
Performance in Apollo Federation — A Controlled
Experiment Evaluating the Effects of Execution
Strategies and Number of Subgraphs
Anna Bergvall
Bachelor of Science in Engineering, Computer Science and Engineering at LTH, Lund University

Introduction
Traditional RESTful APIs have shown problems with over fetching and under
fetching. GraphQL is a technology– and language agnostic specification for
retrieving data in a declarative manner, which is a solution to over– and under
fetching. GraphQL can be used in two ways: first, to define a schema of a data
model, and second, to send queries to this model.

Apollo Federation is an open architecture that allows connecting several
different GraphQL APIs to a gateway server, and by doing so creating a unified
super graph API where all data defined in the connected subgraphs are available
through one single port. For the benefit of Capgemini Malmö, the performance
of execution strategies in Apollo Federation was investigated.

Research Objectives
The main goal of the thesis was to answer the following questions:
• How is the performance in Apollo Federation affected by the choice of

execution strategy?
• To what extent does the number of subgraphs affect performance in Apollo

Federation?

Method
A test application, which data model can be seen in Figure 1, was
developed in Java, using graphql-java and Spring Boot, in order to answer
the research questions above. The microservices were connected through an
@ApolloGateway server written in JavaScript to form a unified supergraph
adhering to the Apollo Federation specification.

Figure 1:Data model for the federated graph developed in this thesis.

Three execution strategies were evaluated:
• AsyncExecutionStrategy (”default”)
• AsyncSerialExecutionStrategy (”serial”)
• AsyncExecutionStrategy with parallel data-fetchers (“concurrent”)
To answer the second research question, a set of identical queries were sent to
the gateway server connecting one, two, and three federated subgraphs. The
testing was conducted in Postman.

Results
The results for the three execution strategies are presented in Figure 2. In
Figure 3, response times are shown for the same set of queries sent to the
gateway server with either two or three connected subgraphs.

Figure 2:Results for queries sent to Gateway (A + B)

Figure 3:Results for AsyncExecutionStrategy (”standard”) for queries sent to Apollo Federation
gateway with two (Gateway (A + B)) respective three (Gateway (A + B + C)) subgraphs

Discussion and Conclusion
The results suggest that AsyncExecutionStrategy offers best overall
performance. Moreover, based on these results, the choice of execution strategy
matters more with an increased query depth. In addition, the results indicate
that concurrent data fetchers are not useful unless queries are rather complex,
involving several data fetchers, since starting separate threads comes at a
cost. AsyncSerialExecutionStrategy, on the other hand, appears to work well
for shallow and narrow queries, but will not offer the best performance for
deeper queries based on the these results. However, it is not possible to draw
any conclusions about a relationship between the number of subgraphs in a
federated architecture and performance with respect to latency as the test
results show no clear pattern.


