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Abstract

In today’s world of ever increasing competitiveness, solutions that include automa-
tion and smart production have become a vital part to consider in overall business
strategy, specifically for the industry sector. Whether an automated production
process will be beneficial or not is dictated by how sub-processes such as inter-
production transportation operates. The importance of these processes has been
displayed in the late increase of production efficiency when moving from tradi-
tional transportation units, such as conveyor belts, to more sophisticated systems,
such as transportation robots. However, these new sophisticated systems comes
with increased complexity and new challenges when implementing important be-
haviours such as speed, control and safety.

This thesis is linked to the challenge of developing a safe and time efficient feature
for handling a sudden failure or halt in one of these systems, namely the Beckhoff
XPlanar levitating planar motion system. Hence, the goal of the thesis was to de-
velop a pathfinding algorithm to easily line up the agents in the XPlanar system
from any given position to a pre-specified startup track.

The end-result was a multi-agent pathfinding algorithm that utilizes Conflict-Based
Search and A* to move each agent from their start position to a desired end-position
whilst avoiding collisions. The algorithm is specifically designed towards the XPla-
nar system, integrated through ADS communication making it executable from the
Beckhoff PC-based control software TwinCAT3.
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1
Introduction

1.1 Background

Automation has been a hot topic in the production industry ever since the intro-
duction of assembly lines and human-machine interaction in production. One of
the most important sub-processes in such lines is the ability to quickly and cost
efficiently transport sub-assemblies and components from one production unit to
the next. Furthermore, these kinds of production systems also reduce unnecessary
and potentially wearing tasks within the production line which may be detrimental
for workers at the plant. [Neumann et al., 2002]

Production-line transportation has long been done by integrating more traditional
machinery, such as one-dimensional conveyor belts, mono-rail carts and transfer
machines. However, during later years these old-fashioned systems have been con-
tinuously replaced and re-modelled to new more sophisticated technologies, such
as multi-agent transporter robots [Kranzberg and Hannan, 2021]. The Beckhoff
XPlanar system is one of those multi-agent systems that intends to introduce a
new kind of technology, with five additional dimensions instead of conventional
one-dimensional systems. This could revolutionize the industry by introducing
new opportunities such as improved collaboration between production units and
transporters to increase production-precision, and allow for higher freedom in se-
quencing different production processes. In other words, this kind of system has
the capability of merging parts of the production-line such as the transportation and
assembly into one continuous system.

Introducing a system as complex as this ensues a myriad of problems. A par-
ticularly interesting one is rebooting the system from an unexpected intermission.
In a case such as this, the system must be able to return to a predetermined state in
order to assure that the quality of the carried product won’t be compromised.
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1.2 XPlanar overview

1.2 XPlanar overview

The Beckhoff XPlanar system is the successor to their XTS system, which is a lin-
ear product transport system. Hence, the XPlanar system also intends to solve the
problem of component and sub-assembly transportation between production equip-
ment and machinery, but with added degrees of freedom, and thereby an increased
amount of transportational options. With 6 degrees of freedom, magnetically driven
movers and customizable tile geometry, the XPlanar system provides benefits such
as; increased plant output, simultaneous production of different products and for-
mats, precise positioning during production, low cleaning and maintenance costs.
An illustration of the XPlanar movers and tiles can be seen in Figure 1.1. [Beckhoff,
2018a]

Figure 1.1 illustrates the XPlanar tiles, movers and the possible actions for the
movers. [Beckhoff, 2018a]

1.3 Problem Formulation

An important aspect of all production systems, including the XPlanar system, is
handling uncontrolled system failures or interrupts. Since the XPlanar system in-
corporates position lag monitoring, the system will shut down if any uncontrolled
or unpredicted mover positioning occurs. In order to reduce consecutive production-
delays because of these shutdowns, the system needs to handle an automated reset
and alignment of the movers regardless of time and location. This project aims to
solve this problem by developing a pathfinding algorithm and integrating the solu-
tion into the already existing XPlanar system.
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Chapter 1. Introduction

1.4 Goal of the master’s thesis

The goal of this master’s thesis is to develop a pathfinding algorithm for a multi-
agent robot system, which can be implemented into the existing XPlanar system.
In order to execute a well-functioning automated reset in regard to safety and time-
efficiency, the overall end-goal can be divided into milestone goals as follows:

• Choose and implement an algorithm that allows movers spread all over the
system to line up, one by one, on a specified path while avoiding collision

• Optimize the previous solution (one by one) with respect to time

• Optionally, extend the solution to line up all movers simultaneously

1.5 Delimitations

In order to make this project feasible and provide a high-quality solution, the fol-
lowing limitations were set:

• The project will be performed during a timespan of 20 weeks

• The project will be performed by a team of two students

• Safety restrictions will result in physical tests only being feasible towards the
end of the project

• Limited access to testing equipment will result in the development of a self
produced digital testing simulation

• The solution has to accept specified inputs and generate the requested output,
in order to be integratable with the already existing software

• The solution has to be translated from an object-oriented programming lan-
guage into TwinCAT to be integratable with the already existing software

1.6 Individual contributions

Both team members have been involved in all parts of the project. However, Henry
Nilsson was mainly responsible for development of the TwinCAT code whilst Jo-
han Ternerot had extra responsibilities within the academic parts of the project and
research for algorithms. Furthermore, the workload was very evenly divided across
the two team members.
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2
Theory

2.1 TwinCAT3 technology

TwinCAT, short for The Windows Control and Automation Technology, is a soft-
ware developed by Beckhoff Automation to transform any PC-based system into a
real-time control for PLC; NC; CNC and robotics runtime systems. In terms of op-
erating systems, TwinCAT is compatible with Windows CE, Windows 7, Windows
10 and TwinCAT/BSD.

TwinCAT integrates itself into Visual Studio® and can therefore support C/C++
and the IEC 61131-3 languages for programming real time applications. However,
data connection via open standards such as OPC and ADS also allows for other lan-
guages (Java, Python, etc) to be used for some applications via scripts. Furthermore,
linking to MATLAB®/Simulink® is also available. [Beckhoff, 2018b]

2.2 Multi-agent pathfinding

2.2.1 Definition
A classical multi-agent pathfinding (MAPF) problem with a given number of agents
k, is defined by a tuple of three elements:

• An undirected graph of vertices and edges, Graph = (V, E)

• A vector mapping agents to a start vertex, Start = [start1,start2....startk]
where startk is an arbitrary starting vertex.

• A vector mapping agents to a goal vertex, Goals = [goal1,goal2...goalk]
where goalk is an arbitrary goal vertex

These elements are then complemented with the attribute time discretization such
that each agent is related to a specific state s for the vertex v it occupies at time step
t. Actions are then defined as a function which transitions agent k from the current
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Chapter 2. Theory

state si to the next state si+1: a(s) = snext . Possible actions thereby include moving
the agent from the current occupied vertex to another adjacent vertex or waiting
in the same vertex for another time step. A sequence of actions πi = (a1, ...,an)
then becomes a single-agent plan for agent i if it fulfills the requirement of moving
the agent from the starting vertex to the goal vertex. The number of actions in the
sequence are used to define the cost for the plan c(πi). A solution to the classical
MAPF problem is thereby defined as a set of single-agent plans πi, .....πk, one for
each agent present in the graph. Furthermore, the solution will only be valid if none
of the single agent plans conflict with each other. [Andreychuk et al., 2022]

2.2.2 Conflicts for classical MAPF
In theory, there are multiple types of conflicts that can occur in a classical MAPF
problem. However, there is no guarantee that these will occur in any given MAPF
problem since they heavily depend on behavioural aspects of the used algorithm as
well as attributes for both the agents and the configuration space.

In the conflict definitions below we denote a single-agent plan as π , vertices as
v and time steps as t.

• Vertex Conflict
A vertex conflict is defined as two agents trying to occupy the same vertex at
the same time step. Hence, a vertex conflict will occur if
πi(t) = π j(t).

• Following Conflict
A following conflict is defined as one agent trying to occupy a vertex oc-
cupied by another agent at the previous time step. Hence, a following con-
flict will occur if πi(t + 1) = π j(t). This conflict is heavily dependant on the
agents’ physical geometry and how they move. This is further expanded upon
in Chapter 3.3.3.

• Cycle Conflict
A cycle conflict is defined as a set of agents {πi,π j,πk, ...,πl} trying to occupy
nodes in a cyclic fashion such that a deadlock occurs. Hence, a cycle conflict
will occur if πi(t +1) = π j(t), π j(t +1) = πk(t), πk(t +1) = πl(t) and
πl(t +1) = πi(t).

• Edge Conflict
An edge conflict is defined as two agents trying to traverse the same edge at
the same time step. Hence, an edge conflict will occur if πi(t +1) = π j(t) and
π j(t +1) = πi(t).

If a conflict occurs, a constraint of the same type (vertex-, following-, cycle- or edge-
constraint) is generated. The different types of conflicts are illustrated in Figure 2.1.
[Stern et al., 2019]

14



2.3 Pathfinding algorithms

Figure 2.1 illustrates the different situations where each conflict might occur ((1)
vertex, (2) following, (3) cycle and (4) edge). The circles are nodes, the small squares
are agents, and the arrows represent how they are planning to move. Adapted from
[Stern et al., 2019]

2.2.3 Centralized vs Decentralized Algorithm
A centralized method for multi-agent pathfinding is based on implementing one
central planner that computes all agent paths simultaneously. In theory, a centralized
method will be optimal. However, in practice the method has some issues with com-
plexity and scalability for many units. On the other hand, a decentralized method
is based on individual planners for each agent. This is often done by each planner
computing an individual path ignoring all other agents, and then handling conflicts
as they come, which leads to the requirement of communication between the agents.
This method significantly lowers computations which yields a faster but potentially
more sub-optimal and less complete result. [Lejeune and Sarkar, 2021]

2.3 Pathfinding algorithms

2.3.1 Low-level algorithms
Dijkstra
The Dijkstra algorithm is one of the earliest well known pathfinding algorithms and
intends to solve the problem of finding the shortest path from one source vertex to
any other specified vertex in a graph [Misa, 2010; Dijkstra, 1959]. The algorithm is
an iterative so-called greedy algorithm that checks and updates the value of adjacent
vertices for the current vertex visited based on the weights or distances between
them. This is done in an iterative way to find the absolute shortest path from the
starting vertex to the specified goal-vertex. [Chen, 2003]

15



Chapter 2. Theory

A better understanding of how to implement the Dijkstra algorithm can be ac-
quired by studying the pseudo-code of Algorithm 1.

Algorithm 1 Dijkstra algorithm [Wikipedia, 2022a]
1: Input← Graph,source
2: for each vertex v in Graph.vertices do
3: dist[v]← ∞

4: prev[v]← UNDEFINED
5: Q← v
6: dist[source]← 0
7: while Q is not empty do
8: u← vertex in Q with min dist[u]
9: Remove u from Q

10: for each neighbour v of u still in Q do
11: alt← dist[u] + +Graph.edges(u,v)
12: if alt < dist[v] then
13: dist[v]← alt
14: prev[v]← u
15: return dist[ ], prev[ ]

To understand the algorithm and its implementation even better, Figure 2.2 is
used to illustrate a graph in exemplifying purpose.

Figure 2.2 illustrates an example of a graph with nodes and their weighted transi-
tions. Adapted from [Javaid, 2013].

In order to use the algorithm accurately, the first step will be to implement a
matrix or two lists in order to store both the path from the source vertex to every

16



2.3 Pathfinding algorithms

other vertex as well as the paths’ cost. The unvisited vertices will be used to iterate
in the while in the pseudo code of Algorithm 1. Which vertex to visit next is repre-
sented by the vertex v in the pseudo code where u is the current vertex being visited
[Javaid, 2013].

In Figure 2.2 we can see this exact process being executed. The process starts
at the source vertex A, where A is first set to visited in the visited vertices column.
After that, each immediate neighbour to A is located and set in the Next column.
Hence we get the matrix seen in Figure 2.3 [Javaid, 2013].

Figure 2.3 illustrates the visited/next matrix for vertex A. Adapted from [Javaid,
2013].

The next vertex to visit will then be B since this has the lowest cost. Therefore, B
will be set to visited and travel distances from A to the neighbours of B via B are
calculated. Since the cost of the path A→B→D is 4, the value of A→D is updated.
Thereafter C is set as the next node to visit from A, since it has the same value as
node D and is a direct neighbour of vertex A. This process is done in an iterative
manner and the shortest distance to each vertex from A is derived as seen in Figure
2.4. [Javaid, 2013]

Figure 2.4 illustrates the visited/next matrix for vertex A. Adapted from [Javaid,
2013].

A*
The A* algorithm can be seen as a further improvement on the Dijkstra algorithm
by implementing heuristic searching in combination with the search for the shortest
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Chapter 2. Theory

path. The algorithm is defined as a best-first algorithm, where each vertex in the
graph of the configuration space is evaluated by the value: f (v) = g(v)+h(v). h(v)
is the heuristic distance, in our case the Manhattan distance of the current vertex
to the goal state, i.e. the sum of their absolute difference in Cartesian coordinates
[Wikipedia, 2022f]. g(v) is the cost of the path from the initial state to the goal state
for the sequence of vertices that makes up the current path being evaluated, ending
in the current evaluated vertex. Each adjacent vertex of the current vertex is then
evaluated based on f (v). The vertex with the lowest value of f (v) is then chosen as
the next to visit [Duchoň et al., 2014].

The pseudo-code for the A* algorithm is illustrated in Algorithm 2. The open
list consists of the vertices that have been visited but not expanded by evaluation
of adjacent vertices, whereas the closed list consists of the vertices that have been
both visited and expanded.

Algorithm 2 A* algorithm [Wikipedia, 2022b]
1: Input: startNode,goalNode,h
2: openSet← startNode
3: cameFrom = an empty map
4: gScore = map with default value of ∞

5: gScore[startNode] = 0
6: f Score = map with default value of ∞

7: f Score[startNode] = h(startNode)
8:
9: while openSet is not empty do

10: currentNode = the node with lowest f-Score value in openSet
11: if currentNode == goalNode then
12: return reconstruct path(currentNode,cameFrom)

13: openSet.remove(currentNode)
14: for each neighbour of currentNode do
15: d = distance between currentNode and neighbour
16: tentative gScore = gScore[currentNode]+d
17: if tentative gScore < gScore[neighbour] then
18: cameFrom[neighbour] = currentNode
19: gScore[neighbour] = tentative gScore
20: f Score[neighbour] = tentative gScore+h(neighbour)
21: if neighbour not in openSet then
22: openSet← neighbour
23:

return failure
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2.3 Pathfinding algorithms

One great advantage with the A* algorithm is its capability of being modified. Some
common modifications are adding weights to reduce computation time, changing
the heuristic for different behaviours that you might want depending on the config-
uration space, and modifying the combinations used in the evaluation of total cost
to perform bi-directional search [Patel, 2022]. Some of these modifications have
eventually led to new algorithms being sprung from A*. One example is the D* al-
gorithm, which re-uses previous A* computations and re-plans parts of the overall
path to account for newly discovered changes in the configuration space. In other
words, the D* is an incremental search algorithm [Wikipedia, 2022c].

Breadth/Depth-first search
Breadth- and depth-first search are both primitive low-level search algorithms. They
work similarly, in that they both search through trees iteratively. In the case of ap-
plying this to pathfinding, the layout or maze needs to be structured in such a way
that it behaves like a tree. The easiest, and most widely used way of doing this is by
dividing the maze into vertices, and then setting each vertex’s children to the vertex
next to it, namely its “neighbours”. The tree is then structured by putting either the
starting vertex, or the goal vertex, at the top, and iteratively searching through the
tree until it finds the other part. [Rahim et al., 2018]

The way breadth- and depth-first search differ is how they search through this
tree. Breadth-first begins at the start vertex, and then explores all of its neighbours,
after that it explores the neighbours’ neighbours. This process is performed until
it finds the goal vertex. Depth-first search on the other hand explores its way to
the bottom of the tree, finding the node furthest from the starting vertex. It then
moves on to the neighbours of the ”deepest” vertex’s parent. After it has searched
through all those neighbours and their children, the next vertex being evaluated is
the parent of the deepest vertex’s parent. This continues until the sought vertex is
found. [Wikipedia, 2022d] [Wikipedia, 2022e]

2.3.2 High-level algorithms
Increasing Cost Tree Search
Increasing Cost Tree Search (ICTS) is an algorithm using two levels of search,
one high-level and one low-level, and is based on the idea that a complete solution
is a collection of single-agent solutions. Therefore, the high-level algorithm uses
high-level nodes that are denoted as combinations of single agent costs where every
high-level node becomes a vector of individual costs. These high-level nodes are
then stored in the increasing cost tree where the root represents the optimal solution
in regards to total cost, with each leaf representing the next most optimal solution.
To check whether a high-level node contains a valid solution in regard to limitations
such as collision avoidance, the algorithm performs a low-level goal test on that
high-level node. This goal test is performed by the low-level algorithm searching
through combinations of single-agent paths for the specific costs each agent has
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Chapter 2. Theory

in the high-level node. This is done until a complete solution is found or until all
combinations have been tried and no solution has been found. [Sharon et al., 2013]

Figure 2.5 illustrates an ICT for three movers [Sharon et al., 2013].

The pseudo-code for the ICTS algorithm can be seen in Algorithm 3, where MDD
denotes the multi-value decision graph where the elements are the different solu-
tions with the same cost for a single agent.

Algorithm 3 ICTS algorithm [Sharon et al., 2013]
1: Input: (k,n)
2: Build the root of the ICT
3: for each ICT node in breadth-first manner do
4: for each agent ai do
5: Build the corresponding MDDi

6: for each pair of agents (ai,a j) do
7: Perform pairwise search
8: if pairwise search failed then
9: break

10:

11: search the k-agent MDD
12: if goal node was found then
13: return solution
14: return

Conflict-Based Search
Conflict-Based Search (CBS) is a two level algorithm where the high-level search
is performed in a constraint tree with so-called high-level nodes. These high-level
nodes represent a collection of all single-agent solutions and the constraints each of
these agents have. The constraints are created based on conflicts occurring when sin-
gle agents are making illegal moves in regards to collision avoidance. A constraint
for an agent can be represented as a tuple (ai,v, t) where agent ai is prohibited from
occupying vertex v at time step t. Likewise a conflict is a tuple (ai,a j,v, t) where ai
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2.4 Benchmarks

and a j are the agents trying to occupy the same vertex v at the same time step t. A
complete solution has only been found if the high-level node contains an individual
solution for each agent and does not contain any constraints, meaning all agents
have found a path without interfering with other agents’ paths. Since conflict-based
search is a best-first search algorithm, it will automatically return the first viable
complete solution it finds. [Sharon et al., 2015]

Algorithm 4 CBS algorithm [Sharon et al., 2015]
1: Input: MAPF instance
2: Root.constraints = empty map
3: Root.solution = find individual path using the low-level algorithm
4: Root.cost = SIC(Root.solution)
5: openSet← R
6:
7: while openSet is not empty do
8: P = the node with lowest solution-cost from openSet
9: Validate the paths in P until a conflict occurs

10: if P has no conflict then
11: return P.solution
12: C = first conflict (ai,a j,v, t) in P
13: for each agent ai in C do
14: A = new high-level node
15: A.constraints← P.constraints+(ai,s, t)
16: A.solution← P.solution
17: Update A.solution by invoking low-level algorithm for ai
18: A.cost = SIC(A.solution)
19: openSet← A
20: return

2.4 Benchmarks

In order to provide a reference point and a better understanding of performance for
algorithms possibly suited for the XPlanar-problem, data from previous tests and
research are presented as benchmarks.
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Chapter 2. Theory

Figure 2.6 illustrates length of path, runtime and explored nodes for different low-
level algorithms [Permana et al., 2018].

Figure 2.7 illustrates runtime in ms for each algorithm with an 8x8 grid and k
number of agents [Sharon et al., 2012].

The terms used in Figure 2.7 that are not further examined in this report are: (1)
Operator Decomposition (OD) and (2) Increasing Cost Tree Search + 3E, or ICTS3,
which calculates three agents’ path simultaneously using ICTS [Sharon et al., 2012].

Figure 2.8 illustrates the success rate in % for 4 different multi-agent pathfinding
algorithms with the different set-ups CS, OI and TT [Kaduri et al., 2021]
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2.4 Benchmarks

The set of algorithms tested in Figure 2.8 are; (1) Enhanced Partial Expansion A*
[Goldenberg et al., 2014]; (2) Increasing Cost Tree Search [Sharon et al., 2013];
(3) Lazy-CBS [Gange et al., 2019]; and (4) CBS-H [Kaduri et al., 2021]. These
tests include 190,000 solved MAPF problems that were run on different setups and
different grids from a publicly available grid-based MAPF benchmark containing:
game grids, city maps, mazes, rooms, open grids with randomly placed obstacles
and warehouse-grids [Stern et al., 2019]. The different success rate for each set-up
can be seen under each abbreviation in Figure 2.8. The description of each abbre-
viation is; Cross Sides (CS): all agents start on one side and traverse to the other
side; Outside In (OI): agents start near the outer edges of the grid and are assigned
targets near the center of the grid; Tight to Tight (TT): agents start together and are
assigned targets that are as close as possible elsewhere on the grid. [Kaduri et al.,
2021]
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3
Methodology

The overlaying tasks and different phases for the project can be seen in the gantt
chart in Appendix A. The methodology used for each phase or task will be described
in further detail in upcoming sections.

3.1 Breaking down the XPlanar into a MAPF problem

A Multi-Agent Pathfinding problem consists of a multitude of different parts that
change from system to system. In order to find the optimal algorithm for each
system they need to be analyzed, and broken down into parameters relevant to
pathfinding theory. These parameters can be configuration space layout, agent ge-
ometry, how the agents move and the proportion between the amount of agents and
area the configuration space covers.

While the XPlanar can be modified in a lot of ways, most systems follow a certain
pattern. Their tile layout is often open spaced, there are few to none corridors,
and it does not consist of rooms. Most systems consist of large areas with simple
geometries. The XPlanar movers are square shaped, and move consistently with
the same speed. TwinCAT is also able to send instructions to different movers with
such consistency that they move synchronized. These factors affect the conflicts.
The XPlanar is also able to handle a high amount of movers within a smaller area.

3.2 Understanding the problem and developing the test
package

3.2.1 Researching algorithms
In order to get a better understanding of the task and usual problems that need to
be solved for a multi-agent pathfinding system, a broad explorative research was
performed. This was succeeded by a more narrow research to find potentially use-
ful algorithms in regards to both low-level single-agent pathfinding and high-level
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multi-agent pathfinding.

Once a solid foundation of information had been acquired, the next step was to
gradually boil down the total amount of potential candidate-algorithms. This was
done by weighing and comparing the low- and high-level algorithms based on a set
of criteria;

1. Degree of solvability refers to whether the algorithm generates a complete
solution or not

2. Optimality refers to the total cost of mover steps for the generated solution

3. Time complexity refers to the average and worst-case execution time of the
algorithm

4. Conceptual complexity refers to how easy or difficult it is to conceptualize
the algorithm

5. Complexity of code refers to how easy it is to implement the algorithm

6. Applicability for the XPlanar system refers to how well the algorithm is
suited for the open-space XPlanar system

Furthermore, benchmarks from Section 2.4 were used to supplement these criteria,
and expand the decision basis with an overview of the performance for the algo-
rithms in different configuration spaces. In order to make it clear which algorithm
to choose for both the low- and high-level search, a concept scoring was performed.

3.2.2 Development of simulation package
To get a visual perception of how the developed code would behave and test whether
it would meet specified requirements, a simulation package was developed. The
simulation package was based on the python module pygame along with classes
for visual representation of tiles and movers. To test a maximum of 40 movers and
a geometry with tile-layout 100x100 tiles, the usage of factoring was implemented
in a class with constants. Furthermore, the constants class included pre-specified
mover characteristics to make the simulation as realistic as possible.

The interface for the simulation can be seen in Figure 3.1.
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Figure 3.1 illustrates the GUI for the simulation package. Blue colouring indicates
the tiles, red squares indicate the movers, grid elements represent nodes in the con-
figuration space and the red line indicates the specified startup-path for movers to
align on.

3.2.3 Development of unit tests

In order to assure that behavioural aspects such as collision avoidance were im-
plemented correctly, the first set of unit-tests seen in Figures 3.2, 3.3, 3.4, 3.5 and
3.6 were developed to test collision-avoidance for the different types of constraints;
edge-, vertex- and transition-constraint. The transition-constraint which was devel-
oped specifically for this system is described in detail in Section 3.2.3. Furthermore,
these tests also include testing a basic two-mover case and a function for arranging
the movers in a specific sequence on the startup path.
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Figure 3.2 illustrates the the case 5x5 tile-layout and 2 movers (testing basic func-
tionality)

Figure 3.3 illustrates the case H-formed tile-layout with 2 movers (testing vertex-
& transition-constraints)
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Figure 3.4 illustrates the case zig-zag tile-layout with 2 movers (testing transition-
constraints)

Figure 3.5 illustrates the case 3x5 tile-layout with 3 movers (testing arranging the
movers in a specific sequence on starting path 0→ 0x1, 1→ 0x2, 2→ 0x0)
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Figure 3.6 1x2 tile-layout with 2 movers and arranged goals 0→ 0x0 & 1→ 0x1
(testing edge constraints)

The second stage of developing the unit-tests included an automated randomized
test file outputting whether each run was a success or a fail, time it took the algo-
rithm to execute, and environmental parameters such as number of tiles, number of
movers, mean distance of every movers starting position to its goal position, etc.
In order to make this test randomized, four of the algorithm inputs were randomly
changed before each new run. These inputs were tile-geometry, mover size, num-
ber of movers and mover positions. The startup path was kept constant and was
made up by three lines defined by the distance in millimeters between one x- and
y-coordinate to another in the coordinate system seen in Figure 3.7. Line 1 was
defined by the distance between (360,120) and (360, 4200), line 2 by the distance
between (360, 4200) and (1200, 4200) line 3 by the distance between (1200) and
(1200).

The map was randomized with the help of a random map generator from a 48x24
base layout capped at 100 tiles and excluding groups of tile-isles. The 48x24 base
was used in order to make every test-case drawable in the GUI from the simulation
package, since visualizing failed cases was extremely helpful in terms of test-driven
development and fixing bugs. The mover size was picked based on a randomly
generated integer between 1 and 4, each integer representing a different mover size.
The number of movers were chosen based on the total number of goal positions
present on the startup path, with a minimum of 8 movers. If the configuration space
would not support at least 8 movers, a new tile-geometry was generated until the
configuration space would support 8 movers. Since the startup path was kept con-
stant, the maximum possible amount of movers would vary based on the mover size
due to the node size being dependent on the mover size. The maximum number of
movers for the different mover sizes were; 67 for mover size 113, 47 for mover size
127, 47 for mover size 155, and 32 for mover size 245.
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It is worth noting that the number of movers was set to be dependent on the
number of goal positions available, since the setup becomes completely unsolvable
if the number of movers are greater than the number of goal positions. An example
of how one of these tests would look can be seen in Figure 3.7.

Figure 3.7 illustrates a randomized test with 14 movers

This new and enhanced test was used to detect flaws in functionality, optimize
the algorithm, retrieve statistical data and drive continuous improvement of the
developed code even further. Retrieving relevant statistics was done by testing a
wide range of scattered values for certain parameters to get an overview of the
most optimal ranges. Consecutively, the ranges were narrowed down and the tests
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were done with a more continuous set of values within the ranges instead of being
scattered.

It is worth mentioning that unit-tests were developed at the early-to-mid stages
of the project since the simulation provided sufficient testing to drive development
in the first stages of the project.

3.3 Developing the algorithm

3.3.1 Development of the A* algorithm
The objective for developing the A* algorithm was one so called mover finding a
path from its input start position to an input goal position. This was done by setting
up a code skeleton with the basic necessary methods, and input parameters based
on the requested specifications from Beckhoff. The development proceeded with
iteratively writing and testing the functionality of the written code with the help of
our simulation from the test package.

3.3.2 Development of the CBS algorithm
Once a single-agent pathfinding algorithm had been developed, the next natural
step was to start developing the multi-agent pathfinding algorithm to enable simul-
taneous movement for multiple movers and possibly all. This was done by utilizing
a low-level algorithm to calculate solutions for each mover individually, then iterate
through all solutions pairwise to see if any sort of conflict would occur between two
movers. However, two movers’ paths crossing is not enough to qualify as a conflict,
as the movers must cross each other during the same time-period for a conflict to
occur. This introduces a new dimension to the low-level algorithm A*, which is
time.

The biggest change for the A* algorithm was going from nodes, which consists of
only location, to state, which consists of location and time. This basically teaches
movers to wait for another mover to pass, instead of colliding with it. The different
kinds of conflicts that can occur are defined in Section 2.2.2.

3.3.3 Refining and customizing the algorithms
Once the first draft for the full CBS had been developed, the next step was to refine
and customize the two algorithms in order to provide the desired functionality with
consideration to the specified requirements and characteristics of the XPlanar sys-
tem. The ideas and concepts for these customizations and refinements were derived
from the set of criteria mentioned in Chapter 3.1.1 in order to achieve an overall
higher-quality solution.
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The first customization was the introduction of the third constraint named transition-
constraint. Because of the squared geometry of the movers, the transition-constraint
class was developed to assure collision avoidance for situations with one agent
moving into a node in one direction and another agent moving out of that node in
the perpendicular direction. These situations are illustrated in Figure 3.8.

Figure 3.8 illustrates the different situations where a transition constraint can occur
between agent A and agent B.

By denoting a single agent plan as π , direction d and time steps as t we can derive
the definition of a situation where transition constraints occur as πi(t + 1) = π j(t)
if πi(t) is diagonal to π j(t +1).

The second customization was changing data structures, mainly for reducing the
time of inserting, getting and checking for elements in the open and closed sets
in both the CBS and A* algorithm. In the first draft of the solution, the open and
closed sets were implemented with lists since they proved to be easy-to-use and
versatile since they can be used as both stacks and queues. However, lists proved to
be slow when handling a large number of nodes. Hence, these lists were exchanged
to Python sets after comparing the time complexity of different actions for different
data structures in Python, seen in Table 3.1. To clarify, the first iteration of lists
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used sorted insert in order to pop the first element from the list when retrieving the
lowest cost node.

Table 3.1 illustrates the average time-complexity for different operations for the
data structures lists and sets in python [Python software foundation, 2022].

Time-complexity for operations
Operation Lists Sets
Length O(1) O(1)
Containment O(N) O(1)
Sorted insert/Add O(Nlog(N)) O(1)
Pop O(1) O(1)
Remove O(N) O(1)
Get minimum O(1) O(N)

The third customization, introducing a weight into the A* algorithm would also
prove to decrease time complexity along with increased solvability and optimality.
This customization heavily relied on the introduction of time as a third dimension
apart from x and y coordinates. The introduction of time meant that each agent
was able to see their current location as a viable state in the next time-step. Hence,
providing agents with the option to perform a wait-action. However, since the A*
algorithm chooses the next state for an agent with regard to lowest score, there is a
possibility the agent will perform perpetual actions of waiting if waiting is cheaper
than moving. To counter this a penalty was introduced for every time an agent
visits the same location. This discourages agents from visiting the same location
multiple times. Since the algorithm uses a score to determine the next viable state,
this penalty needed to increase the “bad” states cost somehow.

At first this was done through a flat cost increase for every time a state was visited.
This solved cases the algorithm previously could not solve, especially cases with
a large amount of tiles where the agents were placed far from their goal locations.
However, in cases where the agents were bundled close together near their goal
locations the flatly increasing cost affected the result negatively. The penalty score
was then reduced to a cost lower than the cost of an actual step. This fixed the
clustered case it previously could not solve, but it also made the more spread out
case unsolvable. Further optimization of the penalty score decreased the amount
of failures, but the algorithm could still only solve one of the cases. The idea then
sparked to have a penalty score based on the distance to the target. This new solu-
tion proved to be able to solve both kinds of cases. Extensive testing (n = 50000)
was then performed in order to find the best cost increase in regard to solvability.
The results for the testing can be seen in Section 4.5.

In a larger programming project such as this one, keeping the multiple classes
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and functions structured is essential for understanding the code. This is usually
done with the help of a linter and a formatter. While Python has its own linter, there
are more optimized ones available, and in this case one named pylint was used
[Python Code Quality Authority, 2022]. The formatter used is named black [Langa,
2022]. These tools helped format the code, consistently use naming conventions
and get rid of excessive code.

3.4 Communication between the XPlanar and the
algorithm script

3.4.1 Development of TwinCAT program
Once the algorithm was finished, the next step was to test the solution on the Twin-
CAT3 software. This software contained Beckhoff’s simulation for the XPlanar sys-
tem, which was used to make sure the algorithm worked towards an actual XPla-
nar system and not just towards our simulation. To do this a TwinCAT program
was needed to send the appropriate data to the algorithm and read the instructions
that the algorithm produced. The TwinCAT program was developed to read the fol-
lowing data from the XPlanar system; tile layout, mover dimension and the mover
positions. The program works by sending all the data to the algorithm and getting
the instructions in return. It then starts reading them one time-step at a time, and
executes the MoveToPosition command with correct inputs for each mover.

3.4.2 Development of the ADS communication file
Throughout the TwinCAT testing phase some sort of communication was needed
between TwinCAT and the algorithm. This was done through an ADS with the help
of a python-module called pyads. Once the TwinCAT program was started and had
initialized, it sent a handshake to the communication program telling it that it was
ready to send over the data needed for the algorithm. Once the data was sent and the
algorithm was done, the communication program then converted the instructions to
a format more fitting for TwinCAT, and sent it back. To access the data, the ADS
functions read by name and write by name were used.

3.4.3 Refining the CBS algorithm
Once the tests for the algorithm via ADS communication were done, a few modifi-
cations were made for the inputs and outputs of the algorithm. These modifications
were mainly removing unnecessary inputs such as the number of movers, and di-
viding the first step for each mover in one step each for x- and y-direction to assure
collision avoidance when aligning to the node grid.
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3.5 Packaging to exe file and XPlanar tests

In the final stages of development, both tests in the TwinCAT3 simulated XPlanar
environment and real XPlanar tests were used to assure a fully functional integra-
tion of the algorithm with the ADS communication and TwinCAT3 solution file.
It is worth noting that real XPlanar tests were only feasible during one day due to
limited access. These real experiments are briefly described in Section 4.4 Once the
integration was successfully implemented, the ADS and the algorithm were merged
into one file and packaged to an executable (exe) file in order to make it runnable
directly from TwinCAT3.
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Results

The result of this thesis is the Ternerot and Nilsson-algorithm (TaN-algorithm). It
uses modified versions of the A* and CBS algorithms to solve multi-agent pathfind-
ing problems and achieve the goals described in Section 1.4.

4.1 Concept scoring for algorithms

Table 4.1 illustrates the concept scoring for different low-level algorithms based
on the set of criteria from Section 3.2.1.

Low-level algorithms
Criteria A* Dijkstra Breadth/depth

search
D*

1 ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
2 ⋆⋆ ⋆⋆⋆ ⋆ ⋆⋆
3 ⋆⋆ ⋆ ⋆ ⋆⋆⋆
4 ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆
5 ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆
6 ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆
sum 16⋆ 14⋆ 13⋆ 14⋆
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Table 4.2 illustrates the concept scoring for ICTS and CBS algorithms based on
the set of criteria from Section 3.2.1.

High-level algorithms
Criteria CBS ICTS
1 ⋆⋆ ⋆
2 ⋆⋆ ⋆⋆
3 ⋆⋆⋆ ⋆
4 ⋆⋆ ⋆⋆
5 ⋆⋆ ⋆⋆
6 ⋆⋆⋆ ⋆
sum 14⋆ 9⋆

The scoring in Tables 4.1 and 4.2 uses three degrees of ranking:
⋆ - denoting a low score
⋆⋆ - denoting an average score
⋆⋆⋆ - denoting a high score

The score of each algorithm is relative to one another, with evaluation of crite-
ria 4, 5 and 6 being somewhat subjective.

4.2 Pseudo-code

4.2.1 A* code

To highlight our extentions to the A* we denote it TaN-A* and present the pseudo-
code for it in Algorithm 5.
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Algorithm 5 TaN-A* algorithm
1: openSet← startState
2: while openSet not empty do
3: currentState = min(openSet)
4: openSet.remove(currentState)
5: closedSet← currentState
6: if currentLocation == goalLocation then
7: return path← RectracePath()
8: for neighbours of currentState do
9: if neighbour in closedSet then

10: continue
11: if neighbourLocation has been visited then
12: StateWeight→ increase()
13: else
14: StateWeight = 0
15: currentState.hCost← update()
16: stepCost = Distance(currentState,neighbour)
17: newGCost = StateWeight + currentNode.gCost + stepCost
18: oldGCost = neighbour.gCost
19: if (newGCost < oldGCost) or (neighbour not in openSet) then
20: neighbour.gCost← update()
21: neighbour.hCost← update()
22: neighbour.parent = currentState
23: openSet← neighbour

The states used in the TaN-A* algorithm are defined as an object containing; (1) a
location in the configuration space, (2) a g-cost, (3) a h-cost, (4) a time representing
the current time-step in the path being evaluated and (5) a parent state representing
the previous state of the current state in the current path being evaluated. Note that
the TaN-A* algorithm differs from the traditional A* with the implementation of
time discretization and weighted scoring. The weighted scoring is based on the
distance from the state location to the goal location and the number of times that
location has been visited in the same path.

4.2.2 CBS code
The TaN-CBS used in the TaN-algorithm is very similar to the CBS presented in
section 2.3.2 with the difference of implementing high-level nodes in conjunction
with a closed set. This is done to prevent the algorithm from searching for the exact
same solution more than once. Furthermore, the TaN-CBS continuously updates en-
vironment variables such as constraints which is heavily dependant on the XPlanar
system.
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Algorithm 6 TaN-CBS algorithm
1: startNode = HighLevelNode()
2: Initialize startNode.constraints
3: solution = compute solution(startNode)
4: if solution not found then
5: return
6: startNode.cost = compute cost(solution)
7: openSet← startNode
8: while openSet not empty do
9: currentNode = min(openSet)

10: closedSet← currentNode
11: openSet.remove(currentNode)
12: Environment← currentNode.constraints
13: solution = compute solution(currentNode)
14: con f licts← f irstCon f lict
15: if con f licts empty then
16: return solution
17: else
18: newConstraints = generate constraints(con f licts)
19: Environment← newConstraints
20: for each constraint in newConstraints do
21: newNode = HighLevelNode()
22: newNode.constraints← currentNode.constraints
23: newNode.constraints← constraint
24: solution = compute solution(newNode)
25: if solution not found then
26: continue
27: newNode.cost = compute cost(solution)
28: if newNode not in openSet then
29: openSet← newNode
30: return

The high-level nodes used in the TaN-CBS algorithm are defined as an object con-
taining; (1) a solution defined as a collection of individual mover paths, (2) the total
cost for the solution in number time-steps and (3) a collection of all constraints for
the solution.
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4.3 Overview of the architecture

Figure 4.1 illustrates both the passing of data and the overlaying architecture for
the complete solution and the entire TaN algorithm
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The algorithm starts once it is called from TwinCAT, through a flag. TwinCAT then
reads each movers’ position and passes these positions along with other necessary
data to the TaN algorithm through the ADS communication block. The TaN algo-
rithm then starts by initializing the central storage unit environment. Thereafter,
necessary data is passed to the TaN-CBS and TaN-A* algorithm. Once the TaN-
CBS and TaN-A* algorithms have retrieved the necessary inputs, the TaN-CBS is
called whereby it creates a high-level node. The high-level node is then filled by in-
dividual agent paths retrieved by calling and executing the TaN-A* algorithm. The
Environment is then updated based on newly derived changes of the configuration
space. The process of running the TaN-CBS and TaN-A* as well as updating the
environment is performed until a complete viable solution has been found. This so-
lution is then passed back to the pathfinding unit where the solution is reinterpreted
as instructions. These instructions are then passed to the ADS block where they are
translated to TwinCAT variables and passed right back to TwinCAT. Lastly, these
instructions are converted to MoveToPosition-commands, which tells the movers to
move step by step.

4.4 Experimental results

Due to limited access to the XPlanar, this section will briefly present the recorded
physical test, see Figure 4.2. The video1 shows four movers starting in one corner of
a XPlanar setup, with an L-shaped startup path defining the goal positions located
on the opposite corner. The first thing the movers do is line up in the invisible node-
grid that is used in the algorithm. After that they move step by step in this node-grid
approaching their respective goals. Once each mover reaches its goal node, they
leave the node grid and align to the exact specified goal position defined by the
startup path, described in millimeters.

Figure 4.2 illustrates the starting positions for the movers in the physical experi-
ment.

1 https://youtube.com/shorts/ev-40qVbQBM
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4.5 Simulation results

In Figure 4.9 the red line represents the minimum number of steps to make every
mover move from their starting position to their goal position. To clarify, achieving
the absolute minimum number of steps would mean every mover moved unhindered
the linear minimum distance from their starting position to their goal position. This
would put them exactly on the coloured line. Every test that is not a failure, meaning
it lies on zero in the y-axis, is well above the line, and there are no bugs affecting the
amount of mover steps. Figures 4.3, 4.4, 4.5, 4.5, 4.7, 4.8 and 4.9 depicts statistical
data retrieved from the randomized tests described in Section 3.2.3, where each line
is a regression-based approximation based on 1000 data-points each.

Figure 4.3 illustrates statistics for the randomized tests with the success/fail rate
being plotted against the number of movers for different A* weight values (”Count”)
5, 10 & 15
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Figure 4.4 illustrates statistics for the randomized tests with the execution time
being plotted against the number of movers for different A* weight values (”Count”)
5, 10 & 15

Figure 4.5 illustrates statistics for the randomized tests with the success/fail rate
being plotted against the number of movers for different A* weight values (”Count”)
5-10 )
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Figure 4.6 illustrates statistics for the randomized tests with the execution time
being plotted against the number of movers for different A* weight values (”Count”)
5-10

Figure 4.7 illustrates the success/fail rate for the A* weight (”Count”) values 5-10
plotted against number of tiles per mover
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Figure 4.8 illustrates the time-complexity for the A* weight (”Count”) values 5-10
plotted against number of tiles per mover

Figure 4.9 illustrates the mean distance for all movers from their starting position
to their goal position plotted against the average number of time-steps for the A*
weight (”count”) values 5-10
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Discussion

5.1 Algorithms

5.1.1 Choice of algorithms
The A* and CBS algorithms were chosen based on the set of criteria presented in
Section 3.2.1. From Section 2.4 and Table 4.2 it is clear that the CBS algorithm
seems to be the top-candidate for both solvability and time-complexity. This is es-
pecially true with a higher number of movers which is more relevant in contrary to a
low number of movers, since the differentiating execution-time between algorithms
for a low number of movers is very low and becomes irrelevant. However, the CBS
still needs a collaborative low-level algorithm in order to function as it is supposed
to. In this project, the A* was chosen due to it is diversity and the overall scoring
seen in Table 4.1. Being able to change heuristics, adding weights, etc. makes A* a
well suited low-level algorithm in terms of increasing applicability for the XPlanar
system. Furthermore, A* seemed to be very well documented with many previous
implementation examples, making it a top candidate for the low-level algorithm in
terms of conceptual complexity and complexity of code.

5.1.2 TaN-A* vs traditional A*
The traditional A* is designed to find a path for one agent, from a start position to a
goal. The TaN-A* is modified to be able to handle multiple agents, take constraints
into consideration, and is optimized to be faster than the average A*. A regular A*
often uses two positions as input, the start and the goal. The TaN-A* instead takes a
string as input, the name of an agent, and finds this agent’s start and goal positions
in a dictionary. This dictionary is stored in a separate object, which is used by both
the CBS and the TaN-A* to keep track of different things, like agent’s start and goal
positions, obstacles and constraints. Constraints are something TaN-A* also uses
when checking whether neighbouring states can be seen as viable states to visit
next. Since TaN-A* is made to fit the TaN-CBS, it introduces time as a factor. This
means its nodes become states, and it keeps track of time as well. When exploring
neighbours the TaN-A* first evaluates the locations surrounding the current node,
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and adds one time unit to these neighbours’ current time, since that is how long it
takes for a mover to traverse one grid-location. Due to the time discretization, the
current location in the next time step is also seen as a viable state and a neighbour.

Another variant of A* is the weighted-A*, in which the scoring equations are
modified to favour moving towards the goal, or moving away from the starting
position. TaN-A* uses a sub-variant of this principle, the way it does this is by
increasing states’ score by a dynamic weight. In addition to this, the states’ score
is increased every time the states are visited. The exact increase of the score each
time the state is visited is a penalty score of the distance from that state to the goal
state divided by a weight. This weight was set to 10 in the final revision of the code
by evaluating the results seen in Section 4.4. These results are further discussed in
Chapter 5.2. This value was set to counter-act unsolvable cases, where agents kept
moving to the same location instead of moving towards the goal. To hinder agents
from moving back and forth between the lowest cost locations, a successively in-
creasing cost was added, to make sure agents eventually started to move towards
their goal.

5.1.3 Conflicts
In Section 2.2.2 the different conflicts for a typical MAPF problem were introduced.
Whether these are handled correctly or not can be discussed, but from the unit-
tests described in Section 3.1.3 it is safe to say that the edge- and vertex conflicts
are handled and solved in a successful manner by having implemented constraints
for these directly in the developed code. The following conflict and cycle conflict
are handled in a slightly different way. The following conflict is implemented and
solved by making each mover move one grid-location at a time. This makes sure
that each move-action is performed with the same acceleration and speed for all
movers. The cycle-conflict is handled and solved by always having one free grid-
location available. By doing this, a potential cycle-conflict is automatically solved
by having implemented the edge-, vertex- and transition constraints directly in the
developed code. The special-case transition conflict in this system, seen in Figure
3.8 is solved by implementing the transition-constraint directly in the developed
code. It is worth mentioning that transition conflicts can be neglected if agents have
a circular geometry instead of a square geometry.

5.2 Performance evaluation

5.2.1 Solvability
Figure 4.3 depicts that a TaN-A* weight (”count”) value of 5 has a slow exponential
performance whilst the weight values of 10 and 15 have a faster exponential per-
formance. Overall, the count value of 10 seems to result in the highest solvability
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with 5 as second highest, and 15 as the lowest. However, at 40 movers the values
5 and 15 result in an equal approximation of solvability, with 15 having a higher
approximate solvability past 40 movers. Due to the fact that real XPlanar systems
will not support more than 40 movers at the given time, these data points can be
neglected in further discussion. Figure 4.3 also shows a faulty approximation for
the weight value of 10 past 38 movers. Since a success is defined as a 1 and a fail is
defined as a 0, a success approximation above 1 or below 0 shows a skewed faulty
approximation. Because Figure 4.3 depicts a regression based approximation and
not a 100% correct prediction, the faulty approximation does not necessarily reflect
an error. The explanation to this is the possibility of a large number of data points
with a success/fail value of 1 when the x-value approaches 38 movers. This in turn
will increase the inclination and the upwards trend of the graph.
It is worth noting that the different weight values perform very differently for vary-
ing number of movers. However, this is expected. A lower TaN-A* weight is ex-
pected to affect the behavioural aspect in such a way that movers are less likely to
wait whilst a higher value will result in movers being more likely to wait. Further-
more, since the weighted scoring works in conjunction with the distance to goal,
the wait capability is enhanced near the goal positions where higher saturation of
movers per tile is more likely to occur. From a theoretical perspective, it is difficult
to decide whether a high or low wait capability is beneficial in regards to solving
conflicts and improving solvability. Therefore, Figure 4.7 is used to closely exam-
ine the different TaN-A* weight values and wait capability for different saturation
levels and how this in turn affects the solvability. Figure 4.7 shows that a lower
TaN-A* weight and thereby a lower wait capability seems to result in a higher suc-
cess rate for highly saturated areas in regards to mover per tile. On the contrary, a
higher TaN-A* weight and higher wait capability has a higher success rate for lower
saturated areas. This can be seen in the weight value 5 being the most successful in
saturation levels near 1 mover per tile, value 7 being most successful for saturation
levels between 2-6 movers/tile, 8 being optimal for saturation levels between 6-9.5
and value 10 being most successful past saturation level 9.5. The explanation for the
different success rates likely depends on whether the wait capability helps resolve
conflicts or not in more saturated areas. A higher wait capability could help resolve
conflicts and improve solvability for a high number of movers as seen in Figure 4.3.
However, it could also trigger a behaviour where the TaN-A* makes movers wait
for a very long period of time. This likely occurs due to always choosing the same
location for the next time step as the next optimal state to visit. This in turn could
trigger the time-out interrupt in the TaN-CBS resulting in a failure. This behaviour
also comes with restriction of overall movement which could limit the algorithm’s
ability to rearrange movers in such a way that finding a solution becomes more
difficult.
For static weight values, the value of 10 seems to be the most consistently well
performing with a very promising solvability approximation, as seen in Figure 4.5.
Therefore, this was the weight value that was chosen in the final revision of the
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5.2 Performance evaluation

TaN-A* algorithm.

5.2.2 Time complexity
Figure 4.4 depicts that the time complexity differs a lot from different count values,
especially for a greater number of movers. This is likely due to the wait capability
discussed in Section 5.2.1. A higher wait capability could in one way decrease
the computational time by increasing the ability to resolve conflicts. On the other
hand, it could also introduce a situation where movers are less prone to moving and
rearranging such that a ”stand-still” situation occurs. In the case of a ”stand-still” it
could take a lot of time to compute a solution. By comparing Figure 4.7 and Figure
4.8 one could argue that the time for the different TaN-A* weight values 5-10 in
Figure 4.8 in highly saturated mover/tile areas would differ more, with higher count
values resulting in a higher time value. This is a sound reasoning and the indif-
ference could be explained by the time-out interrupt introduced in the TaN-CBS,
capped at
240 s. Since highly saturated areas are less likely to be solved, as seen in Figure 4.7
it is also expected that a lot of the test runs will time-out.

If one examines the code instead of the graphs, a lower weight value means
that locations’ score increases faster, leading to less waiting, and more ”forced
exploration”. This leads to more conflicts, as they are encouraged to move rather
than wait. If they move more, odds are they reach the goal faster, however with
more movement comes more conflicts, which means the CBS needs to run TaN-A*
more times. A higher weight leads to the opposite, a slower increasing score, more
waiting, more exploring to find the goal, and less conflicts. This in turn means
TaN-A* becomes slightly slower, but in general fewer iterations are needed to find
a complete solution. It is difficult to say which is better: fewer and longer iterations
or more and faster iterations.

5.2.3 Quality control
Figure 4.9 concludes that the successful runs, those that do not have 0 number of
time-steps, are placed above the minimum average time-steps line. This proves that
no illegal move-actions are performed in regards to moving more than one grid-
location at a time. Any data-point below the minimum average line would represent
a solution where a mover would move several grid-locations at a time, and not
conform to the restricted one grid-location for one time-step. This in turn could
be potentially hazardous in regards to collision-avoidance. The reason being that
a move-action for at least one of the movers in the configuration space is not per-
formed in the expected and controlled manner it is supposed to.
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Chapter 5. Discussion

5.3 Possible future improvements

Supporting obstacles in the tile-layout
The first possible improvement is implementing a function for passing in possible
obstacles that might be situated throughout the tile-layout. This would allow the
algorithm to work with XPlanar systems that, for example, has a wall separating
two sections of the the tile-layout. From a first-thought perspective, this possible
improvement could easily be implemented for very basic obstacle geometries. This
could be done by:

1. Passing a matrix containing arrays with x- and y-positions in mm defining
points at the outline of the geometry.

2. Iterating through each array and finding each grid-location where there is an
obstacle-point.

3. Blocking each of the grid-locations found in (2) to deny movers access to
those locations.

Dynamic TaN-A* weights
The second possible improvement is introducing dynamic TaN-A* weights. Since
the optimization and functionality of TaN-A* seems to depend on different weight
values for different amount of movers and tile-layouts, seen in Figures 4.3, 4.4, 4.7
and 4.8. The weights could change dynamically depending on configuration space
variables. This could also be easily implemented since these variables already are
accessible in the code.

D* implementation
From the A* theory in Section 2.3.1, it is noted that D* is one of the many im-
proved algorithms that have originated from the A* algorithm. The D* is the third
suggested improvement since it is supposed to be an overall improvement of the A*
algorithm. The D* is in most cases more efficient than the A* in terms of computa-
tional time since it re-plans parts of paths once a conflict occurs, instead of scrap-
ping the previous path-search and re-doing the entire path-search all over again. It
is also possible that D* could improve solvability due to the incremental search and
low-level conflict avoidance.

Multi-threaded solution
One way to potentially greatly decrease the computational time of the algorithm is
by making it multi-threaded. A simple way to utilize multiple threads in this algo-
rithm would be to make calculation of A* paths into tasks, which are executable
by threads. This would make the computer able to calculate multiple paths simulta-
neously, and therefore theoretically greatly reduce computational time. A relatively
simple way of implementing this would be with a thread pool, since in the case of
having more agents than threads the A* tasks would queue up, and several single-
agent path-searches could be performed simultaneously. This is however only a
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5.3 Possible future improvements

”relatively simple” solution, since large parts of the algorithm would need to be re-
worked and made thread safe. The size of the thread pool would also be dependent
on how many cores the computational unit would have, since having more threads
than cores only increases computational time.

Testing
The tests for statistical data described in Section 3.1.3 were performed for random-
ized configuration spaces. However, in order to optimize the algorithm and further
improve solvability, we propose continuing testing solvability and time-complexity
with larger data sets for both randomized- and typical configuration spaces. This
will also help derive the exact optimal weight value for the TaN-A* in XPlanar
systems and whether a slightly lower or higher wait capability is most optimal for
solving conflicts.

We also suggest adding a simple unit-test testing the mean distance to the goal
against the actual number of instructions for each mover. This will ensure that
further development does not introduce bugs connected to illegal multi-node move-
actions.
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6
Conclusion

By referring to the problem formulation in Section 1.3 and the goal of the project
in Section 1.4 it can be concluded that the project was a major success. The final
product shows a generally good applicability of the chosen algorithms towards the
solution requested by Beckhoff, since it is functional both in theory and in prac-
tice. This project also provides a good starting point for continuing already started
optimization of the algorithm by following the suggestions made in Section 5.3,
Possible future improvements. Furthermore, we suggest using the statistical data
presented in Section 5.2, our results, and the easily changeable parameters such as
the TaN-A* weight to alter behaviour and optimize performance.
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Appendix A. Gantt chart for the project
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