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Abstract

Heart rate is today measured in various ways, but they all include contact with the
skin. Measuring heart rate contactless would be a more efficient method in healthcare
and would also benefit people suffering from skin problems. It has been proven that
it is possible to use radar to measure heart rate. The aim of this thesis is to investigate
how to extract the heart rate with a 60 GHz pulsed coherent radar sensor.

The heart rate was measured by aiming the radar sensor at the chest. This study
included use of different radar configurations, distances to the participants and tilting
angles of the radar sensor. An electrocardiogram was used as a reference signal during
the collection of these measurements. During the preprocessing phase, two different
approaches of removing the movement caused by respiration were tested: A bandpass
filter and principal component analysis. Furthermore, two different methods for heart
rate estimation were tested: One method based on detecting minima of the signal and
the other method consisted of a recurrent neural network. During the evaluation, the
heart rate provided by the sensor signal was compared to the heart rate of the ECG
signal.

The conclusion of this work was that the best measurement setup was achieved
when measuring with a tilted sensor with a beam aimed at the participant’s chest.
The sensor was placed in front of the patient at a distance of 0.4 meters. To remove
the respiration, applying an adaptive bandpass filter to the unwrapped phase turned
out to be the best solution. The minima detector got the most accurate result when
comparing to the reference signal. The majority of heart rates estimated based on
these steps had a small difference when compared to the reference signal.
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Chapter 1

Introduction

Today, plenty of devices that measure heart rate exist on the market, for example pulse
oximeters or watches. However, the most common device used at hospitals is the
electrocardiogram, ECG, which requires electrodes attached to the patient’s body. It
gives more visual information about the signal which is used to discover heart diseases
more easily. However, it would be beneficial to be able to measure heart rate in a
contactless way as it gives more mobility. This means that the patient would not be
bothered about wires and electrodes being placed on them. This type of method for
measuring heart rate is essential for patients who suffer from skin problems such as
burns or allergies to the sensor pads. Since no device has to be cleaned after usage it will
result in a faster examination, which decreases the work load at the hospitals. There
are also environmental aspects that has to be considered. By using less disposable
material, for example the sensor pads that are used to attach the electrodes to the
patients body, it will favor the environment.

Measuring movement on the body surface of the chest using a radar sensor has
been a useful technique when measuring vital signs in a contactless way. In the article
Contactless Real-TimeHeartbeat Detection via 24GHzContinuous-WaveDoppler Radar
Using Artificial Neural Networks it is stated that it is possible to detect heart beats by
using Continuous-Wave doppler radar together with an artificial neural network [16].

One major difficulty when using radar to measure heart rate is the respiration,
which causes a much larger movement of the body than the heart. In the previous
mentioned article [16] no preprocessing of the data is made before sending it in to the
ANN, however this approach may not be possible using other kinds of radar sensors.
Depending on the type of radar sensor, the signal will have to be preprocessed in
different ways to obtain the information of interest.

1.1 Our Project

This master thesis covers different methods to measure and extract heart rate, also
called pulse, with a 60 GHz pulsed coherent radar sensor from Acconeer AB. By
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Introduction

combining our biological and technical knowledge, our goal is to find an accurate
way of extracting the heart rate. To do this, the following questions are investigated:

• Which configuration and setup should be used when measuring the small chest
motions caused by the heart beats?

• What processing method is the most convenient to use to remove noise from
the signal?

• How can the heart rate be estimated from the processed data?

The different measurement setups will all include the radar beam being aimed at
the upper part of the chest. Also, this project was limited to only examine heart rate
at rest and the test persons had to sit as still as possible during the measurements. This
was done in order to avoid possible noise sources, which scaled down the problem.
However, the movement of the body due to breathing still existed and was a big
challenge during this thesis.

1.2 Related Work

In the article Principal Component Analysis for Heart Rate Measurement using UWB
Radar [11], Principal Component Analysis (PCA) was used to find the vital signs
when measuring with an Ultra-Wideband (UWB) impulse radar. The measurements
were made on a person breathing normally and seated 0.9 meters from the radar
sensor. The UWB radar measured the small movements of the thorax caused by heart
beats. These movements are smaller than the movements caused by respiration, which
means that the respiration will act as noise in the measured signal.

The purpose of using PCA is to increase the signal-to-noise ratio which will re-
sult in that the vital signs, both respiration and heart rate, may be easier extracted.
The input to the PCA was a 2D matrix containing the raw data. The article men-
tions that the first principal component is the one that contains the most important
information about the vital signs and also contains the least amount of noise. The
Chirp Z-Transform, CZT, is used on the first principal component, which gave a
higher frequency resolution of the signal compared to using FFT. Three different
signal processing approaches are compared in the article; Complex Signal Decompo-
sition, Fast Fourier Transform and PCA. The conclusion was that PCA is the most
optimal method to use when extracting vital signs from measurements of an UWB
radar.

In the article mentioned in the introduction, Contactless Real-Time Heartbeat De-
tection via 24 GHz Continuous-Wave Doppler Radar Using Artificial Neural Networks
[16], data was gathered from 21 participants; 14 males and 7 females. The participants
were told to sit on a chair at a 0.75 m distance from the sensor and breath normally in
a relaxed state. The radar beam was focused on the torso area and the beam widths of
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the antenna at -3dB were 25◦ and 44◦. ECG was used as a reference signal and was
converted to a binary on/off signal. The binary reference signal and the radar signal
was decimated to the same sampling rate of 100 Hz. This rate was chosen to ensure
fast computation without a loss of information. Each recording session consisted of
200 seconds of normal breathing. The input to the Artificial Neural Network, ANN,
was however a 200-sample long vector. The first 100 samples were the in-phase signal
and the following 100 samples were the quadrature signal. A subpart of 100 sam-
ples corresponds to 1 second of recording. The network had an hyperbolic tangent
activation function and was trained by using Levenberg-Marquardt optimization and
a MSE loss function. The output neuron used a sigmoid function. The output of
the network was ANN detection probabilities. These were passed through a moving
average filter and then a peak detector was used to get the detected heartbeats.

It was shown that a basic ANN outperformed more complex networks. The sim-
ple ANN, a network with a single hidden layer containing 10 units, did not have
the capacity to overfit and therefore had a more general model. However, this can
be related to that the database for training was limited. Using an ANN was a sig-
nificant improvement in the computational complexity compared to the FFT-based
approaches.

1.3 Outline of the Report

The report is divided into the following parts:

• Chapter 2: Background

The essential theory considering radar sensors, signal processing and ECG are
described.

• Chapter 3: Method

This chapter describes the different setups when collecting the data, preprocess-
ing of both ECG and the sensor data and how to estimate the heart rate.

• Chapter 4: Results

Tables and graphs presents the result of the different measuring setups and
preprocessing techniques. The estimated heart rate based on the sensor signal
is presented together with the heart rate given by the reference signal.

• Chapter 5: Discussion and Conclusion

The presented results are discussed and the optimal measuring technique is
stated. Possible sources of error will be brought up.
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Chapter 2

Background

2.1 Signal Processing Basics

2.1.1 Complex Notation

A complex number can be represented in different forms. The easiest form is the
Cartesian form, also called rectangular form. A complex number c is in this form
expressed as

c = a+ jb, (2.1)

where a is the imaginary part and b the real part. The magnitude M of the complex
number c is defined as

M = |c| =
√

a2 + b2 (2.2)

and describes how far, regardless of the direction, the variable differs from zero. The
phase angle ø can be calculated according to the following equation [15]:

ø = tan−1(
b

a
) radians . (2.3)

The result is only defined between −π
2 and π

2 . To obtain a result in the correct
quadrant, defined between -π and π, arctan2 has to be used [22].

Phase wrapping is an artifact when calculating the phase of the signal. It arises
when the value of the phase is restricted to a fixed period and only one value is used in
the computations [6]. This results in jumps of 2π. To get a continuous phase signal, a
process called phase unwrapping can be done. If the difference between two samples
is larger than π then the current sample and the samples to the right are shifted with
−2π. If the difference is negative, then the samples are shifted with 2π [9].
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2.1.2 Variance and Signal-to-Noise Ratio

The variance, σ2, describes the effect of the signal’s fluctuations from the mean and
can be expressed as

σ2 =
1

N

N∑
n=1

[x(n)− x]2, (2.4)

where x(n) denotes any sequence value and x is the sequence average. The square
root of the variance is called standard deviation.

The signal-to-noise ratio can be used to quantify the quality of a noise-contaminated
signal. This is done by using the following [15]:

SNR =
Signal power
Noise power

. (2.5)

2.1.3 Filters

A filter is characterised by that it passes signal components of some desired frequencies
while it stops signal components of other undesired frequencies [20]. Several different
types of filters can be used to remove unwanted frequencies in the signal, for example
lowpass filters, highpass filters and bandpass filters. A bandpass filter, as the name
implies, passes one frequency band and attenuates frequencies above and below that
band. A highpass filter only passes high frequencies and attenuates low frequencies,
and vice versa for lowpass filters.

The filter order describes the highest exponent in either the numerator or de-
nominator of the z-domain transfer function of a digital filter. Generally it can be
said that the larger filter order, the better the frequency selection performance is, but
the computational workload also increases.

A recursive filter, also called Infinite Impulse Response (IIR) filter, have in many
cases more computational advantages in both speed and storage requirements com-
pared to an equivalent non-recursive filter [7, 27]. One example of a recursive filter
is Bidirectional recursive filtering. In this case both forward and backward filtering is
applied. During forward filtering the filter moves from left to right. The filter moves
in the opposite way during backward filtering. Bidirectional recursive filtering pro-
duces a zero phase, meaning that the impulse response is symmetrical around sample
zero. The only downside with the use of this technique is that the execution time and
program complexity increases with a factor of two [27].

Filters can be based on the mathematical function Bessel. This function produces
the most linear phase response of all IIR filters. Filter design based on Bessel functions
have most constant group delay. If a filter’s phase is not constant, in other words is a
nonlinear-phase filter, then group delay distortion occurs because signals at different
frequencies take different time to pass through the filter [15].
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2.2 The Fourier Transform

The Fourier Transform is a method to transform a function, described as a time se-
ries, from the time domain to the frequency domain. The continuous time Fourier
Transform of x(t) is defined as

X(f) =

∫ ∞

−∞
x(t)e−j2πft dt, (2.6)

where X(f) is the frequency domain signal that consists of a real- and an imaginary
part, where f is the continuous frequency and t corresponds to the time.

When having a discrete time signal, the Fourier Transform is instead called the
Discrete Time Fourier Transform (DTFT) and is defined as

X(f) =
∞∑

n=−∞
x(n)e−j2πfn dt, (2.7)

where n correspond to each data point.
The Discrete Fourier Transform (DFT) is defined as

X̄(k) =
1

N

N−1∑
n=0

x(n)e
−j2πnk

N dt, (2.8)

where N is the amount of samples in the sequence and k is the discrete frequency
[13]. The DFT is called real DFT if only one time domain signal exists. The data
can also be complex instead of real, which is the case in this thesis. A complex DFT’s
time domain signal consists of two signals, one with the real- and one corresponding
to the imaginary-part [27].

The Fast Fourier Transform (FFT) is an algorithm used to compute the DFT
more efficiently than when using other methods. The FFT consists of less complex
additions and multiplications compared to the DFT, which is why the method is
computationally faster [8].

The frequency f is defined as [21]:

f = 1/T, (2.9)

where T is the period of time measured in seconds.

2.3 The Heart Activity

The heart is composed of two halves, where each half consists of an atrium and a
ventricle. Systole and diastole are the two work phases of the heart. During systole
the ventricle muscles start contracting and the blood leaves the ventricles. During
diastole the ventricles get filled up with blood from the atrium [19].
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The inflation and deflation of the lungs causes the chest surface to move from 4
to 12 mm. The frequency range of this motion is between 0.1-0.7 Hz. The heart also
causes chest motions, but they are small compared to the respiratory motion of the
chest. The chest motion caused by the heart ranges from 0.2 to 0.5 mm and is in
the frequency range of 0.75-3 Hz , which corresponds to 45-180 beats per minute.
Further, these motions overlap spectrally which makes it difficult to separate these
signals [11, 25]. The heart rate is approximately 70 beats per minute during rest and
increases when active. In an active condition, the heart rate can be over 100 beats per
minute [19].

2.3.1 The Electrocardiogram

The Electrocardiogram, also called ECG, is a device that measures electrical activity
of the heart by attaching electrodes to the body surface. The amount of electrodes
depends on the purpose of the measurement. When the heart rhythm is measured,
fewer electrodes can be used compared to when information about the waveform
morphology is needed.

The nomenclature used to define the different parts of the ECG is composed of
five letters; P, Q, R, S and T. The QRS complex defines the depolarisation of the
ventricles of the heart [18]. The depolarization triggers muscular contraction. The
ventricles start to contract during the R peak [14]. The QRS complex is shown in
figure 2.1.

The ECG signal can consist of QRS complexes with different morphologies due
to technical issues or physiological aspects. Sometimes the P or T waves have larger
amplitude than the QRS complex, which result in that they sometimes get misinter-
preted as being a part of the QRS complex. Baseline wander is an artifact that usually
has a frequency of 0.5 Hz and is created by different kinds of body movements, for
example respiratory activity. If the body movement is too large, the ECG signal will
be completely distorted [28]. According to article [12], the ECG signal mostly consist
of frequencies between 0.25 Hz to 35 Hz, which means that it is necessary to use a
lowpass filter to remove high frequency noise from the ECG signal.
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Figure 2.1: An ECG signal containing three heart beats where the QRS complex
is defined. The signal is measured by using an Arduino microcontroller together
with a Sparkfun AD8232 chip.

2.4 Radar

2.4.1 Radar Basics

Radar is a system that uses radio-frequency electromagnetic wavelets to detect objects
in a specific region. Radars can have a frequency in the range of 3 MHz up to 300
GHz, however most radars operate in the range of 300 MHz to 35 GHz. A specific
radar system does not operate over the entire range, instead it has a design band that
decides the frequencies. In the early days of radar systems, radar usage was limited.
Today, radar can be used for military and civilian tracking of aircraft and vehicles,
collision avoidance and earth resources monitoring [24]. Many radars have an output
signal that is complex instead of real-valued, also called coherent [23]. Radar systems
can differ in many ways, however what they all have in common is that they consist
of:

• Transmitter: Sends out the EM waves.

• Antenna: The connection between the transmitter/receiver and the medium
(for example the air). There are two common antenna configurations called
bistatic and monostatic. Bistatic refers to having two separate antennas for the
transmitter and the receiver. The monostatic on the other hand means using a
shared antenna for the transmitter and the receiver.

• Receiver: Receives the EM waves that have reflected on the object. The signal
is amplified and converted to an intermediate frequency or a baseband signal.
Finally it is analog-to-digital converted (ADC).

• Signal processor: Analyses and sorts the data and returns a measurement result
[24].
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The time between when the pulse was sent away and when it comes back to the
antenna is measured,∆t, and together with the speed of the radio wave, c, it is possible
to find out the distance to the object, R [5]. The speed of the radio wave corresponds
to the speed of light, c. The formula for the distance to the object is defined as [23]:

R =
c∆t

2
. (2.10)

Continuous and pulsed are two different classes of radar waveforms. Continuous
means that the transmitter is continually sending out a signal without any interrup-
tions. Pulsed instead means that a sequence of pulses is transmitted at a time, and
between each sequence the radar is turned off for a set time. The waves usually have a
time duration, or pulse width, of 0.1 to 10 µs, however sometimes it can be as short
as just a few nanoseconds.

A radar system can be either coherent or noncoherent. A noncoherent radar system
only detects the amplitude of the signal, which is used to find the location of an object.
Coherent is the most common radar system and means that the system detects both
the amplitude and the phase of the signal. It is therefore possible to determine changes
in the phase, which gives information about the motion of the object [24].

2.4.2 Acconeer's Radar Sensor

Acconeer is a company that develops 60 GHz pulsed coherent radar sensors. A Pulsed
Coherent Radar (PCR) sends out pulses with radio wavelets. The radar is bistatic;
one of the antennas transmits the radio wave, which bounces back on the object and
is received by the second antenna. The transmitter shuts down between the pulses,
which results in a lower power consumption. The time between when the signal is
transmitted and when the signal is received is measured to determine the distance to
the object [5].

A transmitted signal with the frequency 60 GHz is in the millimeter range and
is therefore a part of the class mmWave and is considered as a short wavelength. A
benefit with using short wavelengths is that the detection of small movements will
be possible, therefore the accuracy is high. Another advantage is that the size of the
system components can be small [30].

The radar Acconeer produces is called A111. They are currently working on a
prototype which aims to be the next generation sensor and is called A121. The A111
sensor has been used in different use cases. For example detecting if a parking space
is occupied or not and measuring water level in manholes [2].

Configurations
Measurements with the radar sensor can be made using the Acconeer Exploration Tool
that can be found on GitHub [3]. Here it is possible to adjust how the data should be

10



collected. Parameters that can be set here are profile, HWAAS, sweeps per frame, frame
rate, start point, number of points and step length.

• Profile: Controls the duration and shape of the emitted pulses. In this project
only two profiles will be used, profile A and B. Profile B has a longer pulse
than profile A. Generally shorter pulses give higher distance resolution and the
signal-to-noise ratio decreases.

• HWAAS (Hardware Accelerated Average Samples): Sets the amount of radar
pulse averaging in the sensor. When increasing the HWAAS, the radar loop
gain also increases but every sweep will take longer time which will limit the
maximum update rate.

• Sweeps per frame: Every frame consists of a number of sweeps, which is con-
trolled by this parameter. A sweep is a distance measurement range. Each
sweep ranges from a start point and continues for a set sweep length. Each
sweep contains one or several distance sampling points.

• Frame rate:

ff =
1

Tf
, (2.11)

where Tf is the time between two following frames.

• Start point: Sets the starting point for the sweep.

• Number of points: Number of points in each sweep.

• Step length: The distance between the points. If the step length is set to one,
the distance between the points will be 2.5 mm [5, 17].

Service - Sparse IQ
In Acconeer Exploration Tool it is also possible to choose a service, which sets the out-
put type. The selection of service should be based on what the use case is. Acconeer’s
prototype A121 uses a service called sparse IQ, which produces complex data points
which are sparsely sampled. Every sweep gives a vector of complex data points. Since
the data points are complex, it means that the phase and amplitude of the signal can
be calculated [17].

An example of the real part of the data recorded with the service sparse IQ is shown
in figure 2.2 below. The recording contains information of the different settings of
the sensor, time stamps of each sample and the measured data. The blue/yellow area
represents an object being in front of the sensor.
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Figure 2.2: The graph describes on what depth the object is positioned. Each
point in y-direction corresponds to approximately 2.5 mm.

Reflectivity
The radar sensor gets different amount of energy back to its antenna depending on
the object. The factors that determines the energy is the reflectivity of the object (γ),
the radar cross section of the object and the distance to the object.

Reflection appears when the radar signal propagates trough a new media with a
different relative permittivity than the previous media. The relative permittivity is
frequency based. Some materials together with their reflectivity are stated in table
2.1. These values are based on the radar frequency being 60 GHz and air being the
other media [5].
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Table 2.1: Different materials with their reflectivity based on that air is the previ-
ous media and the radar frequency being 60 GHz.

Material γ

Mobile phone glass 0.02
Concrete 0.11
Wood 0.046
Textile 0.029
Metal 1

Human skin 0.22
Water 0.28

Lenses
Acconeer produces three different lenses in order to aim the radar pulses. The two
lenses that will be used in this thesis are theHyperbolic lens (HBL) and the Fresnel Zone
Plate lens (FZP). These will be used together with Acconeer’s lens holder LH112. This
holder has two different positions to put the lens in, referred to as D1 and D2. The
lenses are positioned at 3 mm respective 8.2 mm from the sensor when using D1 and
D2, respectively. The difference between the half power beam width (HPBW) for the
lenses is presented in the table below. The HPBW radiation pattern determines the
angle between the half power (-3 dB) points of the main lobe of the radiation pattern.

Table 2.2: The half power beam width in the E- and H-Plane when using the HBL
and FZP lens.

Lens HPBW E-plane (◦) HPBW H-plane (◦)

HBL 15 20
FZP 25 12
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Figure 2.3: The LH112 lens holder and the two different positions for the lens;
D1 and D2.

(a) The lenses side towards the sensor. (b) The lenses side towards the measuring ob-
ject.

Figure 2.4: The HBL and FZP lenses.
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Figure 2.5: The elevation plane and the horizontal plane for the transmitted sensor
signal.

Figure 2.6: Visualisation of half power beam width.

Using a lens will also improve the range where the object will be visible. In the
tables below the difference in range when not using a lens and using the Fresnel lens
will be presented for two objects. These results are based on using profile A and a
service called envelope. An object counts as visible if SNR is bigger than 10 dB [5].

Table 2.3: Ranges for two different objects when using profile A and the envelope
service without using a lens.

Object 0.5 m 1 m 2 m 5 m

Head Visible Visible Not visible Not visible
Torso Visible Visible Visible Not visible

15



Background

Table 2.4: Ranges for two different objects when using profile A, the envelope
service and the Fresnel lens.

Object 0.5 m 1 m 2 m 5 m

Head Visible Visible Visible Not visible
Torso Visible Visible Visible Visible

2.5 Recurrent Neural Network

Recurrent Neural Network (RNN) is a family of neural networks that can handle
varying lengths of the input and can be useful when modeling sequences in the form
of time series. It also has an ability of memorizing information, which means that
it takes into consideration how the current sample depends on the previous sample
[29]. However, some of the RNNs have a tendency to cause a gradient problem,
which means that the gradients gets very small. This results in that for each new
input, the memory of the earliest samples of the network will be lost. It therefore
means that these samples will no longer influence on the output of the network.

Long Short-Term Memory (LSTM) is a recurrent neural network that contains a
specific amount of memory blocks. Each memory block contains memory cells and
three multiplicative units; input-, output- and forget gates. The multiplicative units
are nonlinear summation units and are in control of the activation of the cell. The
LSTM network is similar to a standard RNN, however the memory blocks replace
the summation units that exists in the hidden layer of the RNN network. The LSTM
removes the gradient problem since the multiplicative gates allow the memory cells
to keep the information during a longer time [10].

2.5.1 Activation Functions

The choice of activation function is important to obtain good performance when
training a neural network. One common activation function is the non-linear func-
tion called Rectified Linear Unit (ReLU). This is an efficient function, since not all the
neurons are activated at the same time. The ReLU activation function is defined as

f(x) = max(0, x). (2.12)

Another common activation function is called sigmoid and is a non-linear func-
tion. Sigmoid is defined as the equation below;

σ(x) =
1

1 + e−x
. (2.13)
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The gate activations vary between 0 and 1, where 0 means that the gate is closed and
1 correspond to that the gate is open. When having a binary classification problem,
sigmoid is the most common activation function to use in the architecture.

Hyperbolic tangent function, also called tanh, is similar to sigmoid but the values
vary between -1 and 1. It is defined as

f(x) = 2sigmoid(2x)− 1. (2.14)

2.6 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical method to reduce the dimen-
sion in the data but still keep the variation in the dataset. The main purpose of using
this method is to extract the most important information that exist in the data. PCA
finds orthogonal variables called principal components that correspond to the variabil-
ity of the data. This makes it possible to represent the data with less variables than the
original data. The first principal component is said to be the one that represents the
main part of the variation in the data and therefore contains the valuable information.

The PCA method is obtained by finding out the eigen-decomposition from either
the correlation or covariance matrix. The eigen-decomposition of a matrix consists
of eigenvectors and eigenvalues and they describe the structure of the matrix. The
eigen-decomposition can be defined as

AU = ΛU, (2.15)

where A is the correlation or covariance matrix, U contains all the eigenvectors and
Λ is the diagonal matrix containing the eigenvalues.

The PCA is performed by first calculating the covariance of the data. The PCA
method thereafter use the Singular Value Decomposition (SVD) method to find the
eigenvectors and eigenvalues of the covariance matrix. By applying the SVD on a rect-
angular matrix, three matrices are composed which constitute the eigen-decomposition.
The SVD is defined as

A = P∆QT , (2.16a)

∆ = Λ
1
2 , (2.16b)

where P corresponds to the eigenvectors of the matrix AAT . Q corresponds to the
eigenvectors of the matrix ATA [1][11].
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Chapter 3

Method

The objective of our work was to develop and evaluate different ways to measure and
extract the heart rate with a 60 GHz pulsed coherent radar sensor. This chapter will
cover the performed steps to accomplish this. The work was divided into the following
parts (see an overview in figure 3.1):

• Equipment and Data Processing (see section 3.1)

• Measurement Trials (see section 3.2)

• Collect Larger Datasets (see section 3.3)

• Heart Rate Estimation (see section 3.4)

• Noise Removal Improvement (see section 3.5.1)

Figure 3.1: An overview of the method.
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3.1 Equipment and Data Processing

In order to investigate the accuracy of measuring heart rate with a radar sensor, a
reference signal corresponding to an electrocardiogram is used. The reference signal
is measured at the same time as the sensor signal in order to evaluate the performance
of the sensor signal. More information about how these measurements are performed
are presented below. In figure 3.2 an overview of the separate preprocessing methods
for the ECG and the sensor signal is shown. A more detailed explanation is described
later on in this section. The preprocessing is done in Jupyter Notebook documents
.ipynb, which are Python source coded files.

Figure 3.2: An overview of the processing of the ECG signal and the sensor signal.

3.1.1 Reference Signal - Electrocardiogram

Measurement Equipment
The electrical activity of the heart is measured using an Arduino microcontroller to-
gether with a Sparkfun AD8232 chip, which results in a real time monitored ECG
signal. The sampling frequency for this signal is 2575 Hz. A 3-electrode system which
consist of a red, blue and black electrode is used. These electrodes are placed accord-
ing to the scheme that can be seen in figure 3.3a. The electrodes are attached to the
participants skin with the gel on the biomedical sensor pads, see figure 3.3b.
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(a) Instruction of where to attach the elec-
trodes on the body.

(b)The electrodes and sensor pads used to measure
ECG.

Figure 3.3: The electrodes of the ECG and their placement.

Preprocessing of ECG Signal
As earlier mentioned, ECG is used to get a measure of the correct heart rate. The ECG
gives information about the electric activity of the heart dependent on time. In order
to get a measure of the heart rate, each R peak of the electric activity, which would
represent occurring heart beats, is counted. To make this possible, some preprocessing
must first be performed.
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Figure 3.4: A filtered ECG signal is plotted in green. The binarized version of it
is plotted in grey. The binarized signal is created by representing each R peak with
a one and setting all the other samples to zero.

The ECG signal is preprocessed with a second order bandpass Bessel filter, which
removes the unwanted frequencies corresponding to noise in the signal. This filter is
selected as it has the most constant group delay and therefore has the least amount of
group delay distortion. As it is a bandpass filter, a lower and higher cutoff frequency
is decided. The starting values in this project are based on the ones presented in the
article [12]. The lower limit is set to 0.25 Hz and the upper limit was given the value
of 35 Hz. To improve the possibility of extracting the R peaks of the signal, different
values of the lower limit is tested.

The next step is to extract the R peaks and thereafter binarize the signal. This is
done by first dividing the ECG data into 20 subparts. The parts are equally divided
if possible. If not, all parts except for the last one would be the same size and the last
part would be a bit shorter than the rest. For each part the SciPy function find_peaks
is applied. Both a minimum requirement of the height of the peaks and a minimum
distance between the peaks are set in the function. The minimum height is adjusted
for each part, however the minimum distance is the same for all the parts. For each
subpart, the minimum height is set to 60% of the 3rd largest amplitude of the subpart.
The minimum distance for the whole signal is decided by the following steps:

1. Calculate the median of the 50 largest amplitudes of the entire signal.

2. Use the function find_peaks with a height threshold of 70% of the median
value.

3. Calculate the differences in time between adjacent peaks by using the NumPy
function diff. The median value of these differences is thereafter computed.

4. The distance is set to 70% of the median value.

The find_peaks function returns the positions of the R peaks. To create a binarized
signal, a new signal of the same size as the original signal is created where all values are
set to zero. Then, for each returned position the value is set to one. However, some
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peaks will be missing when using this method. Acconeer’s internal labeling tool made
it possible to handle this manually.

3.1.2 Radar Sensor

Measurement Equipment
The radar sensor is connected to a Raspberry Pi 3 Model B (2015) (see figure 3.5a),
which is a single-board computer. A connector board called XC112 is attached to the
Raspberry Pi (see figure 3.5b). Acconeer’s radar sensor prototype A121 is put on a
radar sensor module named XR112. The sensor has a sampling rate of 30 Hz.

(a) Raspberry Pi 3 Model B. (b) The XC112 attached to the Raspberry Pi.

Figure 3.5: Sensor equipment.

Preprocessing of Radar Data
As mentioned in the background, the sensor data correspond to complex numbers
and contains information for a range of depths, see figure 2.2. In order to use the
collected data for heart rate estimation, some preprocessing has to be done:

1. The variance is calculated for each depth in the sensor signal. The one with the
highest variance is chosen.

2. In some of the recordings, the time stamps of the sensor data is not entirely
correct, this was solved using the NumPy polyfit function.

3. Since the phase of the signal is wrapped, unwrapping has to be performed. This
is solved by using NumPy’s unwrap function.

4. The discrete Fourier transform is applied to the unwrapped phase of the signal
and the discrete Fourier transform frequencies are determined by using the
functions fft and fftfreq.
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5. The frequency with the maximum amplitude, fM , in the range 0.8 to 1.9 Hz
is determined. These frequencies correspond to 48 to 114 beats per minutes.
The pulse can be both lower and higher values, however these frequencies are
chosen as only the pulse at rest is investigated in this thesis.

6. A second order bandpass Bessel filter is designed by having the phase as input.
The filter’s cutoff frequencies are based on the frequency with the maximum
amplitude fM . However, since many signals contain low frequency noise, the
cutoff frequencies are set to:

(a) The lower cutoff frequency = fM − 0.2.

(b) The higher cutoff frequency = fM + 0.5.

7. A forward backward filter is then applied to the output of the bandpass filter.
This filter is chosen as it gives a zero phase.

3.1.3 Joint Processing

Since the recording of the ECG and the radar sensor does not start and end at the
exact same time, the arrays have to be adjusted in order to be compared. An overview
of the joint processing of the binarized ECG signal (signal A) and the sensor signal
(signal B) can be seen in figure 3.6.

Figure 3.6: An overview of the joint processing.

1. The first step is to make the length of the sensor signal 10 times longer. A
method based on the interp function is used. A parameter called q is used to
regulate if the data is upsampled or downsampled and to which extent. To ob-
tain upsampling a value smaller than 1 is chosen. If the goal is to downsample,
a value larger than 1 should be used. In this case, q is set to 0.1.

The reason for this is to make the time stamps of the ECG and sensor signal
comparable, as the ECG signal is sampled with a higher sampling frequency.

2. Afterwards, the starting and ending points for the ECG and sensor signal are
set. The signal with the latest starting point determine the starting point for
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the new signals and the signal with the earliest ending point determine the end
point for the signals.

The signals are thereafter downsampled in order to reduce the data size. This is
done in the following steps;

1. The binarized ECG signal is first downsampled. To not lose important in-
formation, the signal is downsampled with a factor 5. The downsampling is
done in a way that still retain the same amount of samples that are set to one,
corresponding to heart beats.

2. The length of the sensor signal is adjusted to have the same length as the down-
sampled ECG signal. This is done by setting the parameter q in the interp
function to the quota of the length of the sensor signal and the length of the
ECG signal.

The last processing step is to remove 50 samples in the beginning and the end of
the signals. This is done in order to prevent possible outliers. In total 100 samples are
removed for both the ECG signal and the radar signal.

3.2 Measurement Trials

To investigate the impact of the measurement setup, recordings are performed using
different profiles, lenses, distances to the test persons and with two different angles of
the lens holder. These tests are divided into two trials and performed on 2-4 partic-
ipants. Later in the work, larger data collections will be carried out with the setups
that achieved the best results from these tests.

A Python script was written to be able to record the sensor data through Acconeer
Exploration Tool. The configuration of the measurements are decided in the script.
The script of the ECG recording used in this project was already written by Acconeer.
To start the ECG and radar measurements at the approximately same time, a Bash
script is used.

3.2.1 Trial 1: Profiles and Lenses

First of all, measurements with different profiles and lenses are investigated. As men-
tioned in section 2.4.2, the choice of profile decides the duration and shape of the
pulses. Profile B has a longer pulse than profile A. The two lenses used in this part of
the thesis, FZP and HBL, are described in section 2.4.2.

The measurements are done both when the test persons are holding their breath
and when breathing normally. The movement of the chest due to respiration has
been mentioned as a problem in previous related work. Measuring heart rate without
breathing makes it possible to see how much the respiration motion affects the signal.
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The measurements are made on people sitting on a chair approximately 0.7-0.9 meters
in front of the sensor. The sensor is aimed at the chest of the person, which is regulated
by changing the height of the table which the sensor is attached to. While recording,
it is important that the person remain as still as possible, since both the sensor and the
ECG device are sensitive to movements. In figure 3.7a and 3.7b, the measurement
setup and the angle of the lens holder can be seen.

(a)An overview of the measurement setup, where
the use of the radar sensor and the ECG can be
seen.

(b) The lens holder horizontally attached to the
table.

Figure 3.7: The measurement setup when testing different profiles and lenses.

The chosen values of the configuration parameters can be seen in table 3.1. A
starting point of 100 means that the first measuring point will be at 100×2.5mm =
250mm from the sensor. A step length of 8 correspond to 8×2.5mm = 20mm and
is the distance between each measuring point. Since the number of points is equal to
64, the distance to the last measuring point will be 64× 2.5mm+250mm = 1530
mm. This results in a measuring range of 0.25 to 1.53 m from the radar sensor.
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Table 3.1: The chosen measurement configurations.

Profile A & B
HWAAS 16
Sweeps per frame 1
Frame rate (Hz) 30
Start point 100
Number of points 64
Step length 8

Holding Breath
To reduce as many difficulties as possible, the test persons are holding their breath
while measuring. This makes it possible to investigate how the signal behaves and
how easy it is to actually extract the heart beats of the signal. To explore how the
choice of profile affects the signal, both profile A and B are used while measuring.
First of all, measurements are made on two people. The best profile is later on used
during measurements on four people, of which two women and two men. All the
measurements are approximately 20 seconds long and the FZP lens is used in the D1
position of the LH112 lens holder.

Normal Breathing
In this part of the investigation, measurements are made with the purpose of finding
a good configuration when breathing normally. Profile A and B are used when mea-
suring on two people. FZP and HBL are tested together with each profile and person.
The lenses are put in the D1 position of the lens holder LH112. Measurements are
also done without using a lens. In total 12 measurements are performed. See the
different test combinations in table 3.2.
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Table 3.2: The different tests using profile A or B combined with different lenses.
These tests are performed on two persons.

Test Profile Lens

1 A -
2 B -
3 A FZP
4 B FZP
5 A HBL
6 B HBL

3.2.2 Trial 2: Distance and Angle of Incidence

In one of the articles mentioned in section 1.2 the radar has been positioned straight
in front of the participants chest on a distance of 0.75 and 0.9 meters, which was
approximately the set up used in the beginning of this thesis. However, with the
hope of improving the results, new ways of measuring are now explored. All the new
measurements are performed at a distance of 0.4 meters in front of the person and the
lens holder of the sensor is tilted 18.5 degrees (see figure 3.8a). The angle is calculated
using the values from figure 3.8b. The new measurement setup can be seen in figure
3.9.

(a) The lens holder is tilted with an angle of 18
degrees.

(b) A triangle describing the angle and distances
of the tilted sensor.

Figure 3.8: The tilted lens holder.
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Figure 3.9: The new measurement setup.

The FZP lens is used for these measurements together with profile A. Since the
distance to the test person is shorter, the start point has to be decreased to 70 (see table
3.3). This means that the object must be placed in the range of 0.175 - 1.455 m from
the sensor. However, the rest of the parameters are the same as in section 3.2.2. The
measurements are performed on two people, one measurement when holding breath
and one when breathing normally.

By calculating the unwrapped phase of the measured signals and thereafter apply-
ing the same bandpass filter as in section 3.1.2, it is visually possible to see if a pattern
between the sensor signal and the ECG signal exist. To test this setup further, another
10 recordings of 60 seconds are made on each person. By increasing the amount of
measurements it is possible to see if the received results are a coincidence or not.
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Table 3.3: The chosen measurement configurations.

Profile A
HWAAS 16
Sweeps per frame 1
Frame rate (Hz) 30
Start point 70
Number of points 64
Step length 8

3.2.3 Evaluation of the Trials

To evaluate the measurements, the heart rate given from the sensor signal is compared
with the heart rate of the reference signal. The heart rate of the sensor signal is decided
by manually counting the amount of minima in a plot of the signal phase. This
is compared to the amount of R peaks in the ECG signal. The percentage of the
amount of minima in the sensor signal with respect to the amount of heartbeats in
the reference signal is calculated. The optimal case is that the sensor detects the same
amount of heartbeats as the reference signal, in other words the percentage would
be equal to 100. If the value is above 100 the sensor detects more heart beats than
actually exists and vice versa.

3.3 Collect Larger Datasets

To continue the investigation on which setup that gives the most accurate result, two
larger sets of data are collected during respiration. Both of these datasets are collected
using profile A and the FZP lens in the D1 position. The difference between these
datasets is explained more detailed below.

3.3.1 Dataset 1

The first dataset is measured at a distance of 0.7-0.9 meters from the participant. The
measurements are made on ten people; three women and seven men. Two measure-
ments are performed on each person, where each measurement was approximately
two minutes long. To obtain a normal resting heart rate, the participant is left seated
for at least 30 seconds before the measurement starts. The configurations used for
these measurements are the same as in table 3.1.
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3.3.2 Dataset 2

A second data collection is made at a distance of 0.4 meters and with the sensor tilted
18.5◦, just like in figure 3.8a. The participants are five women and five men. Two
measurements are done on each participant, where each measurement is 1 minute.
Just as before, each participant is breathing normally and is supposed to sit as still as
possible. The configurations that are set for these recordings are the same as presented
in table 3.3.

3.4 Heart Rate Estimation

Two different ways of estimating the heart rate based on the filtered unwrapped phase
of the sensor signal are tested. The first method, minimum detection, is based on the
NumPy function called find_peaks and the second method correspond to a Recurrent
Neural Network. The purpose of both of these methods is to determine the amount
of heart beats in the signal and convert it to a measure of heart rate, which is com-
pared to the heart rate given from the corresponding ECG data. These methods differ
regarding how a segment of samples is classified as being a heart beat or not.

3.4.1 Minimum Detection

This method is based on counting the number of local minima in the filtered un-
wrapped phase signal. The function find_peaks is used together with a minimum
distance requirement. Before using this function, the signal has to be inverted. This
is done to obtain the minima from the function instead of the peaks. The require-
ment of the minimum time distance is based on the highest acceptable heart rate for
this method, a frequency of 1.9 Hz (see step 5 in section 3.1.2). The minimum time
distance, dmin, is decided using equation 2.9 in section 2.2.

dmin =
1

f
=

1

1.9
= 0.526s (3.1)

Based on this calculation, the minimum time distance for the function is set to dmin

= 0.5 s. All of the minima that are found with this method are counted as heart beats.

3.4.2 Recurrent Neural Network

The second method used to estimate the heart rate is a recurrent neural network. This
method is divided into three parts; preprocessing, training and validation and test.

Preprocessing
The whole dataset of 20 measurements of sensor data and the corresponding 20 mea-
surements of the ECG data are used. Before dividing the 20 measurements into the
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training or validation set, the order of the measurements are randomized. This is done
due to the fact that the two measurements that belong to the same person are adjacent.
The new randomized order is the same for the ECG measurements as for the sensor
measurements. Thereafter, the first 80 % of the samples are put into the training set
and the remaining 20 % are put into the validation set.

All of the recordings are divided into windows which each contain 40 samples.
Each window of the ECG measurements is set to either 0 or 1. This is used as the
ground truth for the windows of the sensor measurements. If a window of the ECG
measurements contain a 1, then the ground truth value is set to 1. Therefore a one
would represent that a heart beat is present in the window.

Training and Validation
The architecture of the recurrent neural network that is used can be seen in figure
3.10. The input to the neural network is a matrix of the size 40x1 and the output
value is either a 0 or a 1. The training is divided into 10 epochs with a batch size of 8.
The first dense layer consist of 200 units and the second consist of 1 unit. The model
use the optimizer adam and the loss function binary crossentropy.

Figure 3.10: The RNN architechture.

Test
The measurements that are used for training and validation are also used for testing.
One measurement is tested at a time. Predictions are made on the test data, which are
used to evaluate the model. The amount of ones in the prediction are counted and
used to get a measure of the heart rate.

3.4.3 Evaluation

Both of these methods are tested against the ECG signal in the same way.

1. The first step is to count the number of heart beats of the first 10 seconds of
the signals. To get a measure of the heart rate, the number of heart beats are
multiplied with the factor to get the corresponding heart beats per minute. The
factor in this case is 60

10 = 6.
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2. The second and third evaluation points are after 20 respectively 30 seconds.
The same approach as in step one is applied here.

3. After 30 seconds, a sliding window is used. The window size is 30 seconds
and the step length is 5 seconds. This is used until the end of the signal. For
each window, the number of heart beats are multiplied with a factor 2 to get a
measure of the pulse.

The heart rates are plotted as a function of the time in order to compare the pulse
given from the reference signal with the pulse estimated from the sensor signal.

3.5 Noise Removal Improvement

The respiration creates a large movement on the body, which according to the articles
mentioned in section 1.2 makes it difficult to extract the heart rate. Earlier in this
method a bandpass filter was applied to remove the respiration from the phase signal.
However, to examine whether it is possible to remove the respiration in better way,
the Principal Component Analysis, similar to the one used in article [11], is used on
both dataset 1 and 2 described in section 3.3.

3.5.1 Principal Component Analysis

As mentioned earlier in the report, a recording contain a 2D matrix of complex data
corresponding to frames and depths. To find one of the depths where the object is
located, the variance of each depth is calculated. Matrix X correspond to the depth
with maximal variance and the surrounding 10 depths, which are sent in to the PCA
algorithm.

The data is sent in to the NumPy Linalg function svd (Singular Value Decompo-
sition) which returns two 2D matrices, U and V , and one singular value array, S. The
reconstruction, R, of the signal is then calculated by using the following equation:

R = X(V̄ V ), (3.2)

where V̄ is the complex conjugate of V . To reconstruct the signal using n principal
components, the R matrix is calculated by choosing the first n columns of V̄ and the
first n rows of V .

For each depth, the unwrapped phase is calculated and sent into the PCA algo-
rithm. The Fast Fourier Transform is thereafter calculated for the depth of the output
containing the largest variance. This is done to extract the different frequencies of the
signal.

Reconstructions containing three different number of principal components, n =
1, 5 or 9, are made for each dataset. The purpose is to analyze the FFT of each recon-
struction and in that way find out if it is possible to remove the respiration from the
original data to extract a signal showing the heart rate.
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Chapter 4

Results

4.1 Data Processing

In this section, the result of processing the ECG and the sensor signal is presented.
As will be shown below, processing of the signals was needed in order to estimate and
compare the heart rates of the ECG and the sensor signal.

4.1.1 Electrocardiogram

Filtered ECG Signal
As earlier described, the aim was to calculate the reference heart rate by counting
the number of R peaks in the ECG signal. In figure 4.1a the original ECG signal
that is measured with the Sparkfun chip is shown. The signal contains some noise
which makes it difficult to use a threshold to extract the R peaks of the ECG. A Bessel
bandpass filter with the cutoff frequencies from [12] resulted in the signal in figure
4.1b. However, by increasing the lower limit, the R peaks got even more clear (see
figure 4.1c). Because of this result, the lower limit of 5 Hz was thereafter used.

35



Results

(a) Original ECG signal.

(b) Lower limit of 0.25 Hz. (c) Lower limit of 5 Hz.

Figure 4.1: The effect of bandpass filtering the ECG signal.

Binarization of the ECG Signal

With the aim of extracting the number of R peaks from the ECG signal, binarization
was performed. The result of the binarization when using the function find_peaks
with a height threshold as explained in section Preprocessing of ECG Signal (see 3.1.1)
is shown in figure 4.2a. As can be seen, some peaks were not extracted by using this
method and were therefore manually handled by using Acconeer’s internal tool. The
result of this can be seen in figure 4.2b.

(a) The result of the binarization with the method
explained in section 3.1.1.

(b)The result after manually handling the binariza-
tion with Acconeer’s internal tool.

Figure 4.2: The binarization of the ECG signal. The blue signal is the filtered
ECG signal and the orange lines correspond to the binarization of the signal.
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4.1.2 Radar Sensor

Time Stamps
The graph in figure 4.3a shows the time stamps of each sample for one recording.
However, since the time stamps are supposed to be a linear graph, the polynomial
fitting function corrected the error of each time stamp, see figure 4.3b. Now, each
time stamp is connected to only one sample.

(a) The original time stamps. (b) The time stamps after using the polyno-
mial fitting function.

Figure 4.3: The result of using the polynomial fitting function in NumPy.

Unwrapping

(a) The original phase signal. (b) The unwrapped phase signal.

Figure 4.4: The result of using the NumPy function unwrap.

The phase of the signal is wrapped, which is shown by quick changes in the phase (see
figure 4.4a). In figure 4.4b, the effect of using the NumPy function unwrap to solve
these issues is shown. Unwrapping the phase results in a clear curve corresponding to
the actual movements of the body.
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4.1.3 Joint Processing

The ECG and radar sensor signal were adjusted to only consist of the time stamps
where they both are recorded. Besides this, 50 samples from the beginning and the
end of these signals were removed to prevent possible outliers. The result of this joint
processing is shown below.

(a) The binarized ECG signal and the sensor signal before the joint pro-
cessing.

(b) The result of the joint processing. The signals now start and end at
the same time.

Figure 4.5: The result of the joint processing for the binary ECG signal and the
sensor signal.
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4.2 Measurement Trials

In this section the results of using different lenses, profiles, distances to the sensor and
the angle of the lens holder is presented. This was done both when the participants
held their breath and when breathing normally.

To clarify the effect of holding the breath, the unwrapped phase for two measure-
ments is plotted in figure 4.6. One example of the unwrapped phase of a signal where
a person is holding their breath, is shown in figure 4.6a. As there is no respiratory
activity, only small movements of the body have been recorded, such as the pulse. Fig-
ure 4.6b instead shows when the same person is breathing normally. The respiration
causes larger body movements which result in a phase with larger amplitude.

(a) This measurement is performed when a par-
ticipant is holding the breath. The unwrapped
phase of the signal is plotted.

(b) The unwrapped phase of a measurement per-
formed when a participant is breathing normally.

Figure 4.6: The unwrapped phases when holding the breath and breathing nor-
mally. Both measurements were made with profile A, lens FZP and on a distance
of approximately 0.7 meters.

4.2.1 Trial 1: Profiles and Lenses

In this part the results of using different lenses combined with either profile A or B
are presented. The goal was to investigate how the choice of profile and lens affect the
resulting signal.

Holding Breath
Firstly, measurements where the participants held their breath were performed. For
these tests, the FZP lens was used. The first test used both profile A and B when
measuring on two people. The unwrapped and filtered phase of each measurement
can be seen in figure 4.7. In figure 4.7a, 4.7b and 4.7d there seems to be an agreement
in periodicity between the sensor and the ECG signal. Each minimum of the sensor
signal occurs at approximately the same time as the R peak of the ECG. However, the
sensor curve in figure 4.7c is not in sync with the ECG signal.
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(a) Measurement 1: Person 1, where profile A was
used.

(b) Measurement 2: Person 1 when using profile
B.

(c) Measurement 3: Person 2, where profile A was
used.

(d) Measurement 4: Person 2 when using profile
B.

Figure 4.7: Measurement using profile A and B where the test persons hold their
breath.

The number of minima were calculated in each of the measurements above and
compared to the amount of heart beats in the ECG. The quota of these values is pre-
sented in the diagram in figure 4.8, where the optimal value is 100%. Measurement 1
and 3 used profile A and measurement 2 and 4 used profile B. When using profile B,
the profile giving the longer pulse, good results were achieved. This is also the case for
measurement 1, however not for measurement 3. Based on this, slightly better results
were achieved when using profile B. Although, it is worth noting that both profiles
gave good results.
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Figure 4.8: The quota between the number of minima of the sensor signal and the
amount of heart beats of the ECG signal.

Due to this result, another test with more participants was made where profile B
was used. The graphs below show the results when four people, two women and two
men, hold their breath during the measurements.

(a) Person 1. (b) Person 2.

(c) Person 3. (d) Person 4.

Figure 4.9: Results of using profile B on four different persons holding their
breath.

It is visually possible to see an agreement in the patterns between the peaks of the
ECG and the minima of the sensor signal for three out of four persons. For these
persons it is easily seen that the heart rate given from the sensor signal is the same or
slightly differs from the reference signal. However, the pattern for the last person is
not as clear.
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Normal Breathing
Measurements were also performed when the participants were breathing normally.
Here, both the profile and lens were varied. The measurement configurations that
were tested are presented in section 3.2.1. These measurements were made on two
people and the results for each person is presented in figure 4.10.

(a) The results for person 1. (b) The results for person 2.

Figure 4.10: Quotas between the number of minima in the sensor signal and the
number of R peaks in the ECG signal.

As can be seen in figure 4.10, test 3 gives the best result for both persons. This
means that profile A together with the FZP lens gives the best result based on these
tests. It can also be seen that for almost all measurements where the FZP lens is
used (measurement 1, 3 and 5) the results are better than when using the HBL lens
(measurement 2, 4 and 6).

4.2.2 Trial 2: Distance and Angle of Incidence

The results of measuring with a decreased distance, 0.4 meters from the participant,
with a tilted lens holder are presented below. For all the measurements, the FZP lens
and profile A were used. In figure 4.11 and 4.12, measurements on two people can
be seen. Each figure contains one measurement when holding the breath and one
when breathing normally. Here it is possible to see that the results are good, since the
number of minima in the sensor signal compared to the number of peaks in the ECG
signal is almost the same in all of the measurements.
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(a) Holding the breath. (b) Breathing normally.

Figure 4.11: Results for person 1.

(a) Holding the breath. (b) Breathing normally.

Figure 4.12: Results for person 2.

To look deeper into this measurement technique, more measurements were per-
formed on the same two persons. The results when doing 10 measurements on each
person when breathing normally, is presented in 4.13.

(a) The results for person 1. (b) The results for person 2.

Figure 4.13: Quotas between the number of minima in the sensor signal and the
number of R peaks in the ECG signal when using the new measurement method.

Each measurement was one minute long and was done with the configurations
presented in table 3.3. As can be seen, all the measurements have gotten a quota of
almost 100 %.
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4.3 Estimation Methods

4.3.1 Minimum Detection

As mentioned, this heart rate estimation method is based on counting each minimum
of the sensor signal as a heart beat. Examples of applying this method are shown in
the plots in figure 4.14.

It is possible to see that the minima do not always appear at the same time as a R
peak in the ECG, but in many cases it is close. In figure 4.14a it may be seen that a
small minimum at approximately 42 seconds appears and therefore will be counted as
a heart beat. However, there is no heart beat there according to the ECG. This is also
the case for the minimum just before 50 seconds in figure 4.14b. On the contrary,
there is a small minimum in figure 4.14c at approximately 31 seconds which has a
corresponding R peak. Also, in figure 4.14b it is possible to see that there is a clear
minimum at the end of the signal, but no corresponding R peak.
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(a)

(b)

(c)

Figure 4.14: Three plots each containing a subpart of a measurement from dataset
2. The minima of the sensor signal found by the minimum detector are plotted in
blue and the R peaks from the ECG signal are plotted in green.
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Dataset 1
The heart rate was calculated for each sensor recording in dataset 1, in other words the
measurements made at a distance of 0.7-0.9 meters with no tilting of the lens holder.
The result of two of the recordings can be seen in figure 4.15 and 4.17, where the
graph to the left shows the heart rate of the ECG and the sensor signal, and the graph
to the right shows the FFT of the sensor signal. In figure 4.15a it can be seen that
the heart rate measured by the sensor signal is similar to the ECG. According to the
ECG signal, the heart rate is approximately 70 beats per minute. The sensor signal
sets the heart rate to a slightly higher value than the ECG signal. By looking at the
frequency plot in figure 4.15b, a peak can be found at the frequency of 1.2 Hz which
corresponds to a heart rate of approximately 72 bpm.

(a) The heart rates estimated by both the ECG and
the sensor signal.

(b) The corresponding FFT of
the sensor signal.

Figure 4.15: Heart rate results from dataset 1: Measurement 11.

To get a better understanding of the results given in 4.15, figure 4.16 shows the
first 30 seconds of the sensor signal together with the R peaks of the ECG and minima
found by this method.
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Figure 4.16: The first 30 seconds of the ECG and sensor signal presented in 4.15.

Not all recordings had as good result as the one in figure 4.15. In figure 4.17a,
the measured heart rate using the sensor signal is not close to the one measured by
the ECG. Also, it is not possible to visually see the heart rate from the FFT plot of
the sensor signal (see figure 4.17b).

(a) The heart rates estimated by using both the
ECG and the sensor signal.

(b) The corresponding FFT of
the sensor signal.

Figure 4.17: Heart rate results from dataset 1: Measurement 12.

The first part of the sensor signal and the ECG signal can be seen in figure 4.18.
When comparing the amount of minima of the sensor signal and the amount of heart
beats in the reference ECG signal, it is clear that they are not equal nor in sync.
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Figure 4.18: The first 30 seconds of the ECG and sensor signal presented in 4.17.

An overview of the result for all measurements of dataset 1 can be seen in figure
4.19. For each measurement the median error is presented. The reference heart rate
is plotted together with the corresponding heart rate given by the sensor signal. The
difference between the reference heart rate and the sensor signal is plotted as a black
line to visualize the size of the error. As can be seen, most measurements have small
errors.

Figure 4.19: The median error between the ECG and sensor signal for each mea-
surement. The size of the error is plotted as a vertical black line.

Dataset 2
The results for dataset 2, the measurements made with a closer distance and a tilted
lens holder, is presented below.
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When calculating the heart rate of the recordings in dataset 2, some results similar
to the reference signal were achieved (see one example in figure 4.20). As can be seen
to the left in this figure, the sensor signal gives the same heart rate estimation as the
reference signal. In the FFT plot to the right, a peak can be seen at the frequency of
1.22 Hz, which corresponds to a heart rate of approximately 73 bpm. The first part of
the signal is shown in figure 4.21. According to the graph, the minima of the sensor
signal matches well with the actual heart beats of the ECG. This resulted in a correct
heart rate.

(a) The estimated heart rates. (b) The corresponding FFT of the sensor signal.

Figure 4.20: Heart rate results from dataset 2: Measurement 1.

Figure 4.21: The first 30 seconds of the ECG and sensor signal presented in 4.20.
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However, there were still a few recordings that did not result in a correct heart
rate according to the ECG. By looking at the FFT of figure 4.22, no clear peak can be
found in the range of 0.8 to 2 Hz, which is the range where the heart rate should be
shown. This resulted in an incorrect heart rate, which can be seen in the graph to the
left. The first part of the corresponding sensor signal and ECG signal can be seen in
figure 4.23. When visually analyzing the graph, it is clear that the sensor signal does
not match the ECG signal. This may be an explanation why the heart rate estimation
becomes incorrect.

(a) The estimated heart rates. (b) The corresponding FFT of the sensor signal.

Figure 4.22: Heart rate results from dataset 2: Measurement 14.

Figure 4.23: The first 30 seconds of the ECG and sensor signal presented in 4.22.

In figure 4.24 the overview of the median errors for dataset 2 are presented. For
the majority of measurements, the error is quite small. Measurement 9, 14 and 20
have some bigger errors. The amount of measurements that have a median error equal
to zero are more for dataset 2 than for dataset 1. However the maximum median error
of dataset 2 is bigger than for dataset 1.
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Figure 4.24: The heart rates for the median error of each measurements. The error
is plotted as a vertical black line.

4.3.2 Recurrent Neural Network

The result of using the recurrent neural network to predict the heart rate is presented
below. Just as before, dataset 1 and 2 are both used. The same type of test is performed
to compare the heart rate between the ECG and sensor signal.

Dataset 1
In figure 4.25 the predicted heart rate of two different measurements can be seen.
These are the same measurement examples as are shown in figure 4.15 and 4.17 in
section 4.3.1. The measurement in figure 4.25a got a slightly worse result with this
method. However, the measurement in figure 4.25b gets a better result now as the
sensor curve is more similar to the ECG curve.
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(a) Measurement 11. (b) Measurement 12.

Figure 4.25: Heart rate plots for two measurements from dataset 1. Both the heart
rate for the ECG and sensor signal are plotted.

The heart rate median error of each measurement in dataset 1 when using the
recurrent neural network can be seen in figure 4.26. In general, the median heart rate
error was larger when using RNN than when using the minimum detector on dataset
1.

Figure 4.26: The heart rates of the median error between the ECG and sensor
signal for dataset 1 when using RNN.

Dataset 2

In figure 4.27 the predicted heart rates of the same measurements presented in section
4.3.1 are plotted. The result for the measurement in figure 4.27a is good, although
the result was better when using the minimum detector. On the other hand, the result
for the measurement in figure 4.27b is better with this method.
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(a) Measurement 1. (b) Measurement 14.

Figure 4.27: Heart rate plots for two measurements from dataset 2, where the
result for the reference signal and sensor signal is presented.

In figure 4.28 the median heart rate error for each measurement in dataset 2 is
presented. The results using the RNN for predicting the heart rate was better for
dataset 2 than for dataset 1 (see figure 4.26) when visually analyzing and comparing
the graphs. However, the error for most measurements were larger when using the
RNN compared to the minimum detector method. There are though a few measure-
ments, for example measurement 14, that acquires a smaller error when using the
RNN method.

Figure 4.28: The heart rates for the median error for each measurement of dataset
2 with the RNN method.

4.4 Principal Component Analysis

The results of using PCA on one measurement from dataset 1 and one from dataset
2 is presented in this section. Both measurements belong to the same person. As
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mentioned in section 2.3, the frequencies of the heart should be in the range of 0.75-
3 Hz.

4.4.1 Dataset 1

Figure 4.29 shows two graphs of the Fast Fourier Transform of the unwrapped phase of
a measurement in dataset 1. The graph to the right shows the FFT when only plotting
the frequencies of 0.75 to 1.5 Hz, which includes the range where the frequency
corresponding to the heart rate at rest may exist. As can be seen in the two plots,
neither the respiration rate nor the heart rate is easy to extract.

(a) FFT plot of the frequency span 0 to 1.75 Hz. (b) Zoomed in FFT plot so that only the frequen-
cies from 0.75 to 1.5 Hz are shown.

Figure 4.29: FFT plots of the unwrapped phase.

As mentioned in the method in section 3.5.1, the reconstruction of the signal was
made using 1, 5 and 9 principal components. The FFT of each reconstruction can
be seen in figure 4.30. When reconstructing with only one principal component, the
majority of the frequencies gets a low amplitude. Perhaps some of the frequencies
corresponding to the respiration can be seen in the plot, but the amplitudes are very
small. However, when increasing the amount of principal components, more of the
frequencies that probably correspond to the respiration and heart rate exist in the
signal.
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(a) 1 principal component. (b) 5 principal components.

(c) 9 principal components.

Figure 4.30: FFT plots of reconstructing with different amount of principal com-
ponents.

When removing the principal components shown in figure 4.30 from the original
signal, it results in the FFT plots shown in figure 4.31. The aim of this method was to
remove the respiratory activity, but still retain the heart rate. By looking at the graphs,
it seems like no clear peak in the range of the heart rate can be extracted.
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(a) Removing the first principal component. (b) Removing the 5 principal components.

(c) Removing the 9 principal components.

Figure 4.31: FFT plots of the signal remained after removing different numbers
of principal components from the original signal.

4.4.2 Dataset 2

In figure 4.32 two graphs are shown. The graph to the left shows the FFT of an
unwrapped phase signal from dataset 2. To be able to visually see the possible heart
rate more clearly, the graph to the right only shows the frequencies of 0.75-1.5 Hz of
the signal. As can be seen in the graphs, both the respiration and the heart rate seems
to be shown by just looking at the FFT plot.
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(a) FFT plot for frequencies of 0 to 1.75 Hz. (b) Zoomed in FFT plot so that only the frequen-
cies of 0.75 to 1.5 Hz are shown.

Figure 4.32: FFT plots of the unwrapped phase.

Just as previously, reconstructions using 1, 5 and 9 principal components were
made and the results can be seen in figure 4.33. Having only one principal component
seems to have removed most of the frequencies from the signal. By increasing the
amount of principal components, the amplitudes of the frequencies corresponding to
the respiration and the heart seems to increase.
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(a) 1 principal component. (b) 5 principal components.

(c) 9 principal components.

Figure 4.33: FFT plots of reconstructing with different amount of principal com-
ponents.

When removing the principal components shown in figure 4.33 from the orig-
inal signal, it results in the FFT plots shown in figure 4.34. By removing only one
component from the original signal, the majority of the frequencies corresponding
to the respiration and the heart will remain. However, when increasing the amount
of principal components, the amplitude of each frequency gets lower and neither the
respiration nor the heart rate can be extracted easily.

58



(a) Removing the first principal component. (b) Removing 5 principal components.

(c) Removing 9 principal components.

Figure 4.34: FFT plots of the signal remained after removing different numbers
of principal components from the original signal.
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Chapter 5

Discussion and Conclusion

In this section the results when using different configurations and methods are dis-
cussed. The findings of the study is analyzed and possible improvements are presented.
Lastly, a conclusion is drawn and some future work is suggested.

5.1 Heart Rate Estimation Methods

As presented, the heart rates given by the sensor signal has been estimated by two
different methods: The minimum detector and the RNN. When using the minimum
detector, the heart rates are more similar to the reference values for both dataset 1 and
2. The neural network does not find an adequate way of detecting heart beats and is
therefore outperformed by a simpler method. Possibly, the datasets are too small for
the model which leads to overfitting.

As stated, this project has been scaled down to only handling heart rates at rest.
Therefore, some limitations concerning acceptable heart rates have been made for
both estimation methods. The minimum detector only allows two adjacent minima
to appear with a time difference of at least 0.5 seconds, which induces a constraint for
the highest possible heart rate. In the RNN, the window size is 40 samples, which
corresponds to approximately 0.4 seconds. Therefore, if two heart beats exist within
one window, it will be counted as only one heart beat. This means that heart rates up
to 2.5 Hz, namely 150 bpm, can be detected using this method. The RNN-method
is thus less limited regarding the maximal heart rate that can be measured. However,
none of the methods can detect irregular heart beats such as extra occurring heart
beats.

In summary, the minimum detector performs better than the RNN for these
datasets, but has a larger limitation regarding the maximal heart rate that can be mea-
sured. However, the limitation is not an issue as the aim of this project is to measure
heart rate at rest.
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5.2 Evaluation Method

The evaluation method used to compare the heart rate given from the ECG and the
sensor signal, see detailed explanation in section 3.4.3, is based on the R peaks and
the estimated heart beats appearing at approximately the same time. However, as
presented in the result, this is not always the case. A possible consequence is that
some heart beats are lost at the ends of the signals, which may result in a wrong heart
rate. This problem arises when the end of a segment is set between a sensor minimum
and its’ corresponding R peak. It will result in one more sensor minimum used to
estimate the heart rate than there are R peaks. An example of this can be seen in
figure 4.14b.

The majority of the evaluation points uses a time window of 30 seconds to estimate
the heart rate, apart from the two first evaluation points where the time window is
10 respectively 20 seconds. A missing peak will therefore yield a larger error for the
first two evaluation points. If the time window is 10 seconds, the heart rate will differ
with 6 beats per minute. On the other hand, the heart rate difference will only be 2
beats per minute for a time window of 30 seconds.

Therefore, it can be said that the evaluation method can be a bit misleading when
this type of situations occurs. However, it still gives an indication of how well the
methods perform.

5.3 Comparison of Datasets

The datasets differed both regarding the distance to the participants and the tilting of
the lens holder when performing the measurements. Yet, the result for both datasets
are in general good when using the minimum detector. There are though some excep-
tions for both dataset 1 and 2. When analyzing the frequency plots for these measure-
ments, no distinct peak could be distinguished in the relevant frequency span (0.8-1.9
Hz). Therefore, it seems like these measurements did not obtain the information of
interest, which resulted in a wrong estimation of the heart rate.

As mentioned, two measurements were performed on each participant. Remark-
ably, there were no occurrences when both measurements got bad results. That is,
either none of the measurements got bad results or only one of them. Therefore, it
can not be said that the errors are distinctly dependent on the participant. Possibly,
the errors could be caused by a change of position between the measurements.

For the measurements with clear heart rate peaks in the frequency plot, it seems
like the result for dataset 2 is better than for dataset 1. As seen in figure 4.19 and
4.24 there are more measurements with the same heart rate as the ECG-signal. After
further analysis it was possible to see that the minima of the sensor signals of dataset 2
had a better agreement with the R peak occurrences than the sensor signals of dataset
1, which may indicate that dataset 2 contains less noise.

Except for the change of measurement setup between the datasets, there are dif-
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ferences which unintentionally may have affected the result. During the recording
of dataset 1, we were not as careful when it came to removing reflective objects, for
example jewelries and ECG cables, as we were when recording dataset 2. This may
have caused reflections that resulted in signals containing more noise than actually
necessary. Also, the measurements for each dataset were not made on the completely
same persons. One theory is that the difference in the build of the body might affect
the signal, and therefore the chest wall movement may differ between people. This
means that it might be more or less difficult to measure depending on the person,
which may have contributed to the differences in results between the datasets.

To conclude the comparison, heart rate extracting can be done successfully for
almost all measurements in both datasets. However, dataset 2 seems to contain less
noise when analyzing the agreement of the minima and R peaks occurrences.

5.4 Methods for Noise Removal

During the whole report, the movement caused by respiration has been a mentioned
obstacle. Two different methods were tested with the purpose of removing the respi-
ration from the signal: Bandpass filtering and Principal Component Analysis.

The boundaries of the bandpass filter are decided by the FFT of the signal. This
makes the filter more adaptive to the specific signal. However, some of the measure-
ments have quite bad FFT representation of the signal, which may result in that the
wrong limits for the filter is used. Also, since we have been focusing on measuring
heart rate during rest, it is not possible to use our method to measure heart rates lower
than 48 bpm or higher than 114 bpm. This is a large limitation of our method and
therefore it might not be the best way of deciding the boundaries of the bandpass
filter.

However, when the purpose is to measure the resting pulse and the bandpass
filter is applied to data with a large signal-to-noise ratio, it results in a good signal
that can easily be compared to the reference signal. This sets high requirements on
the recordings of the data, unfortunately it may not always be possible to meet those
requirements.

The second approach to remove the respiration from the signal was to use Principal
Component Analysis. In the article [11] described in section 1.2, PCA is used to
extract the heart rate using the first principal component. Because of that we did not
manage to reconstruct our data in a correct way when following all the steps in the
article, we chose to try out another but similar method of using PCA. Our goal with
using PCA was to find a better way of getting a larger signal-to-noise ratio and to
separate the vital signs information into different components. Using this method it
would thereafter hopefully be possible to remove the respiration from the signal to
end up with a signal only containing the heart beat movements.

It can be seen in the results in section 4.4, that the frequency corresponding to the
respiration movement and the frequency of the movement on the skin created by the
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heart beats, existed in the same principal component. This result was similar to the
articles. However, in the article the vital sign frequencies existed in the first principal
component. In our case when reconstructing with only one principal component,
the vital sign frequencies almost did not exist. This may depend on the differences
in for example not sending in the covariance of the matrix to the data or the way of
reconstructing the signal.

According to the results in section 4.4, the removal of the respiration from the
original signal did not give the result we hoped for. Removing the reconstruction
using one principal component from the original signal resulted in a signal still con-
taining most of the respiration. By increasing the amount of principal components
to remove from the original signal instead ended up with that almost the entire signal
was removed.

The purpose of using this method was to come across with a way of avoiding the
problems occurring using the bandpass filter. Unfortunately we made the conclusion
that it was not possible to remove the respiration using PCA when using our data.
The proposed bandpass filter was therefore the best preprocessing tool to extract the
heart rate from the data.

5.5 Ethics

A vital aspect of this project has been the ethical part. This has been of the utmost
importance for us when collecting the data. First of all, we informed the participants
what the study would include and asked all of them for permission to collect the
data. During the process, a document has been used to keep track of the name of the
participant for each recording, as this could be relevant for the results. However, we
decided that the presented data would be anonymous and therefore used numbers to
distinguish the participants. Consequently, no sensitive information was published
as the participants names were never used.

5.6 Conclusion

This work has covered different methods to measure heart rate with Acconeer’s radar
sensor. Mainly two things have been varied: The measurement setup and the evalua-
tion method. The difference in result was not big regarding the measurement setup,
but the best result was achieved for dataset 2, that is when having a tilted sensor
with a distance of 0.4 meters to the participant. Concerning the evaluation method a
larger difference in performance was shown. The evaluation method based on RNN
performed worse than the minimum detector. The RNN method would possibly
perform better if the datasets were larger.

This study confirmed that a major difficulty when measuring heart rate is the
movement of the body caused by the respiration. The best solution we found for
removing the respiration from the signal was an adaptive bandpass filter. PCA did
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not work to improve the signal-to-noise ratio nor to separate the heart rate from the
respiration.

In conclusion, using the minimum detector on a bandpassed filtered phase signal
seems to be the best method to extract and estimate the heart rate. Dataset 2, that
is the measurements recorded with a tilted lens holder on a distance of 0.4 meters,
achieved the best result.

5.7 Future work

There are several parts that could be improved and further examined. The next step for
us would be to investigate the reason for the variation in success level when using the
minimum detector. If we could find a way of always having a strong signal-to-noise
ratio for the heart rate, some further work could be done to improve the detector.

The detector is limited to only handling heart rates at rest. In order to explore the
possibility of detecting higher heart rates, we would like to test to widen the range
of relevant frequencies, especially to include higher frequencies. Another downside
of the minimum detector is that it can not handle drastic changes in heart rate, due
to that the data is filtered with a narrow pass band. This has not been a problem
in this work as the recorded measurements are maximum two minutes long. If the
measurements are recorded during a longer time, one solution is to update the filter
boundaries after a certain amount of time.

Other solutions regarding how the depth of the recorded data is chosen, can also
be further investigated. It is not entirely certain that the depth with the largest variance
is the one containing the movement on the skin caused by the heart beats. It would
therefore be good to examine other solutions, for example look at all the depths instead
of only one.
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