
BACHELOR’S THESIS 2022

Sentiment Analysis from ESG
Point-of-View Using ML
Oscar Johansson, Alexander Möhle

ISSN 1651-2197
 LU-CS/HBG-EX: 2022-10

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

HÖGSKOLEINGENJÖRSARBETE
Datavetenskap

LU-CS/HBG-EX: 2022-10

Sentiment Analysis from ESG
Point-of-View Using ML

Sentimentanalys från ESG-perspektiv med
hjälp av ML

Oscar Johansson, Alexander Möhle

Sentiment Analysis from ESG
Point-of-View Using ML

Oscar Johansson
os3111jo-s@student.lu.se

Alexander Möhle
al3274mo-s@student.lu.se

June 22, 2022

Bachelor’s thesis work carried out at Sanctify Financial Technologies AB.

Supervisors: Marcus Klang, marcus.klang@cs.lth.se
Gustav Johnsson Henningsson, gustav@sanctify.ai

Henrik Ljunger, henrik.ljunger@sanctify.ai

Examiner: Christin Lindholm, christin.lindholm@cs.lth.se

mailto:os3111jo-s@student.lu.se
mailto:al3274mo-s@student.lu.se
mailto:marcus.klang@cs.lth.se
mailto:gustav@sanctify.ai
mailto:henrik.ljunger@sanctify.ai
mailto:christin.lindholm@cs.lth.se

Abstract

Investing in sustainable companies can be difficult as there are environmental, so-
cial and governance (ESG) risks. Rating companies using the ESG scoring concept
can allow investors to make informed choices that may result in better long-
term investments. Sanctify is a company that provides AI-based financial anal-
ysis software that can calculate ESG scores. The company currently implements
a pipeline which is based on a lexicon-based solution to provide sentiment anal-
ysis on ESG-related news articles. The goal of this thesis was to investigate how
ESG sentiment classifications can be improved, by using modern deep machine
learning architectures, such as transformers.

To produce a model adapted to an ESG-related corpus, several pre-trained BERT-
based models were trained using transfer-learning. Hyperparameter tuning and
fine-tuning were then performed on the best-performing models through itera-
tions.

The results show that the best-performing model DistilRoBERTa-finetuned-financial-
news, outperforms VADER and is comparable to other BERT-based models tuned
for sentiment analysis. In conclusion, the model achieves a macro average F1-
score of 80.4%.

Keywords: Sentiment Analysis, Machine Learning, ESG, BERT, Natural Language Pro-
cessing

Sammanfattning

Investering i hållbara företag kan vara svårt eftersom det finns miljömässiga, so-
ciala och styrningsmässiga risker (ESG). Genom att betygsätta företag med hjälp av
ESG konceptet kan investerare göra val som kan resultera i bättre investeringar.
Sanctify är ett företag som utvecklar AI-baserad mjukvara för analysering och
räkna ihop ett ESG-rankning. Just nu använder företaget sig av en process som
bygger på en lexikonbaserad lösning för att klassificera ESG-relaterade nyhetsar-
tiklar. Målet med detta examensarbetet var att undersöka hur sentimentanaly-
sen av ESG-artiklarna kan förbättras genom att använda moderna maskininlärn-
ingsarkitekturer som transformers.

För att ta fram en modell som är anpassad till en ESG-relaterad korpus tränades
flera BERT-baserade modeller med hjälp av överföringslärning. Inställning av hy-
perparametrar och finjustering utfördes sedan på de bäst presterande modellerna
genom iterationer.

Resultaten visar att den bäst presterande modellen DistilRoBERTa-finetuned-financial-
news överträffar VADER och är jämförbar med andra BERT-baserade modeller
som är anpassade för sentimentanalys. Sammanfattningsvis uppnår modellen en
makrogenomsnittlig F1-poäng på 80,4%.

Nyckelord: Sentimentanalys, Maskininlärning, ESG, BERT, Språkteknologi

2

Acknowledgements

We would like to first and foremost thank Gustav Johnsson Henningsson and Henrik Ljunger
for participating in our weekly meetings and providing valuable suggestions. We would ex-
tend this thanks to Patrik Elfborg for being incredibly reliable whenever we had issues with
Linux and Git. Last but not least we would like to thank our supervisor Marcus Klang for
providing us with lectures worth of knowledge about machine learning, and for his guiding
feedback throughout this thesis.

3

4

Contents

1 Introduction 9
1.1 Background . 9
1.2 Purpose and Goals . 10
1.3 Motivations . 10
1.4 Research questions . 10
1.5 Limitations . 10
1.6 Division of Work . 11
1.7 Source Criticism . 11

1.7.1 Peer Reviewed . 11
1.7.2 Many citations . 11
1.7.3 Literature . 11
1.7.4 Frameworks . 12
1.7.5 Fewer citations . 12
1.7.6 No citations . 12

2 Technical Background 13
2.1 Machine Learning . 13

2.1.1 Linear Regression Example . 13
2.1.2 Neural Networks . 16
2.1.3 Recurrent Neural Network . 17
2.1.4 Backpropagation . 17
2.1.5 AI vs Machine Learning . 17

2.2 Training Process . 17
2.2.1 Supervised Learning . 18
2.2.2 Dataset . 18
2.2.3 Amazon Elastic Compute Cloud 19
2.2.4 Hyperparameter Searching . 19
2.2.5 Transfer Learning and Fine-tuning 19

5

CONTENTS

2.2.6 Overfitting and Underfitting . 20
2.2.7 Learning Rate and Optimizers . 22
2.2.8 Learning Rate Schedulers . 25

2.3 ESG . 25
2.4 Natural Language Processing . 26

2.4.1 Sentiment Analysis . 26
2.4.2 Rule-based Sentiment Analysis . 26
2.4.3 Machine Learning-based Sentiment Analysis 26
2.4.4 Tokenization . 26
2.4.5 Text Pre-processing . 27
2.4.6 Term Frequency-Inverse Document Frequency 27
2.4.7 Embeddings . 28

2.5 Transformers . 29
2.5.1 BERT . 30
2.5.2 BERT Pre-training . 32
2.5.3 Using BERT for Text Classification 33
2.5.4 Flair . 34
2.5.5 PyTorch . 34
2.5.6 FinBERT . 34
2.5.7 DistilBERT-base-uncased-finetuned-SST-2 35
2.5.8 DistilRoBERTa-base . 35
2.5.9 DistilRoBERTa-finetuned-financial-news 35

2.6 Evaluating Machine Learning Models . 35
2.6.1 Accuracy . 35
2.6.2 Recall and Precision . 36
2.6.3 F1-score . 37

2.7 Related Work . 37
2.7.1 Text classification for financial texts 37
2.7.2 Text classification for ESG . 38

3 Method and Analysis 39
3.1 Phases . 39
3.2 Development . 39
3.3 Data Exploration . 41

3.3.1 Dataset . 41
3.3.2 Label Distribution . 42

3.4 Pipeline . 42
3.4.1 Overview . 43

3.5 Pre-processing . 43
3.6 Zero-rule Classification . 44
3.7 Lexicon . 44

3.7.1 Lexicon with Word List . 44
3.8 Transformers . 44

3.8.1 Optimizing . 46
3.8.2 Fine-tuning . 46

3.9 Evaluation . 47

6

CONTENTS

4 Results 49
4.1 Zero-rule Classification . 50
4.2 Lexicon . 50

4.2.1 Lexicon with Word List . 51
4.3 Transformers - Default . 52

4.3.1 Transformers - Optimized . 53
4.3.2 Transformers - Fine-tuned . 55

5 Discussion 59
5.1 Comparison of Different Approaches . 59

5.1.1 Where VADER Fails . 59
5.2 Observations Using Transformers . 60

5.2.1 Hyperparameter Tuning . 60
5.2.2 Fine-tuning . 60
5.2.3 CLS Vs MEAN . 61
5.2.4 Confusion Matrices . 61
5.2.5 Analysis on Misclassified Texts . 62

6 Conclusion 63
6.1 Reflection of Ethical Aspects . 63
6.2 Answers to Research Questions . 64
6.3 Future Work . 65

6.3.1 Dataset Size . 65
6.3.2 Further Pre-training . 65
6.3.3 Fine-tuning During Hyperparameter Tuning 65
6.3.4 VADER Thresholds . 65
6.3.5 VADER pre-processing . 65
6.3.6 Piecewise Predictions . 66
6.3.7 LSTM . 66
6.3.8 Machine Learning Bias . 66

7 Terminology 67

References 69

Appendix A SASB Materiality Map 75

7

CONTENTS

8

Chapter 1

Introduction

This chapter will introduce the background of this thesis alongside purpose and goals. A set
of research questions that formed the basis of this thesis will be presented. Our reasoning
for undertaking this topic of research and implementation will be answered. Lastly, a section
describing areas that were excluded from the thesis is included.

1.1 Background
ESG is a concept that is used to evaluate companies based on their long term environmental,
social and governance risks, e.g. energy efficiency, worker safety, and board independence.
Since most pollution comes from a minority of companies [Starr, 2016], those who are pub-
licly traded may curb their pollution when investors leave from a deteriorating ESG score.

Sanctify is a fintech company based in Lund which focuses on the development of AI-based
financial analysis software, with an emphasis on ESG. They also provide access to their data
in the form of an API, with the target audience for their applications being mainly fund
managers. A part of their pipeline is the processing of a large number of news articles to
determine ESG scores of companies. One step in this processing is to measure the sentiment
of the news articles through sentiment analysis.

In general, sentiment analysis means trying to determine whether a given text expresses itself
as positive, neutral or negative. There exist different approaches to sentiment analysis such as
lexicographical or different machine learning algorithms, e.g. LSTM [Hochreiter and Schmidhuber, 1997]
or Naive Bayes, as well as a hybrid of the two approaches.

Sanctify’s current solution is a lexicographical approach that is tuned with the addition of
ESG-related terms. Modifications to the lexicon are needed to get an ESG perspective. For

9

1. Introduction

example: "Company X has increased its greenhouse gas emissions". Without an ESG perspec-
tive, "greenhouse gas emission" would have no meaning and the text would in the best case
be classified as neutral, and worst case positive. However, even with the modifications, the
lexicon-based approach is not very generic and requires care when changing the lexicon.

This thesis will evaluate a machine learning approach and compare it to a lexicographical
approach. Depending on the results, it would aid Sanctify in deciding which approach to
further explore for improvements in their ESG sentiment analysis pipeline.

1.2 Purpose and Goals
The aim of this thesis is to explore, develop and test different machine learning models for
sentiment analysis on an ESG-related dataset of news articles. In addition, it aims to develop
a solution that can more accurately label news articles positive, neutral or negative from an
ESG point-of-view.

1.3 Motivations
ESG is expanding as an crucial feature in many investors portfolios due to the current focus
on climate and sustainability. If this thesis leads to an improvement in Sanctify’s products,
investors will have more accurate information when investing in sustainable companies. It
could also lead to an increase in interest for ESG by the financial market as a whole in the
area of machine learning.

1.4 Research questions
This thesis will aim to answer the following questions:

• How is state-of-the-art sentimental analysis done currently?

• What tools can be used for a machine learning solution?

• How should different solutions be compared?

• How can a transformer model be optimized for text classification?

• What tools exist that can augment an ESG-based dataset for NLP?

1.5 Limitations
One limitation in this thesis is that the articles that will be used for testing will only be
supplied by Sanctify. Another limitation is that implementing our prototypes in any Sanctify
products is not in the scope of this thesis. This thesis is not an evaluation of different solutions
for sentimental analysis other than from an ESG point-of-view. As this thesis is focused on
machine learning solutions, only the lexicon-based solution used at Sanctify will be explored.

10

1.6 Division of Work

Instead of developing a new machine learning framework, existing frameworks will be used.
The sentiment of the articles will not be divided into separate ESG categories and the articles
will only be labelled as positive, neutral or negative but from an ESG point-of-view.

1.6 Division of Work
Since this thesis was done by two authors, the workload was divided equally to achieve a
parallel workflow. Initially, both authors participated in the initial exploratory data analy-
sis. Both authors developed the framework for the corpus and training of the models using
Flair [Akbik et al., 2019]. Additionally, Flair was modified by Alexander Möhle to better
accommodate the methods needed for training. Later, Oscar Johansson focused on the im-
plementation of the pre-processing pipeline with augmentation and stratification, as well as
a frontend for the framework. At the same time, Alexander Möhle focused on implementing
a baseline with VADER and the BERT-based models, alongside their evaluation. Towards the
end, Alexander Möhle did the practical work with the hyperparameter searching and fine-
tuning, with assistance from Oscar Johansson. Throughout the thesis, both authors equally
contributed to the writing of the report. Alexander Möhle was more responsible for the
tables, while the graphs were delegated to Oscar Johansson.

1.7 Source Criticism
The following sections highlight an evaluation of the sources used in this thesis. They have
been organized in order of credibility, with peer reviews and number of citations as metrics.

1.7.1 Peer Reviewed
These sources have been peer reviewed and published in a journal, making them highly cred-
ible.

[Bergstra et al., 2013]. [Connor et al., 2021], [Howard and Ruder, 2018], [Hutto and Gilbert, 2015],
[Li et al., 2019], [Loshchilov and Hutter, 2017], [Malo et al., 2013], [Mehrabi et al., 2021], [O’Reilly and Chanmittakul, 2021],
[Mikolov et al., 2013], [Hochreiter and Schmidhuber, 1997], [Gautam and Yadav, 2014], [Hasan et al., 2018],
[Shorten and Khoshgoftaar, 2019], [Pan and Yang, 2010]

1.7.2 Many citations
These sources have been highly cited, which gives them high credibility.

[Devlin et al., 2018], [Jianqiang and Xiaolin, 2017], [Kingma and Ba, 2014], [Liu et al., 2019],
[Ruder, 2016], [Sanh et al., 2019], [Srivastava et al., 2014], [Vaswani et al., 2017]

1.7.3 Literature
The following literature were written by well credited professors or scientists in their respec-
tive field, making them highly credible.

11

1. Introduction

[Buduma and Locascio, 2017], [Liddy, 2001], [Jurafsky and Martin, 2021], [Montgomery et al., 2021]

1.7.4 Frameworks
The following citations are for giving credit to the tools used during the thesis.

[Ma, 2019], [Akbik et al., 2019]

1.7.5 Fewer citations
These sources are less cited, which the reader should be aware of.

[Kumar et al., 2020], [Starr, 2016], [Yang et al., 2020], [Colón-Ruiz and Segura-Bedmar, 2020]

1.7.6 No citations
This source has no citations, which could make the information questionable. It should be
cross-examined by other sources.

[Mehra et al., 2022]

12

Chapter 2

Technical Background

This chapter will introduce the various technologies used in this thesis and briefly go over
them on a conceptual level. It will cover technologies and concepts like machine learning,
model training, natural language processing, the transformer architecture, Bidirectional En-
coder Representations from Transformers (BERT) and finally how to evaluate machine learning
models. See Section 7 for explanations for some abbreviations and terms.

2.1 Machine Learning
Machine learning is a subfield of artificial intelligence (AI). Machine learning models are trained
to solve a task and can self-learn by finding patterns in data related to the task that the pro-
grammer wishes to use the model for [Buduma and Locascio, 2017]. In layman’s terms, ma-
chine learning models can be seen as black boxes that, given certain inputs, return output
predictions.

2.1.1 Linear Regression Example
To illustrate how machine learning models work, an example using linear regression will be
described [Montgomery et al., 2021]. Linear regression in its simplest form can take one input
variable (x) and predict one output value (y). To start linear regression, data is needed to map
different data points in a two-dimensional space. See Figure 2.1.

13

2. Technical Background

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Data

Figure 2.1: Two-dimensional graph with data points placed.

The data points are inserted by having a value on the x-axis and the y-axis. The x-axis value is
the input to the model and the y-axis value is the expected output from the model. After the
data points have been inserted, a straight line can be drawn in the space like seen in Figure
2.2.

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Data
y=1.5x+14

Figure 2.2: Two-dimensional graph with data points placed and a
randomly initialized line.

The line equation is y = ax + b which is the equation for a linear line, hence linear regression.
At the start, the line is randomly initialized and therefore it will not always hit the data
points in the way it is intended, as can be seen in Figure 2.2. To solve this, changes need to
be made to the values of a and b so that the line will better fit and the y-values can be better
predicted. This is done by calculating the mean sum of all errors. The mean sum of all errors
is calculated by first measuring the vertical distance from one data point to the line and then
squaring that distance. After this is done for all the data points, all the squared distances are
summed together and divided by the number of data points. In machine learning terminology
this is called loss and one formula for calculating it is called mean squared error (MSE) and can
be seen in Figure 2.1. There also exists other formulas that can be used to calculate the loss.

14

2.1 Machine Learning

The higher the loss, the less accurate the model will be at predicting what y-value corresponds
to a given x-value. Should the loss be zero that would mean that the line passes through each
data point and therefore can predict each y–value correctly for each x-value given.

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(2.1)

A function called loss function can be created by calculating the different losses for each value
of a and b, which in machine learning terms are called weight and bias. The loss function
for a two-dimensional plot such as this example can be shown in a three-dimensional space.
What values a and b should have for the loss to hit its minimum can sometimes be visualized
in this space. However, for plots that are more than two dimensions, which most machine
learning models are, the minimum values for a and b can not be visualized. To circumvent
this problem, the loss and slope are calculated for a single point in the loss function and a step
is taken in the direction where the slope is steepest. Note that since most machine learning
models have more than two dimensions the slope is instead called gradient descent which will
be cover in greater detail in Section 2.2.7.

The whole process can be seen as trying to find a way down a mountain in a blizzard, e.g. a
person trying to find their way down, surveys the area to find the steepest point and then
takes a step in that direction. After many steps, the bottom is eventually reached. To simulate
a step in machine learning, the value of the steepest slope is multiplied by a value named
learning rate. Learning rate in this scenario can be seen as the distance of the step. The whole
process of minimizing the loss by updating a and b repeats until the minimum loss is reached.
In machine learning terminology this process is called fitting, but can also be called training.
After the fitting is done the line will fit the data points better as can be seen in Figure 2.3.

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Data
y=1x+5

Figure 2.3: Two-dimensional graph with data points placed and a
fitted line.

15

2. Technical Background

2.1.2 Neural Networks
The foundation of machine learning is the machine learning architecture called artificial neu-
ral networks (ANN), also referred to as neural network. Neural networks are constructed of
layers, where each layer constraints multiple nodes that are fully connected to the nodes in
front of them [Buduma and Locascio, 2017]. Each node has its own weights, biases and activa-
tion function that when all working together with the input, can produce an output that the
model understands. The output from one node is then sent as input to all the other nodes
in the next layer. The process is repeated until the last layer is reached and the output layer
makes a prediction based on the input.

As mentioned, the first layer in a neural network is called input layer and the last is called
output layer respectively. Between the input layer and output layer are “hidden” layers. The
hidden layer has the ability to alter the output from the previous nodes into more complex
inputs for the next layer. The effect of the hidden layers is what makes machine learning so
powerful. An example of a neural network can be seen in Figure 2.4.

Figure 2.4: Overview of a neural network. Glosser.ca, Colored Neural
Network, CC BY-SA 3.0

16

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode

2.2 Training Process

2.1.3 Recurrent Neural Network
Recurrent Neural Network (RNN) is a type of neural network that has an internal memory that
remembers the information from previous calculations. It can remember this by feeding itself
with its own outputs as inputs [Buduma and Locascio, 2017]. Another advantage of recurrent
neural networks is that fewer hidden layers are required to compute the same output com-
pared to standard neural networks. Also since there are fewer hidden layers there are fewer
weights and biases, which makes the model less complex.

2.1.4 Backpropagation
The process of updating the weights and biases in machine learning is called backpropagation.
After the gradient of the loss function has been calculated for the last output layer each
weight in the preceding layer will be updated accordingly. This is then repeated iteratively
until the input layer is reached and its weights updated, hence backpropagation, since we
move “backwards” through the model from the output layer to the input layer.

2.1.5 AI vs Machine Learning
Being able to observe data and "learn" from it is what makes machine learning its own subfield
within AI. AI algorithms do not have the capability to “learn" new data; instead, it makes
decisions and predictions based on predefined rules set by the programmer.

2.2 Training Process
Training or fitting a machine learning model is done with a dataset that is split into three
separate sets: training, test, and validation. The advantage of this approach is being able to
evaluate the model on data that is not used in the learning process itself.

The training set can either be passed to the model as a batch or further split into minibatches.
These are then fed to the model during training. The model predicts all the entries in a batch
and then calculates the loss of these predictions. Each batch of samples from the set that is
passed through the model is called an iteration. After an entire training set has been passed
through the model one epoch has been completed. Epoch is a number that shows how many
times the training set has been iterated during training.

After each epoch, the validation set is passed through the model and the loss of the set is
calculated. Each epoch aims to minimize the loss of the set. The point of using the validation
set is to evaluate if the model improved after the epoch. A decrease in accuracy, or an increase
in loss, are good indicators that the model should stop training.

Otherwise, training stops after a set number of epochs or if a specified stopping criterion is
triggered. After the training is stopped, the test set is passed through the model as the last
evaluator. Since the entries in the test set have not been seen by the model during training,
it is done to simulate the real-world use of the model.

17

2. Technical Background

2.2.1 Supervised Learning
There are different ways to train a model, one of which is called supervised learning. In super-
vised learning, the entire dataset has been pre-labeled. The labels are used during training but
also when evaluating the model and are seen as the “correct” predictions. It can be said that
the aim of the training is to predict every label correctly.

2.2.2 Dataset
A dataset in a machine learning context is a collection of data that is used when fitting a
machine learning model. Datasets consist of different entries that relate to what the model
is supposed to predict. For example, a model that predicts what type of clothing is seen in
an image is trained using a dataset containing many images of different clothing items. In
general, more data enables the training of more complex models, but additional data is also
more expensive to process and label [Domingos, 2012]. Datasets can be called corpora when
the data is composed of text.

Data Augmentation
When creating a dataset, the obstacles are two-fold. The first is to retrieve samples that will
ensure that the dataset has enough variance in the data that the model is built upon. The
second is the manual labelling of these samples, which is a time-consuming process. Data
augmentation allows for increasing the size of the dataset by duplicating existing samples and
then modifying them to create new samples [Shorten and Khoshgoftaar, 2019]. Data aug-
mentation can be effective in preventing overfitting by forcing the model to adapt to the
new patterns present in the augmented samples [Connor et al., 2021]. A common issue with
datasets is the imbalance between labels. This can lead to the learning process being biased
to the majority label when the weights are adjusted [Li et al., 2019]. A solution to this issue
can be to increase the amount of minority labels through augmentation.

However, data augmentation in the natural language processing (NLP) domain is difficult be-
cause of the requirement of retaining the meaning of a text. For sentiment analysis, changing
a sample to a sentiment that does not match the label could adversely affect the model. Data
augmenting text samples can be done in many ways. Some of the common methods involve
replacing a word with its synonym, inserting a random word in the sentence, swapping the
position of two words, or randomly deleting a word. A powerful method of data augmenta-
tion is to use contextualized word embeddings to augment a given sample. This method uses a
transformer-based model to find synonyms for words while preserving the context.

Stratification
As mentioned in Section 2.2, the dataset is split into three sets: training, validation, and test.
This can be done by distributing the samples randomly. However, this risks introducing a
bias to the sets, e.g. the training set could be biased in positive sentiment labels, thus affecting
how the model is trained. With stratified sampling, the sets remain representative of the dataset
by keeping the percentages of each label the same in each set. This is especially important if
the dataset contains a large disparity between the minority and majority labels.

18

2.2 Training Process

2.2.3 Amazon Elastic Compute Cloud
Instead of using local hardware to train a model, scalable cloud services can be used to sub-
stantially increase training speed and memory capacity. Amazon Elastic Compute Cloud (EC2)
[Amazon, 2021] provides access to a virtual server where the training of a model can be per-
formed.

2.2.4 Hyperparameter Searching
Hyperparameters controls how the learning algorithm behaves during training and affects the
performance of the resulting model. Examples of hyperparameters are: learning rate, optimiza-
tion algorithm, anneal factor, and batch size.

The goal of hyperparameter searching is to find the optimal values for the hyperparameters for
a dataset that maximizes the performance of the model. While manual searching can be done
for a small subset of hyperparameters, automated searching methods can be used instead to
iterate over many combinations of hyperparameters.

Two common methods of hyperparameter searching are random search and grid search. Both
use a grid with manually inputted values on hyperparameters for the selection process. Ran-
dom search selects a random combination, while grid search selects a preset combination.
After a method has been chosen, a model is trained on each combination, also called hy-
perparameter tuning. Lastly, the combination that performed the best is outputted. Another
method is the Tree-structured Parzen Estimator (TPE) [Bergstra et al., 2013], which is based on
sequential model-based optimization (SMBO). SMBO iterates between trained models and uses
this information to estimate the performance of future configurations, which guides the hy-
perparameter selection process.

2.2.5 Transfer Learning and Fine-tuning
Training an NLP language model is time-consuming, requiring large amounts of data and
powerful hardware. A less resource-intensive alternative is to use transfer learning, where
instead of training a model from scratch, a pre-trained model is used [Pan and Yang, 2010].
These have already gained a deep understanding of language by being trained on a large
corpus. They can then be adapted for specific NLP tasks, such as sentiment analysis, by only
training a classifier.

Fine-tuning is a type of transfer learning where instead of only training a classifier, the weights
of the pre-trained model are also adjusted. By tuning the weights, the model may be better
adapted for the NLP task that the classifier was trained on. Fine-tuning is often done when
the pre-trained model has been trained on a dataset that is much larger than the one used
for fine-tuning. It is also common to freeze some layers when fine-tuning. By freezing a
layer, the weights of that layer are not changed. Freezing can help when not wanting to
adjust the weights in lower layers, which may affect the behaviour of the model negatively
[Yang et al., 2020].

19

2. Technical Background

2.2.6 Overfitting and Underfitting
When a model is training, it will adjust its weights to minimize the loss function. While
this is the normal process of improving the model, excess training may lead to overfitting.
Overfitting occurs when a model trends towards memorizing all the samples in the training
set. A consequence is that the model generalizes worse on future samples, such as the test set
[Buduma and Locascio, 2017]. An example of this can be seen in Figure 2.5

Figure 2.5: The green line represents an overfitted model that per-
fectly matches the data points. The black line on the other hand
follows the trend, and is, therefore, more generalized. Chabacano,
Overfitting, CC BY-SA 4.0

There are ways to combat overfitting. One approach is to stop training when the loss curve
stops decreasing on the training set but increases on the validation set, also known as early
stopping. Another approach is to use data augmentation as mentioned in Section 2.2.2. Other
approaches include regularization and dropout, which are described in the following subsec-
tions.

The opposite of overfitting is underfitting, which occurs when the model has not learned
enough patterns for it to become accurate and cannot follow the trend of the data points, see
Figure 2.6. This occurs when there is not enough training data for the model or if training is
ended prematurely.

20

https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode

2.2 Training Process

Figure 2.6: The red line represents an underfitted model that does
not curve to more closely match the data points.
AAStein, Underfitting, CC BY-SA 4.0

Regularization
Regularization modifies the loss function by adding penalties to large weights. The goal is to
prevent overfitting by converging to a prediction that is offset by the “true” prediction, which
increases generability. A simplified equation for the loss function can be seen in Equation 2.2,
where Error(y, ŷ) is the difference between the correct label y, and the predicted label ŷ.

Loss = Error(y, ŷ) (2.2)

The penalty value λ is the hyperparameter that affects the strength of the regularization.
Higher values have a bigger effect on reducing overfitting, but if raised too high it risks un-
derfitting instead. The ideal value gives a model that generalizes well to unseen data. There
are two types of regularization, L1 and L2 [Buduma and Locascio, 2017]. L1 assigns a penalty
value based on the absolute values of the weights in the model. This can be seen in Equation
2.3, where

∑N
i=1 |wi | represents all the weights in the model.

Loss = Error(y, ŷ) + λ
N∑

i=1

|wi | (2.3)

Using L1 regularization can lead to some data points being assigned zero weight, effectively
removing them from the model. An advantage of this approach is the elimination of values
that are insignificant, which reduces the complexity of the model. A reduction of these values
leads to a speedup in the calculation for the classifier, which can be beneficial depending on
the task [O’Reilly and Chanmittakul, 2021].

L2, on the other hand, assigns a penalty value based on the squared value of the weights,
which ensures that the weights will not reach zero, see Equation 2.4. A benefit of L2 is how
it penalizes peaky weight vectors, e.g. [1,0,0,0] in favour of diffuse weight vectors, e.g [0.25,
0.25, 0.25, 0.25]. This encourages the model to use more of its inputs. The decision to use
L1 relies mostly on if reduced model complexity is favoured, otherwise, L2 is used because of
superior performance in most cases [Buduma and Locascio, 2017]. A visual example of the effect
of using L2 regularization can be seen in Figure 2.7.

21

https://commons.wikimedia.org/wiki/File:Underfitted_Model.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode

2. Technical Background

Loss = Error(y, ŷ) + λ
N∑

i=1

w2
i (2.4)

Figure 2.7: A visualization of neural networks trained with L2 reg-
ularization using strengths of 0.01, 0.1, and 1 (in that order), from
[Buduma and Locascio, 2017].

Dropout
Dropout is used to prevent overfitting by reducing the number of active nodes in a model. This
forces the model to make decisions even with missing information and reduces dependencies
between combinations of nodes. It can be described as preventing overfitting by approxi-
mating the effect of training many different models in parallel [Buduma and Locascio, 2017].
A drawback to using dropout is the increase in training time due to the increase in noise
that is inputted to the nodes [Srivastava et al., 2014]. Hence, a balancing act has to be made
between speed and performance by tweaking the value of the dropout hyperparameter.

2.2.7 Learning Rate and Optimizers
The goal of the training process of a model is to minimize the loss function, which leads to a
more accurate model, as seen in Section 2.1.1. The progression of the loss function is closely
tied to the learning rate, which decides how far it will adjust at each iteration. When calibrat-
ing the learning rate hyperparameter, it will either go towards converging to the minimum
point of the loss function or overshoot it. When the learning rate is too low, it requires frequent
updates to converge, which costs time, see Figure 2.8. When it is too high it causes erratic
updates which can diverge from the minimum point instead [Buduma and Locascio, 2017],
see Figure 2.9. A balanced value for the learning rate enables quick convergence but requires
trial and error to reach, see Figure 2.10.

22

2.2 Training Process

Figure 2.8: Learning rates that are too low cause frequent updates
and slow convergence to the minimum point.

Figure 2.9: Learning rates that are too high cause erratic updates and
divergence from the minimum point.

Figure 2.10: A balanced learning rate can quickly converge to the
minimum point.

Optimization algorithms are responsible for adjusting the model’s weights at each iteration to
minimize the loss function [Buduma and Locascio, 2017]. As explained in Section 2.1.1, when
wanting to minimize the loss, the gradient of the loss function is navigated downwards to-
wards a (global) minimum. The gradient is calculated at each iteration by computing the loss
and then reversing the resulting gradient to make it face downward.

The most widely used algorithm used for this purpose is gradient descent, see Figure 2.11.
It is limited by the fact that the learning rate is unchangeable during runtime and that it
risks becoming stuck in a local minimum point instead of the global minimum point. The
two currently most popular optimization algorithms are stochastic gradient descent (SGD) and
Adam, both of which will be described below.

23

2. Technical Background

Figure 2.11: A visualization of gradient descent. The terrain repre-
sents the placement of data points, and the paths represent the loss
function.

SGD
SGD is a variant of gradient descent. SGD calculates the gradient by performing an update for
each training sample, or minibatch. These frequent updates cause high fluctuations as it tries
to converge. A benefit of these fluctuations is that it allows SGD to escape local minimums,
with the drawback of potentially overshooting the global minimum [Ruder, 2016].

An issue with how SGD fluctuates is that it causes our loss function to not follow an opti-
mal path, which slows down our convergence. A technique that dampens the effect of this
issue is called momentum. Momentum works by increasing the momentum term when the
gradient points in the current direction, but decreases when the gradients change direction
[Ruder, 2016]. Since this results in larger step sizes for the current direction, the addition of
momentum may require lower learning rates [Buduma and Locascio, 2017]. See Figure 2.12
for a visualized comparison.

Figure 2.12: The figure on the left showcases SGD without momen-
tum, making slow progress. The figure on the right shows SGD
with momentum, converging faster to a minimum point. Source:
Genevieve B. Orr.

24

https://www.willamette.edu/~gorr/classes/cs449/momrate.html

2.3 ESG

Adam
Adaptive Moment Estimation (Adam) [Kingma and Ba, 2014] is an extension of gradient de-
scent that allows for an adaptive learning rate instead of a static one, as in the case of SGD. It
builds on the advantages of SGD’s momentum in combination with previous adaptive gra-
dient descent algorithms. By automatically decreasing the learning rate at each iteration,
Adam can help the loss function quickly converge in the beginning and then slow down as it
approaches the global minimum point.

A variant of Adam is AdamW [Loshchilov and Hutter, 2017], which improved the implemen-
tation of weight decay. Weight decay is the same as L2 regularization, but only when SGD is
used. With AdamW, weight decay instead gets a different equation, which improved the gen-
eralization performance of Adam on image classification datasets [Loshchilov and Hutter, 2017].

2.2.8 Learning Rate Schedulers
Learning Rate Schedulers (LRS) are frameworks that adjust the learning rate during the training
process of a model. While similar to adaptive optimization algorithms like Adam, they do
not affect any weights in the model but instead only the learning rate itself. The main draw
of using LRS is that they allow for the adjustment of the learning rate in combination with
SGD. However, LRS can still be used with adaptive optimization algorithms. Examples of
LRS are: linear decay, exponential decay, step-based decay and reduce on plateau.

The most popular LRS has been the reduce on plateau. It works by reducing the learning
rate by a factor between 2-10 when a metric stops improving, most often loss. It checks for
improvement at every epoch and uses a variable called patience to decide when to reduce the
learning rate. Patience is simply the number of epochs with no improvement.

2.3 ESG
Environmental, social, and governance (ESG) are criteria that can be applied to companies to
scout investment potential. By compiling data from a multitude of metrics relating to envi-
ronmental, social and governing factors, these companies can be assigned a score relating to
investment risks. There are multiple ESG standards published by different organizations, one
of which is the SASB standards [Value Reporting Foundation, 2022]. SASB uses six categories
to classify ESG: environment, social capital, human capital, business model & innovation,
and leadership & governance. These categories are then further divided into subcategories.
Furthermore, the SASB standards are industry-specific, meaning that they vary depending
on the industry. Further details can be seen in Appendix A.1.

25

2. Technical Background

2.4 Natural Language Processing
Natural Language Processing (NLP) is a branch connected to linguistics, computer science and
artificial intelligence. A principle is to aid computers in processing and understanding hu-
man language [Liddy, 2001]. Examples of NLP are translation of languages, recognizing and
understanding speech, and answering questions.

2.4.1 Sentiment Analysis
Through the use of NLP, analytics that measures sentiment in texts can be produced. The
most common sentiment takes the form of a polarity, e.g. positive, neutral, negative [Liu, 2020].
Sentiment analysis can be performed through either a rule-based approach or a machine learning
approach. The two approaches can also be combined for a hybrid solution [Hasan et al., 2018].

2.4.2 Rule-based Sentiment Analysis
A rule-based approach uses a pre-built lexicon with assigned polarity to each word. By analyzing
a corpus, a sentiment score can be assigned to each document, indicating the polarity of the text.
However, most solutions using this approach only considers the binary polarity expressed in
the text. By tuning the lexicon to also include the intensity of polarity, it can give a more
accurate sentiment score. A solution that implements this method is Valence Aware Dictionary
and sEntiment Reasoner (VADER). This is accomplished by incorporating five heuristics that
affect the sentiment intensity [Hutto and Gilbert, 2015].

2.4.3 Machine Learning-based Sentiment Analysis
In contrast to defining the model based on a lexicon, a machine learning model can develop
its own set of “rules” based on what is fed to the model during the training process. It can
then provide predictions on the sentiment for unseen text. However, this approach requires
pre-labelled data in the training phase [Gautam and Yadav, 2014]. This is a mostly manual
process that is both time-consuming and subjective since texts can be interpreted differently
depending on the person doing the labelling. There are different machine learning architec-
tures that can perform sentiment analysis, such as Long short-term memory (LSTM) and BERT.
LSTM is built on an RNN architecture while BERT is built on a transformer architecture.

2.4.4 Tokenization
Tokenization is the process of separating a text or sentence into tokens which can then be
processed into word embeddings. For NLP this step is important since most state-of-the-art
architectures process text at the token level. Tokenization can be performed with different
techniques e.g white space or dictionary/rule-based tokenization. Below is an example of
white space tokenization.

Input: the fox jumps over the lazy brown dog.
Output: (the), (fox), (jumps), (over), (the), (lazy), (brown), (dog)

26

2.4 Natural Language Processing

BPE and WordPiece tokenization are other techniques to tokenize an sentence. They not only
tokenize a sentence into words but can also split words into subwords, i.e. the root and the
affix are separated. To not lose the context of the split words, the second subword resulting
from the split starts of with two characters, "@@" for BPE and “##” for WordPiece, i.e. split-
ting the word “tokenizer” into “token” and “izer”, would result in “izer” being represented as
“##izer” if WordPiece is used.

2.4.5 Text Pre-processing
Pre-processing is used to prepare the data before it is used as input to the NLP model. This is
accomplished through cleaning and manipulating the data to reduce the amount of noise in
the corpus. While most NLP methods can handle a certain amount of noise, the reliability of
the results can be highly affected if it exceeds a threshold. Noise present in the corpus can sig-
nificantly impact the performance of BERT models during fine-tuning [Kumar et al., 2020].
There is a multitude of different approaches to pre-processing, some of which will be de-
scribed below.

A common pre-processing step is the removal of stop words. These are words such as “the”,
“an”, “so”, “a”. For most purposes regarding NLP, they do not have inherent meaning in a
corpus and may be discarded. Contextual machine learning models such as BERT can by them-
selves learn that stop words are unimportant, thus removing them manually is unnecessary
[Jianqiang and Xiaolin, 2017].

Other useful steps are the removal of punctuation, symbols, and numbers. In sentiment anal-
ysis, they carry no specific connotation, and similarly to stop words, they may be discarded.
While these steps may not directly impact the resulting sentiment analysis [Jianqiang and Xiaolin, 2017],
it is useful for decreasing the size of the corpus.

In a corpus, there will be occurrences of inflected words, e.g. playing, plays, and played. These
words can be normalized to their common root form, in this case, play. This can be accom-
plished through two different methods, stemming and lemmatization.

Stemming reduces a word to its root form by removing the suffix, which reduces the inflex-
ion. A drawback to this process is that the resulting root is not guaranteed to remain a valid
word. Stemming can be performed through different stemmers such as Porter or Lancaster.
Another way to stem a corpus is to use the BPE or WordPiece tokenizers explained in Sec-
tion 2.4.4. Lemmatization, in contrast, will reduce inflection through the use of vocabulary
and morphological analysis. This ensures that actual words are returned, in cases where this
is important. The drawback to this approach is added complexity and cost of operation. To
produce more accurate results with lemmatization, part-of-speech (POS) tags can be provided
as parameters. This entails associating every word in the text with an appropriate tag e.g,
verb, noun, adjective.

2.4.6 Term Frequency-Inverse Document Frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is the process of calculating the relevancy
of words in a given corpus. This is accomplished through two sub-processes: term frequency
(TF) and inverse document frequency (IDF).

27

2. Technical Background

Term frequency is the prevalence of terms within a document. It can be defined in several
ways, e.g boolean or logarithmic scaled “frequencies”. One way is to calculate the raw count of
the terms, as seen in Equation 2.5.

TF(t, d) =
ft,d∑

t′∈d ft′,d
(2.5)

Document frequency is the number of documents that contain a given term. The inverse docu-
ment frequency is calculated by the logarithm of the inverse document frequency, see Equa-
tion 2.6. The equation measures the importance of a term by giving less weight to frequent
terms and the opposite for unique words. Combining the TF and IDF equations will result
in the final equation of TF-IDF, see Equation 2.7.

IDF(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.6)

TFIDF(t, d,D) = tf(t, d) · idf(t,D) (2.7)

2.4.7 Embeddings
The corpus is represented in a text format which is not suitable for a machine learning model.
By converting the corpus to a numeric format, it can be used as input to the model. The
standard method of accomplishing this is by representing each word in the corpus as a vector.
This is one of the purposes of embeddings. The other purpose is to contain the meaning of the
words in a sentence, and their relationship with each other.

Word Embeddings
Word Embeddings are composed of short, dense vectors that can capture syntactic and seman-
tic connections between words. This means that words close in meaning will have simi-
lar vectors, e.g. “King - Man + Woman” results in a vector close in meaning to “Queen”
[Mikolov et al., 2013]. They also perform better in NLP tasks compared to sparse vectors
such as Bag of Words and TF-IDF [Jurafsky and Martin, 2021].

Word embeddings can either be static or contextual. With static word embeddings, a word will
always have a single vector representation. The drawback of this approach is that words can
have different meanings depending on the context, e.g. the bark of a dog, or the bark of a
tree. Contextual word embeddings produce different vector representations depending on
the sentence as a whole. These are produced by transformer-based models such as BERT.

28

2.5 Transformers

2.5 Transformers
As mentioned before, there are different architectures for solving NLP problems. The trans-
former is one such architecture, and has been found to work well with NLP and also computer
vision [Vaswani et al., 2017]. Since the transformer architecture is a complex structure, only
the most important parts of the transformer architecture will be covered.

Encoder-Decoder
NLP models often take word embeddings as inputs for their predictions. However, there is only
so much information available in a single word that has been converted to a word embedding.
Sentences, however, vary in length and contain multiple word embeddings, which makes
them difficult for the models to handle. A fixed size vector is much more convenient and
easier for the models; instead of multiple word embeddings, only a single sentence embedding
is wanted in some NLP tasks. A common way to create a sentence embedding is to calculate
the mean value of all the word embeddings, also know as mean pooling. However, sentences
that share the same words would get the same embeddings, while the structure of the sentence
could be different in a way that affects the meaning of that sentence.

Man bites dog.
Dog bites man.

While the two sentences above have different meanings, they would still get the same embed-
ding. This is where encoders and decoders come in. Encoders and decoders are both machine
learning models that can be used separately or connected together to create one big encoder-
decoder model.

Encoders are trained to take large input vectors and scale them down to smaller more compact
vectors. Hopefully doing so without losing any meaningful information. Decoders do the
opposite; they can take small encoded vectors and decompress them to generate new data.
To be able to create new data from the encoded vector the decoders need to have a “deep
understanding” of the encoded data.

It is the encoder’s ability to keep meaningful information while scaling down an input vector
that is favourable in the task of creating sentence embeddings. One way to create a sentence
embedding with encoders is to have multiple encoders placed sequentially. To begin creating
a sentence embedding, the first encoder is fed the first word of the sentence and a word
embedding of that word is generated as output. The next word in the sentence is then fed to
the next encoder together with the outputted word embedding from the first encoder. The
pattern is repeated until the last word in the sentence has been encoded. The output from
the last encoder can be seen as a sentence embedding.

29

2. Technical Background

Encoder Encoder Encoder

S
en

te
nc

e
em

be
dd

in
g

Wordembedding

Let's go home

Wordembedding Wordembedding

Figure 2.13: Example of how encoders can be used to create a sen-
tence embedding.

Self-Attention
Self-attention [Vaswani et al., 2017] is also a valuable feature of the transformer architecture
and is useful during NLP tasks. With the help of the self-attention mechanism and matrix
multiplication, transformer models such as BERT can learn what words are more relevant to
other words in a sentence. The self-attention mechanism functions on both the encoder
and decoder and produces an attention matrix that can be used by both respectively. Recur-
rent layers used inside encoders-decoders have been replaced by self-attention layers in BERT
[Vaswani et al., 2017]. Using self-attention layers has multiple benefits [Vaswani et al., 2017].
One benefit is reduced complexity. Another is that more of the computation can be paral-
lelized, therefore minimizing the number of sequential operations required. A third benefit
is the reduced path length between layers.

2.5.1 BERT
BERT [Devlin et al., 2018] is a transformer model that performs well on a variety of NLP tasks
such as question answering and sentence continuation as demonstrated by being evaluated
on the SQuAD v1.1, SQuAD v2.0 and SWAG benchmarks. By applying transfer learning, it
can be adapted to other NLP tasks such as text classification. Because of this, there are many
pre-trained models that can be used as described in Section 2.2.5. The architecture of BERT
differs slightly from that of normal transformer models, see Figure 2.14.

30

2.5 Transformers

Encoder 1

Output00 Output10 Output20 Outputn0

BE
R

T

[CLS] My First EX

Encoder 2

Output00 Output10 Output20 Outputn0

Encoder 12

EA EA EB EX

E0 E1 E2 En
Position

Embedding

Sentence
Embedding

ECLS EMy EFirst EX
Token

Embedding

Static
Embedding

Output01 Output11 Output21 Outputn1

E0 E1 E2 En

Output010 Output110 Output210 Outputn10

Contextualized
Embedding

Figure 2.14: Overview of BERT architecture and its inputs.

As input, BERT takes static word embeddings that have been tokenized using a WordPiece tok-
enizer, see Section 2.4.4. Each static word embedding also contains a position vector that lets
BERT understand a word’s position in the sentence. These position vectors help with context,
as it allows BERT to see which words are in close proximity to each other.

Each embedded word is then fed through 12 sequential encoders to create a new word embed-
ding that has more context in them than the first static word embedding. Note that encoders
in BERT are not used to scale sentences nor create sentence embeddings as per the example
in Section 2.5. Instead, they are used to contextualize the word embeddings while keeping
the word embeddings to a reasonable size. However, the problem with sentences being of
different lengths still persists as described in Section 2.5. To counter this, BERT limits the
number of tokens that can be inputted to 512. Should a sentence be longer than 512 tokens,

31

2. Technical Background

the rest is cut off. If instead, the sentence is too short, the rest is padded with embeddings
that do not affect performance or the result. The limit also means that the amount of con-
textual word embeddings BERT can output is 512. The contextualized word embeddings from
BERT can then be used for several NLP tasks.

2.5.2 BERT Pre-training
When BERT was pre-trained, supervised learning was not used. Instead, two other training meth-
ods were combined and used: Masked Language Modelling and Next Sentence Prediction. Worth
noting is that none of these methods requires any human-labelled data, just a large corpus.
The corpus BERT used for its training was the entire English Wikipedia library [Devlin et al., 2018].

Masked Language Modelling
When BERT was pre-trained with Masked Language Modelling, it was fed with complete sen-
tences, where a percentage of words had been masked with a [MASK] token. BERT was then
tasked to predict what words were removed by the mask. After the predictions were made,
the predicted sentences were then compared to the original sentences. By doing this com-
parison with both sentences, no data needed to be manually labelled. As long as the sen-
tences were grammatically correct, BERT would learn how to more accurately predict the
masked words and gain a greater understanding of the English language. A sentence contain-
ing masked words can be seen in Table 2.1.

Next Sentence Prediction
The other method used during BERT pre-training was Next Sentence Prediction. The focus of
this method is to let BERT score how well a sentence “works” and how grammatically correct
it is. To train for this, BERT was fed with multiple sentences and tasked to predict if they
followed each other or not. This method can be seen as a supervised learning method since
there needs to be some sort of labelled data to tell BERT if it chose the correct sentence or
not. The labelling for the dataset can, however, be automated.

To train BERT on this task, it needed some way of understanding that there was more than
one sentence being presented to it. It also needed some way of understanding the context of
the two sentences to be able to understand that they were related.

For BERT to understand that there were two different sentences, a [SEP] token is placed
between the sentences. With the help of the [SEP] token, a segment embedding vector is added
to each word embedding. Much like the positional embedding in each word, which tells BERT
what position the word has in a sentence, the segment embedding tells BERT what sentence the
word is in. The placing of the [SEP] token can be viewed in Table 2.1.

To understand the context of the two sentences, the [CLS] token was implemented. The
[CLS] token is added at the start of the first sentence as seen in Table 2.1 and then passed
through all the encoders to get its own embedding. BERT then uses the [CLS] embedding to
make its prediction of whether the second sentence connects with the first sentence. The
[CLS] embedding was therefore trained to understand multiple sentence contexts and their
relation to each other.

32

2.5 Transformers

Table 2.1: Example from [Devlin et al., 2018] of how a sentence is
constructed before it is forwarded to BERT. This allows BERT to
train on both tasks in parallell. The [CLS] token allows the model to
make a prediction of the IsNext boolean, indicating true or false.

Sentence IsNext
[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] True/False

2.5.3 Using BERT for Text Classification
As BERT was not trained specifically for text classification it might be difficult to understand
what purpose BERT has for sentiment analysis. However, as mentioned in Section 2.5.1,
BERT can perform well in a number of different NLP tasks. This is because BERT has a good
understanding of language on a broad level. To use BERT for other NLP tasks; the inputs can
be changed, additional output layers can be added, or both.

Since BERT is a large machine learning network, it has weights in each layer that can be adjusted.
However, since the weights have been trained to understand such a broad concept as language
they often do not need to be adjusted by much. Therefore, BERT can produce adequate
results even without adjusting the weights inside BERT. However, for text classification, it is
often beneficial to adjust the weights, since BERT is missing an output that can be seen as a
sentence embedding. As covered in Section 2.5, sentence embeddings are good as inputs for
models that perform text classification. In BERT the closest thing to a sentence embedding
is the output from the [CLS] token since it was pre-trained on vaguely keeping the context of
sentences in its embedding.

[Devlin et al., 2018] suggest that a decoder can be attached to the [CLS] output embedding
to make BERT predict any sort of label. Figure 2.15 illustrates what the architecture would
look like following this proposal. The classifier for predicting the label can then be trained
individually, either with or without adjusting the weights in BERT. If the internal weights
of BERT are adjusted for the purpose of text classification it can be viewed as morphing the
[CLS] embedding into a sentence embedding.

33

2. Technical Background

Figure 2.15: Suggested architecture for using BERT as a text classifier,
from [Devlin et al., 2018].

2.5.4 Flair
Flair [Akbik et al., 2019] is an NLP framework that offers access to several pre-trained NLP
transformer models to use for a different range of applications such as named entity recogni-
tion and text classification. Flair allows for such a different range by adding an untrained fully
connected layer to the transformer model which becomes the classifier that is later trained.
It also offers methods for simplifying the training and fine-tuning process, and an interface
for using and combining different embeddings.

2.5.5 PyTorch
PyTorch [Paszke et al., 2019] is an open-source machine learning framework built to follow
the design goals of the Python programming language. It is widely used in the computer
science research community, providing APIs and methods for building complete machine
learning models.

2.5.6 FinBERT
With a focus on the sentiment of financial text, FinBERT [Yang et al., 2020] is based on BERT
and further fine-tuned with the Financial Phrasebank [Malo et al., 2013] which contains 4500
sentences with financial terms.

34

2.6 Evaluating Machine Learning Models

2.5.7 DistilBERT-base-uncased-finetuned-SST-2
Recent trends in the development of newer transformer models are increased amounts of
parameters. While this often leads to better accuracy, they are also slower and harder to train.
[Sanh et al., 2019] created DistilBERT to counteract this. DistilBERT is a smaller version of
BERT but keeps almost all the understanding and performance [Sanh et al., 2019] of BERT.
As with FinBERT, see Section 2.5.6, DistilBERT was further fine-tuned to perform sentiment
analysis with a dataset that is smaller than the one used during DistilBERT’s pre-training.

2.5.8 DistilRoBERTa-base
RoBERTa [Liu et al., 2019] is a BERT model that has had its training process slightly altered
and is further pre-trained with a larger dataset than the original BERT[Devlin et al., 2018].
RoBERTa has been shown to be even more capable of understanding language than BERT
however the additional training also makes the model larger which in turn can make the
predictions slower. DistilRoBERTa fixes the slower prediction time by decreasing the size of
the model using the same method as DistilBERT [Sanh et al., 2019].

2.5.9 DistilRoBERTa-finetuned-financial-news
Like FinBERT in Section 2.5.6, this model is a further fine-tuned of a pre-trained BERT model,
however, the model that it is further fine-tuned on is DistilRoBERTa-base from Section 2.5.8.
Also like FinBERT the dataset used for the fine-tuning is the Financial Pharsbank dataset
[Malo et al., 2013].

2.6 Evaluating Machine Learning Models
There are different ways to evaluate machine learning models depending on what the user
intends to use the models for. Some users value performance over accuracy and vice versa. The
following subsections will describe ways to measure and evaluate machine learning models.

2.6.1 Accuracy
Accuracy is used as a base evaluation metric for a model. It is a measure of the amount of
correct predictions out of all the predictions made, see Equation 2.8. A drawback to this
method is that an imbalanced dataset can give a false certainty. It does not take into consid-
eration false negatives and false positives, instead only focusing on the correct predictions,
e.g. if 90% of people eat ice cream, a model would be evaluated as having 90% accuracy, even
if it wrongly predicts that people who eat icecream does not, and vice versa.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.8)

35

2. Technical Background

2.6.2 Recall and Precision
Recall & precision are metrics for analyzing predictions from a model. They are based on the
following terms of binary classification:

• True Positive (TP): Sentiment is correctly predicted as positive

• False Positive (FP): Sentiment is incorrectly predicted as positive

• False Negative (FN): Sentiment is incorrectly predicted as negative

• True Negative (TN): Sentiment is correctly predicted as negative

relevant elements

retrieved elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?Figure 2.16: Walber, Precision and recall, CC BY-SA 4.0

Precision is the amount of correctly predicted positives out of all positive predictions that are
made. This includes both true positives and false positives. In turn, recall is the amount of
correctly predicted positives based on the actual amount of positive samples, see Figure 2.16.
The equations for precision and recall can be seen in Equation 2.9.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2.9)

For example, imagine throwing a fishing net into a lake, and catch 80 out of 100 total fish in
that lake. That means the recall is 80%. However, if you also catch 80 rocks, that means the
precision is 50%. Half of what was catched is junk.

To visualize these values, a confusion matrix can be used to compare predictions made by the
model with the correct labels, see Figure 2.17. While binary classification with two labels uses
a 2x2 matrix, the addition of the "Neutral" label requires a 3x3 matrix.

36

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode

2.7 Related Work

Positive Negative

Positive True positive False positive

Negative False negative True negative
Actual

Predicted

Figure 2.17: Confusion matrix using binary sentiments, positive and
negative.

2.6.3 F1-score
F1-score is a metric that can be used for assessing the performance of a model. It is calculated
based on the results of both recall and precision. The F1-score can then be calculated by the
equation seen in Figure 2.10. The score ranges between 0 and 1, with 1 meaning that every
prediction is correct.

F1 = 2 ∗
precision ∗ recall
precision + recall

(2.10)

Important to note is that the F1-score is calculated separately for each class of labels, e.g
positive, negative, neutral. To get a combined score across all classes, they can be averaged in
three ways.

The first method is micro averaging, which gives a combined F1-score by counting the sum for
each class. With micro averaging, only the total amount of each sample is considered. This
means that it will favour the majority class since it contains the most amount of samples.

The second method is weighted averaging, which takes the mean of the F1-scores while includ-
ing the support of each class. This method gives a larger weight to the majority class.

The third method is macro averaging, which on the other hand takes the arithmetic mean of
the F1-scores. This means that each class is equally weighed. Given an imbalanced dataset, it
will highlight the minority classes more.

2.7 Related Work
ESG in the area of sentiment analysis is largely unexplored. However, one such work was
found, ESGBERT, which will be described below. Additionally, sentiment analysis for finan-
cial texts, in general, is closely related to ESG, which was explored by the authors of FinBERT.

2.7.1 Text classification for financial texts
[Yang et al., 2020] refers to [Howard and Ruder, 2018] when describing how further pre-training
a language model on a target domain improves eventual classification performance. The au-
thors further pre-trained BERT [Devlin et al., 2018] on the financial corpus TRC2-financial

37

2. Technical Background

which consists of 46143 documents. They then fine-tuned the model for sentiment analysis
on the corpus Financial Phrasebank which consists of 4845 sentences. Their results showed a
macro F1-score of 84% compared to 64% and 70% from LSTM and LSTM with ELMo, respec-
tively.

2.7.2 Text classification for ESG
[Mehra et al., 2022] based their work on the results from previous research on domain-specific
BERT models, one of which was FinBERT. They explored further pre-training BERT for their
domain-specific task of ESG sentiment analysis. Masked language modelling was used on re-
ports on financial performance (SEC Form 10-Q) from the Knowledge Hub of Accounting
for Sustainability [Accounting for Sustainability, 2022] to update the weights of BERT. Their
model was then fine-tuned on two classification tasks for sequence classification:

1. A change or no change in the environmental risk score of a company.

2. Positive or negative change in environmental risk scores of companies.

While ESG is broken down into environmental, social, and governance risks, [Mehra et al., 2022]
focused solely on environmental risk scores in their research. Furthermore, the risk scores
were based on how exposed a company are to the risks as well as how well they are managing
them.

Their results showed that ESGBERT achieved a 67.09% F1-score on the test set compared to
59.85% by BERT on task 1. ESGBERT additionally achieved a 79.3% F1-score on the test set
compared to 43.17% by BERT on task 2.

38

Chapter 3

Method and Analysis

This chapter covers how different solutions were implemented and how different libraries/frameworks
were chosen and used. It contains information about the dataset, how different models were
trained and what was done to optimise them.

3.1 Phases
The work in this thesis was divided into 5 phases. Initially, an Exploratory Data Analysis was
performed on the dataset, see Section 3.3, which was followed by implementing a preprocess-
ing pipeline, see Section 3.5. Next, baseline sentiment analysis was established using Zero-rule
classification, see Section 3.6. Then, VADER was implemented as a lexicographic solution, see
Section 3.7. Lastly, the transformer approach was developed which included training, hyper-
parameter tuning and fine-tuning, see Section 3.8.

3.2 Development
The main development method used to test and produce results in this thesis was proto-
typing. Different architectures were developed and tested in order to understand how they
worked and how they performed compared to each other. Initially, commonly used methods
were utilised and then, as development went on, more modern and in-depth methods were
tested. For prototyping, a more agile version of the Cross-industry standard process for data
mining (CRISP-DM) [IBM, 2021], see Figure 3.1 methodology was used. It was more agile in
the sense that instead of testing a single model at a time and following the pattern of CRISP-
DM, much of the work was done in parallel. Many models were tested at the same time and
evaluated against each other to narrow down the prototypes. Therefore, the CRISP-DM cycle

39

3. Method and Analysis

was followed more on some models than others as some would get outperformed by others
before the cycle could be repeated.

Figure 3.1: Diagram of the CRISP-DM method. Kenneth Jensen,
CRISP-DM Process Diagram, CC BY-SA 3.0

To facilitate a pipeline of pre-processing and model training, an application was programmed
using Python 3.8.13. The Flair framework v0.11 was integrated and setup for training, hyper-
parameter tuning and fine-tuning. While Flair comes pre-packaged with the PyTorch frame-
work, it does not come with CUDA included. PyTorch v1.11.0 was therefore reinstalled with
CUDA v11.3.

An EC2 instance was configured to enable faster training for the models and access to more
memory for bigger batch sizes. The instance had the following hardware:

• CPU: AMD EPYC 7R32

• GPU: NVIDIA A10G

• VRAM: 22 GB

• SYSTEM RAM: 16GB

The following pre-trained transformer models were downloaded from the Hugging Face li-
brary that were current as of 31 May 2022:

• DistilBERT-base-uncased-finetuned-SST-2

• FinBERT

• DistilRoBERTa-base

• DistilRoBERTa-finetuned-financial-news

40

https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode

3.3 Data Exploration

3.3 Data Exploration
The preliminary step before structuring a model is to first do an exploratory data analysis
(EDA) on the given dataset. This process gives insight into how the data is structured, and if
any corrections need to be made to ensure the model is trained correctly. These corrections
can be in the form of pre-processing the corpus or augmenting the dataset by increasing
the underrepresented labels with more examples. The following subsections will present the
EDA on the dataset used in this thesis.

3.3.1 Dataset
The dataset provided by Sanctify contained a total of 1000 articles, which included the titles,
summaries and texts for all the articles. The articles were classified by Sanctify as ESG-
related by using the SASB standards. It was decided to focus on using the text samples for the
sentiment analysis to maximize accuracy, resulting in a dataset of 1000 samples. The dataset
was labelled using five labels:

• Positive: Positive sentiment.

• Neutral: Neutral sentiment.

• Negative: Negative sentiment.

• Non-ESG: Text that does not contain ESG-related terms

• Trash: Text that is faulty, or missing

After removing duplicates and samples labelled "trash", the resulting dataset was reduced to
851 samples. The "Non-ESG" label was then merged with the "Neutral" label to simplify the
training process of the machine learning model. To get an understanding of which words
influences the different sentiments, TF-IDF was used to get a statistical analysis. To reduce
the scope of the analysis, it was used to produce the top 10 words for each sentiment, see Table
3.1. As can be seen, they share some common words such as "company" with each other. The
negative sentiment contains more company names such as "facebook" or "apple".

41

3. Method and Analysis

Term Weight
company 6.561626
energy 4.962647
statements 4.252362
business 3.545751
com 3.543007
forward 3.435693
year 3.412987
said 3.407047
looking 3.336220
new 3.285559

Term Weight
company 17.697416
stock 15.845728
earnings 15.130869
debt 13.058095
market 12.743678
year 12.309421
dividend 10.793883
zacks 10.011297
growth 9.907130
shares 9.494976

Term Weight
said 5.973998
company 5.315499
debt 4.059721
facebook 3.598327
apple 2.726536
year 2.668169
data 2.648217
reuters 2.625789
market 2.340214
stock 2.301205

Table 3.1: Top 10 common words for each sentiment. Left: Positive
sentiment, Middle: Neutral sentiment, Right: Negative sentiment

3.3.2 Label Distribution
Figure 3.2 shows the label distribution of the original dataset and after cleaning. As can be
seen, the distribution of the cleaned dataset is imbalanced in favour of the "Neutral" label.

Non-ESG
40.8%

Positive

23.3%

Negative18.0%

Neutral

16.7%

Trash

1.2%

Neutral
58.2%

Positive
23.6%

Negative

18.2%

Figure 3.2: The left figure shows the distribution of the original
dataset. The right figure shows the dataset after cleaning.

3.4 Pipeline
This section shows shows a general overview of the developed pipeline for sentiment analysis
in this thesis. See Figure 3.3. Texts from the dataset are preprocessed and then the model
makes its sentiment prediction on each.

42

3.5 Pre-processing

Model

���
Positive

Data

Augmentation

���
Negative

��
Neutral

Dataset split

&

Stratification

Pre-processing

Text sample

Train, Test, Validate

datasets

JSON Dataset

(Corpus) Noise-

removal

FastText

formatting

Prediction

Figure 3.3: Overview of the sentiment analysis pipeline.

3.4.1 Overview
In total, this thesis developed five different pipeline variations. One for zero-rule approach,
one for the lexicon approach and finally 3 for the transformer approaches. The first trans-
former approach used default parameters, the second used optimized hyperparameters by
running hyperparameter searches, and the final used fine-tuning.

3.5 Pre-processing
Before the dataset could be used to train the initial models, it needed to be pre-processed into
the correct corpus. Since the focus of the thesis was to only analyze the sentiment of the text
of the articles, samples containing titles and summaries were filtered out. The next step was
to process the actual texts. To minimize noise, non-alphabetic letters were removed, as well
as parts that were only used for formatting. The dataset was provided in a JavaScript Object
Notation (JSON) format, which was not compatible with our sentiment analysis approaches.
The dataset was instead converted to the FastText format, in which each line contains an
article’s text and corresponding label, see the following example.

__label__Positive "articletext"

Next, the corpus was split into three sets: train, test and val. They were split according to
a 60%, 20% and 20% ratio, which resulted in the train, test and val sets containing 451, 200,
200 samples respectively. By using stratification, see Section 2.2.2, these could be ensured to
remain representative of their parent dataset.

As can be seen in Figure 3.2, the "Neutral" label outweighs the other labels by a factor of more
than double. To counteract this imbalance, augmentation was used to increase the amount of
samples for the minority labels. NLPAug [Ma, 2019] is a library that provides various methods
for augmentation. Through NLPAug v1.1.10, a BERT model was used to augment enough
samples for the minority labels that would result in equal amounts of samples for all three
labels. The augmentation was only applied to the training set, and resulted in a sample size
of 786.

43

3. Method and Analysis

3.6 Zero-rule Classification
The Zero-rule classifier was used as a comparator. Since the "Neutral" label was the majority
label in the dataset, it was used to do a majority Zero-rule prediction on the test set, i.e. only
classify texts as neutral.

3.7 Lexicon
The lexicon baseline in this thesis was made to be as close as possible to the already existing
solution that Sanctify uses. It was, however, not a copy of their entire solution. Only the
Python library VADER, which handles the classifying of the articles, was implemented. The
VADER library comes as an out of the box sentiment analysis library that outputs a compound
score ranging from -1 to 1, where a score of 1 is the maximum positive score and -1 is the most
negative score a text can get. To be able to label articles as neutral, thresholds need to be set
for the different labels. The thresholds can be manually tuned if needed but for this thesis,
the threshold values were set to the recommended values as suggested on the VADER GitHub
webpage. The thresholds can be seen in Table 3.2. The entire test set was then passed through
VADER to get the predicted labels for each article in the set.

Table 3.2: Threshold for different labels as suggested on the VADER
GitHub webpage.

Label Threshold
Positive >= 0.05
Neutral > -0.05 and < 0.05
Negative <= -0.05

3.7.1 Lexicon with Word List
To optimise VADER to the ESG use case, a word list was implemented. Sanctify aided with
implementing the word list by suggesting some common ESG-terms to be added to the word
list. Since the words in the word list are in standard form only, the corpus had to be stemmed
to be able to use the word list. The test set was therefore stemmed and passed through VADER
again.

3.8 Transformers
The transformer approach as described in Section 2.5, is the main machine learning solution
explored in this thesis. Different transformer models were tested against each other to find
which one performed the best on the test set. All of the models tested are under the BERT
[Devlin et al., 2018] family tree and therefore have all the benefits of BERT, see Section 2.5.1.
Two of the models are improved versions of BERT that have been distilled to a smaller size, see
Section 2.5.8. One is also further fine-tuned on specific datasets, see Section2.5.9. The two
other models are both BERT models. One is a distilled and fine-tuned version of BERT, see

44

3.8 Transformers

Section 2.5.7 and the other is a standard BERT model fine-tuned to a dataset, see Section 2.5.6.
The four models were chosen from the Hugging Face library based on how many downloads
they had and what corpus they had previously been fine-tuned on. The DistilRoBERTa-base
model was picked as a sort of benchmark for the other models. See Table 3.3 for the name of
every model chosen and what differs them.

Table 3.3: Different models tested in this thesis.

Name Base model Distilled Fine-tuned
FinBERT BERT No Yes
DistilBERT-base-uncased-finetuned-SST-2 BERT Yes Yes
DistilRoBERTa-base RoBERTa Yes No
DistilRoBERTa-finetuned-financial-news RoBERTa Yes Yes

To narrow down the amount of models to proceed with, all models were trained on Flair’s de-
fault hyperparameters, see Table 3.4, and with fine-tuning set to off. Fine-tuning was turned
off to get a better understanding on how well the base models performed since fine-tuning
only changes the weights inside a BERT model slightly. Having a good performing base model
would likely increase the chances for a better result with fine-tuning turned on.

Table 3.4: Hyperparameters and their default values in Flair. Note
that there are more hyperparameters available in flair but these are
the ones that were used during the hyperparameter search in Section
3.8.1

Hyperparameter Value
Anneal factor 0.5
Pooling [CLS]
Dropout 0.1
Learning rate 0.1
Mini batch size 32
Optimizer SGD
Patience 3
Scheduler AnnealOnPlateau
Weight decay 0.01

Each model was trained with a maximum of 55 epochs ten times each, five times using the
[CLS] pooling as input to the classifier and five additional times using a mean pooling of
the contextualised word embeddings as input. The different inputs were tested because as
mentioned in Section 2.5.3, text classification is suggested to be performed using the [CLS]
token as input. However, this only holds true if the model is fine-tuned in order to adjust the
[CLS] token embedding. The mean pooling of the word embeddings was therefore tested to
see if the models would perform better with it since the models were not being fine-tuned.
The idea was also to take the best performing model regardless of the input pooling method
and then further train it with fine-tuning turned on to achieve the highest possible average
macro average F1-score.

45

3. Method and Analysis

3.8.1 Optimizing
In hopes of getting the most out of the models that were chosen from the default hyperpa-
rameter testing, all the chosen models went through a hyperparameter search, see Section
2.2.4. For this purpose, the library Hyperopt v0.2.7 [Bergstra et al., 2013] was used.

The hyperparameter search was done before turning fine-tuning on and with the input pool-
ing method that performed the best on the base models. The different hyperparameters and
their ranges or values that were tested during the search can be viewed in Table3.5.

Table 3.5: Hyperparameters and their values or ranges that were used
during the hyperparameter search.

Hyperparameter Value/Range
Anneal factor 0.45 – 0.80
Pooling Mean
Dropout 0.1 – 0.5
Learning rate 0.001 – 0.1
Mini batch size 8, 16, 32
Optimizer AdamW
Patience 3
Scheduler AnnealOnPlateau
Weight decay 0.001 - 0.01

Note that some hyperparameters only have one value, this is to limit the amount of search
runs that have to be made in order to save time. For the sake of time, parallelism of two search
runs was also implemented in Flair. This effectively halved the time it would take to complete
an entire hyperparameter search. Some hyperparameters were initially not available to add
to the search space and had to be manually added. The hyperparameters that had to be added
can be seen in Table 3.6.

Table 3.6: Hyperparameters that had to be manually added to the
search space.

Hyperparameter
Pooling
Dropout

Scheduler

After the hyperparameter search was concluded the suggested hyperparameters for each re-
spective model were used to train them five times each to establish a confidence interval. The
two models that had the highest average macro average F1-scores were chosen to be further
fine-tuned.

3.8.2 Fine-tuning
The two models that had the best average macro average F1-score after hyperparameter tun-
ing was then chosen to be further fine-tuned. The models that resulted from the training were

46

3.9 Evaluation

loaded in and fine-tuning was turned on. The input pooling method to the classifier which
previously had been mean was also changed to [CLS] because of reasons covered in Section
2.5.3. For the sake of curiosity mean pooling was also used and therefore the two models that
were chosen were fine-tuned ten times, five times with [CLS] pooling and five times with mean
pooling. The other hyperparameters used for fine-tuning were Flairs [Akbik et al., 2019] de-
fault hyperparameters for fine-tuning and can be viewed in Table 3.7.

After the fine-tuning was complete, the models that had the highest macro average F1-score
were evaluated by passing through the test set again. By using the resulting vector with all
the predictions along with the vector of all the true labels, a confusion matrix, see Figure
2.17, was made for the best version of both models. The confusion matrix enabled an easier
visualization of which labels that were classified incorrectly.

Table 3.7: Hyperparameters and their default values in Flair when
fine-tuning.

Hyperparameter Value
Anneal factor 0.5
Dropout 0.1
Learning rate 0.00005
Max epochs 10
Mini batch size 4
Optimizer AdamW
Patience 3
Scheduler LinearSchedulerWithWarmup
Warmup fraction 0.1
Weight decay 0.01

3.9 Evaluation
After each model had finished training the test set was passed through the model to get its
predictions on the classifications. The predictions were saved as a vector that was later used
when computing the performance of each model. The test set had a support of 36 negative,
117 neutral and 47 positive labeled texts from articles for a total of 200 texts. None of the
texts in the test set were augmented, all were original texts that went through pre-processing
to remove noise.

Since most of the texts in the test set had the neutral label followed by the positive and lastly
negative label, it meant that the test set was imbalanced. The most fair method to compare
the different models would therefore be the macro average F1-score. As mentioned in Section
2.6.3, the F1-score is a sort of summarization of both recall and precision into a single score.
The averaged macro average F1-score of the five training runs during each phase was used
when deciding what models to proceed with and further develop.

47

3. Method and Analysis

48

Chapter 4

Results

This chapter covers the various results achieved when training and testing different solutions
and models. First, the main result is presented which is then followed by a deeper look at
the result from the different phases mentioned in Section 3 such as baseline, hyperparameter
search and fine-tuning. The results were evaluated based on the test set, of which the support
was 200 samples. The main result, which is the best macro average F1-scores achieved by each
approach in this thesis can be seen in Table 4.1, where the bold result is the absolute highest
average F1-score achieved. Worth noting is that all the results presented from the transformer
approach in Table 4.1 were achieved with Flair’s default hyperparameters.

Table 4.1: The highest macro average F1-score achieved by the dif-
ferent approaches.

Name Type Macro avg F1-score
Zero-rule classification Baseline 0.246
VADER with Word list Lexicon-based 0.309
VADER Lexicon-based 0.312
DistilBERT-base-uncased-finetuned-SST-2 Transformer 0.727
DistilRoBERTa-base Transformer 0.780
FinBERT Transformer 0.802
DistilRoBERTa-finetuned-financial-news Transformer 0.804

Figure 4.1 shows an confusion matrix from the model that had the highest macro average
F1-score as can be seen in Table 4.1.

49

4. Results

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l

30
83.33%

5
13.89%

1
2.78%

6
5.13%

100
85.47%

11
9.40%

3
6.38%

9
19.15%

35
74.47%

Figure 4.1: Confusion matrix from DistilRoBERTa-finetuned-financial-
news that achieved the highest macro average F1-score of 0.804. The
percentages sum up to 100% on the horizontal axis for each row. The
dark diagonal cells highlight the amount of correct predictions.

4.1 Zero-rule Classification
Table 4.2 shows the classification report from the Zero-rule classification that was explained
in Section 3.6. As can be seen, by the recall for the neutral label is 1 and 0 for the other
two labels, it only classifies texts as neutral. Note that since the macro average emphasises
all three labels equally in the test set, the macro average recall is 0.333, which means that it
correctly classified a third of all the labels in the set.

Table 4.2: Zero-rule classification report.

Precision Recall F1-score Support
Negative 0.000 0.000 0.000 36
Neutral 0.585 1.000 0.738 117
Positive 0.000 0.000 0.000 47
Macro avg 0.195 0.333 0.246 200

4.2 Lexicon
The lexicon approach was made with VADER as covered in Section 3.7. Table 4.3 shows a
classification report that was generated after the test set had been iterated through. The

50

4.2 Lexicon

classification report shows precision and recall for the different labels as well as the support
for each label. It also shows the overall accuracy of the solution as well as the macro average
F1-score. Note that VADER is not a machine learning model but since it can also generate
classifications it can be evaluated with F1-score. The low recall score for the neutral label is
worth noting since it means that VADER has a hard time classifying something as neutral.
On the other hand, the precision for neutral is high at 0.750 meaning when it classifies it is
often correct.

Table 4.3: VADER classification report.

Precision Recall F1-score Support
Negative 0.536 0.417 0.469 36
Neutral 0.750 0.026 0.050 117
Positive 0.268 0.957 0.419 47
Macro avg 0.518 0.467 0.312 200

4.2.1 Lexicon with Word List
Table 4.4 shows the resulting macro average F1-scores, recall and precision just like in Table
4.3, however, the results are now from classifications from VADER with an added word list.
VADER with the word list has even lower neutral recall than VADER without the word list.

Table 4.4: VADER with word list classification report.

Precision Recall F1-score Support
Negative 0.471 0.444 0.457 36
Neutral 1.000 0.017 0.034 117
Positive 0.280 0.979 0.436 47
Macro avg 0.584 0.480 0.309 200

Table 4.5 shows comparison between VADER, VADER with a word list and Zero-rule classifi-
cation. The precision and recall in Table 4.5 are the macro averages for all the labels in the
test set. The values that are highlighted in bold are the highest number in that respective
column. Worth noting is that the accuracy for Zero-rule classification is only that high be-
cause accuracy does not take into account classifications that were wrong. The precision is
a much more accurate measure of how well the approach could classify texts but still, the
macro average F1-score is the best indicator of how good an approach is and here VADER is
the best.

Table 4.5: Comparison between results of VADER and VADER with
word list and Zero-rule classification.

Model Accuracy F1-score Precision Recall
VADER 0.315 0.312 0.518 0.467
VADER + word list 0.320 0.309 0.584 0.480
Zero-rule classification 0.585 0.246 0.195 0.333

51

4. Results

4.3 Transformers - Default
The Table 4.6 shows the four first models that were chosen and what their average accuracy
and average macro average F1-score resulted in after being trained with Flair’s default hyper-
parameters. The table is split into a section where the models were trained with [CLS] input
pooling and another where they were trained on mean input pooling. The bold results are
the best result of average macro average F1-score and accuracy witch each pooling method.
In all tables and figures a confidence value of 95% was used to calculate the margin of error.
Worth noting is that all the models except DistilRoBERTa-base, performed better with mean
pooling than CLS. Figure 4.2 is a visual representation of the average macro average F1-scores
presented in Table 4.6 for a better understanding of the difference in scores.

Table 4.6: Average macro average F1-score and average accuracy of
different transformer models that were trained with Flair’s default,
see Table 3.4 hyperparameters, once with [CLS] pooling and once
with mean pooling.

CLS MEAN
Model Accuracy F1-score Accuracy F1-score

FinBERT 0.759 ± 0.017 0.723 ± 0.014 0.801 ± 0.008 0.767 ± 0.012
DistilBERT-
base-uncased-
finetuned-SST-2

0.718 ± 0.004 0.678 ± 0.018 0.746 ± 0.009 0.712 ± 0.013

DistilRoBERTa-
base

0.773 ± 0.012 0.747 ± 0.016 0.766 ± 0.020 0.744 ± 0.016

DistilRoBERTa-
finetuned-
financial-news

0.774 ± 0.015 0.731 ± 0.004 0.818 ± 0.010 0.789 ± 0.011

52

4.3 Transformers - Default

FinBERT DistilBERT-
base-

uncased-
finetuned-

SST-2

DistilRoBERTa-
base

DistilRoBERTa-
finetuned-
financial-

news

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

F1
-s

co
re

mean
cls

Figure 4.2: Comparison of the average macro average F1-scores be-
tween the models trained with Flair’s default hyperparameters and
with different pooling methods.

4.3.1 Transformers - Optimized
Tables 4.7, 4.8, and 4.9 shows the suggested hyperparameters from the hyperparameter search.

Table 4.7: The suggested hyperparameters for FinBERT after the hy-
perparameter search.

Hyperparameter Value
Anneal factor 0.7
Pooling Mean
Dropout 0.4
Learning rate 0.00107
Mini batch size 32
Optimizer AdamW
Patience 3
Scheduler AnnealOnPlateau
Weight decay 0.00255

53

4. Results

Table 4.8: The suggested hyperparameters for DistilRoBERTa-base af-
ter the hyperparameter search.

Hyperparameter Value
Anneal factor 0.5
Pooling Mean
Dropout 0.4
Learning rate 0.01670
Mini batch size 32
Optimizer AdamW
Patience 3
Scheduler AnnealOnPlateau
Weight decay 0.00255

Table 4.9: The suggested hyperparameters for DistilRoBERTa-
finetuned-financial-news after the hyperparameter search.

Hyperparameter Value
Anneal factor 0.55
Pooling Mean
Dropout 0.1
Learning rate 0.00524
Mini batch size 32
Optimizer AdamW
Patience 3
Scheduler AnnealOnPlateau
Weight decay 0.00648

Table 4.10 shows the results from the models trained with their respective hyperparameters
from the hyperparameter search. The numbers in bold are the highest number in their respec-
tive column. All models were trained five times using mean pooling. All tables and figures
used a confidence value of 95% was to calculate the margin of error. Figure 4.3 shows a com-
parison of average macro average F1-scores between these models. DistilRoBERTa-finetuned-
financial-news again outperforms the other models although the average macro average F1-
score is lower than what it was for the same model with default hyperparameters, as can be
seen in Table 4.6.

Table 4.10: Average accuracy and average macro average F1-scores
of the models trained with the hyperparameters that resulted from
the hyperparameter search.

Model Accuracy F1-score
FinBERT 0.788 ± 0.006 0.761 ± 0.008
DistilRoBERTa-base 0.787 ± 0.018 0.744 ± 0.011
DistilRoBERTa-finetuned-financial-news 0.811 ± 0.013 0.781 ± 0.012

54

4.3 Transformers - Default

FinBERT DistilRoBERTa-
base

DistilRoBERTa-
finetuned-
financial-

news

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

F1
-s

co
re

Figure 4.3: Comparison of the average macro average F1-scores be-
tween the models with tuned hyperparameters.

4.3.2 Transformers - Fine-tuned
Tables 4.11 and 4.12 show the results after fine-tuning FinBERT and DistilRoBERTa-finetuned-
financial-news. The values highlighted in bold shows the highest value in that column. Figure
4.4 shows a graphical representation of these tables. Figures 4.5 and 4.6 show the confusion
matrices for the two best fine-tuned models. Tables 4.11, 4.12, and Figure 4.4 used a con-
fidence value of 95% was to calculate the margin of error. With [CLS] pooling, FinBERT is
superior, however with mean pooling the results are mixed but ultimately FinBERT outper-
forms DistilRoBERTa-finetuned-financial-news in terms average macro average F1-score.

Table 4.11: Comparison of average accuracy, macro F1-scores, macro
recall, and macro precision between the fine-tuned models FinBERT
and DistilRoBERTa-finetuned-financial-news, with [CLS] pooling.

[CLS] Pooling
Model Accuracy F1-score Precision Recall

FinBERT 0.795 ± 0.016 0.763 ± 0.023 0.757 ± 0.020 0.781 ± 0.032
DistilRoBERTa-
finetuned-
financial-news

0.793 ± 0.019 0.744 ± 0.024 0.753 ± 0.027 0.744 ± 0.025

55

4. Results

Table 4.12: Comparison of average accuracy, macro F1-scores, macro
recall, and macro precision between the fine-tuned models FinBERT
and DistilRoBERTa-finetuned-financial-news, with mean pooling.

Mean Pooling
Model Accuracy F1-score Precision Recall

FinBERT 0.794 ± 0.015 0.759 ± 0.022 0.755 ± 0.021 0.768 ± 0.019
DistilRoBERTa-
finetuned-
financial-news

0.795 ± 0.013 0.757 ± 0.016 0.769 ± 0.021 0.757 ± 0.015

FinBERT DistilRoBERTa-
finetuned-
financial-

news

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

F1
-s

co
re

mean
cls

Figure 4.4: Comparison between the average macro average
F1-scores of the finetuned models FinBERT and DistilRoBERTa-
finetuned-financial-news with different pooling methods.

56

4.3 Transformers - Default

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l
33

91.67%
3

8.33%
0

0.00%

12
10.26%

95
81.20%

10
8.55%

4
8.51%

7
14.89%

36
76.60%

Figure 4.5: Confusion matrix for the best performing fine-tuned Fin-
BERT model. The percentages sum up to 100% on the horizontal axis
for each row. The dark diagonal cells highlight the amount of cor-
rect predictions.

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l

30
83.33%

4
11.11%

2
5.56%

5
4.27%

103
88.03%

9
7.69%

3
6.38%

13
27.66%

31
65.96%

Figure 4.6: Confusion matrix for the best performing fine-tuned
DistilRoBERTa-finetuned-financial-news model. The percentages sum
up to 100% on the horizontal axis for each row. The dark diagonal
cells highlight the amount of correct predictions.

57

4. Results

58

Chapter 5

Discussion

This chapter will discuss the various findings and results from Section 4. It will discuss
what the results mean, and delve into some findings that stand out or may be of interest and
hypotheses as to why they affect the results.

5.1 Comparison of Different Approaches
As can be seen in Table 4.1 the transformer solution outperforms the lexicon solution. Even
the worst transformer model, DistilBERT-base-uncased-finetuned-SST-2, outperformed VADER
in terms of macro average F1-score. Overall the performance of the lexicon approach was
poor in comparison to the machine learning approach. With that said, VADER is still better
than only guessing a single label, as the Zero-rule classification was the worst in terms of macro
average F1-score.

5.1.1 Where VADER Fails
The biggest reason for VADER’s low macro average F1-score can be attributed to its inability
to classify a text as neutral. As seen in both Table 4.3 and 4.4 the recall for neutral is low.
While the macro average F1-score equalizes the evaluation of the labels in the test set, the
low amount of recall of the neutral label will still bring the macro average F1-score down sig-
nificantly. The precision for the neutral labels is however high, indicating that when VADER
classifies something as neutral it is most often correct. Taking both these things into con-
sideration it can be concluded that the threshold for classifying a text as neutral may be too
narrow.

The word list that was implemented into VADER in Section 3.7.1 did not help VADER achieve

59

5. Discussion

any higher scores, instead, it had the opposite effect and lowered the macro average F1-score.
As can be seen inTable 4.4 the accuracy goes up, meaning it is more often classified correctly
however the recall of neutral labels is even worse.

VADER seems to be biased towards the positive label since the recall in both Table 4.3 and 4.4
is high, almost being 1, but the precision is the lowest out of any label precision. The positive
bias coupled together with the low recall on the neutral label could mean that neutral text
often gets classified as positive texts.

5.2 Observations Using Transformers
All models tested in the transformer approach performed somewhat equally with the ex-
ception of the DistilBERT-base-uncased-finetuned-SST-2 model. As covered in Section 3.8, the
models that had the highest average macro average F1-score were selected to be further im-
proved with hyperparameter searching and tuning. However, as can be seen in Table 4.10,
the models that were trained with the found hyperparameters did not improve any of the
models. Similar can be said about fine-tuning. Neither fine-tuning with [CLS] pooling nor
mean pooling improved any model over using mean pooling with default hyperparameters.
The following subsections will be covering potential reasons.

5.2.1 Hyperparameter Tuning
When training the models with the hyperparameters found in the hyperparameter search the
hope was to see an improvement in the macro average F1-score. As covered in Section 5.2
this was not the case, instead, the hyperparameters barely affected the macro F1-score. There
are a number of reasons why this might be.

The most plausible explanation is the dataset. Whether the amount of text samples were too
few or contained too little variation in the examples is hard to say. What can be said is that
even with the found hyperparameters the loss of the validation set did not go any further
down than what it did when training the models with the default hyperparameters. The
found hyperparameters did however make the validation loss go down faster. The models,
therefore, needed fewer epochs to reach the same loss as with the default hyperparameters.

Because of time limitations, the hyperparameter search was only run once for each model.
This may not have given the models enough trials to zero in on the optimal values for the
hyperparameters. Additionally, the search space might have been too large for the number
of trials that were run. It might be beneficial to narrow down the search space and run the
hyperparameter search more than once.

5.2.2 Fine-tuning
Since BERT is a model primarily trained for transfer learning, the use of fine-tuning is rec-
ommended to have a model perform well in the programmers’ specific use case, however in
this thesis fine-tuning did not amount to any improvement over the models that were trained

60

5.2 Observations Using Transformers

with the default hyperparameters as can be seen in Figure 4.4. A possible reason for this is
that the fine-tuned models were only trained with Flair’s default fine-tuning parameters.

5.2.3 CLS Vs MEAN
In Table 4.6 it can be seen that using [CLS] as an input pooling produces worse results than
using mean pooling, which was recurring in this thesis. [CLS] pooling only beats mean pooling
once and can be viewed in Figure 4.4. The most obvious reason for this is as mentioned in
Section 2.2.5, [CLS] pooling really only becomes a valid input to the classifier after the model
has been fine-tuned. However even with the one exception where [CLS] beat mean pooling
all the top three models used mean pooling for their classifier input.

Again the possibility that the dataset is too small may play a role in this or it may be because of
the hyperparameters used when fine-tuning. It can be said however that since mean pooling
performs just as well or even better than [CLS] pooling, mean pooling might be preferred if
the programmer does not intend to fine-tune the model to a specific use case.

5.2.4 Confusion Matrices
As can be seen in Figure 4.5, Figure 4.6, and Figure 4.1the different models perform differ-
ently on the test set. If the numbers in the top right and bottom left corner are high, it would
mean that the model is unstable and often classify polar opposite of the actual labels which
is not wanted.

As can be seen in Figure 4.5 the top right and bottom left are almost empty. Instead, the most
incorrect classifications are to the middle left and middle right of the neutral label, followed
by the bottom middle and top middle. While this is not desirable, it is better than guessing
positive texts as negative and vice versa.

In Figure 4.6 the model produces a more equal spread. This means that there is not a specific
label the model has trouble with more than that it is slightly unsure on all of them. As long
as the unsure numbers are small this might be acceptable. The bottom middle and middle
right are in comparison larger than the other wrongful classifications, however as discussed
earlier, it is not ideal but it is better than the corners. It shows that the model has some
trouble classifying positive texts as neutra and vice versal.

The model in Figure 4.2, which had the highest macro average F1-score is also balanced in
the predictions, with the left and right corner being low numbers. Since both the model in
Figure 4.2 and 4.6 has DistilRoBERTa-finetuned-financial-news as the base model they are the
closest that can be compared. The model in Figure 4.2 performs better on the “Positive” label
as can be seen when looking in the bottom middle which is lower and the bottom right which
is higher than the model in Figure 4.6. So in comparison the model that was not fine-tuned
performed better on the positive labels but worse on the neutral one, on the negative label
they are about the same however the non fine-tuned model classified one less negative text
as a positive one. The differences are small but since the dataset is not that large either the
small differences still affect the macro average F1-score.

In conclusion, the model in Figure 4.5 has a hard time classifying neutral label texts, often

61

5. Discussion

classifying them as either negative or positive. The model in Figure 4.6 has a hard time
classifying neutral and positive texts, often switching them around, i.e. classifying neutral
texts as positive and positive texts as neutral. The final and best model in Figure 4.2 has the
same problem but is slightly better towards the positive sentiment.

What causes the difference is unknown. Since the models were trained on the same dataset it
can be ruled out that it has anything to do with the difference. The most obvious difference
is that the models do not share the same base model, one being BERT and the other two being
RoBERTa. BERT seems to have a harder time correctly classifying something as neutral, while
RoBERTa makes more misclassifications on the positive and negative labels. With this said, a
model which classified everything correctly is remarkable and hard to get.

5.2.5 Analysis on Misclassified Texts
In Figure 4.1 the top right and bottom left corner numbers are relatively low in comparison
to the other numbers which is good. When looking at the texts that were wrongly classified
in the left corner, i.e. the texts that were classified as negative when they were pre-labeled as
positive, no apparent pattern could be detected if compared to other texts that were correctly
classified. Nonetheless, if not compared to the other texts, then some observations can be
made.

The first observation is that all the texts had many mentions of company names and places
in them. The second observation is that two of the texts had what could be considered as
noise since non-english words were present in the texts. The third and final observation is
that all the texts generally had very negative sentiment when looking at them objectively.
Many negative words were present and in general the texts often brought up examples of
negative events such as controversies or how something badly affects the environment. Only
a small portion of the texts could be seen as positive for a certain company from an ESG
point-of-view.

Since there was only one text that was misclassified as positive when it was pre-labeled as
negative, no comparison can be made with other texts. However, by viewing the text it is very
clear that the text is negative and that the pre-label is correct. As to why it was classified as a
positive text is unknown and would require further investigations into each word’s individual
weight. To be noted is that only the misclassified texts from the very best model were looked
at and therefore the hypothesis discussed above only apply to that specific model.

62

Chapter 6

Conclusion

In this thesis, a corpus of ESG-related news articles were used to train four transformer-based
machine learning models. The objective was to predict the sentiment of the articles positive,
neutral or negative with a higher accuracy than the lexicographical solutions.

Compared to the lexicographical solutions explored in this thesis, the results show that BERT-
based models perform markedly better in the sentiment classification task for the ESG dataset
used in this thesis. The average macro average F1-score of each model was evaluated after 10
runs, to establish a confidence interval for each pooling method. From a selection of four
initial models, the best performing was selected in each iteration for hyperparameter tuning
and fine-tuning. The final models selected for fine-tuning were the models DistilRoBERTa-
finetuned-financial-news and FinBERT. DistilRoBERTa-finetuned-financial-news achieved the high-
est macro average F1-scores of 0.804 from being trained with Flair’s default hyperparameters.

A learning experience from the duration of this thesis was the realization of the minor impact
hyperparameter tuning and fine-tuning had on the final results. In hindsight, it would have
been more promising to explore more models in their default state, with a focus on more
pre-training.

6.1 Reflection of Ethical Aspects
A possible social benefit from this thesis is the increased insight and visibility from the use of
sentiment analysis in the area of ESG. As mentioned in Section 1.1, most pollution comes from
a minority of companies. Reduced investment from a poor ESG-score may lead to positive
changes for the climate.

The ML model used in this thesis used publicly available news articles as the basis of training,

63

6. Conclusion

which may lead to issues if more ESG-related models are released on the market. Companies
who suspect a poor ESG-rating may attempt to increase the amount of positive news about
their company, which could introduce biases in future ML models.

6.2 Answers to Research Questions
At the beginning of this thesis, the aim was to be able to answer the research questions stated
in Section 1.4, the answers to the questions are as follows:

• How is state-of-the-art sentimental analysis done currently?
Current state-of-the-art machine learning models for sentiment analysis are evalu-
ated using common benchmarks. For most benchmarks, transformer-based models
achieved the highest performance [PapersWithCode, 2022].

• What tools can be used for a machine learning solution?
Machine learning solutions for sentiment analysis are mainly done through two dif-
ferent approaches, LSTM or transformers. In this thesis, it was decided to focus on
transformers since research showed increased performance compared to solutions us-
ing LSTM [Colón-Ruiz and Segura-Bedmar, 2020]. The Flair framework simplified the
process of fine-tuning a selection of pre-trained models from Hugging Face.

• How should different solutions be compared?
In Section 2.6, several methods of evaluating the results from a model were described.
Accuracy can give a good indication of how the model is performing when the test
set is balanced and missed classifications are not that important. Should the test set
be imbalanced and/or the classifications be of importance then the macro average F1-
score is a much more accurate and telling metric to evaluate a model. The dataset used
in this thesis was imbalanced in favour of the neutral label as described in Section 3.5.
As it was evaluated that all three labels were to be equally weighed, the macro average
F1-score was used as the main evaluation metric.

• How can a transformer model be optimized for text classification?
With the initial step of transfer learning, a pre-trained model can be used, saving time
and resources compared to developing a custom model from scratch. Furthermore, the
pre-training can be extended by using the dataset intended for the NLP task as done
in Section 2.7. By then tuning the hyperparameters, the model may achieve faster or
better convergence to a minimum point in the loss curve. Finally, with fine-tuning,
the model’s embeddings may be better adapted to the dataset it is trained on.

• What tools exist that can augment an ESG-based dataset for NLP?
To augment a dataset there are two options, to modify it, or increase the quantity.
Modification may be in the form of pre-processing, which can involve removing noise
that adversely impacts the performance of a model. Quantity may be changed in the
form of text augmentation, increasing the amount of data that is fed to the model,
which may increase performance.

64

6.3 Future Work

6.3 Future Work
This section will describe potential future improvements to the results in this thesis. The
following subsections will be topics that were either out of scope for this thesis or dismissed
because of a lack of time.

6.3.1 Dataset Size
For this thesis, a limitation was the size of the labelled dataset. Since most research shows in-
creased performance when a model is trained with large datasets [Mutuvi et al., 2020] [Adadi, 2021],
further research with larger datasets with ESG-related news articles is warranted. Alterna-
tively, further experimentation with the augmentation of the dataset may be explored. In
this thesis, augmentation was mainly used to achieve a balanced dataset for all the labels,
however, it could also be utilized to expand the dataset further.

6.3.2 Further Pre-training
As shown in Section 2.7, further pre-training BERT with the dataset produced superior per-
formance. It would be interesting to follow the same methodology with the dataset used in
this thesis.

6.3.3 Fine-tuning During Hyperparameter Tuning
During the hyperparameter search phase, fine-tuning was disabled, which meant that the
embedding layers were frozen. It could be the case that enabling fine-tuning during search-
ing could result in a hyperparameter combination that yields a higher F1-score than those
presented. Additionally, when the ranges for the hyperparameters were selected, values that
could be more beneficial during fine-tuning were not considered. A future improvement
could be to perform more hyperparameter searching for the fine-tuning step, as it could lead
to an increase in performance.

6.3.4 VADER Thresholds
As seen in Table 4.3, VADER performed poorly on the neutral sentiment. Since the sentiment
classification depends on the thresholds, further tweaking could result in better performance.

6.3.5 VADER pre-processing
To improve VADER’s classifications further text pre-processing might be required. For ex-
ample company names might be very loaded with either positive of negative sentiment and
therefore might affect the compound score given by VADER. To remove the company names
and names of places and people might also be beneficial the transformer approach.

65

6. Conclusion

6.3.6 Piecewise Predictions
When analysing the dataset, it was observed that most articles contained hundreds of words,
with some exceeding BERT’s token limit of 512. It could be the case that performance suf-
fered because the true sentiments of the articles were not conveyed. Future exploration could
examine splitting the articles into paragraphs or sentences, and then making predictions on
each. By then combining the predictions, the final result may be more accurate.

6.3.7 LSTM
To reduce the scope of this thesis, only transformers were explored as the machine learning
approach. However, it could be the case that an LSTM-based model could offer better perfor-
mance on the dataset. According to [Colón-Ruiz and Segura-Bedmar, 2020], an LSTM-based
model achieved acceptable results while requiring less training time.

6.3.8 Machine Learning Bias
When a dataset used for training a model contains biases, these biases may affect the pre-
dictions made by a model [Mehrabi et al., 2021]. For the dataset used in this thesis, this bias
could be company names. If a company name is more often occurring under articles labelled
negative, the model may associate that company name with a negative sentiment. A future
improvement can be to remove the company names from the training set to remove this
potential source of bias.

66

Chapter 7

Terminology

The following list contains terms that either are not fully explained in this thesis or provide
a summarized explanation for the terms.

• Corpus: A collection of large amounts of texts, and can be used in a machine learning
context for NLP tasks. The corpus can be annotated, which means a tag is added for
each document, e.g. annotating labels for the use in sentiment analysis.

• Support: Number of occurrences of labels in the specified dataset.

• Classification layer: A classification layer (or classifier) is added on top of BERT’s own
layers if the NLP task involves classification, such as sentiment analysis. The most
common method is to use a linear layer, which transforms X dimensions matrices to Y
dimensions matrices. For sentiment analysis this means that BERT’s 512 input dimen-
sions will be output as the number of labels in the dataset, e.g. 3 output dimensions
for the labels "Positive", "Neutral", and "Negative".

• Pooling: Affects how the sentence embedding is created for BERT before it is sent
to the classifier. Can either be "CLS" or an aggregation of the contextualised word
embeddings like "mean" or "max".

• Batch size: Number of training samples that are utilized during an iteration. Higher
values require more GPU memory during training.

• NLP: Natural Language Processing are sets of methods that are used for aiding software
in understanding the human language.

• ML: ML, or Machine Learning, is a field of study branching from AI that enables com-
puters to “self-learn” by using different algorithms that can detect patterns in data.

67

7. Terminology

• AI: Artificial intelligence is when a machine displays intelligence otherwise found in
animals or humans. This intelligence may be expressed as the ability to rationalize and
take decisions that achieve specific goals.

• VADER: Python library for processing textual data. Features rule-based sentiment
analysis.

• BERT: Short for Bidirectional Encoder Representations from Transformers, BERT is a
transformer-based machine learning model that specializes in NLP.

• RoBERTa: A model based on BERT that modified the pre-training phase with addi-
tional data and techniques that improved performance for several datasets.

• Sentiment Analysis: Analytics based on the use of natural language processing (NLP)
in order to gauge user sentiment towards a given subject. This sentiment can either be
positive, negative or neutral.

• TF-IDF: Short for Term Frequency-Inverse Document Frequency is the process of cal-
culating the relevancy of words in a given corpus.

68

References

[Accounting for Sustainability, 2022] Accounting for Sustainability (2022). Knowledge hub.
(accessed May 25, 2022) https://www.accountingforsustainability.org/en/
index.html.

[Adadi, 2021] Adadi, A. (2021). A survey on data-efficient algorithms in big data era. Journal
of Big Data, 8:1–54. (accessed June 6, 2022).

[Akbik et al., 2019] Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and Voll-
graf, R. (2019). Flair: An easy-to-use framework for state-of-the-art nlp. In NAACL 2019,
2019 Annual Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 54–59.

[Amazon, 2021] Amazon (2021). Amazon EC2. (accessed May 25, 2022) https://aws.
amazon.com/ec2/.

[Bergstra et al., 2013] Bergstra, J., Yamins, D., and Cox, D. (2013). Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision architectures.
In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 115–123,
Atlanta, Georgia, USA. PMLR.

[Buduma and Locascio, 2017] Buduma, N. and Locascio, N. (2017). Fundamentals of deep learn-
ing : designing next-generation machine intelligence algorithms, 1st Ed. O’Reilly Media.

[Colón-Ruiz and Segura-Bedmar, 2020] Colón-Ruiz, C. and Segura-Bedmar, I. (2020). Com-
paring deep learning architectures for sentiment analysis on drug reviews. Journal of
Biomedical Informatics, 110:103539.

[Connor et al., 2021] Connor, S., Taghi M., K., and Borko, F. (2021). Text data augmentation
for deep learning. Journal of Big Data, 8(1):1 – 34.

69

https://www.accountingforsustainability.org/en/index.html
https://www.accountingforsustainability.org/en/index.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

REFERENCES

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-
training of deep bidirectional transformers for language understanding. (accessed May 5,
2022) arXiv:1810.04805.

[Domingos, 2012] Domingos, P. M. (2012). A few useful things to know about machine learn-
ing. Communications of the ACM, 55:78 – 87.

[Gautam and Yadav, 2014] Gautam, G. and Yadav, D. (2014). Sentiment analysis of twitter
data using machine learning approaches and semantic analysis. 2014 Seventh International
Conference on Contemporary Computing (IC3), Contemporary Computing (IC3), 2014 Seventh
International Conference on, pages 437 – 442. (accessed May 20, 2022).

[Hasan et al., 2018] Hasan, A., Moin, S., Karim, A., and Shamshirband, S. (2018). Machine
learning-based sentiment analysis for twitter accounts. Mathematical and Computational
Applications, 23(1). (accessed May 4, 2022).

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9:1735–1780. (accessed April 28, 2022).

[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language model fine-
tuning for text classification. (accessed May 6, 2022) arXiv:1801.06146.

[Hutto and Gilbert, 2015] Hutto, C. and Gilbert, E. (2015). Vader: A parsimonious rule-
based model for sentiment analysis of social media text. (accessed February 25, 2022).

[IBM, 2021] IBM (2021). CRISP-DM Help Overview. (accessed May 25, 2022) https://www.
ibm.com/docs/en/spss-modeler/SaaS?topic=dm-crisp-help-overview.

[Jianqiang and Xiaolin, 2017] Jianqiang, Z. and Xiaolin, G. (2017). Comparison research on
text pre-processing methods on twitter sentiment analysis. IEEE Access, 5:2870–2879. (ac-
cessed April 3, 2022).

[Jurafsky and Martin, 2021] Jurafsky, D. and Martin, J. (2021). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recogni-
tion, draft, volume 3.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. (accessed May 10, 2022) arXiv:1412.6980.

[Kumar et al., 2020] Kumar, A., Makhija, P., and Gupta, A. (2020). Noisy text data: Achilles’
heel of BERT. (accessed May 16, 2022) arXiv:2003.12932.

[Li et al., 2019] Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., and Li, J. (2019). Dice loss for
data-imbalanced nlp tasks. (accessed May 15, 2022) arXiv:1911.02855.

[Liddy, 2001] Liddy, E. (2001). Natural language processing. in encyclopedia of library and
information science, 2nd ed.

[Liu, 2020] Liu, B. (2020). Introduction, page 1–17. Studies in Natural Language Processing.
Cambridge University Press, 2 edition. (accessed April 25, 2022).

[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., and Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT
pretraining approach. (accessed May 2, 2022) arXiv:1907.11692.

70

https://www.ibm.com/docs/en/spss-modeler/SaaS?topic=dm-crisp-help-overview
https://www.ibm.com/docs/en/spss-modeler/SaaS?topic=dm-crisp-help-overview

REFERENCES

[Loshchilov and Hutter, 2017] Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay
regularization. (accessed May 14, 2022) arXiv:1711.05101.

[Ma, 2019] Ma, E. (2019). NLP augmentation. (accessed May 15, 2022) https://github.
com/makcedward/nlpaug.

[Malo et al., 2013] Malo, P., Sinha, A., Takala, P., Korhonen, P., and Wallenius, J. (2013).
Good debt or bad debt: Detecting semantic orientations in economic texts. (accessed
April 18, 2022) arXiv:1307.5336.

[Mehra et al., 2022] Mehra, S., Louka, R., and Zhang, Y. (2022). ESGBERT: Language model
to help with classification tasks related to companies environmental, social, and gover-
nance practices. (accessed April 16, 2022) arXiv:2203.16788.

[Mehrabi et al., 2021] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A.
(2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6):1
– 35. arXiv:1908.09635.

[Mikolov et al., 2013] Mikolov, T., tau Yih, W., and Zweig, G. (2013). Linguistic regularities
in continuous space word representations. In NAACL.

[Montgomery et al., 2021] Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021). Intro-
duction to linear regression analysis, 5th Ed. John Wiley & Sons.

[Mutuvi et al., 2020] Mutuvi, S., Boros, E., Doucet, A., Jatowt, A., Lejeune, G., and Odeo,
M. (2020). Multilingual epidemiological text classification: A comparative study. In Pro-
ceedings of the 28th International Conference on Computational Linguistics, pages 6172–6183,
Barcelona, Spain (Online). International Committee on Computational Linguistics. (ac-
cessed June 6, 2022).

[O’Reilly and Chanmittakul, 2021] O’Reilly, J. A. and Chanmittakul, W. (2021). L1
regularization-based selection of eeg spectral power and ecg features for classification of
cognitive state. 2021 9th International Electrical Engineering Congress (iEECON), International
Electrical Engineering Congress (iEECON), 2021 9th, pages 365 – 368.

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22:1345–1359. (accessed May 16, 2022).

[PapersWithCode, 2022] PapersWithCode (2022). Sentiment analysis. (accessed May 25,
2022) https://paperswithcode.com/task/sentiment-analysis.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.
arXiv:1912.01703.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms.
(accessed May 8, 2022) arXiv:1609.04747.

71

https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
https://paperswithcode.com/task/sentiment-analysis

REFERENCES

[Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter. (accessed May 4, 2022)
arXiv:1910.01108.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of Big Data, 6:1–48. (accessed May 5,
2022).

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15:1929–1958. (accessed May 10, 2022).

[Starr, 2016] Starr, D. (2016). Just 90 companies are to blame for most climate change, this
’carbon accountant’ says. Science. (accessed May 25, 2022).

[Value Reporting Foundation, 2022] Value Reporting Foundation (2022). Sasb standards.
(accessed April 25, 2022) https://www.sasb.org/.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. (accessed April 25,
2022) arXiv:1706.03762.

[Yang et al., 2020] Yang, Y., UY, M. C. S., and Huang, A. (2020). FinBERT: A pretrained
language model for financial communications. (accessed April 18, 2022) arXiv:1908.10063.

72

https://www.sasb.org/

Appendices

73

Appendix A

SASB Materiality Map

75

A. SASB Materiality Map

Figure A.1: SASB Materiality Map, © 2022. Reprinted with permis-
sion from Value Reporting Foundation. All rights reserved.

76

	Introduction
	Background
	Purpose and Goals
	Motivations
	Research questions
	Limitations
	Division of Work
	Source Criticism
	Peer Reviewed
	Many citations
	Literature
	Frameworks
	Fewer citations
	No citations

	Technical Background
	Machine Learning
	Linear Regression Example
	Neural Networks
	Recurrent Neural Network
	Backpropagation
	AI vs Machine Learning

	Training Process
	Supervised Learning
	Dataset
	Amazon Elastic Compute Cloud
	Hyperparameter Searching
	Transfer Learning and Fine-tuning
	Overfitting and Underfitting
	Learning Rate and Optimizers
	Learning Rate Schedulers

	ESG
	Natural Language Processing
	Sentiment Analysis
	Rule-based Sentiment Analysis
	Machine Learning-based Sentiment Analysis
	Tokenization
	Text Pre-processing
	Term Frequency-Inverse Document Frequency
	Embeddings

	Transformers
	BERT
	BERT Pre-training
	Using BERT for Text Classification
	Flair
	PyTorch
	FinBERT
	DistilBERT-base-uncased-finetuned-SST-2
	DistilRoBERTa-base
	DistilRoBERTa-finetuned-financial-news

	Evaluating Machine Learning Models
	Accuracy
	Recall and Precision
	F1-score

	Related Work
	Text classification for financial texts
	Text classification for ESG

	Method and Analysis
	Phases
	Development
	Data Exploration
	Dataset
	Label Distribution

	Pipeline
	Overview

	Pre-processing
	Zero-rule Classification
	Lexicon
	Lexicon with Word List

	Transformers
	Optimizing
	Fine-tuning

	Evaluation

	Results
	Zero-rule Classification
	Lexicon
	Lexicon with Word List

	Transformers - Default
	Transformers - Optimized
	Transformers - Fine-tuned

	Discussion
	Comparison of Different Approaches
	Where VADER Fails

	Observations Using Transformers
	Hyperparameter Tuning
	Fine-tuning
	CLS Vs MEAN
	Confusion Matrices
	Analysis on Misclassified Texts

	Conclusion
	Reflection of Ethical Aspects
	Answers to Research Questions
	Future Work
	Dataset Size
	Further Pre-training
	Fine-tuning During Hyperparameter Tuning
	VADER Thresholds
	VADER pre-processing
	Piecewise Predictions
	LSTM
	Machine Learning Bias

	Terminology
	References
	Appendix SASB Materiality Map

