the left side of the lips and one coordinate on the right side of the lips. The distances
in x direction between each coordinate pair was called dx and was calculated as
specified in equation (3.3), where xright was the x coordinate from the right side of
the lips and xle f t was the x coordinate from the left side of the lips.

dx = xright − xle f t (3.3)

The three coordinate pairs of the lip in the horizontal middle, 50-58, 51-57 and
52-56, which can be seen in Figure 3.4, were used to calculate the mouth opening
distances in y direction. These coordinate pairs all consists of an upper (50, 51 and
52) coordinate and a lower (58, 57 and 56) coordinate. The distances in y direction,
dy, between these coordinate pairs were then calculated according to equation (3.4).
There the distances in y direction is calculated by subtracting ylower, which is the
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y coordinate on the lower lip from the coordinate pair, from yupper, which is the y
coordinate on the upper lip from the coordinate pair.

dy = yupper − ylower (3.4)

These distances were then filtered by a simple moving average (SMA) filter,
with the filter length k = 6 frames. This decision was made in order to filter over the
same sample frequency as the feature would later transform to. The simple moving
average for the distances d̄k over the last k data points was calculated according to
equation (3.5). For the edges of the data, where there are fewer than k data points
to calculate the SMA over, data points were reflected so that the correct number of
data points were obtained. The variable n is the position of the vector with the data
points of the distance di.

d̄n =
1
k

n

∑
i=n−k+1

di (3.5)

After the SMA filter were applied, samples were evenly picked out to match the
sample frequency of four Hz.

Feature 2 (F2). Variance of mouth opening distances
The second feature was the sample variance of the mouth opening distances. The
hypothesis was that if someone is talking, their mouth opening varies a lot but when
they are not talking, the mouth is still and does not move. Therefore, the variance
was used as a feature.

To calculate the variance, a simple moving average over the k previous data
points were firstly calculated according to equation (3.5). The different value on the
variable k was tested on a couple of videos and since the highest accuracy for these
videos were obtained with k = 6, k was set to six. For the edges of the data, where
there are fewer than k data points to calculate the SMA over, the number of available
samples are used and k is therefore as high as it can be, but at most six. The SMA
was calculated for both the distances dx and the distances dy from equations (3.3)
and (3.4).

d̄k =
1
k

n

∑
i=n−k+1

di (3.6)

After the SMA was calculated, the variances σ2
k were calculated over a sliding

window of k = 6 frames according to equation (3.7).

σ
2
k =

1
k

n

∑
i=n−k+1

(di − d̄k)
2 (3.7)

The SMA filter described in equation (3.5) was then applied at the data and
finally the features were resampled to four Hz.
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Feature 3 (F3). Difference of mouth opening distances
The third mouth opening feature was the difference of the mouth opening distances
∆d between several frames. This feature was done by taking the difference between
consecutive data points from the feature F1, as described in equation (3.8). Different
values of k were tried during the project, but based on performance, we decided to
use k = 1. For the first data point, the difference were set to zero.

∆di = di −di−k (3.8)

Feature 4 (F4). Area of the mouth
The fourth feature was the area of the mouth. The centroid xcen of the x coordinates
and the centroid ycen of the y coordinates were calculated according to equation
(3.9). The variable m is the number of the coordinates, as shown in Figure 3.4. The
centroid was calculated for each frame.

xcen =
1
m

59

∑
m=48

xm

ycen =
1
m

59

∑
m=48

ym

(3.9)

After that, the area of the irregular polygon formed by the lip landmarks were
calculated. Triangles Am were created by two landmarks next to each other and the
centroid. The area of each triangle was calculated as in equation (3.10).

Am =

{
| 1

2 (xm(ym+1 − ycen)+ xm+1(ycen − ym)+ xcen(ym − ym+1))| if m ̸= 59
| 1

2 (xm(y48 − ycen)+ x48(ycen − ym)+ xcen(ym − y48))| if m = 59
(3.10)

To calculate the area of the whole irregular polygon Atot created by the coor-
dinates around the lips, the small triangles were then summed up, as described by
equation (3.11).

Atot =
59

∑
m=48

Am (3.11)

The area is then, just like the mouth opening distances features, filtered by a
SMA filter described in equation (3.5) with the filter length six and resampled to
four Hertz.

Feature 5 (F5). The variance of the mouth area
The fifth feature was the variance of the area. Just like the calculations of the second
feature, the SMA was firstly calculated for the areas. This was done according to
equation (3.12), where k = 6 was chosen.
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Āk =
1
k

n

∑
i=n−k+1

Atoti (3.12)

After the SMA was calculated, the variances σ2
k were calculated over a sliding

window of k = 6 frames according to equation (3.13).

σ
2
k =

1
k

n

∑
i=n−k+1

(Ai − Āk)
2 (3.13)

After the variance is calculated, the feature is filtered with the same uniform
filter as before, see equation (3.5), and then resampled to four Hertz.

Feature 6 (F6). The difference of the mouth area
The sixth feature is the difference between the area between difference frames. Ex-
actly as the third feature, the difference is calculated between consecutive samples,
here described by equation (3.14). For the first data point, the difference were set to
zero.

∆Ai = Ai −Ai−k (3.14)

3.5 Proposed SVM

SVM was used to classify the audio as speech or non-speech based on the video
features. The different features described above were used separately in different
models to compare the features with each other. The algorithms were trained and
tested on each face in each video separately, since the monologues and dialogues
are dissimilar as well as the actors behaved differently with various amounts of
movements.

A new model is trained and tested for each face in each video. The stimuli
contained 24 videos, which means that the algorithm was trained on 24× 3 = 72
faces with their corresponding audio as ground truth for each feature. Since the
stimuli is quite small, cross-validation was used to reduce the risk of overfitting.
Cross-validation was made with only k = 5 folds, since we wanted each test set
to contain both speech and non-speech for all video clips for all faces. Linear, rbf,
sigmoid and polynomial kernel functions were used. The parameter C was tested on
a scale from 1-6 for each face and the value with which gave the highest accuracy
was chosen as parameter value. Grid search was also used to calculate the highest
accuracy for the degrees 2-5 for the polynomial kernel. This was also done for each
face in each video.

After all the features were tested separately, the best kernel functions with the
best feature F1-F3 and the best feature F4-F6 were selected to train some new mod-
els. The new models were only trained on the videos that had received highest accu-
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racies on the models for feature F1-F6. This was done to see if the features worked
better together and returned higher accuracies as well as to study the performance
of videos with high accuracy in more detail.
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4
Result

The result from the SVM models are presented in different box plots. All the box
plots contain one box which represents the proportion of the the most frequent class,
speech or non-speech. Since the video is not 50% speech and 50% non-speech, it
is important to compare the accuracy with these proportion. For example, the first
face in the video achieves an accuracy of 85-86% which could be interpreted as
a good result and a high accuracy. However, when compared to the fact that the
person speaks in 85% of the video, it is clear that the accuracy is not high. A model
for that face could classify all the data as speech and get an accuracy of 85%. When
studying the result in the figures, it is therefore important to compare the accuracies
with the proportion speech and non-speech for each speaker.

In Figure 4.1, the accuracies for the monologue and the accuracies for the dia-
logues were compared with the proportion of the most frequent class for the mono-

Figure 4.1 The accuracies for all the models trained on features F1-F6 for the
monologues (Mono) and the dialogues (Dia), as well as the proportion of the most
frequent class in the videos for the monologues (Speech_Mono) as well as the dia-
logues (Non-Speech_Dia).
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Figure 4.2 The accuracies for all the models trained on the dialogues for each
features F1-F6, as well as the proportion of the most frequent class (Non-speech) for
the dialogues.

logues, named "Speech_Mono" in the figure, respective the dialogues, named "Non-
Speech_Dia" in the plot. In the monologues the relationship between the classes
speech and non-speech are less balanced than for the dialogues. The most dominant
class for the monologues are speech and the most dominant class for the dialogues
are non-speech. The predicted classes for the monologues have about the same ac-
curacy as classifying everything as speech. For some monologues the accuracy is
even worse than classifying all data as speech. For the dialogues, the mean accuracy
is a few percentage better than classifying everything as non-speech.

Since the dialogues had slightly better result than classifying all data as the
dominant class, the result for the dialogues were studied in more detail. In Figure
4.2, the accuracies for the dialogues are divided between the different features F1-
F6. The feature F5, which was the variance of the mouth area, has the highest mean
accuracy. It is also F5 which has the highest accuracy for the first quartile. It is also
notable that feature F3 has the longest whiskers among the features, meaning that
F3 has the largest difference between the maximum and minimum accuracy. When
studying in more detail, it was seen that F3 is better than F1-F3 for the rbf kernel
but is worse for the polynomial kernel.

The four actors in the videos behave differently with uniquely moving patterns.
Therefore, the accuracies for the four actors for the dialogues were compared to see
if there were any differences. This can be seen in Figure 4.3. The mean for the third
actor is slightly higher than for the other three actors. The other three actors have
around the same mean accuracy.

The accuracies for the three different positions in the videos can be seen in
Figure 4.4. This was interesting to investigate since the actors in the three positions
are turned towards each other in different amounts. Since the second position always
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Figure 4.3 The accuracies for all the models trained on the dialogues for each
actor, as well as the proportion of the most frequent class (Non-speech) for the dia-
logues.

Figure 4.4 The accuracies for all the models trained on the dialogues for each
video position, as well as the proportion of the most frequent class (Non-speech) for
the dialogues.

has a person performing a dialogue, see Table 3.1, the second position contains more
dialogue data than the other two positions. However, when studying the Figure 4.4,
there is no significant difference in accuracy between the positions.

After studying the result, one can see that some features and some kernels per-
form better than others. The linear and the rbf kernel perform better than the sig-
moid and polynomial kernel functions. For the linear kernel, the variance of the
mouth opening distances (F2) is the best performing mouth opening feature, when
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Figure 4.5 The accuracy for the fifteen faces with highest accuracy for the linear
kernel trained on F2 and F5 and the rbf kernel trained on F3 and F5, as well as
the proportion of the most frequent class (Speech) for the faces with the highest
accuracy.

the data is not classifying all data as the dominant class. Of the area features, the
variance (F5) was also the best feature for the linear kernel function. For the rbf
kernel, the best features were the differences of the mouth opening distances (F3)
and the variance of the area (F5). Therefore, new models were produced that use
the linear kernel trained on both the variance of the mouth opening distances and
variance of the area and new models using the rbf kernel trained on the differences
of mouth opening area and the variances of the area. The model was only ran on
faces that had a higher accuracy than the proportion of the most frequent class in
the video. In total, fifteen faces were chosen. The two new models were then trained
on this small dataset. The result can be seen in Figure 4.5.

For the dialogues used to train the models with the combinations of features,
the speech was slightly more frequent than the non-speech class. Therefore, the
proportion speech is plotted in Figure 4.5. The combination of features for the best
faces has a higher accuracy than the proportion speech in these videos.

For the interested reader, the results for all the models for feature F1-F3 can be
seen in Table A.1 and the results for feature F4-F6 in Table A.2 in Appendix.
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5
Discussion

During the project’s duration, there were many decisions made that affected the
performance of the models. These choices need to be discussed and evaluated in
order to get an understanding of the results we got. The discussion of the result
and the decisions made is divided into speech detection, face detection and video
features.

Speech detection
From the results there was an indication that there could be some issues with the
stimuli and how the models classified the test data because in the monologues the
model classifies almost all the data points as speech. This can be seen in the accu-
racy of the monologues and Speech_Mono in Figure 4.1. The reason why it does
this can be because of the unbalanced data in the ground truth. Unbalanced data
can lead to misleading results and it might be true in our case. In the monologues,
the actors spoke almost the entire audio. This meant that the ground truth was not
equally divided between speech and non-speech. This leads to the models classify-
ing everything as speech in the monologues.

In order to get better results from the monologues some changes could have been
tested. One solution could be to undersample and ignore some speech data to obtain
a proportional relationship between speech and non-speech of 50 %. However, with
such a low amount of non-speech in the monologues the total amount of data used
for training after this procedure would be small and would therefore probably still
lead to poor results. Since each actor performs a monologue between five and eight
times, a possible solution to the problem with the small amount of data could be
to merge the monologue data from each actors to four larger sequences. This could
make the data more balanced without decreasing the amount of data too much.

Another solution is to oversample the non-speech data to gain a better relation
between speech and non-speech. This solution could easily lead to an overfitted
model. However, it could be worth trying generating artificial non-speech data from
the already existing data, to eventually be able to create a better model for the mono-
logues.
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During the process of the project there was a discussion of what the the ground
truth would represent and how detailed the threshold for speech activity should be.
This discussion came down to the size of the window length when calculating the
speech envelope using moving RMS. With a smaller window length, smaller details
could be detected in the speech envelope such as the tracking of letters in the words
spoken by the actors instead of just the tracking of speech of whole words or sen-
tences. A window length of 5000 samples, which corresponds to 104 milliseconds,
was ultimately chosen since a smaller window length was not needed to separate
speech and non-speech. The conclusion was with other words, that the small details
in when a letter is being pronounced, is too detailed for only deciding the speech
activity.

Face Detection
When using the face detection algorithm there were some frames in the video that
detected more than three faces. This was probably often caused by large head move-
ments made by the actors. It was also caused sometimes by the actors turning their
face away to a certain angle from the camera. The face detection algorithm thought
then there were two faces instead of just one on one actor. One solution to this prob-
lem could be to remove frames which found more than three faces from the input.
This also means that these frames also needed to be removed from the audio file.
Another solution to this issue could be to set the missing landmark to the landmarks
of the previous frame. This could be motivated by the small difference in coordi-
nates in such small time windows. However, if more than three faces is detected over
a longer time, the landmarks will be constant for a relative long time which could
affected the stimuli and the possibility to gain a high accuracy. However, studying
the videos this was not the case for most of the time. In most of the videos a small
amount of data were lost due to this phenomena and the first solution were therefore
used. For three of the videos, video 2, 11 and 24, the face detection algorithm does
not work well and there is a great loss of data. A continuation of the project could
therefore be to either remove the frames when no faces are detected from the dataset
but also to change face detection algorithm and see if that improves the result.

Another problem the algorithm had with the videos in the stimuli was that when
the actors turned their face from the the recorder the algorithm had a harder time
finding a face. This only happened in some of the dialogues since the actors in the
dialogues were not looking into the recorder but instead were facing each other.
This issue is probably connected with the stimuli trying to recreate a realistic en-
vironment. Because in a realistic environment a person, who is trying to lip read,
would not always be able to capture all the mouth movements. They will not always
see the entire mouth area and if a person can not see the mouth movements then it
is not fair to expect the algorithm to be able in the same situation to capture the face
and its lip movements. However, this does not explain the poor results that were
got from the monologues since they looked straight at the camera and the algorithm
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Figure 5.1 A frame of an actor with black dots on the frame representing the co-
ordinates of the landmarks created by the algorithm of where it thinks the mouth is
supposed to be.

has almost no problems detecting landmarks on the actors faces. It is therefore rea-
sonable to expect a lower accuracy in more realistic videos where the actors is not
directed towards the camera.

Another issue discovered during the process of reviewing the landmarks was
that the coordinates of the landmarks did not always align to where the actual mouth
was on the frame. As an example see Figure 5.1 where the landmarks for the mouth
was placed on the actors cheek. This meant that the algorithm could recognise that
there was a face but the landmarks did not align with the face. However, further
investigation of this problem, did show that even though the landmarks were placed
on the cheek they still seem to correlate with the movements of the mouth. When
the mouth was closed, the lip landmarks on the cheek also visualised a closed mouth
and when the mouth was open, the landmarks showed an open mouth with approx-
imately the same shape. When the actor is directed partly away from the camera,
the face detection algorithm finds the face and aligns the landmarks in the centre of
the bounding box containing the detected face. The problem with the landmarks on
the cheek could therefore have occurred since the aligning was bad and not because
of error in the lip landmark detection. This is however not certain and the problem
with the landmarks on the cheeks is still a source of error. The features could still
be used because the features use landmarks that are placed correctly in relation to
each other. For example the third feature uses the difference between landmarks
and these distances is still the same even though the landmarks are not placed on
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the mouth.
There were also the issue when collecting landmarks from the face detection al-

gorithm. The actors sometimes covered their face with their hands or looked closely
at the printed image they were given so that they hid their face behind the paper. This
led to data being lost from a number of frames but the number of lost frames were
negligible compared to the total number of frames that was collected so its effect on
the result was very small.

According to Figure 4.3 the accuracy depends on the actor and again in Figure
4.3 actor three has the best accuracy overall and reasons why this is has been dis-
cussed above. Some differences noticed when studying the videos when this actor is
talking compared to the other actors are that she does not move her head nor cover
her face and mouth as much as the other three actors. This probably made it possible
to collect more data and made the data more accurate compared to her speech.

Video features
For the monologue, there was no correlation s between the video landmarks and
the speech activity. This could have been because of the unbalanced data set, which
is more discussed in the discussion subsection Speech detection. It could also be
since the features did not work. A good continuation could therefore be to continue
investigating features. An example could be to use landmarks from the whole face
and to eventually find a correlation between facial features and speech activity.

Several parameter values were chosen to best fit the data. Examples of these
parameters are the number of frames which the difference of mouth opening or area
were calculated between in feature F3 and F6 as well as the length of the sliding
window for the variance in feature F2 and F4. Different values of the parameters of
the video features were firstly evaluated based on performance on the monologue in
the first video. This was done since the actor performing the monologue is directed
straight to the camera and the feature calculations therefore were more accurate.
The features were also evaluated on the other faces in the first video as well as
partly on the third face in the ninth video. The parameters were checked on all faces
on the first video to study the values and their result of the dialogues. The ninth
video at the third position was tested since this video gave better result. For most of
the result, where the models not were better than classifying all the data as the most
frequent class, it would probably not have made any difference. It would however
be interesting to change the parameters to see if it would have made any difference
for the videos with an accuracy better than random.

Actor number two was moving a lot in several of the videos but it is hard to
see any effect of this in Figure 4.3. The difference between his moving and the
other moving of the other actors is that he is sometimes moving more towards and
backwards from the camera. When he is getting closer to the camera, the area of
the mouth as well as the mouth opening distances, will get larger. To decrease this
source of error, the features could have been normalised against for example the
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size of the face.
From the results there were some interesting observations. Feature F3 in Figure

4.2 had the lowest accuracy and a large whiskers compared to the other features over
all the models. Since feature F3 was based on the distances between landmarks,
the lower accuracy could be a result of the actor speaking slower or faster. With
faster speech, the lips move quicker and the frames sampled for four Hertz can
miss situations between these four frames per second. There could be situations
where the speaker has already opened and closed the mouth and it is therefore not
detected by the feature. This motivation can also be applied on Feature 6 but we
do not see the same accuracy or whiskers as Feature 3 in Figure 4.2. It seems more
robust to have features that use the variance like feature F2 and F5 since they do not
risk missing single variations of the mouth opening. The combination of theses two
features can be seen in Figure 4.5 with a linear kernel and it showed a significant
increase compared to proportion of speech.

The combination of a mouth opening feature and an area feature, which was
used to train a SVM with a linear and rbf kernel, returned better result than the
proportion of the most frequent class. They also gave higher result than the linear
kernel trained on the second feature as well as the rbf trained on the feature F3
respective F5. Therefore, the features are complementing each other so that a higher
accuracy is obtained.

47



6
Conclusion

Using the methods from this project, there was no correlation between the facial
features and the speech activity for the monologues. The entire videos of the mono-
logues were in most cases predicted as speech, probably due to the unbalanced data.

For the dialogues, the mean accuracy were a little higher than classifying ev-
erything as the most frequent class but the accuracy for the dialogues varied a lot
between the videos. Overall, the variance of the mouth area (feature F5) was the
feature with the highest mean accuracy for the dialogues. There was no difference
between the position of the actor in the dialogues, however there was a small dif-
ference in mean accuracy for the actors. The third actor gave a better result in the
dialogues. With other words, for some of the videos there were a correlation be-
tween the facial features and the speech activity.

For the videos with a significant correlation between facial features and speech
activity, the mean accuracy for the linear kernel trained with feature F2 and F5 and
the rbf kernel trained with feature F3 and F5 were between 65-70%. This can be
compared to the mean amount of speech in these videos which was almost 51%.
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7
Future work

There is a lot more which could be done in the continuation of the work with the
dataset with the long term goal of improving hearing aids. A more complex facial
landmarks detection algorithm could be used in order to find the face also in videos
where the algorithm used in this project had problems. There are a lot of different
deep learning networks specialised on lip reading purpose. The downside of these
algorithms is often that they are computationally heavy. However, since the method
tried in this master thesis did not return good result, another facial landmarks detec-
tion method should be tried.

Other features could also be tried in order to achieve better result. It could be
beneficial to use landmarks from the whole face and not just around the lips. This
could be important to do since facial expression is a large part of our way of com-
municating.

In this project, SVM was used as a classifier to classify the speech activity. Apart
from SVM, a different classifier could also be tried in the project. Two of the most
common classifiers used in previous research are SVM and a neural network using
CNN. Therefore, it is reasonable to also try a deep learning classifier using CNN to
classify the speech activity.

The different actors have been treated separately in this project. However, since
the dialogues consists of two actors interacting, it could be a good idea to look at
the interaction to better predict the speech activity. For example, it is likely that
when one actor is speaking the other is silent and so on. Likewise, if one of the
actors starts to speak, the other actor probably finished talking. Therefore, it could
be interesting to look into the interactions of the actors to better predict the speech
activity of the dialogues.
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Appendix

A.1 Results of accuracies for features F1-F6

Table A.1 Accuracy for the models trained on the mouth opening features (F1-F3)
with linear, rbf, sigmoid and polynomial kernel for each face. The proportion speech
(sp.) and non-speech (non-sp.) for each person is also given in the table. "Vid." is
short for video and "pos." is the position 1-3 of the speaker.

Linear Rbf Sigmoid Poly
Vid. Pos. Sp. Non-

Sp.
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

1 1 0.85 0.15 0.85 0.85 0.85 0.85 0.85 0.86 0.85 0.85 0.84 0.85 0.85 0.86
1 2 0.40 0.60 0.67 0.67 0.60 0.63 0.63 0.64 0.60 0.60 0.53 0.68 0.68 0.64
1 3 0.39 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.56 0.62 0.62 0.61
2 1 0.40 0.60 0.67 0.67 0.60 0.64 0.64 0.67 0.57 0.57 0.53 0.68 0.68 0.63
2 2 0.33 0.67 0.67 0.67 0.67 0.67 0.67 0.71 0.67 0.67 0.58 0.70 0.70 0.58
2 3 0.84 0.16 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.80 0.84 0.84 0.84
3 1 0.36 0.64 0.67 0.67 0.64 0.64 0.64 0.68 0.63 0.63 0.64 0.68 0.68 0.65
3 2 0.35 0.65 0.65 0.65 0.65 0.67 0.67 0.72 0.65 0.65 0.58 0.66 0.66 0.69
3 3 0.84 0.16 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.81 0.85 0.85 0.84
4 1 0.78 0.22 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.68 0.68 0.79 0.79 0.79
4 2 0.49 0.51 0.60 0.60 0.58 0.58 0.58 0.64 0.51 0.51 0.53 0.57 0.57 0.53
4 3 0.39 0.62 0.65 0.65 0.61 0.63 0.63 0.68 0.61 0.61 0.51 0.65 0.65 0.65
5 1 0.69 0.31 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.57 0.71 0.71 0.69
5 2 0.44 0.56 0.64 0.64 0.58 0.63 0.63 0.71 0.56 0.56 0.54 0.64 0.64 0.58
5 3 0.39 0.61 0.61 0.61 0.61 0.61 0.61 0.68 0.61 0.61 0.51 0.61 0.61 0.65
6 1 0.70 0.30 0.70 0.70 0.70 0.73 0.73 0.70 0.69 0.69 0.58 0.73 0.73 0.71
6 2 0.40 0.60 0.72 0.72 0.60 0.70 0.70 0.72 0.60 0.60 0.59 .072 0.72 0.65
6 3 0.36 0.64 0.64 0.64 0.64 0.64 0.64 0.68 0.64 0.64 0.55 0.64 0.64 0.68
7 1 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.66 0.57 0.57 0.54 0.65 0.65 0.65
7 2 0.38 0.62 0.75 0.75 0.62 0.74 0.74 0.72 0.62 0.62 0.57 0.74 0.75 0.66
7 3 0.67 0.33 0.67 0.67 0.67 0.68 0.68 0.67 0.67 0.67 0.56 0.68 0.68 0.67
8 1 0.32 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.60 0.68 0.68 0.68
8 2 0.46 0.54 0.62 0.62 0.57 0.60 0.60 0.73 0.54 0.54 0.54 0.60 0.60 0.62
8 3 0.69 0.31 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.58 0.69 0.69 0.70
9 1 0.83 0.17 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
9 2 0.36 0.64 0.64 0.64 0.64 0.64 0.64 0.70 0.64 0.64 0.57 0.67 0.67 0.66
9 3 0.59 0.52 0.60 0.60 0.56 0.62 0.62 0.64 0.51 0.51 0.44 0.67 0.62 0.56
10 1 0.81 0.19 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.70 0.83 0.83 0.81
10 2 0.42 0.58 0.58 0.58 0.58 0.58 0.58 0.61 0.58 0.58 0.53 0.58 0.58 0.59
10 3 0.51 0.49 0.58 0.58 0.58 0.63 0.63 0.63 0.54 0.54 0.48 0.63 0.63 0.55
11 1 0.72 0.28 0.72 0.72 0.72 0.74 0.74 0.73 0.69 0.69 0.57 0.75 0.75 0.73
11 2 0.66 0.34 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.52 0.66 0.66 0.66
11 3 0.35 0.65 0.72 0.72 0.65 0.72 0.72 0.71 0.64 0.64 0.55 0.74 0.74 0.69
12 1 0.32 0.68 0.68 0.68 0.68 0.68 0.68 0.69 0.68 0.68 0.68 0.68 0.68 0.69
12 2 0.65 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.50 0.66 0.66 0.65
12 3 0.77 0.23 0.77 0.77 0.77 0.77 0.77 0.78 0.77 0.77 0.71 0.77 0.77 0.77
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Linear Rbf Sigmoid Poly
Vid. Pos. Sp. Non-

Sp.
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

13 1 0.39 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.59 0.58 0.61 0.61 0.61
13 2 0.61 0.39 0.61 0.61 0.61 0.63 0.63 0.61 0.61 0.63 0.54 0.64 0.64 0.61
13 3 0.75 0.25 0.75 0.75 0.75 0.76 0.76 0.77 0.75 0.75 0.63 0.78 0.78 0.77
14 1 0.31 0.69 0.70 0.70 0.69 0.70 0.70 0.70 0.69 0.69 0.67 0.70 0.70 0.70
14 2 0.62 0.28 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.51 0.62 0.62 0.62
14 3 0.75 0.25 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.64 0.75 0.75 0.75
15 1 0.81 0.19 0.81 0.81 0.81 0.81 0.81 0.82 0.81 0.81 0.75 0.81 0.81 0.82
15 2 0.38 0.62 0.63 0.63 0.62 0.61 0.75 0.75 0.62 0.62 0.51 0.67 0.67 0.65
15 3 0.56 0.44 0.62 0.62 0.56 0.63 0.63 0.66 0.56 0.56 0.50 0.64 0.64 0.56
16 1 0.53 0.47 0.64 0.64 0.56 0.65 0.65 0.67 0.53 0.53 0.50 0.65 0.65 0.57
16 2 0.24 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.76 0.76 0.68 0.76 0.76 0.78
16 3 0.81 0.19 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.71 0.71 0.81 0.81 0.81
17 1 0.81 0.19 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.73 0.83 0.83 0.83 0.81
17 2 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.69 0.56 0.56 0.57 0.65 0.65 0.66
17 3 0.54 0.46 0.60 0.60 0.54 0.62 0.62 0.61 0.54 0.54 0.48 0.61 0.61 0.54
18 1 0.67 0.33 0.67 0.67 0.67 0.67 0.67 0.82 0.67 0.67 0.57 0.67 0.67 0.68
18 2 0.38 0.62 0.62 0.62 0.62 0.62 0.62 0.64 0.62 0.62 0.56 0.62 0.62 0.65
18 3 0.75 0.25 0.75 0.75 0.75 0.76 0.76 0.75 0.75 0.75 0.62 0.77 0.77 0.75
19 1 0.63 0.37 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.52 0.63 0.63 0.63
19 2 0.37 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.63 0.63 0.54 0.63 0.63 0.53
19 3 0.73 0.27 0.73 0.73 0.73 0.74 0.74 0.75 0.73 0.73 0.61 0.76 0.76 0.74
20 1 0.56 0.44 0.64 0.64 0.56 0.62 0.62 0.56 0.56 0.56 0.51 0.65 0.65 0.56
20 2 0.42 0.58 0.66 0.66 0.58 0.65 0.65 0.72 0.59 0.59 0.54 0.69 0.69 0.62
20 3 0.77 0.23 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.79 0.79 0.79 0.78
21 1 0.78 0.22 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.76 0.78 0.78 0.78
21 2 0.42 0.58 0.66 0.66 0.58 0.70 0.70 0.70 0.58 0.58 0.55 0.70 0.70 0.63
21 3 0.60 0.40 0.67 0.67 0.60 0.69 0.69 0.68 0.60 0.60 0.52 0.68 0.68 0.60
22 1 0.80 0.20 0.80 0.80 0.80 0.82 0.82 0.82 0.80 0.80 0.75 0.82 0.82 0.80
22 2 0.38 0.62 0.67 0.67 0.62 0.68 0.68 0.70 0.62 0.62 0.57 0.70 0.70 0.64
22 3 0.60 0.40 0.71 0.71 0.60 0.71 0.71 0.70 0.60 0.60 0.52 0.71 0.71 0.60
23 1 0.63 0.37 0.73 0.73 0.63 0.75 0.75 0.64 0.63 0.63 0.53 0.74 0.74 0.64
23 2 0.35 0.65 0.73 0.73 0.65 0.73 0.73 0.75 0.65 0.65 0.60 0.75 0.75 0.68
23 3 0.80 0.20 0.80 0.80 0.80 0.80 0.80 0.82 0.80 0.80 0.72 0.80 0.80 0.82
24 1 0.77 0.23 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.70 0.77 0.77 0.77
24 2 0.54 0.46 0.66 0.66 0.54 0.60 0.60 0.66 0.54 0.54 0.54 0.60 0.60 0.59
24 3 0.48 0.52 0.64 0.64 0.57 0.64 0.64 0.57 0.52 0.52 0.50 0.67 0.67 0.56

Table A.2 Accuracy for the models trained on video features 4-6 (F4-F6) with rbf
kernel for each face. The proportion speech (sp.) and non-speech (non-sp.) for each
person is also given in the table. "Vid." is short for video and "pos." is the position
1-3 of the speaker.

Rbf
Vid. Pos. Sp. Non-

Sp.
F4 F5 F6

1 1 0.85 0.15 0.85 0.85 0.85
1 2 0.40 0.60 0.62 0.63 0.62
2 3 0.39 0.61 0.61 0.61 0.61
2 1 0.40 0.60 0.64 0.61 0.64
2 2 0.33 0.67 0.69 0.62 0.64
2 3 0.84 0.16 0.84 0.85 0.84
3 1 0.36 0.64 0.65 0.70 0.70
3 2 0.35 0.65 0.68 0.70 0.70
3 3 0.84 0.16 0.84 0.84 0.84
4 1 0.78 0.22 0.82 0.78 0.78
4 2 0.49 0.51 0.59 0.68 0.61
4 3 0.39 0.62 0.65 0.70 0.67
5 1 0.69 0.31 0.69 0.75 0.69
5 2 0.44 0.56 0.64 0.72 0.66
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Rbf
Vid. Pos. Sp. Non-

Sp.
F4 F5 F6

5 3 0.39 0.61 0.61 0.64 0.64
6 1 0.70 0.30 0.71 0.70 0.70
6 2 0.40 0.60 0.68 0.75 0.70
6 3 0.36 0.64 0.64 0.67 0.66
7 1 0.35 0.65 0.65 0.65 0.65
7 2 0.38 0.62 0.70 0.69 0.65
7 3 0.67 0.33 0.68 0.67 0.67
8 1 0.32 0.68 0.68 0.68 0.68
8 2 0.46 0.54 0.56 0.71 0.65
8 3 0.69 0.31 0.69 0.70 0.69
9 1 0.83 0.17 0.83 0.83 0.83
9 2 0.36 0.64 0.66 0.69 0.65
9 3 0.59 0.52 0.60 0.63 0.57
10 1 0.81 0.19 0.81 0.82 0.82
10 2 0.42 0.58 0.58 0.60 0.59
10 3 0.51 0.49 0.52 0.63 0.57
11 1 0.72 0.28 0.72 0.72 0.72
11 2 0.66 0.34 0.66 0.66 0.66
11 3 0.35 0.65 0.65 0.65 0.67
12 1 0.32 0.68 0.68 0.68 0.68
12 2 0.65 0.35 0.65 0.65 0.65
12 3 0.77 0.23 0.77 0.77 0.77
13 1 0.39 0.61 0.63 0.62 0.61
13 2 0.61 0.39 0.62 0.61 0.61
13 3 0.75 0.25 0.75 0.75 0.75
14 1 0.31 0.69 0.69 0.69 0.70
14 2 0.62 0.28 0.62 0.66 0.62
14 3 0.75 0.25 0.75 0.75 0.75
15 1 0.81 0.19 0.81 0.81 0.81
15 2 0.38 0.62 0.66 0.70 0.65
15 3 0.56 0.44 0.56 0.70 0.61
16 1 0.53 0.47 0.60 0.70 0.61
16 2 0.24 0.76 0.76 0.76 0.76
16 3 0.81 0.19 0.81 0.81 0.81
17 1 0.81 0.19 0.81 0.81 0.81
17 2 0.35 0.65 0.65 0.65 0.65
17 3 0.54 0.46 0.56 0.67 0.61
18 1 0.67 0.33 0.67 0.67 0.61
18 2 0.38 0.62 0.63 0.63 0.64
18 3 0.75 0.25 0.75 0.75 0.75
19 1 0.63 0.37 0.63 0.67 0.63
19 2 0.37 0.63 0.67 0.63 0.64
19 3 0.73 0.27 0.74 0.75 0.75
20 1 0.56 0.44 0.61 0.64 0.56
20 2 0.42 0.58 0.66 0.76 0.70
20 3 0.77 0.23 0.77 0.77 0.77
21 1 0.78 0.22 0.78 0.78 0.78
21 2 0.42 0.58 0.61 0.70 0.64
21 3 0.60 0.40 0.61 0.71 0.64
22 1 0.80 0.20 0.81 0.80 0.80
22 2 0.38 0.62 0.66 0.73 0.63
22 3 0.60 0.40 0.61 0.73 0.60
23 1 0.63 0.37 0.66 0.70 0.63
23 2 0.35 0.65 0.69 0.78 0.70
23 3 0.80 0.20 0.80 0.80 0.80
24 1 0.77 0.23 0.77 0.77 0.77
24 2 0.54 0.46 0.58 0.59 0.58
24 3 0.48 0.52 0.63 0.65 0.61
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