
BACHELOR’S THESIS 2022

Performance in Apollo Federation — A
Controlled Experiment Evaluating the Effects of
Execution Strategies and Number of Subgraphs

Anna Bergvall

ISSN 1651-2197
 LU-CS/HBG-EX: 2022-11

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

teol-bes
Understrykning

Bachelor’s Program in Computer Science and Engineering

Performance in Apollo Federation — A
Controlled Experiment Evaluating the
Effects of Execution Strategies and

Number of Subgraphs

A Java Implementation

by

Anna Bergvall, an7151be-s@student.lu.se

EDAL05
Bachelor Thesis
June, 2022
Supervisors: Christian Söderberg (LTH), Anna Karlsson (Capgemini) and Fanny
Ejlertsson (Capgemini)
Examiner: Roger Henriksson (LTH)

an7151be-s@student.lu.se

Abstract

Apollo Federation is an open architecture that allows connecting several different
GraphQL APIs to a gateway server, and by doing so creating a unified supergraph
API where all data defined in the connected subgraphs are available through one
single port. The goal of this thesis was to study performance in Apollo Federation,
and more specifically, to what extent performance is affected by, first, the choice of
execution strategy in the registered subgraphs, and second, the number of subgraphs
connected to the gateway server. To answer these questions, a test application was
developed in Java, consisting of three microservices, each of which implemented its
own GraphQL schema. The three services where connected to an Apollo Gateway
server written in JavaScript.

Thirteen test queries were chosen, based on aspects like breadth, depth, parallelism,
and cyclicity. The tests were conducted in Postman on a 2021 MacBook Pro M1
Pro (32 GB) with ten cores with MacOS Monterey 12.3.

The results suggest that the default execution strategy in graphql-java shows the
best overall performance. However, the concurrent strategy fetched most bytes per
milliseconds in a federated graph with three subgraphs. Moreover, the speed for
federated queries were higher than for non-federated queries, which might suggest
that distributing entities over several micro services could have positive effects on
performance.

No conclusions can be made regarding a relationship between performance in Apollo
Federation and the number of subgraphs connected to the gateway server. The
results show a peak in latency when querying a subgraph through the gateway
instead of querying the GraphQL server directly. However, further research is needed
to reach any conclusion on whether the size of the Apollo Federation supergraph
affects performance.

Keywords: Declarative Data Fetching, GraphQL, Apollo Federation, Fed-
erated Query Processing, Execution Strategies

Acknowledgements

I would like to extend my deepest gratitude to my supervisors at Capgemini, Anna
Karlsson and Fanny Ejlertsson, for supporting me throughout this project with their
knowledge, experience, and kindness.

I am also extremely grateful to Christian Söderberg at LTH for taking the time
to supervise me during this thesis, even though there was no time, and for being
encouraging and generous with good advice.

Finally, I would like to give a big thanks to Oskar Präntare and the entire Java and
API team at Capgemini who have helped me a lot during this semester just by being
so open and welcoming.

2

Contents

1 Introduction 7
1.1 Background . 7
1.2 Purpose . 8
1.3 Research Questions . 8
1.4 Reasons for Writing the Thesis . 8
1.5 Method . 9
1.6 Delimitation . 9
1.7 Outline of the Thesis . 10

2 Theory 11
2.1 GraphQL . 11

2.1.1 Query Execution . 15
2.1.2 An Introduction to Execution Strategies in GraphQL Java . . 15

2.2 Apollo Federation . 17
2.2.1 Query Plans in Apollo Federation 18

2.3 Related Works . 21

3 Method 23
3.1 Research Methodology . 23
3.2 Experiment Design . 25

3.2.1 Libraries and Frameworks Used 25
3.2.2 The Test Application . 28
3.2.3 The Execution Strategies Evaluated in This Study 37
3.2.4 Instrumentation . 40
3.2.5 Test Environment . 40

3.3 Testing Methodology . 42
3.3.1 Evaluation of Sources . 42

4 Results 44
4.1 Evaluation of Execution Strategies 44

4.1.1 Query Collection Gateway (A + B) 44
4.1.2 Query Collection Gateway (A + B + C) 45

4.2 The Effect of Number of Subgraphs on Response Times 50
4.2.1 Query Collection Gateway (A + B) 50
4.2.2 Subgraph A . 50
4.2.3 Subgraph B . 51

5 Discussion 53

3

5.1 Evaluation of Execution Strategies 53
5.1.1 Gateway (A + B) . 53
5.1.2 Gateway (A + B + C) . 55

5.2 Relationship Between Performance and Number of Subgraphs in Apollo
Federation . 56
5.2.1 Query Collection Subgraph A 56
5.2.2 Query Collection Subgraph B 56
5.2.3 Query Collection Gateway (A + B) 57

6 Conclusion 58
6.1 Research Aims . 58
6.2 Research Objectives . 58
6.3 Practical Implications . 59
6.4 Future Research . 59
6.5 Chapter Summary . 59

References 59

A Test Queries 64

B Selected Source Code 69
B.1 The Gateway Server . 69
B.2 Subgraph A/ATypeService . 71
B.3 Subgraph B/BTypeService . 73
B.4 Subgraph C/CTypeService . 77

4

List of Figures

2.1 Example of input arguments with placeholder variable [1] 16
2.2 A federated supergraph [2] . 18

3.1 The quantitative side of the methodology portal described by Anne
H̊akansson [3] . 24

3.2 The federated graph developed in this study 29
3.3 Test environment in Postman . 40

4.1 Response times for all queries in collection Gateway (A + B) as a
function of the choice of execution strategy. 44

4.2 Average speed of data fetching in Gateway (A + B) 45
4.3 Response times for every query in collection Gateway (A + B + C)

for each of the evaluated execution strategies 47
4.4 Average speed of data fetching in Gateway (A + B + C) 47
4.5 Response times for AsyncExecutionStrategy (”default”) as a function

of number of subgraphs . 50

5.1 Request logging for query ”Bs” with execution strategy AsyncSeri-
calExecutionStrategy . 54

5.2 Request logging for query ”Bs” with concurrent execution strategy . . 54
5.3 Request logging for query ”B ||B” with concurrent execution strategy 55

5

List of Tables

4.1 Results for queries in collection Gateway (A + B) for default, serial,
and concurrent execution strategies 46

4.2 Results for queries in collection Gateway (A + B + C) for execution
strategies default, Serial, and Concurrent 48

4.3 Response times for queries sent to the gateway server, with either two
or three subgraphs registered . 51

4.4 Response time (mean) for the sole query in test collection Subgraph A 51
4.5 Response time (mean) for the queries in test collection Subgraph B . 52

6

1

Introduction

1.1 Background

Modern web applications call for a more flexible and rapid development. A mono-
lithic architecture could make it challenging to meet these demands. As a result, the
microservice architecture has gained momentum, due to its scalability capabilities.
Microservices are ”highly maintainable and testable, loosely coupled, independently
deployable, organized around business capabilities, and owned by a small team” [4].
In traditional RESTful APIs [5], the type, and thereby the amount of data that is to
be returned to the client is decided by the endpoint [6]. As a result, the application
tends to become rigid and difficult to maintain over time as requirements change and
dependencies grows in number. Moreover, the use of multiple endpoints in RESTful
APIs lead to a larger number of server requests [7]. Recently, an alternative to the
REST architecture has emerged - GraphQL.

GraphQL is a declarative query language for APIs that is strongly typed and en-
ables inheritance. It is a relatively new technology developed by Facebook and has
been used as a data fetching layer in Facebook’s mobile applications since 2012 to
solve performance issues in mobile clients. In 2015, the GraphQL specification was
released open source [8]. In a GraphQL schema, each field is connected to a resolver
function, which specifies how the data be fetched. The data is then delivered to the
clients as JSON objects.

A benefit of GraphQL over RESTful APIs is that it is possible to fetch all data
needed for a web page in one single round trip to the server [9]. Another objective
of GraphQL is to solve the problem of over/under fetching, that is, the HTTP re-
sponse contains either a smaller or larger amount of data than the API consumer
needs. However, using a monolithic GraphQL schema takes away some of the flexi-
bility which comes with a microservice architecture. To solve this problem, schema
stitching was introduced to, as the name suggests, stitch together several GraphQL
schemas. With schema stitching, the subgraphs are unaware of each other and are
instead loaded by the gateway which stitch their schemas together [10].

Apollo’s implementation of schema stitching is now deprecated and replaced with
the open source project Apollo Federation. In Apollo Federation, as opposed to
schema stitching, the subgraphs are aware of each other’s schemas and the gateway

7

server is able to stitch them together automatically. The result is that an entity
defined in Subgraph A can be referenced from Subgraph B [11]. Apollo Federation
enables each team to own and maintain only the GraphQL schema connected to the
microservice that they are responsible for. As a result, a higher degree of separation
of concerns is possible.

The thesis project is conducted at Capgemini in Malmö. Capgemini offers consulting
within IT and management and was founded as Sogeti in 1967 by Serge Kampf in
France. In the seventies Capgemini acquired C.A.P. — also a French consulting
company — and American Gemini, and the name was changed to Cap Gemini
Sogeti. Capgemini has more than 300,000 employees worldwide [12].

1.2 Purpose

There is a body of work [13, 14, 15, 16] written on GraphQL from a performance
standpoint. However, no academic work has been published on how performance
is affected as subgraphs are composed into a federated architecture with Apollo
Federation. The purpose of this study is to evaluate the performance in Apollo
Federation with respect to two variables: First — the most fine-grained variable —
the execution strategies used in the resolvers, and second, the number of subgraphs
making up the supergraph.

1.3 Research Questions

This thesis aims to answer the following research questions:

• RQ1: How is the performance in Apollo Federation affected by the choice of
execution strategy?

• RQ2: To what extent does the number of subgraphs affect performance in
Apollo Federation?

1.4 Reasons for Writing the Thesis

As mentioned in the background section, a large share of clients consists of mobile
devices. Users expect high responsiveness and speed. In order for companies to make
informed decisions as to what API architecture to use, it is important to study the
performance of new solutions like Apollo Federation, where multiple GraphQL APIs
are composed into a supergraph. This supergraph schema provides looser coupling
between front-end and back-end teams as well as increased separation of concerns
as each team can own the graph they implement.

The Capgemini team where this thesis project is being conducted is called Java &
API and the purpose of the study is to make a contribution to both the academic
community but also to provide useful insights that can benefit Capgemini in their
continuous effort to provide fast and responsive software to their clients. Further-
more, studying a relatively immature solution like Apollo Federation is interesting
since there is a lack of published works on it at the time of writing.

8

Another reason why it is also important to study GraphQL performance is that it
is getting widely adopted by large companies, like Netflix [17], GitHub[18]. It is im-
portant to ensure that computing resources are not wasted, given the environmental
crisis.

1.5 Method

In order to investigate how the performance in Apollo Federation is affected by
the choice of execution strategy and number of subgraphs, a Spring Boot applica-
tion containing a number of microservices will be developed in Java, each owning
their own GraphQL implementation. The Apollo gateway server that will join the
subgraphs together will be implemented in JavaScript. The thesis will draw on
an example from Apollo Federation’s website [19] and call the subgraphs Subgraph
A to Subgraph C. The main reason for doing so is that a real life example could
contain hundreds of micro services (Netflix alone have more than 1,000 [20]) How-
ever, the scope of this project is limited and will not contain entities that reflect
real world data, like User, or Review, for example. Instead, the different GraphQL
schemas will be called Subgraph A, Subgraph B, and Subgraph C. This lack of a real
world connection will hopefully emphasize the purpose of this study: to examine the
performance of a federated graph by varying the above mentioned parameters in a
controlled environment. Moreover, there exists a natural mapping between letters
and numbers. We know that A is the first letter in the Latin alphabet, B is the
second one, and so on. To prevent confusion related to the different parameters,
this natural mapping may help clarify the number of subgraphs that make up the
supergraph at any given point in the discussion.

When designing the federated architecture, schema analysis and construction will
be conducted seamlessly in order to identify connections of varying breadth and
depth that will constitute critical items in the experiments. Control items will
also be distinguished in this process. To provide GraphQL support in Java, the
third-party libraries graphql-java [21] and graphql-java-federation [22] will be used.
Furthermore, since it is the performance of Apollo Federation that is being evaluated,
no database will be used but the data will be stored in a static list in memory.

1.6 Delimitation

Only performance in an application developed in Java will be investigated. Since it
is the performance of the API that is being tested in this thesis, no database will be
used. Any latency caused by remote calls would be of no interest for the purpose of
studying the performance of the API. Furthermore, only the performance of Query
operations will be studied in this thesis.

As mentioned above, the performance aspect that will be measured is that of latency.
The reason behind this choice is the high expectations application users have on
speed and responsiveness.

9

1.7 Outline of the Thesis

In the second chapter, relevant theoretical background is presented, including a lit-
erary review. Following, in the Method chapter, the methods for conducting this
research are revealed, together with an introduction to the developed test applica-
tion. After that, the results are presented, followed by a short discussion on the
results. Finally, in Chapter 6, the conclusions will be given.

10

2

Theory

This section will introduce important concepts and theories that are central to
this study. First, an overview of GraphQL will be given, followed by an intro-
duction of Apollo Federation. Finally, relevant works related to this study will be
reviewed.

2.1 GraphQL

GraphQL was developed in 2012 by Facebook to solve issues with poor performance
in their increasingly complex native mobile applications [8]. While the RESTful view
on data focused on resource URLs and SQL statements, the GraphQL specification
[23] describe Facebook’s need to represent data as graph object. Another argument
for moving away from REST was the large amount of code that had to be written
to facilitate the data transport between client and server [8].

GraphQL is not a programming languate like Java or Python, but a declarative data-
fetching language. Declarative, in this context, refers to the fact that developers will
specify what data they need to fetch from the backend without having to think
about how to get it [24]. Requests are sent in the form of GraphQL queries which
structurally resemble the JSON objects that are sent from the GraphQL server in
response [8].

Another aspect of GraphQL is that it is not a framework tied to a specific pro-
gramming language or implementation, but ”a specification for client-server com-
munication” [24]. However, the GraphQL specification provides some guidelines
[8, 24]:

1. GraphQL’s declarative nature results in query responses that have the same
shape as their respective requests [8], see Listing 2.1 and Listing 2.2. In
many REST APIs the content and form of the response will depend on how
various endpoints are implemented [23]. In GraphQL, on the other hand, the
client recieves exactly the data it asks for - no more and no less [8, 24]. That
is, GraphQL is a solution to the issues of overfetching [6] and underfetching
associated with RESTful services discussed in the previous section [15].

2. GraphQL has a hierarchical nature and its queries may consist of nested

11

data fields [24], as illustrated by Listing 2.1 below. Each field has its own
type, e.g., Integer or an Object type.

3. GraphQL is strongly typed, which enables descriptive error messages as
each query is validated against the GraphQL schema – also the GraphQL
type system – before execution. Each level in the GraphQL query corresponds
to one type [8]. The notion of type will be further discussed below.

4. GraphQL does not dictate data storage solution [8]. GraphQL is ”not
directly connected to the database” [7], but is merely a specification for data
transportation in a client-server solution. Any SQL or NoSQL database can
be used to store data in a GraphQL API, as well as a static list in memory
(which is the case in this study). [7].

5. It should be possible for the client to query the GraphQL server for what types
it supports. This concept is called Introspection [8, 24].

Below is an example query that requests a type called DataType. In order to fetch
the correct instance of DataType, a unique identifier (”primary key” in SQL syntax)
has to be attached to the query. In this example, the unique identifier has the value
’1’.

Listing 2.1: GraphQL used as a query language

1 Query DataType ("id": 1){

2 FirstField

3 SecondField

4 ThirdFieldWhichReturnsAnotherObjectType {

5 NestedField

6 }

7 }

A possible response, written in JSON, is available in Listing 2.2 below. The request
and response look similar in their hierarchical and nested structure.

Listing 2.2: An example response

1 "data": {

2 "DataType": {

3 "FirstField": Some attribute ,

4 "SecondField": Another attribute ,

5 "ThirdFieldWhichReturnsAnotherObjectType": {

6 "NestedField": Attribute belonging to another

7 Object Type.

8 }

9 }

10 }

It is up to the designer to decide how to implement a GraphQL API. For example,
it is possible to choose a different transport protocol than HTTP. However, HTTP
remains the most widely used protocol [24].

Both a Schema Definition Language and a Query Language

There are two types of GraphQL documents – either it is executable or representing
a GraphQL type system [23]. Only an ExecutableDocument which contains at

12

least one operation definition, e.g., the query in Listing 2.1, can be executed. A
TypeSystemDefinitionOrExtension document, on the other hand, is parsed by
the GraphQL client in order to define the GraphQL schema that queries will be
validated against [25]. Listing 2.3, which contains the type definition for one of
the schemas used in this study, will serve as an introduction to GraphQL as a type
definition language. First, the root queries and their return types are defined. Some
interesting observations regarding the query definitions can be made. In case the
return type is not a list, the query takes an id as parameter. This parameter cannot
be null. In fact, no values followed by an exclamation mark can be null. Take the
return type for fetchAllBTypes for example, ”[BType!]!” (on line 3): This query
must return a list (marked by the bracket parentheses), or it will return an empty
list in case there is no data to be fetched. The point is that the query is not allowed
to return null. Moreover, the exclamation mark after BType on line 3 in Listing
2.3 adds the constraint that no null objects are allowed in the returned list. The
annotation @key is an example of a GraphQL directive, which provides ”additional
information to the executor” [23].

Listing 2.3: GraphQL used as a type definition language

1 type Query{

2 lookupBType(id: ID!): BType

3 fetchAllBTypes: [BType !]!

4 lookupUnrelatedTypeInSubgraphB(id: ID!):

5 UnrelatedTypeInSubgraphB

6 getAllUnrelatedTypesInSubgraphB: [UnrelatedTypeInSubgraphB !]!

7 }

8

9 type Mutation{

10 createBType(appearsFirstIn: String!, isDefinedIn: String!,

11 relatedATypeId: Int!): BType!

12 }

13

14 type BType @key(fields: "id") {

15 id: ID!

16 appearsFirstIn: String!

17 isDefinedIn: String!

18 relatedObjectInSubgraphA: AType!

19 }

20

21 type UnrelatedTypeInSubgraphB @key(fields: "id") {

22 id: ID!

23 randomWord: String!

24 relatedObjectsOfSameType: [UnrelatedTypeInSubgraphB !]!

25 }

26

27 type AType @key(fields: "id") @extends {

28 id: ID! @external

29 isExtendedIn: String!

30 relatedObjectsInSubgraphB: [BType !]!

31 }

Below the query definitions, on line 9, a mutation operation type is defined. It takes
three parameters and returns a newly instantiated data object. In SQL syntax, this
mutation operation would correspond to an insert statement. Then, the next two

13

type definitions in Listing 2.3 define the types BType and UnrelatedTypeInSubgraphB,
that is, we define what attributes the two types will have. This operation would in a
relational database correspond to the create table statement. The type extension
of AType will be discussed in Chapter 3.

GraphQL Types

A central concept of GraphQL is that of types, which can be divided into two
categories: scalar and object types. Both types populate fields in the GraphQL
query and therefore also nodes in the data graph abstraction. However, object types,
like BType in the schema in Listing 2.3, corresponds to intermediate level nodes [23],
while scalar types are childless, also known as leaf nodes, in this abstraction.

The built-in scalar types provided by the GraphQL specification are Int, Float,
String, Boolean, and ID. These types, ID excluded, behave similar to built-in types
in for example Java and will not be further elaborated on in this section. How-
ever, the ID type deserves an introduction. It represents a unique identifier and
is serialized in the same way as a String, although it is often numeric in practice
[23].

When building an application, scalar types do not suffice to represent the complex
connections and entities that make up the system. Object types, also called custom
objects, are closely connected to the application domain [24]. These types often
correspond to tables in a relational database.

Another set of types defined in the specification are introspection types [23]. These
fields begin with two underscores, e.g., __typename, and they allow the GraphQL
client to query the internal type system of the GraphQL schema. Apart from the
types already described in this section, GraphQL also specifies enumeration types,
union types, and Interface types. These types, however, are not going to be further
explained in this thesis.

Fields and Fragments

An object type definition contains of a list of fields, each one ascribing to the object
a distinct quality. A field can consist of scalar types, enumeration types, Interfaces,
Unions, or other object types.

GraphQL fragments will not be used in this thesis. However, an introduction to
GraphQL should at least mention this possibility. Fragments help to eliminate
duplicated code. These are named procedures, or ”reusable units” [23]. Instead of
repeating sets of fields, this selection set can be used to define a fragment. Then, in
the query body, it is possible to write the name of the fragment instead. Fragments
loosely correspond to views in a relational database.

Operation Types

Three operation types can be defined in a GraphQL schema: Query, Mutation, and
Subscription. These operations are also called root types [24] since they represent
the entry points of execution. The Query operation is used to fetch data from an
API – recall the query definitions in Listing 2.3.

14

The declarative nature of GraphQL becomes visible in the Query operation: the
client specifies exactly what types and fields it wishes to fetch and receive these
fields only, avoiding both over-fetching and under-fetching [23]. A block of fields
surrounded by curly brackets are referred to as selection sets [24]. A query involving
two nested selection sets is given in the following listing:

1 query fetchAllBTypes {

2 id

3 appearsFirstIn

4 relatedObjectInSubgraphA {

5 id

6 appearsFirstIn

7 }

8 }

Since the field relatedObjectsInSubgraphA will return another object type, that
field must be followed by another selection set specifying what fields to fetch.

The response will mirror the query and the fields will be fetched with the help of
GraphQL resolvers. Again, it is worth mentioning that the GraphQL specification
does not dictate what type of data store to use.

2.1.1 Query Execution

An important building block of the GraphQL run-time engine is the directives. A
common directive is the @key(id = $id) marking the uniquely identifying field
of a specific type. Its counterpart in a relational database would be the primary
key. According to the GraphQL specification, directives can be used to specify
”alternate run-time execution and type validation of a GraphQL document” as it
provides additional information to the executor. An example of such directives is the
@CacheControl which affect how caching is performed in the GraphQL service.

Before a request is executed it is validated against the type system, like the one in
Listing 2.3. However, if a request is known to have been previously validated and
has not been changed since, it will be executed without a new validation process
taking place. After validation, input arguments like for example $bTypeID in Figure
2.1 are coerced according to the coercion rules of the specific argument type. After
all input variables are coerced, the operation is executed.

2.1.2 An Introduction to Execution Strategies in GraphQL
Java

The result of executing a Query or Mutation operation is the same as executing the
top selection set of that query. However, the top selection set of the latter should
be executed serially to avoid race conditions [23].

Execution of Query and Mutation types return an unordered map containing data
and errors [23]. The default execution strategies in GraphQL-Java are AsyncExecution-
Strategey for queries and AsyncSerialExecutionStrategy for mutations [21].

GraphQL execution strategies can be differentiated based on three characteristics
[15]:

15

Figure 2.1: Example of input arguments with placeholder variable [1]

1. Parallelism – A query execution strategy can be either serial or parallel.

2. The data fields of a GraphQL query can be resolved either synchronously or
asynchronously.

3. If batching and/or caching are being used for data access.

Returning Futures

An important concept in asynchronous processing is that of ”promises”, also known
as ”futures”. A class implementing the java.util.concurrent.Future interface
represents ”a future result of an asynchronous computation” [26]. An implemen-
tation of the Future interface, including the possibility to handle errors and add
logic to the computation, was introduced in Java 8 – CompletableFuture<T> [27].
CompletableFuture<T> also implements the interface CompletionStage which is
a stage of the asynchronous computation where computations can be made upon
completion, or execution can be handed over another asynchronous process [27].
The class graphql.execution.ExecutionStrategy in the GraphQL Java library
contains the abstract method execute(ExecutionContext context, Execution-

Parameters parameters) which returns a CompletableFuture<ExecutionResult>.

AsyncExecutionStrategy (”Default”)

As already mentioned, AsyncExecutionStrategy is by default the execution strat-
egy chosen by GraphQL Java for query operations. AyncExecutionStrategy will
dispatch each field as a CompletableFuture<T>[23], which entails that the executor

16

does not care which field completes first. According to the GraphQL specification,
this is the best performing execution strategy [23].

AsyncSerialExecutionStrategy (”Serial”)

As mentioned, AsyncSerialExecutionStrategy is the default execution strategy
for mutation operations in GraphQL Java. It offers asynchronous execution where
one field will be resolved at a time [28].

Batching with DataLoader

In a naive implementation, GraphQL resolvers are unaware of the global query and
are focused on transporting the data of the field they are connected to only. The fact
that GraphQL uses field specific instead of endpoint specific resolvers to fetch data
from the server leads to a dreaded performance issue – the N+1 problem [6] – which
refers to the gateway making additional and unnecessary trips to the data source
to collect data for nested fields [6]. The N+1 problem is amplified in a GraphQL
context compared to a RESTful API, since the cost of executing a query cannot
be computed in advance [6], and the reason for this is the fact that GraphQL is
declarative.

A solution to the N+1 issue, the DataLoader pattern, was originally proposed by
Facebook, who released a JavaScript library called DataLoader [29]. DataLoader

uses lazy data loading by letting data fetchers return promises instead of values. In
its simplest version, a data fetcher collects the value from the data store directly
when it is invoked. This can lead to, like mentioned above, unnecessary round trips
and increased latency. When utilizing batching with data loaders, the logic related
to accessing the data store is moved to a batch function. In each call to the data
fetcher, the data loader is loaded with the id of the wanted object. When all relevant
ids are loaded, the list or set of loaded ids are sent to to batch function which makes
a batched call to the data store. In the process, many separate calls have been
replaced by a single one [23].

2.2 Apollo Federation

A monolithic GraphQL server works against the scalability and flexibility required
in modern applications [2]. It is a tough task to manage and maintain monolithic
graph servers [30], as they easily start smelling of rigidity. According to Endris et
al. [31], a federated query processing system ”provides a unified access interface to a
set of autonomous, distributed, and heterogeneous data sources.” That description
suits Apollo Federation well. Apollo Federation is an open architecture that allows
connecting several different GraphQL APIs to a gateway server, and by doing to
creating a unified supergraph API where all data defined in the subgraphs are avail-
able through one single port [2], like in Figure 3.2. In this way, clients can take
advantage of GraphQL’s declarative nature while backend developers only need to
implement the subgraph related to the microservice they manage. This rather ele-
gant separation of concern is accomplished by the introduction of syntactic directives
on top of the standard GraphQL specification.

17

Central to the Apollo Federation architecture is the notion of type references and
type extensions. The directive @extends makes it possible to add types that are
defined in Subgraph A can be given additional fields in Subgraph B. For exam-
ple, let us imagine a type AType that is defined in Subgraph A. This type has a
field relatedObjectsInSubgraphB, which returns a list of BTypes, a type defined
in Subgraph B. Instead of introducing a stronger coupling between the subgraphs
by importing the whole BType definition into the AType graph, the AType type in
Subgraph A can be extended in Subgraph B. If each microservice is in charge of the
types connected to its domain and therefore defined in their GraphQL subgraph, a
looser coupling between the microservices making up the application will be main-
tained. Subgraph A will be oblivious to the new data fields — Subgraph B and the
Apollo gateway server are responsible for resolving this data [32].The gateway then
uses the supergraph schema to resolve type references and extensions between sub-
graphs [2]. The supergraph schema is then composed from all the subgraph schemas
in the federated architecture.

Figure 2.2: A federated supergraph [2]

At the time of writing, the operation type Subscription is not supported by Apollo
Federation. However, Kim et al.[33] found that the Subscription type was only
present in 20% of GraphQL APIs, with could arguably mitigate this lack of sup-
port.

2.2.1 Query Plans in Apollo Federation

In a federated query engine with distributed and heterogeneous data sources, a
global strategy is needed to ensure efficient data resolving and to collect the result
into a query answer [31]. This strategy is also called query plan. The goal of query
planning is to translate the global query sent to the gateway server, into several
queries to be sent to the individual subgraphs, expressed in non-Apollo Federation
syntax [31, 34]. A query plan looks similar to a serialized JSON or GraphQL query
and it has a root node of type QueryPlan [34].

QueryPlan {

...

}

Each node inside the query plan is either a Fetch node, a Parallell node, a
Sequence node, or a Flatten node.

18

Fetch Node

This type appears at least once in every query plan. Operations that only fetches
data from one single subgraph contain only one Fetch node, since no orchestration
between subgraph is neededs. Each Fetch node takes an argument denoting which
service to fetch data from.

Listing 2.4: Example of a Fetch node

1 QueryPlan {

2 Fetch(service: "ATypeService") {

3 {

4 fetchAllATypes {

5 id

6 appearsFirstIn

7 isDefinedIn

8 }

9 }

10 },

11 }

Parallel Node

A Parallel node contains two or more Fetch nodes. Since a Fetch node will only
resolve data from a single subgraph, the gateway knows that all immediate children
of a Parallel node can be fetched in parallel.

Sequence Node

As opposed to the Parallel node, a Sequence node must be fetched serially, since
the result of one node depends on the response from the parent node. As an example,
consider this query:

Listing 2.5: A query including two parallel selection sets and three separate schemas

1 query Query($lookupBTypeId: ID!) {

2 lookupBType(id: $lookupBTypeId) {

3 relatedObjectInSubgraphA {

4 appearsFirstIn

5 }

6 relatedObjectsInSubgraphC {

7 appearsFirstIn

8 }

9 }

10 }

11

12 {

13 "lookupBTypeId": 1,

14 }

Both fields relatedObjectInSubgraphA and relatedObjectsInSubgraphC depend
on what instance of BType that has been fetched. Therefore, the child of the
QueryPlan node is a Sequence node. The query plan of this query is listed in
Listing 2.6.

19

Flatten Node

The final type of node defined in Apollo Federation is the Flatten node. It is
the child of a Sequence node and always contains a Fetch node [34]. The data
returned from the Fetch node is supposed to be merged with that returned by
the parent node. In order for the gateway to know where to append this data, the
Flatten node takes an argument, path. An example of a query resulting in a query
plan that includes all of the nodes introduced in this section is given in Listing 2.6.
Note that all three services, ATypeService, BTypeService, and CTypeService are
represented, too.

Listing 2.6: Query plan for the query in 2.6

1 QueryPlan {

2 Sequence {

3 Fetch(service: "BTypeService") {

4 {

5 lookupBType(id: $lookupBTypeId) {

6 relatedObjectInSubgraphA {

7 __typename

8 id

9 }

10 __typename

11 id

12 }

13 }

14 },

15 Parallel {

16 Flatten(path: "lookupBType") {

17 Fetch(service: "CTypeService") {

18 {

19 ... on BType {

20 __typename

21 id

22 }

23 } =>

24 {

25 ... on BType {

26 relatedObjectsInSubgraphC {

27 appearsFirstIn

28 }

29 }

30 }

31 },

32 },

33 Flatten(path: "lookupBType.relatedObjectInSubgraphA") {

34 Fetch(service: "ATypeService") {

35 {

36 ... on AType {

37 __typename

38 id

39 }

40 } =>

41 {

42 ... on AType {

43 appearsFirstIn

44 }

45 }

20

46 },

47 },

48 },

49 },

50 }

In the Flatten node, two GraphQL fragments are used, separated by =>. According
to the Apollo Federation specification [34], the first fragment is a representation of
AType and BType respectively, while the second fragment contains the fields that
the data fetchers in CTypeService (the first Flatten node) and ATypeService(the
second Flatten node) need to resolve.

2.3 Related Works

In this section, an overview of related works on GraphQL performance will be
given.

The advantages that GraphQL offers in terms of declarative data fetching have
spawned a discussion about whether GraphQL is ”the new REST”. However, works
on migrating from RESTful services to GraphQL have presented drawbacks related
to performance [35]. There is an intrinsic flaw connected to letting the client ask for
the exactly the data they want: What if they write unreasonably expensive queries?
In fact, it has been proved that even simple queries may return ”prohibitively large”
responses [36]. Cha et al. also points at this problem in their paper ”A principled
approach to GraphQL query cost analysis” [14]. The proposed solution is a GraphQL
query analysis with the purpose of measuring the cost of a query without executing
it [14].

GraphQL performance issues are explored from another angle in Roksela et al.
[15]. In their paper ”Evaluating Execution Strategies of GraphQL Queries” it is
reported that the choice of execution strategy affects GraphQL performance[15].
Roksela et al. [15] evaluated GraphQL execution strategies in the most popu-
lar GraphQL implementation written in Python, graphene. The strategies eval-
uated were serial synchronous (”serial”), standard asynchronous (”async”),
batched asynchronous (”batched”), and cached asynchronous (”cached”). These
strategies were evaluated in the light of their resistance to two problems related to
GraphQL — the N+1 problem and cyclic requests, where the same node is fetched
more than once. The findings in [15] suggest that the positive effect of batching in
query execution grew as the query depth increased. The authors also found that
when used on cyclic queries, caching offered the largest improvement of any ex-
ecution strategy, especially when used together with batching. However, caching
affected performance in non-cyclic queries negatively [15].

When dealing with cyclic queries, the choice of execution strategy has a significant
impact on latency [15]. Roksela et al. found that the response time for cyclic queries
were seven times shorter when batching was used as opposed to a plain synchronous
strategy [15]. Roksela et al. also point out the favorable traits of programming
languages or libraries that offer support for asynchronous data fetching, and give
as examples Python’s asynchio library and the component AsyncioExecutor in
python-graphene [15]. The authors conclude their paper with the statement that

21

it is important to study even more execution strategies as Apollo Federation is
emerging, ”where there is a need for global execution strategy” [15].

Cederlund [13] evaluated two GraphQL frameworks, Netflix’s Falcor and Facebook’s
Relay + GraphQL, in terms of performance, response size, and number of service
requests, using REST as the baseline. The study suggested that Falcor resulted in
longer response times in most test cases [13]. In the case of Relay + GraphQL,
however, Cederlund reported a decreased response time for parallel and sequential
queries.

According to Endris et al. [31], a federated query engine is in charge of transforming
a query directed to and validated against the global schema, into ”an equivalent
query expressed in the schema of the data sources, i.e., local query.” [31]

Endris et al. [31], point out four conceptual difficulties in federated query processing:
(i) data source description, (ii) query decomposition and source selection, (iii) query
planning and optimization, and (iv) query execution. (i), (iii), and (iv) are also
relevant for non-federated GraphQL services. However, as stated in Roksela et al.,
it is of importance to study how execution strategies affect performance in federated
query engines like Apollo Federation[15].

At the time of writing, there are close to none academic texts published on Apollo
Federation. A Java implementation of Apollo Federation in Spring Boot using third-
party libraries GraphQL Java [21] and GraphQL Java Federation [37] was made in
Karlsson [38]. Karlsson, in turn, built upon [22]. This thesis uses [38] as a starting
point when developing the test environment. More about this in Chapter 3 –
Method.

22

3

Method

In this section, the methodology behind this study will be explained. First, a brief
discussion on the phases of the project followed by an overview of the research meth-
ods and research approach used. Finally, a description of the developed application
and test environment will be given.

3.1 Research Methodology

This study was divided into separate phases. Initially, a literary study was conducted
to gather enough knowledge of the subject to enable identifying problems that could
possibly be solved within the scope of this thesis. This phase led to the formation
of the research questions:

1. How is the performance in Apollo Federation affected by the choice of execution
strategy?

2. To what extent does the number of subgraphs affect performance in Apollo
Federation?

According to [3], research methods ”provide procedures for accomplishing research
tasks”. These questions are the research tasks that was solved by applying experi-
mental research methods. These methods are often used when investigating perfor-
mance [3]. The research approach used in this thesis was mainly deductive as the
answer to these questions would be generalizations that rely on the collected data
[3]. Furthermore, an experimental research strategy was used in this study. Accord-
ing to H̊akansson, the goal of the research strategy ”must be that the strategy leads
to ”correct, valid, and reliable results” [3]. By controlling the test environment and
its variables by altering one variable at the time, the likelihood to achieve reliable
results increases [3]. Moving on, the method by which the research data was col-
lected in this thesis was through conducting experiments. These experiments were
built by writing a test program in Java.

For this particular study, statistics will be used to analyse the collected data and
to evaluate the results. Data analysis methods are used to draw conclusions from
gathered data through ”inspecting, cleaning, transforming, and modelling data” [3].
H̊akansson also points outs that in the case of quantitative research, statistics and

23

Figure 3.1: The quantitative side of the methodology portal described by Anne H̊akansson
[3]

computational Mathematics are widely [3]. This connection is further illustrated in
Figure 3.1.

In order to validate the results in this study, the experiment design must be designed
in such a way that that it really measures the performance in a federated graph.
Another aspect of quality assurance is reliability. In this study, reliability is con-
nected to the consistency of the measurements produced by the test environment.
Finally, all steps in conducting this study was included in the final report to ensure
that the research can be replicated by others [3].

During the initial process of this thesis, a Gantt schedule was made to function
as a guideline for the different phases. The actual work was roughly two weeks
behind the Gantt schedule, leading to the final presentation being slightly delayed.
In addition, the original Gantt schedule anticipated a shorter period of time with
combined development and report writing. In fact, after the initial literary study,
development and report writing was being conducted alternately until the final test
phase.

24

3.2 Experiment Design

In order to measure the performance of execution strategies in GraphQL, three
Spring Boot applications were developed using graphgl-java-kickstart [39] and graphql-
java-federation [37].

The project in [38] was used as a starting point in the development phase. First, the
JPA dependency was bypassed and the MySQL fields in the application.properties
file were removed. The reason for removing the database was to conduct initial tests
with static data only. Later during the project, a decision was made to keep the
static data store, since round trips to a database server would add more variables to
control in a test setting. Second, the services moon_service and planet_service

in Karlsson’s project were changed to ATypeService and BTypeService, according
to the example in figure 3.2 [2]. The goal was to have a gateway exposing the sub-
graphs A + B + C + ... + G as a unified API. Furthermore, in order to output
the query plans executed by the Apollo Gateway, the function serializeQueryPlan

had to be imported from the @apollo/query-planner library.

3.2.1 Libraries and Frameworks Used

Here, an introduction to libraries and frameworks used in this study will be given.
First, the Java Spring Boot framework will be discussed briefly, followed by graphql-
java-kickstart/graphql-spring-boot. Finally, GraphQL Java Federation and @Apollo-
server will be mentioned.

Java Spring Boot

The microservices were developed in Spring Boot, which is a Java framework for
quickly getting applications up and running with the help of dependency injection –
a designated embedded tomcat server, for example [40]. Dependency injection, also
called Inversion of Control (IoC) makes it possible for application objects to state
what other objects it need to work with, without actually instantiating the objects
in the source code. The Spring IoC Container instead injects these dependencies as
the object, or the bean, is created [41].

In Spring Boot, Spring annotations are used in order to find and pick up every com-
ponent needed to configure the GraphQL server. Methods and constructors that
needs to be found and wired into the framework are annotated with @Bean. Accord-
ing to Spring, ”a bean is an object that is instantiated, assembled, and otherwise
managed by a Spring IoC container” [42]. IoC stands for Inversion of Control, which
is the same thing as dependency injectionTo tell the framework that a class contains
at least one bean definition, a class is annotated with @Configuration. Then, when
the JavaConfig class sees a bean annotation, it executes the method and saves the
response as a bean in its ”bean factory”. The annotation @Autowired is used on
class properties to avoid setter methods [43]. This means that one does not have to
use the new keyword to instantiate the given property, which is handy in complex
applications. The @Component annotation appears on every class that is a bean.
Say that a class has a property ATypeService and that this property in annotated
with Autowired. The class ATypeService must then be preceded by a @Component

annotation, otherwise the Spring framework will not know how to instantiate the

25

property ATypeService ”just in time”. Examples of this usage will be given in
Section 3.2.2.

graphql-java-kickstart/graphql-spring-boot

GraphQL Spring Boot is a third part library built on GraphQL Java, the most used
GraphQL implementation in Java. Being a part of Spring Boot, GraphQL Spring
Boot utilizes Java beans to find all components in order to configure the server.

A central concept of a GraphQL Java server is that of the data fetcher [21]. Some-
times data fetchers are referred to as ”resolvers” and vice versa but they are the
same thing. In this thesis, the name data fetcher will be used consistently to de-
note the concept of a method that populates a GraphQL field with data, to avoid
additional confusion.

Each field in the GraphQL schema is mapped to one DataFetcher. DataFetcher is
a functional interface with only one method, which has the following signature:

T get(DataFetchingEnvironment environment)

This method is the key to changing execution strategies, and an explanation as to
how will follow shortly. The return type T is the fetched value. The parameter,
DataFetchingEnvironment is an object which contains all the information needed
in order to perform a fetch operation. The method getSource(), for example,
returns the parent node or the field that is about to be fetched.

The types in the static schema definition, like the one in Listing 2.3, and the data
fetchers are wired together with the help of a class called RuntimeWiring. The
RuntimeWiring follows the builder pattern and is needed to make the schema exe-
cutable [44]. The RuntimeWirings for this project will be presented in the following
sections.

When explaining data fetching in GraphQL, it is convenient to think about data
fields, objects, and scalar types in the terms of recursive tree processes. First,
an object type can be represented by a node. Then, each node has one or more
outbound edges, which represent the data fields (comparable to column names in
relational databases) of that object. Just like a data field can return an object type
or a scalar type, the edges lead to either nodes or leafs.

1 query {

2 fetchAllATypes {

3 id

4 isDefinedIn

5 relatedObjectsInSubgraphB {

6 id

7 isDefinedIn

8 }

9 }

10 }

A DataFetcher call can be viewed as an operation which explores a single out-
bound edge. Each root node has its own DataFetcher. In this case it is called
FetchAllATypesDataFetcher and returns a list of every AType in the data store.

26

The return type is not a leaf node, but a node with three outbound edges. Conse-
quently, three new DataFetchers are fired. DataFetcher1 follows the edge called
”id”, while DataFetcher2 follows the edge called ”isDefinedIn”. Both these edges
lead to leaf nodes and thus, the base case is reached and no more DataFetchers
are fired. However, DataFetcher3 explores the edge called ”relatedObjectsInSub-
graphB”, which returns a node with two outbound edges, ”id” and ”isDefinedIn”.
Since both these edges lead to leaf nodes, the chain of DataFetcher calls ends.

Finally, the GraphQL Java documentation [21] stress the significance that the actual
source of the data is not dictated by the GraphQL specification. For example, the
data can be retrieved from a database or a REST service.

GraphQL Java Federation

The third party library GraphQL Java Federation makes it possible to connect
multiple GraphQL subgraphs according to the Apollo Federation specification [37].
A FederatedEntityResolver is needed if a type defined in one subgraph is to
be extended in another. It is also mandatory to use RuntimeWiring to connect
the non-scalar fields of the schema to their designated DataFetchers. The different
RuntimeWiring instances of this project can be found in Section 3.2.2. Listing
3.1 shows Kudryashov’s example code for defining a FederatedEntityResolver and
creating a transformed GraphQLSchema:

Listing 3.1: Creating a transformed GraphQLSchema using the library GraphQL Java
Federation [37].

1 List <FederatedEntityResolver <?, ?>> entityResolvers = List.of(

2 new FederatedEntityResolver <Long , LongEntityDummy >("LongEntityDummy", id -> new

LongEntityDummy(id, "qwerty")) {

3 }

4);

5

6 GraphQLSchema transformed = new FederatedSchemaBuilder ()

7 .schemaInputStream(getResourceAsStream("entity -schema.graphqls"))

8 .runtimeWiring(RuntimeWiring.newRuntimeWiring ().build())

9 .federatedEntitiesResolvers(entityResolvers)

10 .build();

ApolloServer and @Apollo/gateway

The @Apollo/gateway library is built on the functionality of ApolloServer, an
open-source GraphQL server written in JavaScript. However, @Apollo/gateway

adds functionality that allows the server to work as a gateway in Apollo Federation
[38, 45]. The ApolloServer constructor takes the ApolloGateway instance as a
parameter in its constructor [45].

To connect subgraphs to the gateway server, a serviceList is provided to the
ApolloGateway constructor. The serviceList is an array of objects that specify
the name and url of a subgraph in the federated graph, see Listing 3.10 [45]. On
startup, the federated schema is composed by the gateway sending introspection
queries to the subgraphs in the service list. However, serviceList is now depre-
cated and replaced by IntrospectAndCompose, which works in a similar way [45].
serviceList was used in this project since, as mentioned in Chapter 2, it was used

27

in the server that was the starting point for this work [38]. Due to time constraints,
it was not replaced by IntrospectAndCompose.

3.2.2 The Test Application

The development of the test application was a central part of this study. For this
reason, it is also an essential part of the report. The extensive documentation is
included in order to facilitate further development of the program.

In order to collect data to analyze, three microservices were developed in Java,
ATypeService, BTypeService, and CTypeService. These services were connected
in an Apollo Server. Like mentioned earlier, the test applications build upon the
work of Karlsson [38]. However, this work focuses on different execution strategies
and their performance in a federated architecture with the goal of answering the
research questions formulated in the introduction but repeated here for clarity:

• RQ1: How is the performance in Apollo Federation affected by the choice of
execution strategy?

• RQ2: To what extent does the number of subgraphs affect performance in
Apollo Federation?

To answer R1, it is crucial to be able to switch execution strategies, while data and
services remain the same. To answer R2, three micro services were developed to
enable running the same queries with either one, two, or three subgraphs connected
to the gateway server in order to detect any relationship between latency and number
of subgraphs.

This section will dive deeper into the implementation of the three microservices that
when plugged into the Apollo gateway server, form a unified GraphQL interface.
First, the schema of the subgraph will be introduced, including the types it defines
and extends. Then, the data fetcher for each custom type will be presented. The
final federated graph is presented in Figure 3.2, and may serve as a guide when
reading this chapter.

28

Figure 3.2: The federated graph developed in this study

29

Subgraph A/ATypeService

The source code for the GraphQL schema in Listing 2.3 object type is defined
in Subgraph A, AType. 1 Two Query operations are defined, lookupAType and
fetchAllATypes, which returns an AType and a list of ATypes respectively. A
Mutation operation is also defined, which returns an AType.

Two data fetchers were created for Subgraph A, one for each query. The classes
LookupATypesDataFetcher.java in Listing 3.2 and FetchAllATypesDataFetcher.java
in Listing 3.3both have the same two annotations. The first annotation, @Component,
indicate that the class is a bean, and the second annotation, @Slf4j, stands for ”Sim-
ple Logging Facade 4 Java” [46] and was used in the project to follow the flow of
execution.

Some readers may react to the return types of the fetchers. When one would expect
them to return ATypes they instead return ATypeDTOs. This deserves a brief ex-
planation. A DTO (Data Transfer Object) is a pattern which can be used to ”batch
up what would be multiple remote calls into a single call” [47]. One call is cheaper
than multiple. Related to the subject of DTOs is the property ATypeConverter.
Its role is to convert plain AType objects to ATypeDTO objects. In the get method,
the ATypeService is asked to return every AType that is present in the data store,
which is in this project a static list in memory.

Listing 3.2: LookupATypeDataFetcher.java

1 @Slf4j

2 @Component

3 public class LookupATypeDataFetcher implements DataFetcher <ATypeDTO > {

4

5 @Autowired

6 private ATypeConverter aTypeConverter;

7

8 @Autowired

9 private ATypeService aTypeService;

10

11 @Override

12 public ATypeDTO get(DataFetchingEnvironment environment) throws Exception {

13 log.info("Fetching AType data from Subgraph A");

14 String id = environment

15 .getArgument("id");

16 AType aType = aTypeService

17 .getATypeById(Integer.parseInt(id));

18 return aTypeConverter.apply(aType);

19 }

20 }

Listing 3.3: FetchAllATypesDataFetcher.java

1 @Slf4j

2 @Component

3 public class FetchAllATypesDataFetcher implements DataFetcher <List <ATypeDto >> {

4

1The idea was first to name the type ”A”, but that name affected the readability of the program
negatively as the camel-case naming conventions usually followed in Java could not be followed.
Another reason for settling on the name ”AType” was to stress the fact that it denotes a type. The
same reasoning goes for types defined in Subgraph B and Subgraph C.

30

5 @Autowired

6 private ATypeConverter aTypeConverter;

7

8 @Autowired

9 private ATypeService aTypeService;

10

11 @Override

12 public List <ATypeDto > get(DataFetchingEnvironment environment) throws Exception {

13 log.info("Fetching all ATypes from Subgraph A");

14 List <AType > allATypes = aTypeService.getAllATypes ();

15 return allATypes.stream ()

16 .map(u -> aTypeConverter.apply(u))

17 .collect(Collectors.toList ());

18 }

19 }

The relevant code in the @Configuration class GraphQLFactoryAsyncSerial-
ExecutionStrategy is shared in Listing 3.4. This code is similar for every sub-
graph – the main difference is the RuntimeWiring. The reason for this is that, as
mentioned before, the RuntimeWiring turns the GraphQL schema file into an exe-
cutable document by connecting the object types and scalars of a schema to their
designated data fetchers.

Listing 3.4: GraphQLFactoryAsyncSerialExecutionStrategy.java

1 @Value("classpath :/ schemaSubgraphA.graphqls")

2 private Resource resource;

3

4 /* This bean is used to choose execution trategies. The three parameters

5 represent execution strategies for Query Operation , Mutation Operation ,

6 and Subscription Operation. If null , default ExecutionStrategy

7 will be used. */

8 @Bean

9 public ExecutionStrategyProvider executionStrategyProvider () {

10 return new DefaultExecutionStrategyProvider(

11 new AsyncSerialExecutionStrategy (),

12 null ,

13 null

14);

15 }

16

17 @Bean

18 public GraphQLSchema graphQL () throws IOException {

19 InputStream inputStream = resource.getInputStream ();

20

21 log.info("Starting Subgraph A with execution strategy

22 AsyncSericalExecutionStrategy.");

23

24 GraphQLSchema transformedGraphQLSchema = new FederatedSchemaBuilder ()

25 .schemaInputStream(inputStream)

26 .runtimeWiring(createRuntimeWiring ())

27 .excludeSubscriptionsFromApolloSdl(true)

28 .federatedEntitiesResolvers(federatedEntityResolverFactory.create ())

29 .build();

30

31 return GraphQLSchema.newSchema(transformedGraphQLSchema)

32 .build();

33 }

31

34

35 /*

36 This method is needed to turn the GraphQL schema into an executable

37 document

38 */

39 private RuntimeWiring createRuntimeWiring () {

40 return RuntimeWiring.newRuntimeWiring ()

41 .type("Query", builder ->

42 builder

43 .dataFetcher("lookupAType",

44 lookupATypeDataFetcher)

45 .dataFetcher("fetchAllATypes",

46 fetchAllATypesDataFetcher)

47)

48 .type("Mutation", builder ->

49 builder

50 .dataFetcher("createAType",

51 createATypeDataFetcher)

52)

53 .build();

54 }

To enable the type AType to be extended in another subgraph, it is mandatory to
provide a FederatedEntityResolver. Otherwise the fields defined in Subgraph A
will not be accessible through the gateway server. To make the code in Listing 3.4
slightly less unreadable, the registration of federated entity resolvers was moved to its
own factory class, com.example.demo.federation.FederatedEntityResolverFactory.

Subgraph A was made available on port 8080 by adding server.port:8080 to the
application.properties file, available in Appendix B.

Subgraph B/BTypeService

The schema for Subgraph B served as an example when introducing GraphQL as
a Schema Definition Language (Listing 2.3), but will be repeated here for clar-
ity. However, one type definition that was not discussed earlier was that of AType.
In Subgraph B, AType is extended and is given two additional data fields, with
data residing in the BTypeService. The entity AType is unaware of its new fields,
”isExtendedIn” and ”relatedObjectsInSubgraphB”.

Listing 3.5: Schema definition for Subgraph B

1 type Query{

2 lookupBType(id: ID!): BType

3 fetchAllBTypes: [BType !]!

4 lookupUnrelatedTypeInSubgraphB(id: ID!): UnrelatedTypeInSubgraphB

5 fetchAllUnrelatedTypesInSubgraphB: [UnrelatedTypeInSubgraphB !]!

6 }

7 type Mutation{

8 createBType(appearsFirstIn: String!, isDefinedIn: String!,

9 relatedATypeId: Int!): BType!

10 }

11 type BType @key(fields: "id") {

12 id: ID!

13 appearsFirstIn: String!

14 isDefinedIn: String!

32

15 relatedObjectInSubgraphA: AType!

16 }

17 type UnrelatedTypeInSubgraphB @key(fields: "id") {

18 id: ID!

19 randomWord: String!

20 relatedObjectsOfSameType: [UnrelatedTypeInSubgraphB !]!

21 }

22 type AType @key(fields: "id") @extends {

23 id: ID! @external

24 isExtendedIn: String!

25 relatedObjectsInSubgraphB: [BType !]!

26 }

Note that the ”id” in AType is followed by the annotation @external which is needed
in order for the execution engine to know that this field is defined and lives in another
service [38]. .

When compared to Subgraph A, a few more data fetchers are needed to populate
the fields of this schema:

1. BTypeDataFetcher

2. BTypesDataFetcher

3. UnrelatedTypeInSubgraphBDataFetcher

4. UnrelatedTypesInSubgraphBDataFetcher

5. RelatedObjectsOfSameTypeDataFetcher

6. CreateBTypeDataFetcher

The second data fetcher in this list deserves a comment. The return type is a list
of BTypes. However, if the parent node is the root query fetchAllBTypes, then
every BType is returned. If, on the other hand, the parent node is an ATypeDTO,
then the BTypes that are related to this AType are returned. The source code for
BTypesDataFetcher is found in Listing 3.6. The other data fetchers are available
in Appendix B.

Listing 3.6: BTypesDataFetcher.java

1 @Slf4j

2 @Component

3 public class BTypesDataFetcher implements DataFetcher <List <BTypeDto >> {

4

5 @Autowired

6 private BTypeConverter bTypeConverter;

7 @Autowired

8 private BTypeService bTypeService;

9

10 @Override

11 public List <BTypeDto > get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception

{

12 List <BType > bTypes;

13 if (dataFetchingEnvironment.getSource () instanceof ATypeDto) {

14 bTypes = bTypeService

15 .getRelatedBTypesById (((ATypeDto) dataFetchingEnvironment

16 .getSource ())

33

17 .getId());

18 } else {

19 log.info("Fetching BTypes from SubgraphB at {}",

20 new Date(System.currentTimeMillis ()));

21 bTypes = bTypeService.getAllBTypes ();

22 }

23 return bTypes == null ? new ArrayList <>() : bTypes.stream ()

24 .map(bType -> bTypeConverter.apply(bType))

25 .collect(Collectors.toList ());

26

27 }

28 }

The reason for returning an empty list if there are no related BTypes is because
neither the AType field ”relatedObjectsInSubgraphB” or the root query accept null
objects in return.

As to the GraphQL configuration class in Subgraph B, most elements are identical
to the source code in Listing 3.4. However, the private method for supplying the
GraphQL engine with a RuntimeWiring for Subgraph B contains can be found in
Listing 3.7. All data fetchers are annotated @Autowired in the surrounding scope,
and will therefore be instantiated automatically by the Spring Boot framework as
singleton objects.

Listing 3.7: Method for creating the RuntimeWiring needed to make the schema executable

1 private RuntimeWiring createRuntimeWiring (){

2 return RuntimeWiring.newRuntimeWiring ()

3 .type("Query", builder ->

4 builder

5 .dataFetcher("lookupBType",

6 bTypeDataFetcher)

7 .dataFetcher("fetchAllBTypes",

8 bTypesDataFetcher)

9 .dataFetcher("lookupUnrelatedTypeInSubgraphB",

10 unrelatedTypeInSubgraphBDataFetcher)

11 .dataFetcher("fetchAllUnrelatedTypesInSubgraphB",

12 unrelatedTypesInSubgraphBDataFetcher)

13)

14 .type("Mutation", builder ->

15 builder.dataFetcher("createBType", createBTypeDataFetcher)

16)

17 /*

18 These wirings are needed if there are fields in the types that are

19 not scalars but object types.

20 */

21 .type("BType", builder ->

22 builder

23 .dataFetcher("relatedObjectInSubgraphA",

24 aTypeDataFetcher)

25)

26 .type("AType", builder ->

27 builder

28 .dataFetcher("relatedObjectsInSubgraphB",

29 bTypesDataFetcher)

30)

31 .type("UnrelatedTypeInSubgraphB", builder ->

32 builder

34

33 .dataFetcher("relatedObjectsOfSameType",

34 relatedObjectsOfSameTypeDataFetcher)

35)

36 .build();

37 }

Like suggested by the comment starting on line 18, the lower wiring invocations are
required when some queries return object types that contain at least one data field
that return a non-scalar type. Recall that the execution stops after a scalar node is
reach, as it corresponds to a leaf node in a graph abstraction.

Subgraph B was made available on port 8081, by setting the port variable in the
application.properties file, which can be found in Appendix B.

Subgraph C/CTypeService

To be able to study to what extent the number of micro services affects performance
in Apollo Federation, another micro service was built, CTypeService. Its is defined
according to the following listing:

Listing 3.8: schemaSubgraphC.graphqls

1 type Query{

2 lookupCType(id: ID!): CType

3 fetchAllCTypes: [CType !]!

4 }

5

6 type Mutation{

7 createCType(appearsFirstIn: String!, isDefinedIn: String!, relatedATypeId: Int!): CType!

8 }

9

10 type CType @key(fields: "id") {

11 id: ID!

12 appearsFirstIn: String!

13 isDefinedIn: String!

14 relatedObjectInSubgraphB: BType

15 relatedObjectInSubgraphA: AType

16 }

17

18 type AType @key(fields: "id") @extends {

19 id: ID! @external

20 isExtendedAlsoIn: String!

21 relatedObjectInSubgraphC: CType

22 }

23

24 type BType @key(fields: "id") @extends {

25 id: ID! @external

26 isExtendedIn: String!

27 relatedObjectsInSubgraphC: [CType !]!

28 }

Both types from previous subgraphs are extended in this schema, AType on line 18
and BType on line 24. This means that AType is extended in two other schemas
without that affecting the maintenance of that micro service.

The data fetchers built in this micro service are:

35

1. ATypeDatafetcher

2. BTypeDatafetcher

3. CTypeDatafetcher

4. CTypesDatafetcher

5. CreateCTypeDatafetcher

The source code for these data fetchers can be found in Appendix B. However, the
method returning the RuntimeWiring for Subgraph C is given below:

Listing 3.9: Method returning the RuntimeWiring for Subgraph C

1 private RuntimeWiring createRuntimeWiring () {

2 return RuntimeWiring.newRuntimeWiring ()

3 .type("Query", builder ->

4 builder

5 .dataFetcher("lookupCType",

6 bTypeDataFetcher)

7 .dataFetcher("fetchAllCTypes",

8 cTypesDataFetcher)

9)

10 .type("Mutation", builder ->

11 builder.dataFetcher("createCType", createCTypeDataFetcher)

12)

13 // Each CType has 0 or 1 related BType. The BType does not know this so

14 // both directions of this relationship must be resolved in Subgraph C

15 .type("CType", builder ->

16 builder

17 .dataFetcher("relatedObjectInSubgraphB",

18 bTypeDataFetcher)

19)

20 // Each CType is related to one AType

21 .type("CType", builder ->

22 builder

23 .dataFetcher("relatedObjectInSubgraphA", aTypeDataFetcher)

24)

25 // Each BType is related to a list of CTypes.

26 .type("BType", builder ->

27 builder

28 .dataFetcher("relatedObjectsInSubgraphC",

29 cTypesDataFetcher)

30)

31 // Each AType is related to none or one CType

32 .type("AType", builder ->

33 builder

34 .dataFetcher("relatedObjectInSubgraphC",

35 cTypeDataFetcher)

36)

37 .build();

38 }

The Gateway Server

The code for the gateway server was written in JavaScript and is almost identical
to the server in [38]. Some elements have been added, however. Open Telemetry

36

libraries have been added to provide tracing data for the gateway. Tracing was
disabled during testing since it caused high latency.

The source code for the server is available in B. However, the lines where the three
subgraphs A, B, and C are connected to the gateway is shown below:

Listing 3.10: Apollo gateway constructor

1 const gateway = new ApolloGateway ({

2 serviceList: [

3 { name: "ATypeService", url: "http :// localhost :8080/ graphql" },

4 { name: "BTypeService", url: "http :// localhost :8081/ graphql" },

5 { name: "CTypeService", url: "http :// localhost :8082/ graphql" }

6],

7 });

To detach subgraphs when investigating R2, To what extent does the number of
subgraphs affect performance in Apollo Federation?, line four and/or line five were
commented out.

3.2.3 The Execution Strategies Evaluated in This Study

In this section, the execution strategies tested in this thesis will be explained in
further detail. The initial idea was to replicate Roksela et al. [15] and see if the
results for execution strategies in Java would be similar to those in Python. Unfor-
tunately, due to a lack of time, it was not possible to implement batching an all the
data fetchers. As a result, no comparisons can be made to the findings in Roksela
et al. regarding batched or chached strategies. Moreover, it proved difficult to sim-
ulate synchronous execution as the graphql.servlet.async-mode-enabled flag in
application.properties would not work. Therefore, the synchronous serial execu-
tion strategy in [15] could not be reproduced. The execution strategies that was eval-
uated in this study was instead AsyncExecutionStrategy, AsyncSerialExecution-
Strategy, and a concurrent execution strategy, achieved by wrapping plain data
fetchers in asynchronous data fetchers by calling the static method AsyncData-

Fetcher.supplyAsync(wrapped dataFetcher).

One of the queries run in the tests will serve as an example when walking through
the different ways data can be fetched by changing execution strategy: B || B.
The name means that two types defined in Subgraph B are fetched in parallel.
The reason that this query makes a particularly good example is that the root
queries fetchAllUnrelatedTypesInSubgraphB and fetchAllBTypes are indepen-
dent of each other and can be fetched in parallel.

Listing 3.11: Query ”B ∥B”

1 query {

2 fetchAllUnrelatedTypesInSubgraphB {

3 id

4 randomWord

5 relatedObjectsOfSameType {

6 id

7 randomWord

8 }

9 }

10 fetchAllBTypes {

37

11 id

12 isDefinedIn

13 appearsFirstIn

14 }

15 }

AsyncExecutionStrategy (”default”)

As mentioned earlier, AsyncExecutionStrategy is the default execution strategy
for Query operations in the graphql-java library. To apply this strategy nothing
had to be added to the GraphQL configuration file. However, to ensure the same
conditions for each of the strategies, the Spring bean ExecutionStrategyProvider

was added to the configuration file:

1 @Bean

2 public ExecutionStrategyProvider executionStrategyProvider () {

3 return new DefaultExecutionStrategyProvider(

4 new AsyncExecutionStrategy (),

5 null ,

6 null

7);

8 }

The null values mean that the default execution strategies for Mutation and Subscription
operations are not altered.

AsyncSerialExecutionStrategy (”Serial”)

To enable AsyncSerialExecutionStrategy, from now on referred to as serial, the
Spring bean ExecutionStrategyProvider was added to the configuration file.

1 @Bean

2 public ExecutionStrategyProvider executionStrategyProvider () {

3 return new DefaultExecutionStrategyProvider(

4 new AsyncSerialExecutionStrategy (),

5 null ,

6 null

7);

8 }

Concurrent Execution Strategy (”Concurrent”)

This execution strategy is a variation of AsyncExecutionStrategy. With this strat-
egy, data fetchers are able to fetch data concurrently. Recall our example query
B || B. When using this strategy, the BTypesDataFetcher and UnrelatedTypesIn-
SubgraphBDataFetcher will be called concurrently. The GraphQL implementation
in Java does not use concurrency by default [48]. In this project, a dedicated thread
pool was used to enable concurrency, by adding the following code snippet to the
GraphQL configuration file:

Listing 3.12: Dedicated thread pool used to achieve concurrent data fetching

1 private ExecutorService threadPool = Executors.newFixedThreadPool(Runtime

2 .getRuntime ()

3 .availableProcessors ()

4);

38

As the tests are all conducted on a MacBook Pro from 2021 with an 32 GB Apple M1
Pro chip, ten threads will available to the thread pool. To use the dedicated thread
pool in the data fetchers, they had to be wrapped in asynchronous data fetchers
which return a CompletableFuture<T> instead of a T. This makes it possible for
several data fetchers to be called in parallel, since they do not have to wait for
the previous call to be completed. The RuntimeWiring for Subgraph B for this
execution strategy is found in Listing 3.13.

Listing 3.13: RuntimeWiring for Parallel execution strategy

1 private RuntimeWiring createRuntimeWiring () {

2 return RuntimeWiring.newRuntimeWiring ()

3 .type("Query", builder ->

4 builder

5 .dataFetcher("lookupBType",

6 AsyncDataFetcher.async(bTypeDataFetcher , threadPool))

7 .dataFetcher("fetchAllBTypes",

8 AsyncDataFetcher.async(bTypesDataFetcher , threadPool))

9 .dataFetcher("lookupUnrelatedTypeInSubgraphB",

10 AsyncDataFetcher.async(unrelatedTypeInSubgraphBDataFetcher ,

11 threadPool))

12 .dataFetcher("fetchAllUnrelatedTypesInSubgraphB",

13 AsyncDataFetcher.async(unrelatedTypesInSubgraphBDataFetcher ,

14 threadPool))

15)

16 .type("Mutation", builder ->

17 builder

18 .dataFetcher("createBType", createBTypeDataFetcher)

19)

20 /* this is needed if one of BType’s fields (" relatedObjectInSubgraphA) is of type

21 Entity AType */

22 .type("BType", builder ->

23 builder

24 .dataFetcher("relatedObjectInSubgraphA",

25 AsyncDataFetcher.async(aTypeDataFetcher , threadPool))

26)

27 .type("AType", builder ->

28 builder

29 .dataFetcher("relatedObjectsInSubgraphB",

30 AsyncDataFetcher.async(bTypesDataFetcher ,threadPool))

31)

32 .type("UnrelatedTypeInSubgraphB", builder ->

33 builder

34 .dataFetcher("relatedObjectsOfSameType",

35 AsyncDataFetcher.async(relatedObjectsOfSameTypeDataFetcher ,

36 threadPool))

37)

38 .build();

39 }

Some readers may notice that the data fetcher for the Mutation operation is not
wrapped in an AsyncDataFetcher. The reason for this is, as mentioned in the theory
section, that the Mutation operation requires the use of AsyncSerialExecution-
Strategy.

39

3.2.4 Instrumentation

To learn more about how the evaluated execution strategies behaved in practice and
to make sure that they did not behave unexpectedly, some instrumentation was used
when developing the test application. Since FederatedTracingInstrumentation

[37] only returned protobuf [49] messages intended for Apollo Studio [50], the deci-
sion was made to used the open source library Open Telemetry [51] to fetch gateway
metrics instead.

To study how the execution strategies behaved in terms of threads and concurrency,
a class RequestLoggingInstrumentation [52] is used.

3.2.5 Test Environment

The test environment was setup in Postman [53] where four query collections were
defined: Subgraph A, Subgraph B, Gateway (A + B), and Gateway (A + B + C),
as seen in Figure 3.3.

Figure 3.3: Test environment in Postman

The queries in each test collection were also grouped together by type:

1. Federated queries – queries which fetch data from more than one subgraph

2. Non-federated queries – queries which fetch data from one subgraph

The main goal of the collection Gateway (A + B) was to evaluate the overall per-
formance of the different execution strategies, while Gateway (A + B + C), a super
set of Gateway (A + B), was a means to explore if any further latency could be
recorded after the introduction of another subgraph. The collections Subgraph A

40

and Subgraph B, both subsets of the gateway collections, had the purpose of inves-
tigating if the performance was better when querying the subgraph directly and not
going through the gateway server.

Gateway (A + B)

Below are queries defined in the test collection Gateway (A + B). The query bodies
are found in A.

1. introspection: used as a baseline for the other queries as it is not affected
by the choice of execution strategy [15].

2. As: accessing all A instances with their attribute fields, relatedObjectsIn-
SubgraphB excluded.

3. As -> Bs: Accessing all A instances with their attribute fields, including
relatedObjectsInSubgraphB.

4. As -> Bs -> A: causing a many-to-one cycle.

5. Bs: accessing all B objects with their attribute fields, relatedObjectInSubgraphA
excluded.

6. Bs -> A: accessing all B objects with attribute fields, including relatedObject-
InSubgraphA with the fields defined in Subgraph A.

7. Bs -> A -> Bs: accessing all Bs with their respective As with all attributes,
causing a many-to-many cycle, inspired by [15].

8. B || B: Parallel fetch of two types defined in Subgraph B (B and UnrelatedType-
InSubgraphB). The reason for including this query was to see if asynchronous
data fetchers would show any latency reduction, since they can be executed in
parallel.

9. A || B: This query is equivalent with query 2 and 5, fetched in parallel.

10. B -> B: Exploring the performance of a cyclic one-to-many relationship point-
ing towards objects of the same type.

Subgraph A

1. As: Same as in Gateway (A + B).

Subgraph B

1. Bs: Same as in Gateway (A + B).

2. B -> B: Same as in Gateway (A + B).

3. B || B: Same as in Gateway (A + B).

Gateway (A + B + C)

Apart from the queries defined in Gateway (A + B), this collection had two addi-
tional queries:

41

1. As -> Bs -> Cs -> A: A many-to-one cyclic query involving fetching data
from all three micro services.

2. A || B || C : Three parallel queries fetching data from Subgraph A, B, and
C. The reason for including this query is to investigate if the performance is
affected by the introduction of another micro service.

3. A || B || B || C: This query consists of four parallel queries. The query
was included with the goal of investigating if the breadth of the query affect
the execution strategies’ performance.

3.3 Testing Methodology

The purpose of this study is to evaluate the performance of different execution strate-
gies in GraphQL, and to investigate if Apollo Federation affects response time. How-
ever, it is important to control the test environment in order to give each strategy
equal conditions. According to Blackburn et al. [54], ”controlling for code warm-
up is an important aspect of experimental design for high-performance run-times”,
which means that the cost of the JVM start-up must be taken into account when
running the tests. The first iteration of an application is usually the one with the
largest amount of dynamic compilation [54]. One could also argue that it would be
reasonable to record performance after the JVM has warmed up and the application
is in its most stable state, as this is the most common use-case [54].

The tests were conducted in Postman in offline-mode (”Scratch pad”, with Wi-Fi
turned off), as an attempt to control the test environment further. Each test suit
involved one given collection of queries and one given execution strategy. To be able
to record the average response times, a number of global variables were defined and
JavaScript was used to update these variables during each test. Before each test run,
the JVM was restarted and the GraphQL requests in the given collection were sent
100 times to get the application into a steady state. Then, this time measuring the
response times, the queries were executed eleven times. When calculating the mean,
the first request of each query was ignored since it was always clearly higher than the
rest of the data points, which might indicate that some dynamic compilation was
taking place during the first round. The JSON files generated by Postman during
these tests are available in the GitHub repository for this thesis project. There, the
interested reader can inspect the data.

When testing if there is a relationship between the number of subgraphs and perfor-
mance in a federated architecture, the requests sent directly to the subgraph and not
to the gateway served as a baseline result. All the measurements were conducted
with the execution strategy AsyncExecutionStrategy since the most important
thing here was to measure possible latency peaks due to an increasing number of
subgraphs being connected to the gateway server.

3.3.1 Evaluation of Sources

In this thesis, the sources consist of academic papers, software documentation, and
gray literature (blog posts and other non-academic material). There are two main
reasons for using, and therefore trusting, these sources. The first reason is that

42

GraphQL is a relatively new technology. The number of academic papers published
on the subject is therefore somewhat limited. The second reason is the practical
nature of this project. A substantial part of conducting this study was building the
test environment, and therefore, there was a need for descriptions of implementation
details. Moreover, the gray literature used is written by authors who are active in
the GraphQL community and help developing the technology, e.g., Lee Byron at
Facebook, Andreas Marek and Brad Baker who has a central role in developing
GraphQL Java, and Roman Kudryashov who wrote the library used in this thesis
to add Apollo Federation support to GraphQL Java.

43

4

Results

In this section, the results from the test will be presented. First, the results related
to the evaluation of execution strategies are demonstrated. After that, test results
will be presented related to a possible relationship between performance in Apollo
Federation and the number of subgraphs making up the composed supergraph.

4.1 Evaluation of Execution Strategies

4.1.1 Query Collection Gateway (A + B)

In this section, the results for the queries to Gateway (A + B) are given. In Figure
4.1, the response time for each query is presented for both default (AsyncExecution-
Strategy), serial (AsyncSerialExecutionStrategy), and concurrent execution strat-
egy. The same results are demonstrated in Figure 4.1 as well.

Figure 4.1: Response times for all queries in collection Gateway (A + B) as a function of
the choice of execution strategy.

44

average response time for each query is presented. In the response size, the header
is included.

The introspection query (baseline) is not effected by the choice of execution strategy
to the same extent as the rest of the queries. To obtain an average measure of the
strategies’ performance across the board the bit rate, which is the number of bits
processed per second, was calculated. However, to avoid large numbers, the units
bytes per ms were used instead. The following equation was used:

Performanceavg(bytes/ms) =

n∑
i=1

Rsize
i

n∑
i=1

Rlatency
i

(4.1)

where Rsize
i is the size of a given query response and Rlatency

i is the response time
for that response and execution strategy. Moreover, n is the number of queries
excluding the baseline. The results are presented in Figure 4.2.

Figure 4.2: Average speed of data fetching in Gateway (A + B)

These results are unaware of cyclic dependencies, depth, and breadth of the queries,
but provide an overall measure of speed. Nevertheless, the most conspicuous result is
that of the concurrent execution strategy used on federated queries, that is, queries
involving more than one subgraph. In this condition, concurrent execution strategy
performed better than the default execution strategy. For all queries, on the other
hand, the concurrent strategy was no better than the serial, and the default strategy
showed the best performance.

4.1.2 Query Collection Gateway (A + B + C)

The results for the Postman tests for collection Gateway (A + B + C) are presented
in Figure 4.3. The Introspection query is used as baseline. As expected, latency
was not affected by the choice of execution strategies.

45

Table 4.1: Results for queries in collection Gateway (A + B) for default, serial, and
concurrent execution strategies

Query Federated Response Execution Strategy Response
Query Size (Bytes) Time (ms)

Introspection No 679 Default 2.40
Serial 2.40
Concurrent 2.20

As No 916 Default 7.30
Serial 7.90
Concurrent 6.70

As → Bs Yes 5050 Default 20.0
Serial 20.3
Concurrent 16.1

As → Bs → A Yes 5050 Default 14.2
Serial 16.0
Concurrent 12.7

Bs No 1540 Default 5.10
Serial 5.60
Concurrent 5.40

Bs → A Yes 3310 Default 11.3
Serial 12.4
Concurrent 11.6

Bs → A → Bs Yes 7220 Default 13.8
Serial 13.8
Concurrent 10.6

A ∥ B Yes 2180 Default 6.00
Serial 6.10
Concurrent 6.80

B ∥ B No 2710 Default 7.80
Serial 9.50
Concurrent 7.50

B → B No 1440 Default 5.30
Serial 5.70
Concurrent 4.90

46

Figure 4.3: Response times for every query in collection Gateway (A + B + C) for each
of the evaluated execution strategies

In Table 4.2, the average response time for each query and execution strategy is
laid out.

The byte rates for query collection Gateway (A + B + C) are presented in Figure
4.4.

Figure 4.4: Average speed of data fetching in Gateway (A + B + C)

When calculating the byte rate, the results from all the queries in test collection
Gateway (A + B + C) show that the speed of default execution was on average
408.5 Bytes / ms, 362.3 Bytes / ms for serial execution, and 374.2 Bytes / ms for
concurrent execution. Note that the results for from Gateway (A + B) was not

47

Table 4.2: Results for queries in collection Gateway (A + B + C) for execution strategies
default, Serial, and Concurrent

Query Federated Response Execution Strategy Response
Query Size (Bytes) Time (ms)

Introspection No 679 default 2.00
Serial 2.00
Concurrent 2.00

As No 916 default 4.30
Serial 4.20
Concurrent 4.50

As → Bs Yes 5050 Default 10.9
Serial 13.1
Concurrent 11.0

As → Bs → A Yes 5050 Default 11.9
Serial 12.1
Concurrent 11.6

Bs No 1540 Default 5.00
Serial 4.80
Concurrent 5.00

Bs → A Yes 3310 Default 8.70
Serial 9.40
Concurrent 9.20

Bs → A → Bs Yes 7220 Default 11.5
Serial 14.2
Concurrent 15.7

A ∥ B Yes 2180 Default 6.70
Serial 6.10
Concurrent 6.30

B ∥ B No 2710 Default 6.10
Serial 5.80
Concurrent 6.10

B → B No 1440 Default 3.60
Serial 4.80
Concurrent 3.50

As → Bs → Cs → A Yes 4770 Default 17.7
Serial 21.6
Concurrent 18.2

A ∥ B ∥ C Yes 3970 Default 10.4
Serial 10.6
Concurrent 11.8

A ∥ B ∥ B ∥ C Yes 5140 Default 9.20
Serial 11.8
Concurrent 12.8

48

replicated for this query collection, as the default execution strategy outperforms
both the serial and concurrent strategies.

49

4.2 The Effect of Number of Subgraphs on Re-

sponse Times

In this section, results on how the number of subgraphs in a federated architecture
affect latency are presented.

4.2.1 Query Collection Gateway (A + B)

In this section, the queries are taken from query collection Gateway (A + B) which
consists of ten queries, including the baseline Introspection. To try to answer
research question 2, To what extent does the number of subgraphs affect performance
in Apollo Federation?, the test queries remained constant while the number of sub-
graphs registered in the Apollo gateway server varied. For each query, the lighter
staple represents a federated architecture with two subgraphs, while the darker sta-
ple represents Gateway (A + B + C). These results are also presented in Table
4.3.

Figure 4.5: Response times for AsyncExecutionStrategy (”default”) as a function of num-
ber of subgraphs

4.2.2 Subgraph A

In Table 4.4, the latency for query As is given for four different conditions. The
first condition is when the subgraph is queried directly, that is, the request is sent
to localhost:8080/graphql. That result is used as a baseline for the other condi-
tions.

The latency for sending the same query to the Apollo gateway server on
localhost:4000, with only Subgraph A connected to it, is 83.9 % higher. However,
the same query sent to a unified supergraph consisting of two and three subgraphs
are 47.7 % respectively 46.2 % higher.

The execution strategy used on these tests was AsyncExecutionStrategy.

50

Table 4.3: Response times for queries sent to the gateway server, with either two or three
subgraphs registered

Query Gateway (A + B) Gateway (A + B + C)
Introspection (Baseline) 3.76 3.33
As 14.03 13.47
As → Bs 29.86 34.70
As → Bs → A 32.43 30.03
Bs 14.20 16.03
Bs → A 25.87 26.27
Bs → A → Bs 28.00 33.53
A ∥ B 18.74 18.90
B ∥ B 20.13 18.40
B → B 10.37 12.60

Table 4.4: Response time (mean) for the sole query in test collection Subgraph A

Query API Number of Subgraphs Response Time (ms)
As localhost:8080/graphql 1 6.50
As localhost:4000 1 11.89
As localhost:4000 2 9.60
As localhost:4000 3 9.50

4.2.3 Subgraph B

In Table 4.5, the latency for test collection Subgraph B is given for four different
conditions. The first condition is when the subgraph is queried directly, that is, the
request is sent to localhost:8081/graphql. That result is used as a baseline for
the other conditions.

Unlike Subgraph A, Subgraph B cannot be the sole subgraph connected to the
Apollo gateway server, since AType is extended in Subgraph B, and changing the
schema was not desirable. Therefore there is no result for that condition.

The latency for query Bs was 28.6 % higher than the baseline when querying
the Apollo server with two connected subgraphs. On the other hand, the la-
tency for querying a supergraph consisting of three subgraphs decreased with 2.4
% compared to the baseline. The execution strategy used during these tests was
AsyncExecutionStrategy.

51

Table 4.5: Response time (mean) for the queries in test collection Subgraph B

Query API Number of Subgraphs Response Time (ms)
Bs localhost:8081/graphql 1 8.40

localhost:4000 2 10.80
localhost:4000 3 8.20

B → B localhost:8081/graphql 1 7.90
localhost:4000 2 10.50
localhost:4000 3 8.90

B || B localhost:8081/graphql 1 10.0
localhost:4000 2 10.50
localhost:4000 3 10.30

52

5

Discussion

This section contains a discussion on the results. However, a caveat is required
since there are variables affecting the performance measurements that cannot be
completely controlled, for example the JVM and the operative system that the
JVM runs on. There is also a possibility that there are unknown variables affecting
the result. It is important to bear this in mind when reading the next section.

5.1 Evaluation of Execution Strategies

In this section, the results related to RQ1 – How is the performance in Apollo
Federation affected by the choice of execution strategy? – are discussed. First, the
results from query collection Gateway (A + B) will be analyzed, followed by the
results from the gateway with three services, Gateway (A + B + C).

5.1.1 Gateway (A + B)

While there default execution strategy, AsyncExecutionStrategy, showed the best
overall performance in this query collection, some results suggest that there is in
fact a gain from using concurrent data fetching, e.g., for queries A - > Bs and
Bs -> A -> Bs. Furthermore, the results suggest that the choice of execution strat-
egy has a greater impact on nested queries, that is, any query with a name containing
an arrow, for example ”Bs -> A”. For queries translated to a single fetch node —
like ”As” and ”Bs” – serial execution strategy performs slightly better than standard
and concurrent strategies. A possible explanation for this is that only one thread is
active in the data fetcher fetching the data for ”Bs” since parallelism is not needed
since only one data fetcher is invoked, see Figure 5.1. For concurrent execution,
however, the thread pool is still used, which comes at a cost, while the advantages
of multi-threaded execution is not harvested. The logging for ”Bs” with concurrent
execution strategy can be seen in Figure 5.2, and it is clear that only one thread
is used. In Figure 5.3, on the other hand, the parallel nature of query B || B

becomes apparent as almost all threads in the thread pool are active at the same
time.

53

Figure 5.1: Request logging for query ”Bs” with execution strategy AsyncSericalExecution-
Strategy

Figure 5.2: Request logging for query ”Bs” with concurrent execution strategy

54

Figure 5.3: Request logging for query ”B ||B” with concurrent execution strategy

5.1.2 Gateway (A + B + C)

These results suggest that AsyncExecutionStrategy is in fact the best performing
execution strategy across the board. For a small project with only a few subgraphs,
AsyncExecutionStrategy performs best in terms of latency. However, the results
for Gateway (A + B + C) are not in line with the results for Gateway (A + B)
regarding a possible performance gain by using a concurrent strategy. Instead,
the concurrent execution strategy performs on par with or worse than the default
strategy. For some queries, the concurrent strategy even performed worse than the
serial. Therefore, no generalization can be made from this set of data regarding the
concurrent strategy.

The slowest response time of all test items in this study was for the query
”As -> Bs -> Cs -> A” using a serial execution strategy. For this query, the aver-
age latency for serial strategy was 22.0 % higher than the default execution strategy.
A possible explanation for this is that the penalty of using a serial execution strategy
grows as query depth increases.

An interesting observation is that the federated queries seem to perform better than
the non-federated ones, just looking at how many bytes per milliseconds that are
fetched. A possible reason for this is that the query planning in the gateway server
contribute to better performance. However, in order to draw any conclusions, non-
federated queries of the same depth would have to be tested too. There is only
one nested non-federated query in the study – ”B -> B” – which in Figure 4.3
display considerably shorter response times than, e.g., ”Bs -> A”, which has the
same depth.

55

Finally, batching, the strategy not implemented in this project, will receive some
attention. Batching is necessary for any production ready GraphQL service. If
batching had been implemented and tested, it is possible that any gain in perfor-
mance would not have been as obvious as in [15] since there is no database to make
remote calls to in this project.

5.2 Relationship Between Performance and Num-

ber of Subgraphs in Apollo Federation

In this section, a discussion will follow regarding the results acquired to answer
RQ2, To what extent does the number of subgraphs affect performance in Apollo
Federation?

5.2.1 Query Collection Subgraph A

The results in Figure 4.4 suggest that performance is affected when querying a
GraphQL schema through an Apollo gateway server as opposed to querying the
subgraph directly. When replicating the test for the one-subgraph gateway server,
the result showed that the latency increased with 58.3 % compared to the baseline, as
opposed to 83.9 % in the original test. These numbers are too diverse to form a basis
upon which to draw any conclusion regarding a ”gateway effect”. Nevertheless, the
new result is more in line with the latency observed for the two- and three subgraph
gateways (47.7 % respectively 46.2 % higher). These number do suggest that there is
a trade off when querying the GraphQL schema through an Apollo gateway server.
A possible explanation for a higher latency for a federated graph is the overhead
related to the gateway’s query planning.

This query collection contained only one query, which means that no discussion can
be made regarding any other query type than one containing a single Fetch node,
that is, breadth and depth of the query are both one.

5.2.2 Query Collection Subgraph B

As mentioned in Chapter 4, it was not possible to test the ”one-subgraph-gateway”
condition from the previous section without changing the schema in Subgraph B.
Therefore, there are no results verifying the peak in latency for this condition in
query collection Subgraph A. On the contrary, with decreasing latency for query ”Bs”
compared to the baseline, the results suggest no relationship between performance
and the number of subgraphs in Apollo Federation per se. Moreover, the tests were
conducted in a small environment and it is possible that a larger graph would have
revealed other tendencies.

The results for query ”B -> B” followed a similar pattern with a larger latency for
two subgraphs, but a similar latency as the baseline for three subgraphs. The results
for the parallel B || B showed only a 3 – 5 % increase in latency for two and three
subgraphs. Based one these values it is not possible to draw any conclusion as to
Apollo Federation having an effect on data fetching latency in a GraphQL server,
neither in a positive nor negative way.

56

5.2.3 Query Collection Gateway (A + B)

In Figure 4.5, the response times for all the queries in Section 3.2.5 are given,
both when sent to Gateway (A + B) and Gateway (A + B + C). For six queries out
of nine, the latency Gateway (A + B) was lower. According to these results, the
latency for Gateway (A + B + C) was on average 5.87 % higher than for the federated
graph consisting of two subgraphs, Gateway (A + B). However, this number is too
low to suggest a relationship between number of subgraphs and performance in a
federated supergraph.

57

6

Conclusion

6.1 Research Aims

The research aims with this study was to answer two questions:

• RQ1: How is the performance in Apollo Federation affected by the choice of
execution strategy?

• RQ2: To what extent does the number of subgraphs affect performance in
Apollo Federation?

To answer the first question, the results of this study suggest that the choice of
execution strategy matters more with an increased query depth. The results go
in line with the GraphQL specification which state that AsyncExecutionStrategy
(”Default”) offers best overall performance. Furthermore, the results point in the
direction that concurrent data fetchers are not useful unless the queries are rather
complex, involving several data fetchers, since starting separate threads comes at a
cost. Serial execution strategy appears to work well in shallow and narrow queries,
but will not offer the best performance for deeper queries, based on the these results.
Therefore, it would be sensible to keep using the default execution strategy in a small
project like the one in this study. However, no conclusions can be made regarding
choosing execution strategies wisely in a larger federated architecture. Moreover, in
a larger project, batching would be necessary in order to avoid the N + 1 problem.
This study claims to be nothing but an evaluation of the performance with regard
to latency for three execution strategies in a limited controlled space.

Regarding the second research question, it is not possible, on the basis of this study,
to draw any conclusions about a relationship between the number of subgraphs in
a federated architecture and performance with respect to latency. The test results
show no clear pattern, and even if one had appeared, the data set would be too
sparse to be able to deem it anything but circumstantial.

6.2 Research Objectives

The intention with conducting this research was to gain knowledge about GraphQL
and Apollo Federation, while contributing with new insights regarding performance

58

of federated query processing in a test application written in Java.

6.3 Practical Implications

The study will hopefully bring to the table further knowledge about possible ways
to use Apollo Federation in a Java context.

6.4 Future Research

For future research, it would be welcome to implement batching in this project and
run the same tests to see if there is indeed a performance gain. Another possible path
from here would be to investigate the performance in the new Apollo Federation II,
which came out earlier this year, to see how it compares to this version.

6.5 Chapter Summary

In this chapter, the research questions were answered and a conclusion was made,
followed by the research objectives and practical implications of this study. Finally,
some suggestions for future research was made.

59

Bibliography

[1] V. Ravishankar, “Apollo sandbox: an open graphql ide for local development,”
2021. Accessed 2022/05/23.

[2] Meteor, “Apollo Federation Documentation.” Web page, 2022. Accessed
2022/03/03.

[3] A. H̊akansson, “Portal of research methods and methodologies for research
projects and degree projects,” in Proceedings of the International Confer-
ence on Frontiers in Education: Computer Science and Computer Engineering
FECS’13, 2013.

[4] C. Richardson, “What are microservices?.” Web page, 2021. Accessed
2022/03/03.

[5] R. Fielding and R. Taylor, “Principled design of the modern web architecture,”
in Proceedings of the 2000 International Conference on Software Engineering.
ICSE 2000 the New Millennium, pp. 407–416, 2000.

[6] L. Shapton, “Solving the N+1 Problem for GraphQL through Batching.” Web
page, 2018. Accessed 2022/04/19.

[7] D. A. Hartina, A. Lawi, and B. L. E. Panggabean, “Performance analysis of
graphql and restful in sim lp2m of the hasanuddin university,” in 2018 2nd East
Indonesia Conference on Computer and Information Technology (EIConCIT),
pp. 237–240, 2018.

[8] L. Byron, “GraphQL: A Data Query Language.” Web page, 2022. Accessed
2022/03/04.

[9] B. Kane, “Coursera’s Journey to GraphQL.” Web page, 2020. Accessed
2022/03/03.

[10] G. MacWilliam, “To Federate or Stitch a GraphQL gateway, revisited.” Web
page, 2020. Accessed 2022/03/31.

[11] Meteor, “The what, when, why, and how of federated GraphQL.” Web page,
2020. Accessed 2022/03/31.

[12] Capgemini, “About Us.” Web page, 2020. Accessed 2022/05/25.

[13] M. Cederlund, “Performance of frameworks for declarative data fetching : An
evaluation of falcor and relay+graphql,” 2016.

[14] A. Cha, E. Wittern, G. Baudart, J. C. Davis, L. Mandel, and J. A. Laredo, A

60

https://www.apollographql.com/docs/federation/
https://microservices.io
https://shopify.engineering/solving-the-n-1-problem-for-graphql-through-batching
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://www.apollographql.com/blog/community/courseras-journey-to-graphql-a5ad3b77f39a/
https://product.voxmedia.com/2020/11/2/21494865/to-federate-or-stitch-a-graphql-gateway-revisited
https://www.apollographql.com/docs/federation/v1/entities
https://www.capgemini.com/about-us/

Principled Approach to GraphQL Query Cost Analysis, p. 257–268. New York,
NY, USA: Association for Computing Machinery, 2020.

[15] P. Roksela, M. Konieczny, and S. Zielinski, “Evaluating execution strategies of
graphql queries,” in 2020 43rd International Conference on Telecommunications
and Signal Processing (TSP), pp. 640–644, 2020.

[16] E. Lee, K. Kwon, and J. Yun, “Performance measurement of graphql api in
home ess data server,” in 2020 International Conference on Information and
Communication Technology Convergence (ICTC), pp. 1929–1931, 2020.

[17] T. Shikhare, “How Netflix Scales its API with GraphQL Federation (Part 1),”
2020. Accessed 2022/05/12.

[18] GitHub, “GraphQL API,” 2022. Accessed 2022/05/24.

[19] Meteor, “Apollo Federation Quickstart.” Web page, 2022. Accessed
2022/02/21.

[20] CloudZero, “Netflix Architecture: How Much Does Netflix’s AWS Cost?,” 2021.
Accessed 2022/03/05.

[21] A. Marek and B. Baker, “GraphQL Java Documentation.” Web page, 2022.
Accessed 2022/03/04.

[22] R. Kudryashov, “graphql-java-federation.” Web page, 2020. Accessed
2022/05/25.

[23] Facebook, “GraphQL Specification.” Web page, 2022. Accessed 2022/03/04.

[24] E. Porcello and A. Banks, Learning GraphQL - Declarative Data Fetching For
Modern Web Apps. Sebastopol, CA: O’Reilly Media, Inc, USA, 2018.

[25] A. G. Inc., “GraphQL file types in Apollo Kotlin.” Web page, 2022. Accessed
2022/03/29.

[26] baeldung, “Guide to java.util.concurrent.Future.” Web page, 2021. Accessed
2022/05/25.

[27] baeldung, “Guide to java.util.concurrent.CompletableFuture.” Web page, 2021.
Accessed 2022/05/25.

[28] “Javadoc – Class AsyncSerialExcecutionStrategy.” Web page, 2022. Accessed
2022/05/25.

[29] M.-A. Giroux, “The GraphQL Dataloader Pattern: Visualized.” Web page,
2019. Accessed 2022/05/02.

[30] A. Nnakwue, “Entities in Apollo Federation - Reference and extend types across
subgraphs.” Web page, 2020. Accessed 2022/04/13.

[31] K. M. Endris, M.-E. Vidal, and D. Graux, Chapter 5 Federated Query Process-
ing, pp. 73–86. Cham: Springer International Publishing, 2020.

[32] M. Wise, “Supercharge Your Data Graph with Apollo Federation,” 2021. Ac-
cessed 2022/03/23.

61

https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://docs.github.com/en/graphql
https://www.apollographql.com/docs/federation/quickstart/setup/
https://www.cloudzero.com/blog/netflix-aws
https://www.graphql-java.com/documentation
https://github.com/rkudryashov/graphql-java-federation
http://spec.graphql.org/October2021/
https://www.apollographql.com/docs/kotlin/essentials/file-types/
https://www.baeldung.com/java-future
https://www.baeldung.com/java-completablefuture
https://javadoc.io/static/com.graphql-java/graphql-java/9.5/graphql/execution/AsyncSerialExecutionStrategy.html
https://xuorig.medium.com/the-graphql-dataloader-pattern-visualized-3064a00f319f
https://blog.logrocket.com/the-what-when-why-and-how-of-federated-graphql/
https://blog.logrocket.com/the-what-when-why-and-how-of-federated-graphql/
https://www.youtube.com/watch?v=N3VYZPUJdwM

[33] Y. W. Kim, M. P. Consens, and O. Hartig, “An empirical analysis of graphql
api schemas in open code repositories and package registries,” in AMW, 2019.

[34] Meteor, “Apollo Federation Documentation – Query plans.” Web page, 2022.
Accessed 2022/04/07.

[35] M. Vogel, S. Weber, and C. Zirpins, “Experiences on migrating restful web
services to graphql,” in ICSOC Workshops, 2017.

[36] O. Hartig and J. Pérez, “Semantics and complexity of graphql,” in Proceedings
of the 2018 World Wide Web Conference, pp. 1155–1164, 2018.

[37] R. Kudryashov, “How to GraphQL in Kotlin and Micronaut and create a single
endpoint for access to microservices’ APIs,” 2020. Accessed 2022/05/12.

[38] A. Karlsson, “Automatic exposure of data using graphql and apollo federation,”
2021.

[39] Spring, “GraphQL and GraphiQL Spring Framework Boot Starters,” 2020.
Accessed 2022/05/12.

[40] Spring, “Spring Boot,” 2020. Accessed 2022/05/25.

[41] Spring, “The IoC Container.” Web page, 2022. Accessed 2022/06/06.

[42] Spring, “Spring Documentation,” 2022. Accessed 2022/05/25.

[43] TutorialsPoint, “Spring Autowired Annotation.” Web page, 2022. Accessed
2022/05/25.

[44] A. Marek and B. Baker, “GraphQL Java Documentation/Schema.” Web page,
2022. Accessed 2022/03/04.

[45] Apollo, “Implementing the Gateway.” Web page, 2022. Accessed 2022/05/25.

[46] slf4j.org, “Simple Logging Facade for Java.” Web page, 2021. Accessed
2022/05/25.

[47] M. Fowler, “Data Transfer Object.” Web page, 2022. Accessed 2022/05/25.

[48] T. Nurkiewicz, “GraphQL server in Java: Part III: Improving concurrency,”
2020. Accessed 2022/05/12.

[49] Google, “Protocol Buffers.” Web page, 2022. Accessed 2022/05/25.

[50] Apollo, “Introduction to Apollo Studio.” Web page, 2022. Accessed 2022/05/25.

[51] Apollo, “OpenTelemetry in Apollo Federation.” Web page, 2019. Accessed
2022/05/17.

[52] P. Starritt, “Learn Spring Boot GraphQL.” Web page, 2020. Accessed
2022/05/25.

[53] Postman, “Postman,” 2022.

[54] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovik,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “Wake up and smell the

62

https://www.apollographql.com/docs/federation/query-plans/
https://romankudryashov.com/blog/2020/02/how-to-graphql/
https://romankudryashov.com/blog/2020/02/how-to-graphql/
https://github.com/graphql-java-kickstart/graphql-spring-boot
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
https://www.tutorialspoint.com/spring/spring_autowired_annotation.htm
https://www.graphql-java.com/documentation/schema/
https://www.apollographql.com/docs/federation/gateway/
https://www.slf4j.org
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://nurkiewicz.com/2020/03/graphql-server-in-java-part-iii.html
https://developers.google.com/protocol-buffers
https://www.apollographql.com/docs/studio/
https://www.apollographql.com/docs/federation/opentelemetry/
https://github.com/philip-jvm/learn-spring-boot-graphql
https://learning.postman.com/docs/getting-started/introduction/

coffee: Evaluation methodology for the 21st century,” Commun. ACM, vol. 51,
p. 83–89, aug 2008.

63

Appendix A

Test Queries

Listing A.1: Introspection

1 query {

2 __schema {

3 types {

4 name

5 }

6 }

7 }

Listing A.2: As

1 query {

2 fetchAllATypes {

3 id

4 appearsFirstIn

5 isDefinedIn

6 }

7 }

Listing A.3: As → Bs

1 query {

2 fetchAllATypes {

3 id

4 isDefinedIn

5 isExtendedIn

6 appearsFirstIn

7 relatedObjectsInSubgraphB {

8 id

9 isDefinedIn

10 appearsFirstIn

11 relatedObjectInSubgraphA {

12 id

13 isDefinedIn

14 isExtendedIn

15 appearsFirstIn

16 }

17 }

18 }

19 }

64

Listing A.4: As → Bs → A

1 query {

2 fetchAllATypes {

3 id

4 appearsFirstIn

5 isDefinedIn

6 isExtendedIn

7 relatedObjectsInSubgraphB {

8 id

9 appearsFirstIn

10 isDefinedIn

11 relatedObjectInSubgraphA {

12 id

13 appearsFirstIn

14 isDefinedIn

15 isExtendedIn

16 }

17 }

18 }

19 }

Listing A.5: Bs

1 query {

2 fetchAllBTypes {

3 id

4 appearsFirstIn

5 isDefinedIn

6 }

7 }

Listing A.6: Bs → A

1 query{

2 fetchAllBTypes {

3 id

4 isDefinedIn

5 appearsFirstIn

6 relatedObjectInSubgraphA {

7 id

8 appearsFirstIn

9 isDefinedIn

10 }

11 }

12 }

Listing A.7: Bs → A → Bs

1 query{

2 fetchAllBTypes {

3 id

4 isDefinedIn

5 appearsFirstIn

6 relatedObjectInSubgraphA {

7 id

8 appearsFirstIn

9 isDefinedIn

10 isExtendedIn

11 relatedObjectsInSubgraphB {

65

12 id

13 appearsFirstIn

14 isDefinedIn

15 }

16 }

17 }

18 }

Listing A.8: A ∥B
1 query {

2 fetchAllBTypes {

3 id

4 appearsFirstIn

5 isDefinedIn

6 }

7 fetchAllATypes {

8 id

9 appearsFirstIn

10 isDefinedIn

11 }

12 }

Listing A.9: B ∥B
1 query {

2 fetchAllUnrelatedTypesInSubgraphB {

3 id

4 randomWord

5 relatedObjectsOfSameType {

6 id

7 randomWord

8 }

9 }

10 fetchAllBTypes {

11 id

12 isDefinedIn

13 appearsFirstIn

14 }

15 }

Listing A.10: B → B

1 query {

2 fetchAllUnrelatedTypesInSubgraphB {

3 id

4 randomWord

5 relatedObjectsOfSameType {

6 id

7 randomWord

8 }

9 }

10 }

Listing A.11: As → Bs → Cs → A

1 query {

2 fetchAllATypes {

3 appearsFirstIn

66

4 id

5 isDefinedIn

6 isExtendedIn

7 relatedObjectsInSubgraphB {

8 appearsFirstIn

9 id

10 isDefinedIn

11 isExtendedIn

12 relatedObjectsInSubgraphC {

13 appearsFirstIn

14 id

15 isDefinedIn

16 relatedObjectInSubgraphA {

17 appearsFirstIn

18 id

19 isDefinedIn

20 isExtendedIn

21 }

22 }

23 }

24 }

25 }

Listing A.12: A ∥B∥C
1 query {

2 fetchAllATypes {

3 appearsFirstIn

4 id

5 isDefinedIn

6 isExtendedAlsoIn

7 isExtendedIn

8 }

9 fetchAllBTypes {

10 appearsFirstIn

11 id

12 isDefinedIn

13 isExtendedIn

14 }

15 fetchAllCTypes {

16 appearsFirstIn

17 id

18 isDefinedIn

19 }

20 }

Listing A.13: A ∥B∥B∥C
1 query {

2 fetchAllATypes {

3 appearsFirstIn

4 id

5 isDefinedIn

6 isExtendedAlsoIn

7 isExtendedIn

8 }

9 fetchAllBTypes {

10 appearsFirstIn

11 id

67

12 isDefinedIn

13 isExtendedIn

14 }

15 fetchAllUnrelatedTypesInSubgraphB {

16 id

17 randomWord

18 relatedObjectsOfSameType {

19 id

20 randomWord

21 }

22 }

23 fetchAllCTypes {

24 appearsFirstIn

25 id

26 isDefinedIn

27 }

28 }

68

Appendix B

Selected Source Code

B.1 The Gateway Server

Listing B.1: gateway.js

1 const { Resource } = require(’@opentelemetry/resources ’);

2 const { SimpleSpanProcessor , ConsoleSpanExporter } = require ("@opentelemetry/sdk -trace -base");

3 const { NodeTracerProvider } = require("@opentelemetry/sdk -trace -node");

4 const { registerInstrumentations } = require(’@opentelemetry/instrumentation ’);

5 const { HttpInstrumentation } = require (’@opentelemetry/instrumentation -http’);

6 const { ExpressInstrumentation } = require (’@opentelemetry/instrumentation -express ’);

7 const { ZipkinExporter } = require("@opentelemetry/exporter -zipkin");

8 const { ApolloServer } = require("apollo -server");

9 const { ApolloGateway } = require("@apollo/gateway");

10 const {serializeQueryPlan} = require(’@apollo/query -planner ’);

11 const {ApolloServerPluginCacheControl} = require(’apollo -server -core’);

12 const {ApolloServerPluginInlineTrace} = require(’apollo -server -core’);

13 /*

14 // Register server -related instrumentation

15 registerInstrumentations ({

16 instrumentations: [

17 new HttpInstrumentation (),

18 new ExpressInstrumentation (),

19 // ** DELETE IF SETTING UP A GATEWAY , UNCOMMENT OTHERWISE **

20 //new GraphQLInstrumentation ()

21]

22 });

23

24 // Initialize provider and identify this particular service

25 // (in this case , we’re implementing a federated gateway)

26 const provider = new NodeTracerProvider ({

27 resource: Resource.default ().merge(new Resource ({

28 // Replace with any string to identify this service in your system

29 "service.name": "gateway",

30 })),

31 });

32

33 // Configure a test exporter to print all traces to the console

34 const consoleExporter = new ConsoleSpanExporter ();

35 provider.addSpanProcessor(

36 new SimpleSpanProcessor(consoleExporter)

37);

69

38

39 // Register the provider to begin tracing

40 provider.register ();*/

41

42 const gateway = new ApolloGateway ({

43 serviceList: [

44 // This entire ‘serviceList ‘ is optional when running in managed federation

45 // mode , using Apollo Graph Manager as the source of truth. In production ,

46 // using a single source of truth to compose a schema is recommended and

47 // prevents composition failures at runtime using schema validation using

48 // real usage -based metrics.

49 { name: "A_service", url: "http :// localhost :8080/ graphql" },

50 { name: "B_service", url: "http :// localhost :8081/ graphql" },

51 { name: "C_service", url: "http :// localhost :8082/ graphql" }

52

53],

54 // I’m commenting this so that it’s not taking CPU from the tests

55

56

57 /*

58 // Experimental: Enabling this enables the query plan view.

59 __exposeQueryPlanExperimental: true ,

60 experimental_didResolveQueryPlan: function(options) {

61 if (options.requestContext.operationName !== ’IntrospectionQuery ’) {

62 console.log(serializeQueryPlan(options.queryPlan));

63 }

64 }

65 */

66 });

67

68 (async () => {

69 const server = new ApolloServer ({

70 gateway ,

71 // tracing: true ,

72 tracing: false ,

73

74 // Apollo Graph Manager (previously known as Apollo Engine)

75 // When enabled and an ‘ENGINE_API_KEY ‘ is set in the environment ,

76 // provides metrics , schema management and trace reporting.

77 engine: false ,

78

79 // Subscriptions are unsupported but planned for a future Gateway version.

80 subscriptions: false ,

81 // cacheControl: true

82 // plugins: [ApolloServerPluginInlineTrace ()]

83 });

84

85 server.listen ().then (({ url }) => {

86 console.log(‘Server ready at ${url}‘);

87 });

88 })();

70

B.2 Subgraph A/ATypeService

Listing B.2: Application configuration in application.properties

1 spring.application.name:ATypeService

2 spring.cache.type:NONE

3 server.port :8080

4

5 graphql:

6 servlet:

7 //async -mode -enabled:false

8 tracing -enabled:true

Listing B.3: LookupATypeDataFetcher.java

1 @Slf4j

2 @Component

3 public class LookupATypeDataFetcher implements DataFetcher <AType_Dto > {

4

5 @Autowired

6 private ATypeConverter aTypeConverter;

7 @Autowired

8 private ATypeService aTypeService;

9

10 @Override

11 public AType_Dto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

12 log.info("Fetching AType data from Subgraph A");

13 String id = dataFetchingEnvironment.getArgument("id");

14 AType aType = aTypeService.getATypeById(Integer.parseInt(id));

15 return aTypeConverter.apply(aType);

16 }

17 }

Listing B.4: FetchAllATypesDataFetcher.java

1 @Slf4j

2 @Component

3 public class LookupATypeDataFetcher implements DataFetcher <ATypeDTO > {

4

5 @Autowired

6 private ATypeConverter aTypeConverter;

7 @Autowired

8 private ATypeService aTypeService;

9

10 @Override

11 public ATypeDTO get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

12 log.info("Fetching AType data from Subgraph A");

13 String id = dataFetchingEnvironment.getArgument("id");

14 AType aType = aTypeService.getATypeById(Integer.parseInt(id));

15 return aTypeConverter.apply(aType);

16 }

17 }

71

Listing B.5: CreateATypeDataFetcher.java

1 @Component

2 public class CreateATypeDataFetcher implements DataFetcher <ATypeDTO > {

3

4 @Autowired

5 ATypeService aType_service;

6 @Autowired

7 ATypeConverter aType_Converter;

8

9

10 @Override

11 public ATypeDTO get(DataFetchingEnvironment environment) throws Exception {

12 String appearsFirstIn = environment.getArgument("appearsFirstIn");

13 AType aType = aType_service.create(appearsFirstIn);

14 return aType_Converter.apply(aType);

15 }

16 }

1 /**

2 * Provides a list of FederatedEntityResolvers that can be called in a RuntimeWiring to

3 * turn a GraphQL service into part of a supergraph in Apollo Federation.

4 */

5 @Component

6 public class FederatedEntityResolverFactory {

7 @Autowired

8 ATypeService aTypeService;

9 @Autowired

10 ATypeConverter aTypeConverter;

11

12 public List <FederatedEntityResolver <?,?>> create () {

13 //This is only needed if another service wants to implement AType in its schema

14 List <FederatedEntityResolver <?, ?>> entityResolvers = List.of(

15 new FederatedEntityResolver <Integer , ATypeDTO >("AType", id -> {

16 AType aType = aTypeService.getATypeById(id);

17 ATypeDTO aTypeDto = aTypeConverter.apply(aType);

18 return aTypeDto;

19 }) {

20 }

21);

22 return entityResolvers;

23 }

24 }

72

B.3 Subgraph B/BTypeService

Listing B.6: application.properties

1 spring.application.name:BTypeService

2 spring.cache.type:NONE

3 server.port :8081

4

5 graphql:

6 servlet:

7 //async -mode -enabled:false

8 tracing -enabled:true

Listing B.7: ATypesDataFetcher.java

1 @Slf4j

2 @Component

3 /**

4 * Fetches an ATypeDTO.

5 */

6 public class ATypeDataFetcher implements DataFetcher <ATypeDto > {

7

8 @Autowired

9 private BTypeService bTypeService;

10

11

12 @Override

13 public ATypeDto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

14 log.info("Fetching ATypeDto at {}", new Date(System.currentTimeMillis ()));

15 BTypeDto bTypeDto = dataFetchingEnvironment.getSource ();

16 return bTypeService.getRelatedATypeByID(bTypeDto);

17 }

18 }

Listing B.8: BTypeDataFetcher.java

1 @Slf4j

2 @Component

3 /**

4 * Resolves the root query "lookupBType(id: ID!)".

5 */

6 public class BTypeDataFetcher implements DataFetcher <BTypeDto > {

7

8 @Autowired

9 private BTypeConverter bTypeConverter;

10 @Autowired

11 private BTypeService B_service;

12

13 @Override

14 public BTypeDto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

15 log.info("Fetching data from BType in SubgraphB at {}", new Date(System.

currentTimeMillis ()));

16 String id = dataFetchingEnvironment.getArgument("id");

17 BType bType = B_service.getBTypeById(Integer.parseInt(id));

18 return bTypeConverter.apply(bType);

19 }

20 }

73

Listing B.9: BTypesDataFetcher.java

1 @Slf4j

2 @Component

3 /**

4 * Resolves the root query "fetchAllBTypes" or the AType data field "relatedObjectsInSubgraphB

".

5 */

6 public class BTypesDataFetcher implements DataFetcher <List <BTypeDto >> {

7

8 @Autowired

9 private BTypeConverter bTypeConverter;

10 @Autowired

11 private BTypeService bTypeService;

12

13 @Override

14 public List <BTypeDto > get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception

{

15 List <BType > bTypes;

16 if (dataFetchingEnvironment.getSource () instanceof ATypeDto) {

17 bTypes = bTypeService

18 .getRelatedBTypesById (((ATypeDto) dataFetchingEnvironment

19 .getSource ())

20 .getId());

21 } else {

22 log.info("Fetching BTypes from Subgraph B at {}", new Date(System.currentTimeMillis

()));

23 bTypes = bTypeService.getAllBTypes ();

24 }

25 return bTypes == null ? new ArrayList <>() : bTypes.stream ()

26 .map(bType -> bTypeConverter.apply(bType))

27 .collect(Collectors.toList ());

28 }

29 }

1 @Component

2 /**

3 * DataFetcher for the Mutation Operation in Subgraph B.

4 */

5 public class CreateBTypeDataFetcher implements DataFetcher <BTypeDto > {

6

7 @Autowired

8 private BTypeService B_service;

9 @Autowired

10 private BTypeConverter bTypeConverter;

11

12 @Override

13 public BTypeDto get(DataFetchingEnvironment environment) throws Exception {

14 String name = environment.getArgument("appearsFirstIn");

15 boolean isVowel = environment.getArgument("isVowel");

16 int relatedObjectInSubgraphA = environment.getArgument("relatedObjectInSubgraphA");

17

18 var newBType = B_service.create(name , isVowel , relatedObjectInSubgraphA);

19

20 return bTypeConverter.apply(newBType);

21 }

22 }

74

Listing B.10: RelatedObjectsOfSameTypeDataFetcher.java

1 @Component

2 /**

3 * DataFetcher that resolves the field "relatedObjectOfSameType" in a

UnrelatedObjectInSubgraphB.

4 */

5 public class RelatedObjectsOfSameTypeDataFetcher implements DataFetcher <List <

UnrelatedTypeInSubgraphB_DTO >> {

6

7 @Autowired

8 private BTypeService bTypeService;

9

10 @Override

11 public List <UnrelatedTypeInSubgraphB_DTO > get(DataFetchingEnvironment

dataFetchingEnvironment) throws Exception {

12 UnrelatedTypeInSubgraphB_DTO unrelatedTypeInSubgraphB_dto = dataFetchingEnvironment

13 .getSource ();

14 List <UnrelatedTypeInSubgraphB_DTO > relatedObjects = bTypeService

15 .getRelatedUnrelatedTypes(unrelatedTypeInSubgraphB_dto.getId ());

16 return relatedObjects;

17 }

18 }

Listing B.11: UnrelatedTypeInSubgraphBDataFetcher.java

1 @Slf4j

2 @Component

3 /**

4 * Resolves the root query "lookupUnrelatedTypeInSubgraphB(id: ID!)".

5 */

6 public class UnrelatedTypeInSubgraphBDataFetcher implements DataFetcher <

UnrelatedTypeInSubgraphB_DTO >{

7 @Autowired

8 BTypeService bTypeService;

9

10 private final ExecutorService executorService = Executors.newFixedThreadPool(

11 Runtime.getRuntime ().availableProcessors ()

12);

13

14 public UnrelatedTypeInSubgraphB_DTO get(DataFetchingEnvironment dataFetchingEnvironment)

throws Exception {

15 String id = dataFetchingEnvironment.getArgument("id");

16 UnrelatedTypeInSubgraphB_DTO unrelated = bTypeService.getUnrelatedType(Integer.parseInt

(id));

17 log.info("Fetching UnrelatedTypeInSubgraphB: ", unrelated.getId());

18 return unrelated;

19 }

20

21

22 }

75

Listing B.12: UnrelatedTypesInSubgraphBDataFetcher.java

1 @Slf4j

2 @Component

3 /**

4 * Resolves the root query "fetchAllUnrelatedObjectsInSubgraphB ".

5 */

6 public class UnrelatedTypesInSubgraphBDataFetcher implements DataFetcher <List <

UnrelatedTypeInSubgraphB_DTO >> {

7

8 @Autowired

9 private BTypeService bTypeService;

10

11 @Override

12 public List <UnrelatedTypeInSubgraphB_DTO > get(DataFetchingEnvironment

dataFetchingEnvironment) throws Exception {

13 if(dataFetchingEnvironment.getSource () == null) throw new Exception("Source cannot be

null.");

14 log.info("Fetching UnrelatedTypes from Subgraph B at {}", new Date(System.

currentTimeMillis ()));

15 return bTypeService.getAllUnrelatedTypes ();

16 }

17 }

Listing B.13: FederatedEntityResolverFactory.java

1 @Component

2 public class FederatedEntityResolverFactory {

3

4 @Autowired

5 BTypeService bTypeService;

6 @Autowired

7 BTypeConverter bTypeConverter;

8

9 public List <FederatedEntityResolver <?, ?>> create () {

10 //This is only needed if this service wants to extend AType in its schema

11 List <FederatedEntityResolver <?, ?>> entityResolvers = List.of(

12 new FederatedEntityResolver <Integer , ATypeDto >("AType", id -> {

13 List <BType > relatedBTypes = bTypeService.getRelatedBTypesById(id);

14 if (relatedBTypes == null) {

15 return new ATypeDto(id);

16 }

17 List <BTypeDto > bTypeDtos = relatedBTypes.stream ()

18 .map(u -> bTypeConverter.apply(u)).collect(Collectors.toList ());

19 return new ATypeDto(id, bTypeDtos);

20 }) {

21 },

22 //This code snipped is the only code added to Subgraph B in order for Subgraph

C to extend B

23 new FederatedEntityResolver <Integer , BTypeDto >("BType", id -> {

24 BType bType = bTypeService.getBTypeById(id);

25 return bType == null ? null : bTypeConverter.apply(bType);

26 }) {

27 }

28);

29 return entityResolvers;

30 }

31 }

76

B.4 Subgraph C/CTypeService

Listing B.14: application.properties

1 spring.application.name:C_service

2 spring.cache.type:NONE

3 server.port :8082

4

5

6 graphql:

7 servlet:

8 //async -mode -enabled:false

9 tracing -enabled:true

Listing B.15: ATypeDataFetcher.java

1 @Component

2 @Slf4j

3 public class ATypeDataFetcher implements DataFetcher <ATypeDto > {

4

5 @Autowired

6 private CTypeService cTypeService;

7

8

9 @Override

10 public ATypeDto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

11 log.info("Fetching ATypeDTO at {}", new Date(System.currentTimeMillis ()));

12 CTypeDto cTypeDto = dataFetchingEnvironment.getSource ();

13 return new ATypeDto(cTypeService.getRelatedATypeByID(cTypeDto.getId()), cTypeDto);

14 }

15 }

Listing B.16: BTypeDataFetcher.java

1 @Component

2 @Slf4j

3 public class BTypeDataFetcher implements DataFetcher <BTypeDto > {

4 @Autowired

5 private CTypeService cTypeService;

6 @Autowired

7 private CTypeConverter cTypeConverter;

8

9

10 @Override

11 public BTypeDto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

12 log.info("Fetching BTypeDto at {}", new Date(System.currentTimeMillis ()));

13 CTypeDto cTypeDto = dataFetchingEnvironment.getSource ();

14 int relatedBType = cTypeService.getRelatedBTypeByID(cTypeDto.getId ());

15 List <CType > cTypes = cTypeService

16 .getRelatedCTypesById(relatedBType);

17 if (cTypes != null) {

18 return new BTypeDto(relatedBType , cTypes.stream ()

19 .map(c -> cTypeConverter.apply(c))

20 .collect(Collectors.toList ()));

21 }

22

23 return new BTypeDto(relatedBType , new ArrayList <>());

24 }

25 }

77

1 @Component

2 public class CreateCTypeDataFetcher implements DataFetcher <CTypeDto > {

3

4 @Autowired

5 private CTypeService cTypeService;

6 @Autowired

7 private CTypeConverter cTypeConverter;

8

9 @Override

10 public CTypeDto get(DataFetchingEnvironment environment) throws Exception {

11 String name = environment.getArgument("appearsFirstIn");

12 String isDefinedIn = environment.getArgument("isDefinedIn");

13 int relatedObjectInSubgraphA = environment.getArgument("relatedObjectInSubgraphA");

14 int relatedObjectInSubgraphB = environment.getArgument("relatedObjectInSubgraphB");

15 CType newCType = cTypeService.create(name , isDefinedIn , relatedObjectInSubgraphA ,

relatedObjectInSubgraphB);

16 return cTypeConverter.apply(newCType);

17

18 }

19 }

Listing B.17: CTypeDataFetcher.java

1 @Component

2 @Slf4j

3 public class CTypeDataFetcher implements DataFetcher <CTypeDto > {

4

5 @Autowired

6 private CTypeConverter cTypeConverter;

7 @Autowired

8 private CTypeService cTypeService;

9

10 @Override

11 public CTypeDto get(DataFetchingEnvironment dataFetchingEnvironment) throws Exception {

12 if (dataFetchingEnvironment.getSource () instanceof ATypeDto) {

13 CType relatedCType = cTypeService

14 .getRelatedCTypeById (((ATypeDto) dataFetchingEnvironment.getSource ()).getId

());

15 return relatedCType == null ? null : cTypeConverter.apply(relatedCType);

16 }

17 log.info("Fetching data from CType in SubgraphB at {}", new Date(System.

currentTimeMillis ()));

18 String id = dataFetchingEnvironment.getArgument("id");

19 CType cType = cTypeService.getCTypeById(Integer.parseInt(id));

20 return cTypeConverter.apply(cType);

21 }

22 }

Listing B.18: CTypesDataFetcher.java

1 @Slf4j

2 @Component

3 public class CTypesDataFetcher implements DataFetcher <List <CTypeDto >> {

4

5 @Autowired

6 private CTypeService cTypeService;

7 @Autowired

8 private CTypeConverter cTypeConverter;

9 @Override

78

10 public List <CTypeDto > get(DataFetchingEnvironment environment) throws Exception {

11 log.info("Fetching List <CTypeDTO > from CTypesDataFetcher at {}", new Date(System.

currentTimeMillis ()));

12 if (environment.getSource () instanceof BTypeDto) {

13 List <CType > result = cTypeService.getRelatedCTypesById (((BTypeDto) environment.

getSource ()).getId());

14 return result == null ? new ArrayList <>() : result.stream ()

15 .map(c -> cTypeConverter.apply(c))

16 .collect(Collectors.toList ());

17 }

18 List <CTypeDto > cTypes = cTypeService.getAllCTypes ().stream ()

19 .map(c -> cTypeConverter.apply(c))

20 .collect(Collectors.toList ());

21 return cTypes == null ? new ArrayList <>() : cTypes;

22 }

23 }

Listing B.19: FederatedEntityResolverFactory.java

1 @Component

2 public class FederatedEntityResolverFactory {

3

4 @Autowired

5 CTypeService cTypeService;

6 @Autowired

7 CTypeConverter cTypeConverter;

8

9 public List <FederatedEntityResolver <?,?>> create () {

10 //This is only needed if this service wants to extend BType in its schema

11 List <FederatedEntityResolver <?, ?>> entityResolvers = List.of(

12 new FederatedEntityResolver <Integer , ATypeDto >("AType", id -> {

13 CType relatedCType= cTypeService.getRelatedCTypeById(id);

14 if (relatedCType == null) {

15 return new ATypeDto(id);

16 }

17 return new ATypeDto(id, cTypeConverter.apply(relatedCType));

18 }) {

19 },

20 new FederatedEntityResolver <Integer , BTypeDto >("BType", id ->{

21 List <CType > relatedCTypes = cTypeService.getRelatedCTypesById(id);

22 if (relatedCTypes == null) {

23 return new BTypeDto(id);

24 }

25 List <CTypeDto > cTypeDtos = relatedCTypes.stream ()

26 .map(u -> cTypeConverter.apply(u))

27 .collect(Collectors.toList ());

28 return new BTypeDto(id, cTypeDtos);

29 }) {}

30);

31 return entityResolvers;

32 }

33 }

79

	Introduction
	Background
	Purpose
	Research Questions
	Reasons for Writing the Thesis
	Method
	Delimitation
	Outline of the Thesis

	Theory
	GraphQL
	Query Execution
	An Introduction to Execution Strategies in GraphQL Java

	Apollo Federation
	Query Plans in Apollo Federation

	Related Works

	Method
	Research Methodology
	Experiment Design
	Libraries and Frameworks Used
	The Test Application
	The Execution Strategies Evaluated in This Study
	Instrumentation
	Test Environment

	Testing Methodology
	Evaluation of Sources

	Results
	Evaluation of Execution Strategies
	Query Collection Gateway (A + B)
	Query Collection Gateway (A + B + C)

	The Effect of Number of Subgraphs on Response Times
	Query Collection Gateway (A + B)
	Subgraph A
	Subgraph B

	Discussion
	Evaluation of Execution Strategies
	Gateway (A + B)
	Gateway (A + B + C)

	Relationship Between Performance and Number of Subgraphs in Apollo Federation
	Query Collection Subgraph A
	Query Collection Subgraph B
	Query Collection Gateway (A + B)

	Conclusion
	Research Aims
	Research Objectives
	Practical Implications
	Future Research
	Chapter Summary

	References
	Test Queries
	Selected Source Code
	The Gateway Server
	Subgraph A/ATypeService
	Subgraph B/BTypeService
	Subgraph C/CTypeService

	Framsida Hbg-2022.pdf
	Introduction
	Problem
	Research question
	Outline
	Contributions

	Technical Background
	Related Work
	Baseline model
	Logistic Regression
	k-Nearest Neighbors
	Artificial Neural Network
	Forward propagation
	Backpropagation

	Convolutional Neural Network
	Long Short-Term Memory (LSTM)
	LSTM Cell

	Evaluation metrics

	Data
	Datasets
	Data retrieval
	Features
	Construction of training and test sets
	Defining reversal events
	Data characteristics
	Data imbalance

	Methods
	Data processing
	Sliding windows
	Normalization
	BatchNormalization

	Baseline model
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM
	Evaluation

	Results
	Overview
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM

	Predicting past reversals

	Discussion
	Definition of reversal
	Models
	Importance of distance to price level of previous reversals
	Window sizes and reversal sizes
	Predicting past reversals
	Strengths and limits

	Conclusion
	Future work
	Better dependent value
	Indicators
	Concatenating multiple stocks

	References
	Abbreviations
	The profile of this thesis

	Tom sida

