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Abstract

This thesis strives to dive deeper within the area of Monocular Depth Estimation,
approximating distance information from one single image using deep neural net-
works. It introduces a thorough evaluation and analysis of state-of-the-art depth
estimation models regarding proposed aspects of relevance for downstream video
applications, specifically in a surveillance domain. This leads to three custom data
sets where two include ground truth depth data. Results on accuracy, temporal in-
consistency, and range resolution is presented and analysed utilising the collected
data sets, with selected metrics. It is concluded that the accuracy performance of the
models, even though impressive, is also highly scene dependant. Regarding tempo-
ral inconsistency, which causes apparent video instability, it is concluded to be a
prominent concern for typical downstream video applications that calls for further
attention. This leads to a proposed minor post-processing step, with promising re-
sults.

Furthermore, this thesis also presents a novel end-to-end algorithm referred to as
”3D Privacy Masking”. Privacy masking is a typical task in camera surveillance,
where a certain region of the image scene needs to be anonymised. This functional-
ity is here extended by including depth, such as that from monocular depth estima-
tion, resulting in a depth aware privacy mask. Thereby, events in front of the mask as
seen by the camera can still be observable. The suggested algorithm and proof-of-
concept application also includes a stabilising technique to account for sub-perfect
depth data. Conclusively, this thesis showcases the potential of monocular depth es-
timation in downstream computer vision tasks, like that of 3D privacy masking, and
proposes continued directions forward.
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1
Introduction

This chapter serves to introduce the topics of the project. By describing where cur-
rent research and industry is, regarding Monocular Depth Estimation and privacy
masking, and why this thesis is suggested, the reader should by the end of this chap-
ter be able to comprehend the material and the ultimate purpose of this thesis.
Firstly, we introduce the background and purpose, discussing the prospects of utilis-
ing resent research of Monocular Depth Estimation, and why it would be favourable
to include distance information in surveillance video applications, such as privacy
masking functionality. Secondly, we present the problem formulation, by listing what
we aim to accomplish from the development work and analysis. This is with the con-
sideration of the defined project limitations listed in the subsequent section. Thirdly,
a description of the report outline is included. Finally, references to related work
are reviewed, as well as connecting this to how the thesis contributes scientifically.

1.1 Background and Purpose

Acquiring distance to objects in an image has long been a task that typically requires
either external sensors, stereo cameras, or careful examination of visual cues. In
computer vision, this task is termed depth estimation, which is a crucial step towards
inferring scene geometry [Vasiljevic et al., 2019]. There is extensive literature on
depth estimation using methods relying on multiple viewpoints, controlled lighting
conditions [Forsyth and Ponce, 2012], and even controlled focal length exploiting
depth cues from the appeared image focus [Nayar and Nakagawa, 1994]. However,
to the best of our knowledge no such method have satisfactory result utilising only
a single monocular camera.

Stemming from the groundbreaking result and milestone of AlexNet in 2012, and
later ResNet in 2015 [Alom et al., 2018], deep-learning approaches have become
the de facto standard solution for complex image classification tasks. Since then,
there has been a surge of research addressing the task of pixel-wise depth estimation
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1.1 Background and Purpose

from monocular images with deep-learning techniques [Godard et al., 2017; Casser
et al., 2019; Ranftl et al., 2020; Yin et al., 2019], with progressively better and
more impressive results. This research has also to a large extent been fueled by
the automotive industry race towards autonomous capabilities, where high-quality
depth prediction would add valuable redundancy to depth sensors such as radars
and LiDARs, or even eliminate the need for expensive sensors completely [Godard
et al., 2019].

Although recent progress in the field of Monocular Depth Estimation is very no-
table, in many cases producing outputs very closely resembling the output you
would expect from expensive depth sensors, state-of-the-art depth estimator mod-
els are still very fragile and can sometimes fail completely to discern object depth
[Ranftl et al., 2020].

Two such identified issues are the temporal inconsistency between frames when
these models are tasked to continuously process inputs from a video stream, and
the fact that small variations in the image scene can induce highly different depth
outputs. A third issue, which is present in most learning based methods in computer
vision, is the inherent vulnerability to unseen scene characteristics and contexts.

Furthermore, while most auxiliary tasks of monocular depth estimation currently
fall into the domain of self-driving cars, robotics and AR-composition from hand-
held devices, little research has been carried out in the surveillance domain. This
means that the effectiveness of state-of-the-art depth estimators on image character-
istics typical for security cameras remains largely unexplored, and use-cases com-
bining security imaging with pixel-wise depth information are still in its infancy.

Today, one typical task in camera surveillance is to perform privacy masking, where
a certain area of the image scene needs to be anonymised. This is normally achieved
by defining a polygon in image space and hide its pixel content, for example by
overlaying a blurred or blank image. However, one large drawback of such classic
2D privacy mask is that all information between the camera and the anonymised
object or area is lost. For example, consider a department store that wants to monitor
its entrance and exit, but due to privacy and integrity reasons cannot film outside its
property boundary. The department store must then either compromise with viewing
areas or implement a 2D privacy mask. However, with a classic 2D privacy mask
a person or object in front of the exit is then also anonymised, resulting in a loss
of valuable information. Because of this, it is very compelling to be able to have
a system that can measure depth and the full scene geometry in order to perform
masking in 3D world space instead of solely on the image plane. In the example
mentioned, the person or object that is located inside the store would remain visible,
while objects outside would be masked. We refer to this technique as 3D privacy
masking. See Figures 1.1 and 1.2 for illustrations of 2D masking compared to 3D
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Chapter 1. Introduction

masking, respectively.

In this thesis, we explore the prospects of developing this new type of privacy mask-
ing in 3D space, utilising the surge of recent work in the area of monocular depth
estimation. We also analyse current state-of-the-art models and compare them on
metrics such as accuracy, stability, depth range resolution and how different scene
properties may affect the quality of the produced depth map. This is done from a
surveillance perspective since, to our knowledge, this combination of monocular
depth estimation using deep-learning is mostly an unexplored area. It is an area
where many use-cases and applications could prosper in the near future, with more
edge devices now being able to host and power heavy AI and machine learning
applications.

Use Cases
There are many use-cases for 3D masking functionality that warrant such an in-
vention. Integrity and privacy are becoming more relevant and important along the
swift progress of technologies, with more and more surveillance cameras entering
the market. Today, a typical use case for a regular privacy mask is to hide sensitive
information. This could be information that is illegal or intricate to film because of
laws and regulations, or it could be signs, logos, or sensitive information in a scene
that you do not want to capture on a recording. Furthermore, it might be allowed to
film in a certain area, but it could come with regulations or certain conditions that
render it ill-suited/non-profitable (such as handling sensitive personal data, certain
storage requirements, access restrictions, etc.). Below is a short list of imaginable
use-cases that are possible with technique that allows a privacy mask to be depth
aware.

• Window masking: Allow windows, for example in residential buildings or
ground-level boutiques, to be masked in public places without loosing valu-
able information. Keeps the integrity but allows the capture of events in front
of the windows.

• Entree monitoring: Allow a public-facing camera to be placed more freely,
for example from inside a retail store/commercial building or a parking
garage. Allows capture of events that happen close to the entree, but keeps
the integrity of the public outside.

• Property monitoring: Allows better monitoring of property, for example
with a wide-angle, public facing camera, without risking integrity violations.
Areas and events that occur out of the property border are masked, but events
inside the property are visible, even if in front of the masked region.

• Video Conference Privacy: Allow a webcam to blur/hide background con-
tent based on its distance. Today, typical webcam filters blur every pixel not
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1.2 Problem Formulation

deemed belonging to a person. This hides objects that a user may want to
remain visible, for example showcasing a drawing/object during a video con-
ference.

y

x

z
Objects 

View volume

Image plane

Privacy mask

Figure 1.1 Illustration of regular 2D masking. Notice that the red privacy mask in the image
plane is in front of both objects.

y

x

z

3D privacy mask

Objects 

View volume

Image plane

Figure 1.2 Illustration of 3D masking. Notice that the projected 2D mask in the image
plane is in front of the yellow object, but behind the other.

1.2 Problem Formulation

The main goal of this thesis is to investigate if, and how, current monocular depth
estimators can be used to create 3D masking functionality on surveillance cameras
with satisfactory performance.
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Chapter 1. Introduction

This translates into several sub-goals. Firstly, this thesis aims to propose a com-
plete end-to-end 3D masking algorithm, taking a depth map and a colour image
(RGBD) as input, that is able to perform in close to real-time, i.e., 30 frames per
second (FPS), on a desktop device. This algorithm should be robust and perform
satisfactory even on sub-perfect depth data, as long as sufficient depth resolution is
available. Robustness and satisfactory performance is here defined as ”hide-rather-
than-show”, i.e., privacy should not be compromised, while any event in front of the
mask should be observable and understandable.

Secondly, the thesis also aims to evaluate performance of state-of-the-art depth es-
timators and identify domains and properties that result in accurate depth maps as
well as weaknesses and domains that result in inaccuracies. In other words, we aim
to find the vital functionality, with 3D privacy masking in mind, and propose quan-
titative evaluation of these functionalities.

To conclude, this thesis aims to demonstrate 3D masking capabilities by showcasing
real examples from various environments together with a proposed algorithm. It
will, by presenting graphs and data in various forms, try to highlight differences
between the depth models themselves. It will also highlight issues, and suggest a
mitigation strategy, that may arise when performing monocular depth estimation on
continuous frames, so that such issues can be avoided, mitigated and/or improved
upon.

1.3 Project Limitations

This thesis has an extensive problem description, and therefore, several limitations
in the project scope have been made in order to keep the project clear and concise
and without compromising the project deadline. Another important aspect for limit-
ing the project scope is to be able to spend more time on evaluating and analysing in-
teresting phenomena more thoroughly. These limitations are related to model train-
ing, weather effects, GDPR, and hardware utilisation on edge devices.

Firstly, the thesis will not fine-tune the models by training on self-collected data
sets. While it would be pleasant to be able improve the accuracy on specific types
of surveillance scenes by model-training, our work will instead focus on general
evaluation and analysis of these methods, and leave model fine-tuning as a subse-
quent future task. It is already known that these kind of regression models can to
some degree be fine-tuned on specific domains, introducing scene biases improving
the accuracy on that domain slightly. Also, since the field of monocular depth es-
timation is rapidly progressing and state-of-the-art models annually being replaced
or updated, we reason it unnecessary to fine-tune models until it is ready for actual
deployment, and this is not the end-goal of this thesis.
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1.4 Report Outline

This thesis will also not perform metrics evaluation regarding various weather ef-
fects, such as rain, snow or fog. Instead, it targets environments in their natural state
such as outdoor scenes during midday and indoor scenes with realistic lighting.

Due to GDPR, General Data Protection Regulation, our dataset used for evaluation
and development will contain only limited scenes in controlled environment, where
the subjects only include the thesis authors and other notified subjects. While typ-
ical surveillance scenes such as town squares or streets, inside department stores,
gated property and more, would be of interest for assessment, those kind of scenes
were deemed too difficult to collect due to integrity reasons and/or project scope.
Instead scenes that have similar point of view in a controlled simulated surveillance
environment has been collected.

Furthermore, while the thesis aims to showcase the possibility of using monocular
depth estimation models and use-cases such as the proposed 3D privacy mask on
edge devices, e.g., on embedded camera hardware, the research and final demon-
strations will be performed or recorded on a desktop PC with modern GPU and
CPU capabilities. The ambition is that the reached result, performance-wise, will
be able to be an approximated benchmark or reference for other embedded devices,
each with different compute capabilities, requirements and limitations.

1.4 Report Outline

The project process in this thesis can be divided into three distinct phases. These
phases are largely represented in the report structure.

The first phase, planning and prestudy, is contained in Chapter 2 and Chapter 3.
Relevant theory of both classical and modern depth estimation is first presented in
Chapter 2, followed by an in-depth presentation and motivation of selected models
in Chapter 3.

The next phase, masking development, is contained in Chapter 4 where the con-
cept and design specification of 3D masking are first introduced. Then various tech-
niques and ideas are explored to iteratively develop a robust algorithm to perform
3D privacy masking.

Finally, the concluding phase is evaluation and assessment which is presented in
Chapter 5. Here evaluation of own-recorded data sets is performed using multiple
metrics, with the assistance of depth sensors such as LiDAR and a stereo-camera, as
well as the presentation and evaluation of the proposed stabilisation post-processing
technique.

Everything is then summarised in Chapter 6 into a conclusion and a brief outlook
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Chapter 1. Introduction

of future work.

1.5 Related Work

Inferring 3D geometry information from single-view depth, where monocular depth
estimation being one part of it, has historically proven useful in different computer
vision tasks and applications. This includes the following: 2D to 3D conversion to
display images or video in 3D using VR or 3D glasses [Xie et al., 2016], room
re-construction estimation in computer-aided design (CAD) [Izadinia et al., 2017],
converting video into 3D in cinematography [Phan and Androutsos, 2014], aug-
mented reality [Liu et al., 2018], and in, maybe most prominently, robot navigation
[Mancini et al., 2018] and autonomous driving [Godard et al., 2017].

The work on static privacy masking of a region or area to keep private is usually
solved by defining a polygon in the image, in which all internal pixels are masked
out [Axis Communications, 2021]. Including depth in privacy masking is not as
well established, yet not completely unexplored. Depth data from monocular depth
estimations have been used as a way of reconstructing a scene in 3D, in order to keep
the overall information about scene flow and characteristics, but at the same time
keep all personal information private [Conde Moreno, 2019]. The idea of including
depth in a static privacy mask, as a way of anonymising regions covered by a mask
in 3D, has conceptually been thought of in various patent applications [Takeyuki
Goto et al., 2009; Berlic and Strandevall, 2012].

Evaluation and comparison of monocular depth estimation (MDE) models is as well
not unexplored. The authors of [Koch et al., 2018] released the iBims-1 data set in
2018. This enables, in addition to standardised per-pixel depth error evaluation, for:
distance related assessment (DRA), meaning to evaluate how well a model performs
in different depth ranges, planarity error so as to evaluate how well planar surfaces is
reproduced, depth boundaries evaluation where you can determine the accuracy of
locating depth boundaries, and directed depth error showing if the estimated depth
is predicted too far or too short [Koch et al., 2020]. In addition, [Zhao et al., 2020]
provides a paper on an overview of monocular depth estimators (MDEs) and how
they function in general terms. In terms of using the MDEs on video data, or a
sequence of frames, some work has been made on utilising temporal information in
order to acquire temporal consistent depth estimations. Google Research published
a paper regarding this, that functions off-line with moving cameras [Zhang et al.,
2021], and [Zhang et al., 2019] strives to accomplish this in a real-time realisation.
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1.6 Scientific Contribution

1.6 Scientific Contribution

This thesis’ work aims on continue the exploration of monocular depth estimation
models. It provides a careful evaluation and analysis of some currently state-of-
the-art models, in a surveillance domain, with 3D privacy masking in mind. This
includes quantitative evaluation of performance, as well as some qualitative assess-
ment continuing to explore in what situations they function or not, leading to an
increased understanding of MDE. In addition to reaching conclusions about their
abilities and limitations, we aim to raise awareness on how the performance can be
evaluated, and what aspects to raise when comparing MDEs with one another. This
will be additional work to papers such as [Koch et al., 2018] and [Zhao et al., 2020],
as we will continue to explore evaluation of performance and model comparison,
with the main difference that our work will be in the surveillance domain, with 3D
masking and video applications in mind. The thesis also explores the issue of tem-
poral inconsistency mentioned by [Zhang et al., 2019] and propose an alternative
non-complicated post-processing method to mitigate the effect of this.

The thesis also contributes with a 3D masking algorithm technique, demonstrating
how depth information can be utilised in terms of privacy masking, as an improve-
ment relative to the static 2D mask [Axis Communications, 2021]. We are utilising
depth in order to anonymise a scene without losing desired information, as have
been investigated in terms of 3D reconstruction of an entire scene for anonymisa-
tion purposes [Conde Moreno, 2019], but doing this using a static live-mask instead,
realising the prospects proposed in approved patent registrations [Takeyuki Goto et
al., 2009; Berlic and Strandevall, 2012]. We want to, with this application, man-
ifest the use of monocular recovered depth in auxiliary computer vision or video
applications, extending the list of applications presented in Section 1.5.

1.7 Individual Contributions

The authors of this thesis have contributed all-in-all equally. Both authors have
played its part in all individual topics. The background research have been stud-
ied in parallel by both authors. For the development of the algorithm, there have
been an on-going discussion of the conceptual design, and for all intermediate tech-
niques that have been tried out, this work has been alternating between the authors,
so to have both authors invested and inducted in the proposed algorithm. The same
goes for the evaluation and analysis of the chosen models, where the subsequent
tasks have been divided internally for a fair distribution of work load. For example,
Mattias have focused on the accuracy evaluation on the self-captured stereo data
set, while Jakob did the same analysis on the LiDAR data set. To repeat ourselves,
even though one of the authors have been lead responsible for a given task, this does
not mean one have been solely invested in this task, and the work load and decision
making have been divided equally.
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2
Theory

This chapter aims to give a brief introduction to terminology and concepts in terms
of acquiring depth from images. Firstly, classical ways of inferring depth using
photogrammetry are introduced. This includes a description of image formation
and how one can acquire depth from stereo. Subsequently, terminology connecting
to the heart of this thesis, namely depth estimation using deep-learning, is reviewed.
Here, concepts such as U-net architecture, encoders, relevant loss functions, etc. are
described. Lastly, the metrics used for evaluation of the monocular depth estimation
models are reviewed.

2.1 Depth Perception using Photogrammetry

A core and long standing problem in Computer Vision and Robotics is estimating
distance to scene objects and their geometrical properties. When images are in-
volved, distance estimation is typically referred to as depth estimation. The results
of this is preferably a pixel-wise depth map representation, where each pixel has a
corresponding depth value. In computer vision, this is known as a depth map or a
dense depth map [Forsyth and Ponce, 2012].

Classical methods to infer depth in an image typically fits under the larger umbrella
term Photogrammetry. We will in this section briefly explain the concept of image
formation and touch on some of these more classical methods of acquiring depth,
and leave methods involving Machine Learning to the next section.

Photogrammetry
Photogrammetry is an extensive existing field where the aim is to retrieve three-
dimensional information about real-world objects from one or multiple images. Ap-
plications were early mostly related to cartography and military intelligence, but has
evolved along computers and numerical analysis into analytical photogrammetry
using methods from fields like optics and projective geometry [Forsyth and Ponce,
2012].
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2.1 Depth Perception using Photogrammetry

Image Formation
This thesis will use the pinhole camera model. It is commonly used due to its sim-
plicity, and while there exist more complicated camera models describing intricate
lens and light interactions [Forsyth and Ponce, 2012], the accuracy gained is not in
proportion to the added complexity in this thesis.

Throughout this thesis we will use uppercase letters to denote points in world space
with the camera centre at the origin. Small letters will denote points in camera
space. From the pinhole camera model, the world space point P = (X ,Y,Z) as seen
from the camera coordinate frame is represented in camera pixel space by projection
point p = (x,y,1). This mapping is done with the intrinsic matrix K by λ p = KP,
mapping real-world points to pixel coordinates, with λ describing the existing scale
ambiguity. The intrinsic matrix is referred as the inner parameters of the camera,
which encodes properties such as focal length ( f ) along the x- and y direction, skew
(s) and optical centre (x0,y0). The relation is given by

λ p = λ

x
y
1

= K

X
Y
Z

=

 fx s x0
0 fy y0
0 0 1

X
Y
Z

 (2.1)

where λ is the result of the fact that infinitely many points in world space can be
mapped to the same point in image space, making the inverse operation impossible
without losing depth information.

In this thesis we assume the effects of skew (s) to be negligible for our purpose,
and project and transform points using known or estimated focal lengths. This can
mathematically be described as

λ p = λ

x
y
1

= K

X
Y
Z

=

 fx 0 x0
0 fy y0
0 0 1

X
Y
Z

 . (2.2)

Depth from Stereo
A more direct way to perceive depth of a scene is to capture and fuse the information
from multiple images, much like our human eyes. This is called Depth from Stereo
or Stereopsis [Forsyth and Ponce, 2012].

Using pixel correspondence from a stereo pair images and calculating the pixel
displacement, or disparity, results in a disparity map. This disparity, d, is inversely
proportional to depth according to [Szeliski, 2011]
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Chapter 2. Theory

d(x,y) = f
B
Z

(2.3)

where f is the focal length in pixels, B the baseline in meters (distance between the
cameras), and Z the 3D depth in meters. The (horizontal) disparity d(x,y) relation-
ship between pixel coordinates in a stereo pair is [Szeliski, 2011]

x′ = x+d(x,y), y′ = y (2.4)

in a typical stereo setup where the cameras are identical, calibrated and placed par-
allel with a known baseline distance. In (2.4), x′ and y′ are the displaced pixel coor-
dinates due to stereo disparity. Since disparity is the (horizontal) pixel displacement,
this means that object that are close have large disparity, while objects far away have
none, or minuscule disparity. As such, the reconstruction from disparity to a depth
map is relatively straight forward, and finding the pixel correspondences in stereo
pairs is the more challenging step. Especially since there often are millions of pixels
involved.

Finding pixel correspondence is a large topic by itself and today’s stereo-camera
products and solutions employ various algorithms to perform accurate and fast
stereo matching. General problems involve limited depth range, occlusion, and
stereo matching when there are low amounts of features such as a complete white
wall. A modern consumer stereo camera such as ZED stereo can perceive depth up
to 15–20 meters [Stereolabs, 2022] with decreasing accuracy. This is related to the
baseline length, as well as the image resolution which is because of the increased
difficulty to find stereo pairs on objects far away, since they are represented by fewer
pixels, adding uncertainty.

2.2 Depth Perception using Deep Learning

This section will underline important aspects of depth estimation using deep-
learning. More specifically, these topics will be introduced in regard to the models
of choice in this thesis, namely Monodepth2 [Godard et al., 2019], MiDaS [Ranftl
et al., 2020], DPT [Ranftl et al., 2021] and AdelaiDepth [Yin et al., 2021]. A com-
parison and elaboration of these models will be presented in Chapter 3, but for now,
we introduce some more general terminology in order to understand the foundation.

First off, the popular U-net architecture is introduced. This enables acquiring both
high and low-level features of an image when performing dense prediction. Sec-
ondly, encoders, and relevant variants of these, are presented. Thirdly, the term vi-
sion transforms is introduced, as this is the foundation of DPT [Ranftl et al., 2021],
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2.2 Depth Perception using Deep Learning

further described in Section 3.3. We also describe scale- and shift image transfor-
mation as this is an important step for calculating error metrics, as well as a key
factor for determining a loss function effective on a mixed data set. Lastly, the the-
ory behind some proposed loss functions and their functionality is described, as
introduced in selected model papers.

U-net
Since depth estimation of monocular images is a dense image prediction task, it
is important to acquire both low and high-level features of the image. It is de-
sirable to output both the coarse prediction at the higher feature levels, without
losing the fine-grained predictions at lower feature levels. This is typically solved
using an encoder–decoder network architecture, with skip-connections, much like
the published U-net paper in 2015 [Ronneberger et al., 2015]. Here, the encoder
part consists of convolutional layers, downsampling the input image into more and
more isolated regions of features. The decoder part of the architecture performs
de-convolutional steps and concatenates this with the convoluted output at the cor-
responding level from the encoder, i.e., skip-connection. The skip connections are
what enables a global receptive field, and resolves to a fine-grained, dense predic-
tion. An illustrative figure of the U-net architecture is presented in Figure 2.1.

Figure 2.1 Illustration of the U-net architecture [Taghanaki et al., 2020] under license [CC
BY 4.0].

Encoders
The encoding part in a U-net architectural network is important in order to acquire
a good classification. The size of the network strictly relates to the quality of the
prediction. However, a too deep network also quickly leads to cumbersome train-
ing, as well as long inference time. Therefore the need for a compromise between
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these two aspects is needed, and monocular depth estimation is no exception. In ad-
dition, it is also highly beneficial to utilise pre-trained encoders, in order to save on
total training time, as well as being able to keep the depth of the networks in order
to attain high accuracy. The latter has previously proved to be problematic, since
simply stacking more layers on top of each other soon lead to a saturation, and even
a degradation, of accuracy, i.e., the vanishing or exploding gradient problem [Ben-
gio et al., 1994; Glorot and Bengio, 2010]. Here is where ResNet [He et al., 2016]
comes in.

The ResNet [He et al., 2016] solution of the vanishing/exploding gradient problem
was to introduce deep residual networks. The baseline here is a regular feed-forward
network, with the addition of skip-connections past one or more layers, in order
to solve for the residual mapping instead. In the original paper, the ResNet was
trained on ImageNet [Russakovsky et al., 2015], an object classification data set
with hundreds of categories and millions of images. The following deep-learning
models that we will present more in depth later on, are, with a few exceptions,
based on a ResNet encoder pre-trained on ImageNet.

Alternatively, large depth prediction models also tend to use the further developed
ResNeXt-101 [Xie et al., 2017]. This network is formed by a set of building blocks,
each with internal ResNet layers, adding a dimension (cardinality) to the network.
This leads to fewer hyper parameters to set. The smaller model of MiDaS [Ranftl
et al., 2020], made for mobile platforms, is using the EfficientNet-Lite3 [Tan and
Le, 2019]. Tan and Le are here looking at scaling up the dimensions of a neural
network, without for that sake necessarily increasing inference time.

Vision Transforms
As previously mentioned, DPT [Ranftl et al., 2021] is a depth estimation model that
utilises vision transformers (ViT) [Dosovitskiy et al., 2021] as backbone to their
encoder–decoder network architecture. The ViTs are based on the work with trans-
formers for natural language processing, for self-attention based learning [Vaswani
et al., 2017]. Using transformers in self-attention learning is a way of computing
a representation of a sequence of data points, or words in the original paper by
Vaswani et al., in order to find global dependencies between input and output, with-
out for that matter use sequential RNN or convolutions. This leads to better scala-
bility, and reduces the need of processing input in a sequential manner, as the global
context of the input is inferred by self-attention. Lastly, Vaswani et al. implemented
multi-headed self-attention, which basically refers to implementing a multiple of
self-attention layers in parallel. With this, the model can extract information from
different subset representations at different positions at once [Vaswani et al., 2017].

The ViT model follows the original design of transformers closely. As the trans-
former architecture takes a 1D-input array, the 2D images need to be represented as
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such. The idea is to divide the input image into squared, non-overlaying, patches,
and the pixel data of these patches are flattened and embedded by linear projection.
In addition, in order to reduce the input data size, the input 1D-array can consist
of feature maps from an initial convolutional neural network (CNN) instead of the
raw pixel data. This is the case for DPT Hybrid [Ranftl et al., 2021], that we will
include in our evaluation. Conclusively, using ViT as a backbone architecture, is an-
other way of attaining a dense prediction model, with fine-grained prediction using
the global receptive field that comes with ViT.

Scale and Shift Alignment
For depth estimation models, the perspective depth prediction is often only to be
noted as relative depth, as it in general terms is a frame-by-frame prediction with
no prior knowledge about the scene or the camera setup. In addition, some of these
models are trained on data with depth up to an unknown scale and shift. In other
words, all we can trust is the internal relative depth of the scene. This needs to
be addressed in two prominent situations. Firstly, when a depth prediction model
is trained on multiple data sets, with different depth sources (some output relative
depth, some metric depth), but without separating the loss functions for each data
set, and secondly, when performing evaluation of these data sets. As the output from
the models are internally relative, and many ground truth validation data sets come
in the form of metric depth, the output needs to be aligned with the ground truth
data in order to make a fair comparison. These two situations are handled somewhat
differently, and we will present the background to each of them respectively.

During training with multiple data sets, it is desirable to remove the scale and shift
of the ground truth and predicted values. This is to be able to use the same loss
function on fundamentally different sources of data. This was presented by MiDaS
[Ranftl et al., 2020], and results in the zero-translated and unit scaled disparity map
(d̂) of the input disparity map (d),

d̂ =
d− t(d)

s(d)
(2.5)

where the shift, t(d), is defined as the median of the data. The scale, s(d), is given
by

s(d) =
1
M

M

∑
i=1
|di− t(di)| (2.6)

where M denotes the number of pixels in the given image [Ranftl et al., 2020].
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The other aspect of this was, as mentioned, to align a predicted output dispar-
ity/depth map with the ground truth, for fair evaluation. This was as well presented
by [Ranftl et al., 2020], and adopted by AdelaiDepth [Yin et al., 2021] for their
evaluation. The idea is to align the predicted output with the ground truth in accor-
dance with least-squares principle. This is read out as scaling (s) and translating (t)
the input depth map, d, such that it is as close to the ground truth, d∗, as possible
according to least-squares. This is mathematically described as

(s, t) = argmin
s,t

M

∑
i=1

(sdi + t−d∗i )
2 (2.7)

Referencing (2.7), the prediction is then transformed as

d̂ = sd+ t (2.8)

and the ground truth is kept in its original form.

With the notations, d⃗i = (di,1)⊤ and h = (s, t)⊤, the objective of (2.7) can be re-
written as

hopt = argmin
h

M

∑
i=1

(
d⃗i
⊤

h−d∗i
)2

(2.9)

which in turn is in closed-form solved by

hopt =

(
M

∑
i=1

d⃗id⃗i
⊤
)−1( M

∑
i=1

d⃗id∗i

)
(2.10)

This will be used, and implemented by us when performing depth metrics evaluation
of chosen models, in Chapter 5.

Loss Functions
Another important aspect of depth estimation models is the loss function. How do
you determine in the best suited manner how well the model has actually been
able to predict the depth, compared to a ground truth depth or disparity? Here,
we introduce some intermediate loss functions, that individually play an important
role, for different reasons, in the complete loss functions of the models that we will
evaluate later on.
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Firstly, we have the photometric reprojection error, used by Monodepth2 [Godard
et al., 2019],

Lp = ∑
t ′

pe(It , It ′→t) (2.11)

This describes the L1 distance, as well as the Structural SIMilarity (SSIM) [Wang
et al., 2004] of the reprojected image, It ′→t , compared to the target image, It . This
is referred to as pe in (2.11), and is given by

pe(Ia, Ib) = α/2(1−SSIM(Ia, Ib))+(1−α)∥Ia− Ib∥1 (2.12)

Secondly, the edge-aware smoothness loss is given by

Ls = |∂xd∗t |e−|∂xIt |+
∣∣∂yd∗t

∣∣e−|∂yIt | (2.13)

where d∗t is the mean-normalised inverse depth and It is the target image [Godard
et al., 2019]. This loss function encourages smoothing the resulting depth map by
computing the disparity gradients, penalising sharp contours, weighting this cost by
an edge-aware term using the image gradients [Godard et al., 2017].

Further, the multi-scale, scale-invariant gradient matching term, introduced by [Li
and Snavely, 2018], is used by MiDaS [Ranftl et al., 2020] as a way of accomplish-
ing sharp discontinuities that are aligned with discontinuities of the ground truth.
This is achieved with

Lreg(d̂, d̂∗) =
1
M

K

∑
k=1

M

∑
i=1

(∣∣∣∇xRk
i

∣∣∣+ ∣∣∣∇yRk
i

∣∣∣) (2.14)

where d̂ and d̂∗ are the predicted disparity map and ground truth, respectively, being
shifted and scaled accordingly with (2.5). Further, M is the number of pixels in the
image, Ri = d̂− d̂∗ and k is the scale to apply on the disparity map difference, R.
Similarities between this loss and the one given in (2.13) is that they both try to
accomplish contour refinement, by using gradient values.

Additionally, the scale and shift-invariant loss by MiDaS [Ranftl et al., 2020], is
computed as the absolute difference error,
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Lssi(d̂, d̂∗) =
1

2M

Um

∑
i=1

∣∣d̂i− d̂∗i
∣∣ (2.15)

The notation for number of pixels (M), scale and shift-invariant ground truth (d̂∗)
and predicted disparity (d̂) are the same as for (2.14). In addition, Um = αM, which
is referring to the down-scaled (α < 1) set of image pixels, being sorted on size.
This means that the top-value outliers are disregarded during training.

An alternative way of countering scale and shift ambiguities connected to varied
sources of data, contrary to Lssi in (2.15), is the image-level normalised regres-
sion loss, presented by AdelaiDepth [Yin et al., 2021]. The idea is to normalise the
ground truth data in a robust manner, so as to exclude its scale and shift. As regu-
lar min-max-normalisations generally are prominent to be affected by outliers and
long-tail residuals, they produced a combination of a tanh normalisation [Singh and
Singh, 2020] and a trimmed Z-score normalisation. The loss function is presented
as

LILNR(d,d∗) =
1
M

M

∑
i=1

∣∣∣di−d∗i
∣∣∣+ ∣∣∣tanh(di/100)− tanh(d∗i /100)

∣∣∣ (2.16)

Here, d∗i = (d∗i − µtrim)/σtrim, where µtrim and σtrim are the mean and standard
deviation of a trimmed version of the ground truth, respectively. A trimmed version
means in this context that the top percentage of pixels is removed (both high and
low depth values).

Lastly, as a way of enforcing geometric constraints of a predicted scene, [Yin et al.,
2021] introduces a pair-wise normal loss, given by

LPWN((nA,nB),(n∗A,n
∗
B)) =

1
N

N

∑
i=1
|nAi ·nBi−n∗Ai ·n∗Bi| (2.17)

Here, the surface normal pairs, (nA,nB), and its corresponding ground truth (marked
with a (∗)) is sampled based on the image edges, so as to sample points on both sides
of every image edge, accordingly with [Xian et al., 2020]. This gives geometric
constraints on a local level, and in addition, points are sampled globally as well.
The total number of sampled points is then given by N [Yin et al., 2021]. This loss
function targets improving local and global geometric features.
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2.3 Evaluation

In this section, metrics related to the quantitative evaluation in Chapter 5 are in-
troduced. Firstly, the metrics relating to depth accuracy evaluation are inspected.
Secondly, the metrics related to temporal stability evaluation are reviewed.

Depth Accuracy
In order to determine the per-pixel accuracy of a given depth prediction, two existing
measurements of accuracy are adopted. Both of these metrics were included as two
of six error metrics in [Eigen et al., 2014], which was early on the task regarding
MDE. These metrics have since then become the de-facto-standard when models
are to be evaluated relative to ground truth depth data, e.g., Monodepth2 [Godard et
al., 2019]. The first metric presented here is the average absolute relative difference
(AbsRel) [Eigen et al., 2014],

AbsRel =
1
|T | ∑y∈T

|y− y∗|/y∗ (2.18)

where y is the predicted value, y∗ is the corresponding ground truth, and T marks
the number of predictions. This is a common metric for data sets that include a
per-pixel ground truth depth value, and gives a value of how far off a prediction is,
relative to the ground truth.

The second metric that we will include in our evaluation is the delta-threshold metric
(δerr), also given in [Eigen et al., 2014]. This gives a percentage of pixels that are
more than a threshold off relative to the ground truth. The per-pixel relative error,
δi, is given by the maximum value of yi

y∗i
and y∗i

yi
,

max
(

yi

y∗i
,

y∗i
yi

)
= δi (2.19)

The final metric is then given by the percentage of δi that is higher than a threshold,
thr,

δerr =
1
N

N

∑
i=1

δi > thr (2.20)

where N is the number of predictions. Normally, thr is a power of 1.25, e.g.,
thr = 1.252. As the predicted depth is often up to an unknown scale- and shift,
the predictions will be aligned to the ground truth according to least-squares (2.7)
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as first presented by [Ranftl et al., 2020] and later followed by [Yin et al., 2021].
For both of the metrics presented here, lower is better.

Stability
When evaluating how well a MDE model performs in terms of temporal consis-
tency, investigated in Chapter 5, a quantitative result on this stability concern is
desirable. In order to achieve this, an updated video frame’s background pixels are
compared to the corresponding pixels of a reference frame, using three metrics to
be described briefly in the following.

The first evaluation metric to be presented is the Structural Similarity Index mea-
surement (SSIM) [Wang et al., 2004]. The SSIM is the result of Wang et al. trying
to construct an error measurement to be in agreement with how the human visual
system (HVS) perceives image quality. It consists of the combination of three image
properties that represent object structure in a scene, disregarding the average image
luminance and contrast. The three properties are

SSIM(x,y) = f (l(x,y),c(x,y),s(x,y)) (2.21)

where l(x,y) refers to a function assessing the (local) luminance of the two images,
x and y, c(x,y) refers to local contrast computation and, lastly, s(x,y) refers to a
structure comparison of the two images. These are combined with the function f (·).
The similarity measurement is assembled so as to fulfil the following constraints:
being symmetric (S(x,y) = S(y,x)), bounded by one, and having a uniquely defined
maximum, s.t. S(x,y) = 1⇔ x = y. This results in the final closed-form expression,

SSIM(x,y) =
(2µxµy +C1)+(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(2.22)

where C1 and C2 are constants, decomposable into Ci = (KiL)2, which in turn de-
notes the pixel value dynamic range, L, and an arbitrary constant, Ki≪ 1. Further,
µx and µy are the mean, σx and σy are the standard deviation, of image x and y,
respectively, and σxy is defined as

σxy =
1

N−1

N

∑
i=1

(xi−µx)(yi−µy) (2.23)

The SSIM is then evaluated on sub-regions of the image, on a local level, and the
final result is produced by the mean of these sub-regions, over the entire image.
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Lastly, since it is the dissimilarity of the images that is of interest here, we instead
perform the following operation,

DSSIM(x,y) =
1−SSIM(x,y)

2
(2.24)

resulting in a structural dissimilarity index (DSSIM), where lower is better. In ad-
dition to the DSSIM, two per-pixel error metrics are included for reference. Firstly,
the mean absolute error (MAE), as represented by

MAE(x,y) =
1
N

N

∑
i=1
|xi− yi| (2.25)

where x and y are the images, and xi and yi are indexed pixels, totalling N number
of pixels. Secondly, the root mean squared error (RMSE), as given by

RMSE(x,y) =

√
1
N

N

∑
i=1

(xi− yi)
2 (2.26)

is used.
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3
Model Overview and
Comparison

This chapter serves to give a thorough insight into the chosen models that are fur-
ther investigated and evaluated in Chapter 5. Firstly, we describe Monodepth2, a
semi-supervised model originally targeting the automotive industry of autonomous
driving (AD). Secondly, MiDaS is reviewed, that opts Monocular Depth Estimation
with good generalisation abilities. Following these is DPT, a further development
of MiDaS. Lastly, we discuss AdelaiDepth, from Adelaide University, a model that
targets good geometric consistency in its output. The introduction of these models
all include a background, the specific loss function of each model, and some general
information about its architecture and training technique. This chapter is finished
by putting the chosen models next to each other in a table, highlighting their differ-
ences and similarities.

Monodepth [Godard et al., 2017] followed by Monodepth2 [Godard et al., 2019],
tackled the problem of inferring depth from single images in 2017 and 2019, respec-
tively. They considered it problematic acquiring vast amount of ground truth data,
so instead of approaching this as a supervised regression problem, they solved it in
a semi-supervised manner. Even further down the road, MiDaS [Ranftl et al., 2020]
and AdelaiDepth [Yin et al., 2020] referred to the task as a regression problem, but
addressed the difficulties in acquiring a large amount of ground truth depth data by
training on a mixture of data sets. In addition to these model, we have researched and
briefly looked at several additional models, such as [Lee et al., 2019], [Casser et al.,
2019], [Alhashim and Wonka, 2018], but concluded on the chosen models, Mon-
odepth2, MiDaS, DPT, and AdelaiDepth, as they were considered representative
models of different techniques and approaches, as well as achieving state-of-the-art
results.
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3.1 Monodepth2

Monodepth2 [Godard et al., 2019] is the further development of the 2017 Mon-
odepth model [Godard et al., 2017]. These models are self-supervised, meaning
that no actual ground truth depth is needed during training. The Monodepth depth
model treats the problem at hand as an image reconstruction task, instead of a di-
rect depth prediction task. In other words, what the model actually predicts, is the
correspondence field, dr, such that when applied to a left image of a rectified stereo
pair, would result in the reconstructed right image. If the two images are rectified,
the image pair disparity is given by d.

Given the predicted disparity, along with the stereo camera’s baseline and focal
length, which was used to capture the training data, the depth can be retrieved by
reformulating (2.3) so as to acquire the distance, Z. In addition, Monodepth relies on
what they refer to as ”left-right consistency cost”, meaning that during training, both
the left-to-right, as well as the right-to-left disparity maps are produced, and forced
to be consistent. At run-time, the left image is the sole input, and both disparities
are predicted and forced to be consistent [Godard et al., 2017].

Monodepth2 continues on this work, and brings it further by exploring training the
models on monocular video data, utilising structure from motion (SfM) in order to
acquire self-supervised ground truth depth, in addition to keep exploring the stereo
self-supervision. Their work resulted in state-of-the art results, compared to com-
peting self-supervised approaches. As Monodepth2 is the only version of the two
models that will be considered hereon after, it will for simplicity reasons be referred
to as Monodepth.

Loss Function
The resulting loss function, presented by Monodepth [Godard et al., 2019] is given
by

L= µLp +λLs (3.1)

This is averaged over each pixel, scale and batch. In (3.1), Lp refers to the photo-
metric reprojection error, computed by (2.11) and (2.12). This loss function refers
to the L1 distance and SSIM between the reprojected and target image. Likewise,
Ls refers to the edge-aware smoothness loss in (2.13), in order to smooth the output
depth where there is no detected edge.

The naive approach to compute the per-pixel reprojection error is to average this
metric over all source images for each pixel. This becomes problematic for pixels
that are visible in the target image but not in the source image (because of occlu-
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sion or out-of-view pixels between frames). According to the authors of Monodepth
[Godard et al., 2019], this case leads to the model over-penalising the unseen pixel
values. Instead, they suggest choosing the minimum per-pixel photometric reprojec-
tion error.

During the self-supervised monocular training on SfM data, it is generally assumed
that the camera is moving and captures a static scene. In cases when this is not the
case, i.e., the camera stands still, or scene objects are moving, the predicted depth
is not to be trusted and often results in infinite depth prediction. To account for this,
[Godard et al., 2019] adds a filter to exclude pixels that do not change appearance
from one frame to another, as motion is therefore not encountered.

Architecture and Implementation
The Monodepth model takes the renowned U-net architecture, taking on skip-
connections so as to acquire both low and high-level features. The encoder is
a ResNet18 [He et al., 2016] network, being pre-trained on the ImageNet [Rus-
sakovsky et al., 2015] data set.

The decoder consists of deconvolutional layers back to the original resolution, with
skip connections from the encoders’ activation blocks [Godard et al., 2017]. At the
output, the sigmoid activation function is used, and for all other decoder layers,
ELU nonlinearities are used [Godard et al., 2019]. For pixels outside the source im-
age boundaries, reflection padding is performed. Image augmentation is performed,
such as horizontal flips, random brightness, contrast saturation and hue jitter, each
with a 50% chance. The Adam optimiser [Kingma and Ba, 2015] was used and
input and output resolution is 640x192 by default.

3.2 MiDaS

MiDaS depth estimation model was developed by Intel Labs in 2020. MiDaS is, in
contrast to Monodepth, a supervised deep neural network model. In other words,
MiDaS is in need of ground truth depth in order to improve the model. To acquire
such data is cumbersome, and especially so collecting a larger set with a diverse
set of scenes and environments. Monodepth’s solution to this was to take on a self-
supervised approach, removing the need of expensive distance-measuring sensors,
like a LiDAR. MiDaS approach is, on the other hand, to use a mixture of data sets
and consider depth estimation as a multi-task learning problem, enabling mixing
of data sets, that may be annotated differently and come from a variety of sources
[Ranftl et al., 2020].

Additionally, in order to further address the difficulties that come with mixing data
sets, it requires novel loss-functions. Originally, the model was trained on four pub-
licly available data sets, and in addition, the authors of MiDaS [Ranftl et al., 2020]
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put together a new image-depth data set making use of 3D movies. In a later version
of the model, the model was extended to in total 10 data sets. It was later evaluated
on six never-seen-during-training data sets, to prove for its generalisation perfor-
mance. Conclusively, MiDaS work resulted in, at the time, a state-of-the art depth
estimation method, with great generalisability [Ranftl et al., 2020].

Loss Function
Some data sets contain given ground truth in metric depth, while others contain the
ground truth depth up to an unknown scale, displaying only the relative depth of
that given scene. This requires a loss functions that is invariant to different kinds of
depth annotation. This can be concluded with three types of challenges, that the loss
function needs to adapt to. These three challenges are: different depth representation
(depth or disparity), unknown depth scale (relative depth, unlike metric depth), and
unknown shift (horizontal shift of the principal points).

These targets result in a loss function invariant to the scale and shift problemat-
ics, and a function that performs predictions in inverse depth space, i.e., disparity
prediction. The final loss function is given by

Ll =
1
Nl

Nl

∑
n=1
Lssi(d̂n,(d̂∗)n)+αLreg(d̂n,(d̂∗)n) (3.2)

where Nl refers to the training set size, α is a constant set to 0.5, and d̂i and d̂∗i
are the predicted and ground truth disparity, respectively, for pixel i, being scaled
and shifted [Ranftl et al., 2020]. The scale and shift operation of the disparity data
is performed according to (2.5), where the same function is applied to the ground
truth disparity, d∗.

In (3.2), Lreg refers to the multi-scale gradient matching term given in (2.14). This
serves to accomplish high-contrast discontinuities, aligned with discontinuities of
the ground truth. During training, MiDaS uses four scale levels (K = 4), and halves
the image resolution for each scale.

The function Lssi in (3.2) is referring to the scale and shift-invariant loss function
presented in (2.15). Here, Um is set to 0.8M and refers to not training for the top 20%
residuals, so as to exclude outliers of the ground truth data. This function serves to
pushing the predicted depth closer to that of the ground truth.

Architecture and Implementation
Having the loss function invariant to different types of data sets, originating from
different sources and taking different ground truth depth annotation is one step on
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the way of having a depth estimation model trained on a mixture of data sets. The
other step is to determine how to choose the number of samples from each data set,
and decide on how to define optimum weights given all data sets during training.
This is solved by MiDaS as a multi-task learning problem, defining depth estimation
of each individual data set as a separate task. This is done in accordance with [Sener
and Koltun, 2018]. Optimum is here reached when the loss can not be decreased
for any given task, without it being increased for at least one of the other tasks.

The backbone of MiDaS is based on the ResNet [He et al., 2016] architecture, pre-
trained on the ImageNet [Russakovsky et al., 2015] data set. Specifically, the large
MiDaS model runs with ResNeXt-101 [Xie et al., 2017], while their smaller model,
developed for embedded devices, runs on EfficientNet-Lite3 [Tan and Le, 2019].
Furthermore, they adopt the multi-scale architecture of [Xian et al., 2018]. This is
a U-net architecture with skip-connections, enabling capturing both high and low-
level semantic features in the dense depth predictions.

The Adam optimiser [Kingma and Ba, 2015] was used by MiDaS. Augmentation
wise, training data are horizontally flipped by 50% chance, and randomly resized to
384x384. All ground truth data are given in inverse depth space (disparity) up to an
unknown scale and shift [Ranftl et al., 2020].

3.3 DPT

DPT stands for Dense Prediction Transformer, and is the product of the dense pre-
diction research performed by Intel Labs and how vision transformers (ViT) [Doso-
vitskiy et al., 2021] can be used for the benefit of dense prediction tasks, like depth
estimation or image segmentation [Ranftl et al., 2021]. Considering the depth esti-
mation task, DPT is the natural successor of MiDaS. In fact, the depth prediction
model using DPT is all in all, almost the same as MiDaS, i.e., the same loss function,
trained on the same data set (the mixture of 10 data sets), using the same optimiser,
etc. What separates the two Intel depth estimation models are then the architecture,
and namely the encoder part, where DPT utilises vision transforms instead of a con-
volutional encoder like ResNet [He et al., 2016]. This results in, according to [Ranftl
et al., 2021], a more fine-grained and gloablly coherent dense depth prediction.

Vision Transforms
In order to employ vision transforms [Dosovitskiy et al., 2021], the input images
need to be represented as a ”bag-of-words” [Ranftl et al., 2021]. These bag-of-
words is referred to as tokens. This embedding is done by dividing the image into
squared, non-overlapping patches. These pixels are flattened, and embedded using
linear projection. An alternative way of doing this is to specify the image token
embedding as the pixel features from a ResNet50 [He et al., 2016] encoder. This
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3.4 AdelaiDepth

model variant is referred to as DPT Hybrid. In addition, a separate token is added,
called the readout token, as is customary in natural language processing. This token
is used for classification.

3.4 AdelaiDepth

AdelaiDepth is a toolbox with collected work within monocular depth estimation
from the University of Adelaide. Their work consists of a series of papers, all re-
lating to depth and scene geometry reconstruction. They started off by introducing
their work on single-view depth estimation by using convolutional neural fields [Liu
et al., 2016]. Following that, in 2019, they started focusing on introducing geomet-
ric constraints in the depth estimation model, enabling not only better prediction
results, but also allowing better 3D reconstruction and point cloud transformation
[Yin et al., 2019]. The idea behind this is to include a loss using the virtual nor-
mal, the normal of the plane that is made of three randomly sampled points from
a reconstructed point cloud, when training the MDE. Further, a new data set was
presented, DiverseDepth [Yin et al., 2020], and they trained the model on learning
depth up to an affine transformation, in contrast to learning either the metric or rel-
ative depth. In other words, when training, they allow for the prediction to be off,
relative to the ground truth, as long as the prediction is off only by a translation
and scale transformation. This produced good generalisation and sharp geometric
shapes.

This work is then further improved in [Yin et al., 2021]. Here they continue to ex-
plore the DiverseData set, accomplishing geometric constraints from normal losses
and affine-invariant prediction. In addition, [Yin et al., 2021] includes a 3D point
cloud reconstruction network, that learns to predict the unknown scale and shift
for better 3D reconstruction, something that will not be further investigated in this
thesis.

Loss Function
The loss function of the latest MDE model from AdelaiDepth toolbox uses an
image-level normalised regression loss (ILNR), a pair-wise normal loss (PWN),
and a multi-scale gradient loss (MSG) [Yin et al., 2021],

L= LPWN +λaLILNR +λgLMSG (3.3)

Here, λa and λg are set to 1 and 0.5, respectively. The multi-scale gradient loss,
LMSG, originates from [Li and Snavely, 2018], and is presented in (2.14), with the
slight change that AdelaiDepth enforces Z-score normalisation on their ground truth
depth map. It is, conclusively, the same loss function as used by MiDaS and serves
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to acquire sharp depth discontinuities aligned with discontinuities in the ground
truth.

The image-level normalised regression loss, LILNR, is shown in (2.16) and serves to
normalise the ground truth to address scale and shift ambiguities that comes with
mixing data sets. In their experiments, they remove the highest and lowest 10%
depth value pixels when computing the mean and standard deviation for Z-score
normalisation.

The pair-wise normal loss, LPWN , is given in (2.17) and strives to enforce geometric
consistency on both a global and local level, on the contrary of the proposed virtual
normal loss [Yin et al., 2019], which only proclaimed geometric constraints on a
global level [Yin et al., 2021]. Before calculating this loss, and the predicted surface
normals, the prediction is aligned in scale and shift with its ground truth according
to the least-squares (2.7).

Architecture and Implementation
The latest model from Adelaide University is trained on a mixture of five different
data sets [Yin et al., 2021]. In contrast to MiDaS multi-task learning approach using
pareto-optimal optimisation [Ranftl et al., 2020], AdelaiDepth trains the model on
diverse data by utilising multi-curriculum learning, according to [Yin et al., 2020].
In conclusion, this technique is based on sorting the training data on increasing
difficulty, and samples mini-batches of training data from this sorted set of data.

The architecture of AdelaiDepth follows [Xian et al., 2020]. As a backbone, it con-
sists of either a ResNet50 [He et al., 2016] or ResNeXt101 [Xie et al., 2017], re-
sulting in a large and a small model, respectively. This is followed by a backbone.
The model is trained using stochastic gradient descent (SGD) and a learning rate
of 0.02, with the decay of 0.1. Images are resized to 418x418 pixels, and flipped
horizontally by 50% chance.

3.5 Model Comparison

To summarise this chpater, the MDE models that we have investigated are in many
senses similar. They include a loss function consisting of one part that enforces the
predictions to be close to the ground truth values. Commonly, they are also including
a kind of loss function that enforces contour refinement and discontinuity alignment.
All models are using an encoder–decoder network architecture. The models strive
to achieve a global receptive field for a more fine-grained prediction. Augmentation
wise, horizontal flip is consistently included.

However, there are also some implementation choices that differ for each model,
compared to the others. What must be the most prominent distinction is between
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Table 3.1 Comparison table of ”large” monocular depth estimation models.

MiDaS
Large

DPT
Hybrid/Large

AdelaiDepth
50/101

Year 2020 2021 2021

Encoder ResNeXt-101 ResNet50+ViT/ViT ResNet50/ResNeXt101

Training Data 10 mix 10 mix 5 mix

Resolution 224x384 384x672 448x448

Inference (FPS) * 6 1/0.4 15/8

Output Space Inverse depth Inverse depth Depth

* This measurement is when run on GTX1650 GPU, with no tensor accelerating device. This is only to be
considered as a relative comparison, and in no way a de-facto performance assessment.

Monodepth and the other models. Monodepth is self-supervised, and is based on
an image reconstruction task, from which depth is inferred. In addition, it is trained
solely on the automotive targeted data set KITTI [Geiger et al., 2013]. Moreover,
MiDaS is separated from the others by introducing their own data set consisting
of a collection of 3D movies, training on 10 different data sets and introducing
training on a mixture of data sets as a multi-task learning objective. Additionally,
DPT was ground braking by introducing vision transformers in order to acquire a
global receptive field. AdelaiDepth is unique by focusing on geometric properties,
and looking further into 3D reconstruction using single-view depth.

A comparison table of the larger models (MiDaS Large, DPT and AdelaiDepth),
with more demanding computer processing at run-time, is given in Table 3.1. Here,
we present the year of release, the backbone network, specifying training data (mix
is here referred to being trained on a mixture of different data sets, e.g., 10 mix
means being trained on a mixture of 10 different data sets), input and output resolu-
tion, inference time on desktop devices, and the output space. It is worth mentioning
here that the DPT models show low update frequency during inference, in terms of
frames-per-second (FPS), compared to the other models, when run on a desktop de-
vice with GTX1650 GPU. It is also noted that AdelaiDepth is the only model that
has its output in depth space, while the others have their output in inverse depth
space (similar to disparity), which also can be seen in Figure 3.1, where example
output is presented for the five models. This is a key aspect when working with
MDEs, and in order to utilise scene depth in an application, an inverse transforma-
tion is needed if the output is given in inverse depth space originally.

Similarly as for the larger models, we present a comparison table for the smaller
models MiDaS Small and Monodepth. This is shown in Table 3.2. The same infor-
mation is included as in Table 3.1, i.e., year of release, encoder, training data, res-
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(a) MiDaS Large (b) DPT Hybrid (c) DPT Large

(d) AdelaiDepth50 (e) AdelaiDepth101

Figure 3.1 Example output of ”large” MDEs.

Table 3.2 Comparison table of ”small” monocular depth estimation models, proposed for
embedded systems.

Monodepth MiDaS Small

Year 2019 2020

Encoder ResNet-18 EfficientNet-Lite3

Training Data KITTI 10 mix

Resolution 192x640 128x256

Inference (FPS) * 49 50

Output Space Inverse depth Inverse depth

* This measurement is when run on GTX1650 GPU, with no tensor accel-
erating device. This is only to be considered as a relative comparison, and
in no way a de-facto performance assessment.

olution, inference time, and output space. Here, it is noticeable how inference time
on our desktop device differ relative to the larger models, as these models run in
approximately 50 FPS, compared to 15 FPS as best performing model in Table 3.1.
This distinction is why we will, in various evaluation analysis, separate these set
of models, for a fair comparison. The example output of these smaller models is
presented in Figure 3.2.

Depth Accuracy Metrics on Existing Data Sets
For depth accuracy evaluation of these models, we follow the evaluation procedure
of MiDaS [Ranftl et al., 2020], that was in turn followed by AdelaiDepth [Yin et
al., 2021]. This includes a scale and shift alignment of the predictions with the
ground truth in accordance with least-squares criterion (2.7), as the output is up to
an unknown scale and shift (relative depth). This alignment procedure is done in

38



3.5 Model Comparison

(a) Monodepth (b) MiDaS Small

Figure 3.2 Example output of ”small” MDEs.

the model output domain, i.e., the inverse transform is performed on the ground
truth depth, if the given model’s output is in inverse depth space. After aligning
the predictions, this is transformed into the ground truth domain, if needed, and
the AbsRel (2.18) and δerr (2.20) metrics are calculated for each image, where the
threshold is set to 1.25 for δerr. The final score is given by the average over all
frames of the data set. We do this on three existing data sets, which will briefly be
introduced in the following sections, and we finish this chapter with a comparison
table of the models performance.

NYUv2
The data set NYUv2 presented in [Nathan Silberman and Fergus, 2012], consists
of a handheld stereo camera, from various indoor scenes. Here, we will use their
densely labelled data set, where missing depth pixel values have been filled using
the colourisation technique in [Levin et al., 2004]. This data set consists of 1449
RGBD frames, containing 464 scenes [Nathan Silberman and Fergus, 2012]. We
set a depth cap when evaluating on this data set to 10 m.

ETH3D
ETH3D is a data set with both indoor and outdoor scenes. The ground truth is ac-
quired with a laser scanner [Schöps et al., 2017]. Hence, this data set figures static
scenes, with high accuracy in the ground truth values. In this thesis, we present re-
sults with their multi-view high resolution data set, containing 13 scenes and 454
frames [Schöps et al., 2017]. We set a depth cap to 72 m for our evaluation on
ETH3D.

iBims-1
The data set iBims-1 is also a high resolution RGBD data set, where the ground truth
is captured by a 3D scanner, as was the case for ETH3D. In addition of providing
ground truth depth, for accuracy evaluation, iBims-1 also includes various metrics
for geometric reproduction, such as planarity error, how they perform at various
depth ranges, and locating depth boundaries. The iBims-1 data set consists of 100
frames in various indoor scenes, and provides depth up to 50 m [Koch et al., 2018].
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Results
The achieved results (AbsRel and delta-error) on the three data sets, of the seven
models of choice are given in Table 3.3. The best performing model, for each data
set and each metric (for every column), is marked with bold. The second best per-
forming model is marked with underline. The table is split such that the upper part
represents the ”larger” models, and the two last rows present the ”smaller” models.
If the same metrics have been published for a given model, on the same set of data,
this is presented in parenthesis, for reference.

From Table 3.3, it is concluded that, considering the smaller models, MiDaS small
[Ranftl et al., 2020] outperforms Monodepth [Godard et al., 2019], by a margin. For
the larger models, we see that the two models from AdelaiDepth [Yin et al., 2020]
are performing best, with both metrics, on the labelled NYUv2 data set. On the
laser scanned data set with static indoor and outdoor scenes, ETH3D, it is instead
the DPT models [Ranftl et al., 2021] that consistently produce the best results, for
the two metrics. On the smaller data set, also with 3D-scanned data, iBims-1, it is
noted that AdelaiDepth101 is a top performer. However, it produces only second
best on the delta-threshold error, where DPT Large instead seems to outperform
AdelaiDepth, when some room for error is allowed.

Table 3.3 Depth accuracy score on three data sets (NYUv2 [Nathan Silberman and Fergus,
2012], ETH3D [Schöps et al., 2017] and iBims-1 [Koch et al., 2018]), presenting both the
AbsRel error as well as the delta-threshold error. For models, data set and metrics where
corresponding results have been published, this is included in parenthesis.

NYUv2* ETH3D** iBims-1***

Online Data Sets AbsRel δ >1.25 AbsRel δ >1.25 AbsRel δ>1.25

AdelaiDepth101 0.104 0.112 0.119 0.130 0.075 (0.079) 0.060
AdelaiDepth50 0.105 0.116 0.127 0.144 0.080 0.073
DPT Large 0.117 0.138 0.089 (0.0888) 0.070 0.080 0.057
DPT Hybrid 0.132 0.170 0.094 (0.0934) 0.072 0.084 0.068
MiDaS Large 0.115 0.130 0.116 (0.1155) 0.117 0.093 0.080

MiDaS Small 0.134 0.180 0.135 (0.1344) 0.161 0.102 0.106
Monodepth 0.222 0.397 0.185 0.279 0.201 0.333

* [Nathan Silberman and Fergus, 2012]
** [Schöps et al., 2017]
*** [Koch et al., 2018]
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4
Depth Aware Privacy Mask

This chapter presents a method for what is referred to as 3D Privacy Masking,
a depth aware privacy mask. It serves to introduce an end-to-end algorithm im-
plementing this functionality as a downstream application from Monocular Depth
Estimation. Additionally, extensions to mitigate the effect of the inherent instability
produced by temporal inconsistency between frames are also introduced. Finally,
we present results from selected models on multiple scenes to investigate if current
state-of-the-art monocular depth estimation can produce adequate depth maps for
such downstream application to satisfactory results.

4.1 Concept

Regular privacy masks on surveillance cameras are typically implemented by man-
ually defining a polygon on the target area and replacing that region of the image
stream with either a uniform colour, or a blurred or pixelated version, see Figure 4.1
for an example.

With added depth information of each pixel, this concept can be extended into the
third dimension. Utilising depth information together with a mathematical model
of the camera view, this privacy region can be placed arbitrary in space, effectively
shielding a private area without losing visibility of objects outside this region. This
concept is illustrated in Figure 4.2.

Algorithm Specifications
The following requirements were defined and considered during development of
the 3D masking algorithm. While proof-of-concept and analysis were the primary
goal, these requirements give the project realistic constraints that affected all design
decisions.
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Chapter 4. Depth Aware Privacy Mask

Figure 4.1 Example of a regular privacy mask, here represented with a green uniform
colour.

y

x

z

3D privacy mask

Objects 

View volume

Image plane

Figure 4.2 Illustration of 3D masking. Notice that the projected 2D mask in the image
plane is in front of the yellow object, but behind the other.

1. Real-time compatible: The overall algorithm, containing depth model in-
ference and masking computations, needs to be real-time compatible. While
development was performed on desktop machines, and not in an embedded
environment, the latency of the system needs to be kept as low as possible.
This is in order to motivate a realistic use-case on a camera with modern
computational capabilities.

2. Robust: It needs to be robust to minor inaccuracies and instabilities that may
arise when performing frame-wise depth prediction. This means no masking
artefacts or erroneous masking, and any event in front of the mask should be
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observable and understandable.

3. Hide-rather-than-show: The design needs to promote false-positives over
false-negatives when performing masking. It always needs to mask the area
that is supposed to be masked in order to not compromise privacy.

4. Intuitive user interface: Any user interface should be easy and intuitive
to use. The user should preferably be able to define a 3D privacy mask by
creating a polygon on a reference image, just as in regular 2D privacy masking
without any 3D tools, and the result needs be consistent and predictable. This
is important since defining a 3D area from a 2D view is in general ambiguous
and the mask can be situated arbitrarily in 3D space, see Figure 4.2 for an
illustration.

Euclidean Space Transformation
The generated depth or disparity map from MDEs is what enables the transition
from image space to Euclidean space. Since each pixel for each frame receives
an independent depth value, it is possible to, together with the mathematical model
(2.2) of the camera that captured the frame, transform image points into world-space
points P = (X ,Y,Z). Utilising the image-point and world-point relation in (2.2) we
can derive the inverse operation, or back projection, if we have depth Z, by

x = fx
X
Z
+ xo, X =

x− xo

fx
Z

y = fx
Y
Z
+ yo, Y =

y− yo

fy
Z.

(4.1)

Here, the scale ambiguity can be ignored since depth is known. Performing this
operation for every pixel results in a point cloud that can be coloured with the cor-
responding RGB values. An example of this is illustrated in Figure 4.3.

4.2 Development Phases

The development process of the 3D masking functionality was performed iteratively
and in an offline environment with pre-recorded scenes. From these iterations, four
masking concepts were developed, starting with the simplest approach we could
think of and progressively making the algorithm more refined and tuned to the
specifications in Section 4.1. In general, the most discriminating feature was the
approach on how to define the actual 3D privacy region in world space.

Privacy Region Creation
The four different investigated techniques is here listed. It briefly explains the con-
ceptual idea, as well as illustrating the functionality using figures. Reasons for why
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(a) Depth map. (b) Point cloud of (a) in a 3D viewer. The
red mesh defines the masking region.

Figure 4.3 Resulting coloured point cloud (b) from back projection of depth map (a).

a given technique was deemed to not fulfil the algorithm requirements is as well
included.

1. Plane
In the first iteration the privacy region was defined as an (infinite) plane. The
plane was constructed by the user picking three points on the image plane,
subsequently picking three points in world space using the corresponding
depth map. Using these points, a unique plane can be defined on the form
ax+by+cz= d. Using the selected points P, Q and R, we can find n⃗=(a,b,c)
by

n⃗ = P⃗Q× P⃗R (4.2)

and d defined by
d = p⃗ ·P. (4.3)

The depth of the plane can be varied by scaling d. The defined plane is used
to calculate inliers and outliers, which are then projected to image space as a
binary mask. See Figure 4.4 for an illustration.

However, getting a consistent (plane normal) result by picking three points
was sometimes difficult and somewhat unintuitive.

2. Bounding Box
Next, we explored ways to define a 3D region by utilising bounding boxes
and minimum spanning volume algorithms. This is constructed by picking an
arbitrary amount of points (minimum four points) of the object that should be
masked. Then, a bounding box encapsulating the minimum volume of these
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Figure 4.4 Plane. Observe that the plane illustrated is not infinite for illustration purposes.

points is calculated. This bounding box can then be resized in all three dimen-
sions (width, height, depth), as well as rotated and translated. The bounding
box is then used to calculate inliers and outliers, and projected to image space
as a binary mask is then used. See Figure 4.5 for an illustration.

(a) Picked points (b) Bounding box

Figure 4.5 Bounding box technique. (a) Selected points. (b) The bounding box of these
selected points. Interior points marked with blue resulted from ray-casting. These points
correspond to the masked pixels.

This technique did also not produce a consistent enough result, and a 3D
viewer was deemed necessary to always validate the created region. Finally,
we moved onto mask definition techniques that proceeded from a regular 2D
privacy mask selection using polygons.

3. Convex Hull
In the third iteration, only the pixels inside the marked polygon were trans-
formed into a sub-point cloud. This is constructed by first defining a mask in
image space, similarly as for the regular case of 2D-masking, and then ex-
tracting a sub-point cloud of that region of the image. A convex hull [Boyd
and Vandenberghe, 2004], the shape of the smallest convex set, is created
around this point cloud that functions as a definition of the 3D-mask. New
input frames are converted into point cloud in a similar manner. Using, for ex-
ample, ray-casting from the camera point of view, these points are determined
to be behind or in front of the mask, and each pixel is masked thereafter. See
Figure 4.6 for an illustration.
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(a) Convex hull mesh (b) Inside points

Figure 4.6 Convex Hull Masking Technique. (a) Defined convex hull mesh surrounding
the defined masking point cloud. (b) Interior points marked with blue resulted from ray-
casting. These points corresponds to the masked pixels.

This solution met the requirement of an intuitive user interface. However,
the problem with this approach was for masks defined by a ground boundary
line, rather than a defined object. This led to the fourth iteration, referred to
as folding.

4. Folding
This approach exploits the fact that realistic scenes typically have increasing
depth in a bottom to top manner. Here we assert the same depth value column-
wise, or a subset of the mask image columns, ”folding” up an imaginary depth
wall. This was converted into a 3D-point cloud, where a volume/surface was
defined around the point cloud. In addition to improving the generalisability
of the application, this solution also lead to a more robust approach. This
follows since it results in locating a larger set of points to the mask volume
side closest to the camera, acting re-enforcingly when computing the volume
shape. As a final upgrade to this algorithm, the folding technique was updated
so as to not having to convert the data into 3D space, in an attempt to increase
run-time performance.

See Figure 4.7 for an illustration. Implementation details follows in Sec-
tion 4.3.

4.3 Implementation

The masking implementation was developed, tested and evaluated on high-end
desktop hardware. More specifically, a GeForce GTX 1650 GPU and AMD Ryzen
9 3900x 12-core CPU was used. Development was done in the Python program-
ming language utilising multiple libraries, with key tools being OpenCV [Bradski,
2000] and Open3D [Zhou et al., 2018] for optimised image- and 3D processing and
visualisation tools.
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(a) ”Folding” Depth Map (b) ”Folding” Point Cloud

Figure 4.7 Folding Masking Technique. (a) The folded mask depth map. (b) The folded
mask wall illustrated in Open3D.

In Figure 4.8, the application flowchart is illustrated. It consists of two parts. In the
upper part, the mask definition is presented. This takes an initial RGBD frame (RGB
image and depth map). Firstly, the user marks a polygon, as is done for regular 2D
masking. With the folding technique, the polygon baseline is sought for, as the depth
data at these pixels is what is used to fold up the masking wall. This is done in the
Find Baseline-block, in the flowchart in Figure 4.8. With the baseline defined, this
is passed as input to the Folding-block. This is where the mask is defined. For every
pixel coordinate along the x-direction, i.e., image column wise, the depth value for
the whole column is replaced by the depth value of the baseline. Lastly, the 2D-
polygon mask is applied, and this functions as the depth aware privacy mask.

In the bottom part of the flowchart in Figure 4.8, the continuous masking algorithm
is presented. This takes a sequence of incoming RGBD-frames, and masks out pix-
els within the 2D-polygon that have a depth value being larger than that of the mask,
and shows pixels with depth values smaller than those in the 3D-mask.

The pseudo code for the algorithm finding the baseline vertices, from the input poly-
gon vertices, is presented in Algorithm 1. The algorithm assumes polygon vertices
sorted in a clockwise or counter-clockwise order. The first step taken is to find the
leftmost polygon vertex, meaning the polygon vertex with the minimum column
coordinate value. If two vertices were to have the same column values, the vertex
further down is chosen, i.e., the maximum row coordinate value. This is the base-
line starting vertex. Next, the two neighbouring polygon vertices are evaluated, and
the one with the maximum row coordinate value is chosen, i.e., choosing the bot-
tom polygon line as baseline. If this were the previous or succeeding vertex relative
to the starting vertex, we choose to iterate counter-clockwise or clockwise, respec-
tively. When this is determined, the list with polygon vertices is iterated through,
and new baseline vertices are added, as long as they are to the right of the previ-
ous baseline vertex, i.e., with a higher image column coordinate. Once the baseline
vertices are found, these are used to produce a line, retrieving the baseline pixel
coordinates. The result from this algorithm on an example is presented in Figure
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Figure 4.8 Illustration of the 3D masking algorithm. The upper part shows how the mask
is defined from RGBD input, making a 2D-polygon mask from user input, applying the
”folding”-technique to define the mask. In the bottom part, the general procedure is illus-
trated masking incoming frames, extracting region of interest from the 2D-mask, find inside
points and mask pixels behind mask wall.

4.9.

Figure 4.9 The final result from the baseline algorithm. All points in the image are taken
as user input and the polygon 2D-mask is illustrated by the faded green colour. Red vertices
are the baseline vertices, found by Algorithm 1, and the numbers refer to the order of which
they are found. The remaining vertices are marked with green.

The pseudo code for the Folding-algorithm is presented in Algorithm 2. This takes a
number of inputs: a depth map image, the polygon 2D-mask, the pixel coordinates
of the baseline, and a step size, marking the column-wise resolution of the base-
line to extract depth from. The output is the folded depth aware mask. Firstly, the
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Algorithm 1 Find Baseline

Input: polygon← [(c1,r1),(c2,r2), ...,(ci,ri)]
Output: baseline← [(c′1,r

′
1),(c

′
2,r
′
2), ...,(c

′
j,r
′
j)]

i0← argmin
i

(polygon(ci))

if i0 not unique then
i0← argmax

i∈i0
(polygon(ri))

end if
baseline(start)← polygon(i0)
inext ← argmax

i∈[i0+1,i0−1]
(polygon(ri))

if inext is i+1 then
s←+1

else if inext is i−1 then
s←−1

end if
repeat

baseline(end)← polygon(inext)
inext ← (inext + s) mod len(polygon)

until polygon(cinext )< baseline(cend)

baseline pixels are split into chunks of stepSize, e.g., 10 for extracting every 10th
column depth, and asserting this depth to chunks of 10 columns in the final depth
aware privacy mask. This split is iterated through, in order to extract the actual depth
at these pixels. Lastly, the depth map is updated, so as to assert the baseline depth
values for all the rows, in the appropriate columns, building a depth wall. The final
mask is then computed as bit-wise masking the folded depth map with the input
2D-polygon mask.

Temporal Instability
A depth aware privacy masking application requires both consistent depth predic-
tion for high-dynamic scenes together with low latency, fulfilling requirements (1)
and (2) in Section 4.1. The previously presented algorithm implementation in Sec-
tion 4.3 specifically assumes consistent depth for sequential frames, so that a placed
3D masking region in Euclidean space stays fixed in relation to the perceived scene
in world space. However, this depth consistency has been observed to not be guar-
anteed, as illustrated in Figure 4.10.

Temporal instability is an identified issue that may arise when wanting to utilise
monocular depth estimation models in video context. This is because monocular
depth estimation models by definition only infer depth from a single RGB frame as
input, which is called for in order to meet requirements such as low latency for real-
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Algorithm 2 Folding

Input: depthMap,mask2D,baseline,stepSize
Output: mask3D

baselineSplit← baseline split into chunks of stepSize
for split in baselineSplit do

idx← argmax
i

(split(ri))

coord← split(idx)
baselineDepth(end)← depth(coord)

end for
col← baseline(c0)
for depth in baselineDepth do

nextCol← (col + stepSize)
if nextCol ≤ cend then

depthMap(r,col : nextCol)← depth
else if nextCol > cend then

depthMap(r,col : cend)← depth
end if
col← nextCol

end for
mask3D← (depthMap and mask2D)

(a) Initial frame point cloud. (b) Subsequent frame point cloud.

Figure 4.10 Issue of Temporal Instability Illustrative point cloud of how temporal incon-
sistency of MDEs can cause instabilities when applied to downstream tasks, such as depth
aware privacy masking.
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time applications. We have found that this single-shot approach in general predicts
consistent depth for multiple frames for static scenes, i.e., scenes without any dy-
namics or moving objects. However, for scenes that include movement, e.g., moving
people or vehicles, the perceived depth may change on a frame-to-frame basis, cre-
ating temporal instability. This phenomenon is further investigated in Chapter 5 and
specifically Section 5.3.

Stabilisation Implementation — Recurrent Mask Update
In Figure 4.11 the proposed technique for masking stabilisation is illustrated. It con-
tains a new Stabilisation part marked in yellow. The overall idea is to continuously
updating the mask and mask definition, which we refer to as Recurrent Mask Up-
date. Defining and instantiate a static mask, as in Figure 4.8, that is fixed for the
rest of the scene duration causes issues when this temporal instability is present. A
mask defined from frame 1 is then not guaranteed to be correctly placed relative to
the scene and the desired privacy region, in for example frame 10. An illustration of
this is seen in Figure 4.10.

In order to dynamically update the mask frame by frame, it is needed to consider
moving objects that may be present in the masking region. More specifically, when
using the Folding method, objects that are covering the baseline need to be con-
sidered. Updating the baseline depths when a dynamic object that was not present
when the 2D masking polygon was defined is covering the baseline, as seen in the
Foreground/Background-block, will result in a faulty mask and privacy region. We
propose handling this issue with a continuously updated depth buffer.

The stabilisation part of the flowchart in yellow consists of four blocks. The first
block performs background subtraction on each incoming frame to identify moving
objects (foreground). Any background subtraction method can be applied, as long
as it is sufficiently fast. We experimented with various existing background sub-
tractors such as MOG2 [Zivkovic, 2004] as implemented by the OpenCV library,
and morphology operations such as dilate and erode for post-processing. In the sub-
sequent step the depth buffer is updated by means of weighted moving average in
non-moving regions, and the current frame’s baseline is updated. Since we cannot
use the corresponding depth values in detected foreground regions, we instead fetch
depth values from the available depth buffer.

Also, since foreground and background are now available from the Fore-
ground/Background-block, we can utilise this to optimise run-time by only per-
forming the full masking algorithm (as well as inference on the depth estimation
network) when a moving object is detected in the 2D polygon region, and only
update the depth buffer otherwise. Furthermore, we can with detected foreground in
the Mask Pixels behind Mask-block, force background regions in the mask area to
behave as a regular 2D privacy mask, and only perform ”3D-masking” in detected
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Figure 4.11 Illustration of the extended 3D masking algorithm, including the stabilisation
algorithm. The upper part shows how the mask is defined from RGBD input. In the bottom
part, the general procedure is illustrated masking incoming frames. The mask is re-created
for every frame, where the new frame depth is used, except where foreground is detected,
where the depth is replaced by a depth buffer.

foreground regions. This further enforces the algorithm requirements (2) Robust,
and (3) hide-rather-than-show principle.
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4.4 Results

In this section, qualitative assessment and analysis will be performed of the pro-
posed depth aware privacy masking application. The full algorithm, including the
stabilisation part in Figure 4.11, is running on recorded scenes at approximately
25-30 FPS using the specified setup in section 4.3. This is in accordance with the
thesis goal, where the proposed application, to be perceived as a proof-of-concept,
targeted a run-time performance around 30 FPS on a local desktop machine. This
result is with limited amount of work put in optimisation of the implementation, and
all the code being written in Python. It is important to note that this is expected to
run even faster using a more low-level language such as C/C++. Additionally, the
most exhaustive part of the algorithm is the stabilisation part, in Figure 4.11, which
takes about 22 ms. This timing is also highly dependent on the chosen background
model, which is important to be aware of. The raw implementation, Figure 4.8, runs
at approximately 85-90 FPS.

In the subsequent sections, we will present examples on qualitative performance of
the algorithm. Firstly, this includes an evaluation of the recurrent mask-updating
technique (Figure 4.11), that achieves a more robust and stable privacy mask, rel-
ative to the raw implementation (Figure 4.8). Secondly, the importance of depth
range is exemplified. Thirdly, some situations are presented that illustrate when the
privacy mask does not succeed to anonymise a given region, in terms of stability
issues and depth accuracy. Lastly, some show-casing examples are provided illus-
trating scenes where the privacy mask fulfils all requirements, i.e., it manage to
keep events in front of the mask observable and understandable, without breaching
privacy behind the mask.

Recurrent Mask Update vs Static Mask
In Figure 4.12, a comparison is presented between the raw implementation and the
implementation with the stabilisation part. Figure 4.12a shows the input RGB im-
age, with the displayed polygon mask. Figure 4.12b shows the masked area of the
first frame, and the folded wall, visualised as a point cloud. Figure 4.12c and Figure
4.12d shows the results from the raw and recurrent mask-updating implementation,
respectively.The produced point cloud from these two implementations, it is noted
that the point cloud has shifted since the first frame, and the original mask is there-
fore not entirely accurate relative to the updated frame. It is also perceived that, even
for the implementation with the stabilisation part, in Figure 4.12d, some parts of the
wall are leaking through the mask, but this erroneous mask artefact is mitigated by
always masking the background pixels from the foreground–background detection
model, resulting in a more robust mask.

Another illustration of how the further developed implementation outperforms the
raw version, in terms of robustness, is illustrated in Figure 4.13. A subsequent frame
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(a) (b)

(c) (d)

Figure 4.12 Garage Scene (DPT Large): Illustrating the instability issue, and how the
recurrent mask-updating technique accounts for this. (a) RGB image with defined mask (b)
Masked area visualised with Open3D (c) Static mask point cloud and resulting masked image
(d) Recurrent masking point cloud and resulting masked image.

point cloud is illustrated in Figure 4.13c using the static mask. Comparing this with
the point cloud illustrating the initial frame, in Figure 4.13b indicates that the room
has shifted, since the mask was first defined. Figure 4.13d illustrates how the recur-
rent mask-updating technique accounts for this, as the mask is updated every frame.
As the mask is updated, and background pixels are continuously masked, the im-
proved result is visualised in Figure 4.13f, compared to the breach of privacy for the
static mask that is distinguished in Figure 4.13e.

Lastly, in Figure 4.14, it is visible how the proposed improved implementation,
compared to the raw, enacts on the ”hide-rather-than-show” specification. There
exist inaccuracies and stability issues of the input depth information, i.e., the arm of
the person is perceived as part of the staircase in the background, and the room has
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13 Office Scene (AdelaiDepth50): Illustrating the instability and depth accuracy
issues, and how the recurrent mask-updating technique accounts for this. (a) RGB image with
2D-mask (b) First frame point cloud and defined mask (c) subsequent frame with no fore-
ground in Open3D using static mask (d) subsequent frame with no foreground in Open3D us-
ing recurrent updated mask (e) Static mask: current frame in Open3D, and resulting masked
image (f) Recurrent masking: current frame in Open3D, and resulting masked image.
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shifted relative to the initial scene frame, Figure 4.14b. The stabilisation technique
here acts on the ”hide-rather-than-show” specification, as well as demonstrating
increased robustness, as seen in Figure 4.14c.

(a)

(b) (c)

Figure 4.14 Staircase Scene (AdelaiDepth50): Illustrating the increased robustness and
enacting on ”hide-rather-than-show” specification. (a) RGB image with 2D-mask (b) Static
mask: masked area visualised in Open3D, resulting masked image (c) Dynamic mask:
masked area visualised in Open3D, resulting masked image.

In Figure 4.15, a problematic scene in terms of the stabilised masking application is
illustrated. Figure 4.15b presents images, from top to bottom, displaying the scene
point cloud a couple of frames before the person breaches the mask, the point cloud
of when the person breaches the mask, and lastly the resulting mask. Figure 4.15c
shows the same frames, but instead with the recurrent mask-updating technique. In
the second point cloud of Figure 4.15c, it is clear that the room has shifted consider-
ably during the time that the area has been foreground. Because of this the applied
depth buffer is no longer prevailing. The depth according to the depth buffer is not
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consistent with that of the updated frame depth, which violates privacy on the bor-
der of the privacy region. This concern would be mitigated by using a surface or
volume reconstruction, e.g., computing a convex hull around the masked points, for
example using Open3D, and mask inside pixels using ray casting. This technique,
as mentioned, has been explored. An illustration of how this would solve a situation
like this is presented in Figure 4.16. This shows that the convex hull volume has
enclosed the entire mask point cloud, so the interruption of the mask is reinforced.

Depth Range Issues
Another important aspect when working with depth for auxiliary computer vision
tasks, such as depth aware privacy masking, is the range of the perceived depth.
More precisely, it is the ability to distinguish relative depth difference that plays an
important role here. In Figure 4.17a, a privacy mask is illustrated of a scene with a
long distance to the mask. In the second image from the top, the person walking is
not visible, even though the feet mark that the event is in fact much in front of the
mask. In other words, there is no depth awareness to this given mask. This is further
illustrated by examining the point cloud, where the person is unified by the floor.
In Figure 4.17b, the same scene is captured using the same MDE model. Here, it
can be concluded that the depth is distinguished to a higher degree. Conclusively,
depth-range issues can be mitigated by applying a zoom on the input image, as the
depth range is highly connected with resolution.

Failure Cases
In Figure 4.18a, another case of depth failure is seen. The person on the bicycle is
visible even though the cycling is taking place behind the produced privacy mask.
Inspecting the produced depth map and resulting point cloud closer, in Figure 4.18b
and Figure 4.18c, it is concluded that the source of depth is inaccurate and incon-
sistent. That is, the model itself is having trouble perceiving the correct relative
distance to pixels in the scene, and it is additionally inconsistent of predicting one
object’s depth.

Presented in Figure 4.19, a sequence of resulting privacy masks are presented, orig-
inating from neighbouring video frames. In the middle frame, it is noted a slight
breach of privacy, showing a piece of furniture close to the persons face. This is as
well a result of inaccurate depth from the source. What is worth noting here is that
the error is isolated to a single frame so even though the privacy is breached, this
appears only shortly for a streaming video in real-time. However, if the video data
were to be recorded a viewer might have the option to pause the video which could
be problematic depending on the requirements.

Showcases
In this part, example scenes are presented where the masking application performs
depth aware privacy masking according to the design specification. In these scenes,
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(a)

(b) (c)

Figure 4.15 Office Scene (DPT Large): An illustration of erroneous depth buffer and
breaking of privacy region. (a) RGB image with 2D-mask (b) Static mask: subsequent frame
with no foreground in Open3D, frame with foreground in Open3D, and resulting masked
image (c) Recurrent masking: subsequent frame with no foreground in Open3D, frame with
foreground in Open3D, and resulting masked image.

58



4.5 Discussion

Figure 4.16 Office Scene (DPT Large): An illustration of masking area as a point cloud,
and how a convex hull volume reconstruction would mitigate the disrupted mask in Figure
4.15.

any event taking place in front of the mask is visualised, while privacy remains
intact behind the mask at hand. Figure 4.20, together with video (a) in Table 4.1,
illustrates an indoor scene displaying a corridor and two masks, where one event is a
person walking past the first mask, and the other event is the person walking through
the second mask. Figure 4.21, together with video (b) in Table 4.1, is displaying an
outdoor scene outside a building’s entrance. A depth aware mask is placed, illus-
trating covering an area that, for certain reasons, might not be suitable to record.
The example frames show one person walking in front of the mask, another person
walking far behind the mask and lastly a frame where the first person has gone be-
hind the mask. Both these scenes also exemplify another style of masking, namely
the pixelated mask. Figure 4.22 illustrated an outdoor scene where the windows of a
building are to be shielded. This is accomplished simultaneously as a bus is driving
past the mask. Furthermore, two more demonstrations are available in Table 4.1,
picturing a bike in a parking garage from both a point cloud perspective as well as
the end result.

4.5 Discussion

The results of the proposed algorithm look promising and reach, to a large extent,
the preset goals: running close to real-time on a desktop machine, robust, hide-
rather-than-show, and intuitive user interface. The improved algorithm, with recur-
rent mask-updating enabled, shows improved robustness, as is seen by Figures 4.12,
4.13 and 4.14. In these figures, temporal consistency, or scene stability, of the depth
information is noted to be of high importance. Even though the recurrent mask-
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(a) (b)

Figure 4.17 Staircase Scene (MiDaS Large): Illustrating the importance of depth range.
(a) Staircase scene long range: polygon mask, failed depth aware privacy mask, resulting
point cloud (b) Staircase scene with zoom: polygon mask, depth aware privacy mask, result-
ing point cloud.

Table 4.1 Videos — 3D Privacy Masking Examples. Video visualising 3D masking func-
tionality.

Scene Video Description

Corridor (a) DPT Large - Pixelated mask
Entrance (b) DPT Large - Pixelated mask
Garage Bike (c) AdelaiDepth101 - Green mask
Garage Bike (c) AdelaiDepth101 - Point cloud perspective
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(a)

(b) (c)

Figure 4.18 Garage Scene (Monodepth): Case of failure, due to inaccurate depth map.
(a) Resulting privacy mask (b) Monodepth depth map (b) Illustration of point cloud.

Figure 4.19 Office Scene (DPT Large): Single frame masking error for a sequence of
three frames.

updating technique accounts for this, Figure 4.15 exemplifies that this is no cer-
tainty, and depth-map instabilities can still play an important role. Continuing, the
algorithm is shown to possibly be more robust still. This is achieved by defining the
mask as a convex hull, as illustrated in Figure 4.16. This leads to further increased
robustness when the current algorithm fails in doing so. An idea, that no time was
found to further investigate, is to, instead of keeping a weighted sum depth buffer,
interpolate/extrapolate depth values over missing values on the baseline based on
the current frame’s background depth values. In other words, this would result in
a similar mask reinforcement as the convex-hull technique without the need of 3D
computational operations.

Moreover, it was proven that depth accuracy and object depth consistency are of
great importance. More importantly is that the relative depth between objects is
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(a) Event in front of mask.

(b) Person going through the mask.

Figure 4.20 Corridor Scene (DPT Large): Show-casing scene.

Figure 4.21 Entrance Scene (DPT Large): Show-casing scene.

Figure 4.22 Bus Scene: Show-casing scene.
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accurate and consistent. Depth-accuracy problematics is best illustrated by the point
cloud in Figure 4.15, where the shelf is seen to blend together with the person
walking in front of it to some degree. Additionally, a failure case due to inaccurate
and inconsistent frame depth was presented in Figure 4.18. The importance of range
resolution, in terms of utilising depth information for depth aware privacy masking,
is highlighted in Figure 4.17.

Conclusively, the application looks promising even though not completely robust
in every situation. However, as demonstrated in Figure 4.19, erroneous masking is
often isolated to single frames, so it is arguable that this would not lead to a breach
of privacy to any severe degree. However, this would depend on the application and
its requirements. It should also be noted that the masking algorithm is no better than
its source of depth. We have concluded on the three most important aspects in terms
of depth quality, when it comes to depth aware privacy masking. These are listed
as: accuracy, scene depth stability, and depth range resolution. These aspects are
further examined in Chapter 5.

Depth Source Comparison
It is worth noting that this algorithm and feature in practice would be achievable
with any depth sensor or product with depth functionality, such as a LiDAR or a
high resolution stereo camera, but could come with other cons. The main issue with
a LiDAR would be the added sensor cost, limited frame rate, as well as the natural
decrease in resolution as the depth increases because of the fixed angular resolution.
Since a LiDAR will also not give pixel-wise depth, other methods such as depth in-
terpolation and/or point-cloud based semantic segmentation [Biasutti et al., 2019]
to differentiate object locations in relation to a defined 3D mask, would likely have
to be supplementary used as well. A stereo camera would enable high-resolution
depth maps, but be limited to indoor environments, given the typical max range of
around 20 m. It is also worth noting that stereo cameras may require high comput-
ing capabilities of the target device, depending on output quality requirements, as
well as the cost of handling two simultaneous image streams. A commonly used
consumer stereo camera, which we also used to acquire indoor ground truth for ac-
curacy evaluation in Chapter 5, lists its SDK requirements to render real-time depth
as Dual-core 2.3GHz CPU, 4 GB RAM, and a NVIDIA’s GPU with computing ca-
pability > 3.0 [Stereolabs, 2022], which currently would be very high specifications
for an embedded device.
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This chapter present a thorough evaluation of the selected Monocular Depth Esti-
mation models in the emulated surveillance domain. We perform quantitative and
qualitative evaluation and analysis with regards to model accuracy, output stability
and range resolution with three self-captured data sets. We also present a post-
processing method to mitigate the effect of output instability. Lastly, the chapter
includes a conclusive discussion regarding the achieved results.

5.1 Data Sets

In this thesis we utilise three compositions of self-captured data sets that are cap-
tured to mimic surveillance domain scenes. The main characteristic that separates
these data sets from existing online data sets is that it is from a static point of view
as of that of a wall-mounted security camera. Another surveillance domain attribute
present is mostly static scenes with repeated minor movement in distinct regions
of the scene. Additionally, when choosing scenes to capture, we have, based on
our inherent judgement, chosen scenes that are realistic for an installed surveil-
lance camera. Two of the produced data sets are for depth accuracy evaluation, with
ground truth depth available for a subset of the image pixels. The third data set is
produced for frame-by-frame stability evaluation, investigating temporal instability
in the context of utilising depth prediction on real-time video. The data sets each
include multiple different scenes with varying length captured as a 30 FPS video
stream and then converted into a sequence of frames at a rate of 10 FPS. A sum-
mary of the data sets is presented in Table 5.1.
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Table 5.1 Data sets. Self captured data sets used for evaluation in the surveillance domain.

Data set Ground Truth Dense # Scenes # Frames # Samples

Accuracy — indoor Stereo ✓ 14 4382 2100
Accuracy — outdoor Lidar (✓) 4 1656 750
Stability —* — 3 998 998

* For Stability Data set, the ”ground truth/target” is defined as a reference (predicted) frame, here the first frame in
each scene.

Accuracy — Indoor Data Set
To collect a data set for indoor scenes with limited range a stereo camera, ZED
Stereo Camera [Stereolabs, 2022], was used. A stereo camera such as ZED Stereo
Camera can produce a dense depth map by capturing and fusing information from
multiple images, see more detailed theory in Section 2.1. It is important to note
that the quality of the produced depth map can vary depending on available stereo-
matching features. However, for our purposes the quality was deemed high enough
to perform a fair and meaningful evaluation and comparison. In order to process
captured stereo images and to acquire ground truth depth maps, StereoLabs’ ZED
SDK 3.7 was used.

(a) Stereo pairs from two scenes in the Accu-
racy — Indoor data set.

(b) Produced depth maps from stereo camera
to be used as ground truth in indoor accuracy
evaluation.

Figure 5.1 Depth from Stereo (a) Stereo pair as captured from a ZED Stereo Camera (b)
Produced ground truth depth map from (a). Notice that the produced depth maps are not fully
complete, and here contain small erroneous regions under strong light-sources.
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Scene # Frames

Conference 1 200
Conference 2 220
Elevator 1 190
Elevator 2 210
Garage Bike 1 167
Garage Bike 2 258
Kitchen 248
Office 359
Stairway 412
Garage Car 1 359
Garage Car 2 430
Garage Car Exit 630
Corridor 291
Lounge 406

Table 5.2 Accuracy — Indoor data set.
Self-captured data set with a stereo camera as
ground truth for accuracy evaluation. The set
contains 14 scenes, in 9 unique locations.

Accuracy — Outdoor Data Set
To collect a data set with outdoor scenes, with in general longer range, a LiDAR sen-
sor of the type Cepton Vista-P60 [Cepton, 2022] was used. The data set is divided
into four outdoor scenes, each with characteristics of typical surveillance scenes,
meaning from a tilted point of view, a mostly static scene, and monitoring areas
with movement of people. The disposition of the data set is provided in Table 5.3.
Example images from these scenes are shown in Figure 5.2, along with the corre-
sponding depth map.

Table 5.3 Disposition of scenes for outdoor depth accuracy data set, with ground truth from
a LiDAR sensor.

Scene # Frames

Courtyard 536
Entrance 272
Bicycle lane 319
Loading Area 529

To translate one frame of LiDAR measurement points, to a depth map synchronised
with a corresponding RGB frame, is not completely trivial. This requires three prin-
cipal processing steps, that will be further introduced in the proceeding sections:
calibration, synchronisation, and depth map interpolation.

Calibration
In order to use the depth retrieved from the LiDAR, in the form of a point cloud,
these points are transformed into image space, using image formation of a pin-
hole camera model, described by (2.2). To employ this, for a projection of world
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(a) (b)

(c) (d)

Figure 5.2 Depth from LiDAR (a) Courtyard (b) Entrance (c) Bicycle Lane (d) Loading
Area.
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points, (X ,Y,Z), into image space, (x,y), the intrinsic parameters of the given cam-
era’s focal length, ( fx, fy), and origin, (x0,y0), are needed. These were retrieved by
OpenCV’s [Bradski, 2000] library calibrateCamera, and a printed checkerboard
pattern, according to the ”Camera Calibration” documentation [OpenCV, 2022]. Il-
lustration of this procedure is presented in Figure 5.3. In Figure 5.3a, we see where
OpenCV have found corner locations on the chess board, which then acts as the
foundation of calibrating the intrinsic camera parameters. This is possible since the
size of the chess board is known. To the right, in Figure 5.3b, the result is presented
where the projected LiDAR points are mapped on top of the corresponding RGB
image.

(a) Intrinsic Calibration (b) Projected Points

Figure 5.3 Intrinsic Calibration (a) Illustration of intrinsic camera calibration using a
chess board. (b) Projected points into image space, mapped on top of the original image.

As is seen in Figure 5.3b, the intrinsic camera calibration is not enough in order
to acquire an accurate depth map, and it is noticed that the points are shifted in
relation to their corresponding objects. So in addition to determining the intrinsic
parameters, there is also a need of finding the extrinsic parameters. The camera and
LiDAR sensor are mounted on a plate next to each other, as is shown in Figure 5.4.
Hence, it is clear that there will be a slight translation of points along the camera’s
x-direction, measured to approximately 12 cm. In addition, the exact location of
each sensor origin in z-direction was unknown. However, for the LiDAR, this was
estimated by measuring the distance to an object both by hand, and examining the
LiDAR-measured depth value. This way, the distance along z-direction, to the Li-
DAR origin, was estimated to 3 cm. Lastly, the translation along y-direction was
approximated to zero.

Assuming these small translations being constant and correct, the calibration is still
not visually accurate. Even though the sensors are mounted steadily next to each
other, there is room for some slight rotational transformations, where small rota-
tions show great impact on the accuracy of the projections. These rotations where
estimated by a trial-and-error procedure. This is done by tweaking the rotations
about the x-, y-, and z-directions, so as to align the static objects with the projected
LiDAR point cloud. The result from the extrinsic and intrinsic calibration put to-
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Figure 5.4 Illustration of the camera and LiDAR setup, and the camera coordinate system.
The camera is positioned to the left, and the LiDAR sensor is positioned to the right.

gether is presented in Figure 5.5

Figure 5.5 The LiDAR point cloud projected into image space after intrinsic and extrinsic
camera calibration.

The attentive reader can, from examining the image in Figure 5.5, notice that there
are leaking points onto objects that should cover these points. This is, for example,
seen by the right-most edge of the white board where blue points (further away)
are shown together with the red points marking the distance to the white board.
This is the result of points being visible to the LiDAR while corresponding pixels
are not visible for the camera, because of the translation along the x-direction, i.e.,
the parallax effect. This leads to erroneous depth values in these regions and is
needed to account for. To solve this, the LiDAR point cloud was projected into 3D-
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space with Open3D [Zhou et al., 2018]. It is desired to determine which points that
are non-visible, considering the location of the camera, and the point cloud itself.
This is done with Open3D’s implementation of ”hidden point removal”, a method
presented by [Katz et al., 2007]. The final results from the calibration are presented
in Figure 5.6.

Figure 5.6 The final result from the camera and LiDAR calibration showing LiDAR points
projected onto the corresponding image frame.

Synchronisation
In order to produce an accurate RGBD-data set, the two sensors also need to be
synchronised. This is achieved by grabbing the most recent camera frame, on every
incoming LiDAR frame, assuming that both sensors are connected. This should,
with our reasoning, lead to the minimum time error between a LiDAR and camera
frame possible, without looking into software or hardware triggers of the sensors.
Yet, investigating the result, it is clear that there is still a distinct synchronisation
error. Hypothesising that this is because of an unknown delay from the time of
capture to the time of receiving the two frames, and that this is constant, the aim is
to find this offset and synchronise the frames thereafter. In other words, all needed
is to synchronise on one frame, and subsequently pair camera frames with LiDAR
frames based on this offset. This is exemplified by Figure 5.7, where Figure 5.7a
shows the overlaying point cloud of the first LiDAR frame, on the corresponding
image frame. In Figure 5.7b, the LiDAR frames have been traversed, finding the
frame that aligns with the person in the image.

Interpolation
As can be seen in Figures 5.5 and 5.6, the LiDAR provides only a sparse point cloud.
It is desirable to attain a more dense depth map in order to increase the amount of
data for every frame. Therefore, as a last data processing step, the point cloud is
interpolated. To extend the depth map, a MATLAB script provided by [Balcilar,
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(a) First frames (b) Synced frames

Figure 5.7 Synchronisation (a) The first two frames showcasing the offset in captured
camera and LiDAR frames. (b) Subsequent LiDAR frame, aligning with the person of the
camera frame.

2022] is used. This script interpolates the depth by extracting depth to neighbouring
pixels by taking a weighted sum of the known depth in every grid region, where the
weight is determined by the distance from the grid centre point. That is, the further
away a pixel is from the known depth at the grid centre, the lower the summation
weight becomes. The final depth map, to be used as ground truth in depth accuracy
evaluation, is presented in Figure 5.8.

Figure 5.8 Example image of a processed depth map to be used as ground truth for depth
accuracy evaluation.

Stability Data Set
The data set for stability evaluation contains three scenes with three levels of dy-
namics or scene movements. They were captured with a regular surveillance camera
from a fixed surveillance perspective. The levels of dynamics are referred to as High
Dynamics, Low Dynamics and No Dynamics/Static. High dynamics scenes involve
walking and moving around in the scene. The low dynamics scenes involve standing
or sitting still with only minor movements. Static scenes involve no moving objects

71



Chapter 5. Model Evaluation

at all and the frames are identical except for tiny dynamics such as brightness fluc-
tuations, shadows and wind, etc.

Table 5.4 Stability data set. The stability data set divided into three subset for different
level of dynamics.

Scene
High Dynamics

# Frames

Low Dynamics

# Frames

Static

# Frames

Entrance 181 80 30
Kitchen 121 145 79
Roof top bar 140 101 82

Total 442 365 191

5.2 Depth Accuracy

The depth accuracy evaluation on our custom data sets have been evaluated on all
models. This is done in a similar manner as presented in Section 3.5. To summarise,
the predictions are aligned with the ground-truth, in the prediction’s space, by per-
forming a scale and shift alignment in accordance with least-squares (2.7), and in
turn solved by (2.10). After the alignment, the predictions are evaluated in ground
truth space on the metrics AbsRel (2.18) and δerr (2.20). This is averaged over all
frames of the data set.

The result on the indoor data set, captured with a ZED stereo camera and the outdoor
data set, captured with a camera and LiDAR sensor, will be presented in each of the
subsequent subsections.

Indoor
For evaluation on the indoor data set, a depth cap of 10, 15, and 20 m was applied,
meaning ground truth values above the depth cap is ignored during evaluation. Here
20 m represents the upper maximum range the stereo camera is specified to be ac-
curate. For each of the 14 scenes in Table 5.2, we randomly sample 150 frames,
resulting in a total of 2100 sampled frames. This is in order to not introduce unnec-
essary scene-bias due to varying length. The set of randomly sampled scenes is the
same for each metric, model and depth range cap.

Table 5.5 shows the results of accuracy evaluation. MiDaS Large marginally out-
performs both DPT Large and DPT Hybrid in both metrics, and the accuracy
trend is consistent over all depth range caps. For the delta metric, AdelaiDepth101
marginally scores higher than both DPT models. For the smaller models, MiDaS
Small outperforms Monodepth by a large margin in both AbsRel and δerr metric.
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5.2 Depth Accuracy

Table 5.5 Depth Accuracy — Indoor data set. Accuracy evaluation on indoor data set,
with varying depth cap of 10, 15 and 20 m.

Model AbsRel10m AbsRel15m AbsRel20m δ 10m>1.25 δ 15m>1.25 δ 20m>1.25

AdelaiDepth50 0.131 0.142 0.149 0.154 0.173 0.183
AdelaiDepth101 0.128 0.137 0.141 0.148 0.164 0.169
DPT Hybrid 0.125 0.132 0.135 0.157 0.172 0.178
DPT Large 0.124 0.130 0.133 0.152 0.165 0.170
MiDaS Large 0.123 0.130 0.134 0.143 0.162 0.167

MiDaS Small 0.140 0.148 0.151 0.182 0.199 0.205
Monodepth 0.199 0.213 0.217 0.364 0.389 0.397

Outdoor
For evaluation on the outdoor data set, a depth cap of 80 meter was applied. The
full data set contains 250 randomly sampled frames from each of the four scenes
presented in Table 5.3, totalling 1000 frames. The scatter plot of this result, for the
AdelaiDepth101 model, is presented in Figure 5.9. What is essential to note here
is that the average error is very high compared to previously analysed data sets.
Looking closer at the plot, it is one scene specifically that the model fails to even
moderately infer depth from, namely the ”Loading Area”-scene. Similar patterns
are shown for all models, both on AbsRel as well as δerr metric. Conclusively, a
scene has been found that all models are unable to handle, in terms of establishing
accurate depth predictions.

Figure 5.9 Scatter plot of each frame’s AbsRel metric on AdelaiDepth101 predictions, eval-
uated on the outdoor data set containing 250 frames from four scenes.

Example frame data of this scene are given in Figure 5.10. Figure 5.10a displays
the captured RGB frame, showing the Loading Area scenery. Examining this, it is
concluded that the scene in itself appears almost as an optical illusion perceived by
the human eyes. The scene in itself actually contains two separate levels of height,
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to either side of the railing. This is distinguishable in the LiDAR depth map, Fig-
ure 5.10b, where the points to the right of the railing shows larger depth values.
However, looking at the predicted depth map from AdelaiDepth101 in Figure 5.10c,
it does not appear to have captured this depth difference. Similarly as we are having
trouble differentiating the depth of this scene, without additional information about
the scene at hand, the MDE models do so too. This is further verified by investigat-
ing the resulting point cloud in Figure 5.10d, where the right handed road is visually
appearing to be on the same level as the pavement to the left of the railing. Because
of this, we withdraw this scene from the outdoor data set from the general analysis,
and present results on this subset of the data separately.

(a) RGB Frame (b) LiDAR Depth Map

(c) AdelaiDepth Depth Map (d) AdelaiDepth Point Cloud

Figure 5.10 Loading Area Example Frame

The total outdoor data set contains 250 frames from three scenes, excluding the
”Loading Area”-scene, totalling 750 frames. The result is presented in Table 5.6.
For the AbsRel metric, DPT Large shows the best performance, whereas MiDaS
Large is second best. This result differs slightly considering the δerr metric, where
DPT Hybrid is the strongest contestant and DPT Large at second place. For the
smaller models, it is once again concluded on an exclusive difference, favouring
MiDaS Small over Monodepth.

The scene-specific results from the outdoor LiDAR evaluation data set are presented
in Table 5.7. Firstly, it is clear that any DPT version is a top performer for every
scene and either MiDaS or the corresponding DPT version is second best. This, with
the exception of AdelaiDepth101 on the ”Bicycle Lane”-scene, evaluated on the δerr
metric. For the smaller models, MiDaS Small is once again shown to outperform
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Table 5.6 Depth Accuracy - Full Outdoor data set. Depth accuracy score on custom
outdoor, long range, data set, presenting both the AbsRel error as well as the delta-threshold
error (δ>1.25).

Model AbsRel* δ>1.25*

AdelaiDepth101 0.127 0.129
AdelaiDepth50 0.137 0.129
DPT Large 0.115 0.128
DPT Hybrid 0.117 0.114
MiDaS Large 0.116 0.139

MiDaS Small 0.165 0.240
Monodepth 0.270 0.589

* 250 sampled frames from the first three
scenes of Table 5.3, excluding ”Loading
Area”-scene, totalling 750 frames.

Monodepth uniformly. Further, looking at each individual scene as presented in
Table 5.7, it is concluded that every model performs its inherent top and worst scores
on the same data sets. That is, looking at the three data sets, excluding ”Loading
Area”, all models perform their best result on the ”Entrance” scene and consistently
the worst result on the ”Bicycle Lane” scene.

Table 5.7 Depth Accuracy — Indivudual scenes. Depth accuracy score on custom out-
door, long range, data set, presenting both the AbsRel error as well as the delta-threshold
error.

Bicycle Lane Entrance Courtyard Loading Area*

Model AbsRel δ >1.25 AbsRel δ >1.25 AbsRel δ>1.25 AbsRel δ>1.25

AdelaiDepth101 0.173 0.186 0.088 0.081 0.109 0.099 0.618 0.800
AdelaiDepth50 0.178 0.192 0.104 0.059 0.121 0.118 0.458 0.741
DPT Large 0.175 0.231 0.063 0.037 0.085 0.079 0.334 0.666
DPT Hybrid 0.144 0.157 0.088 0.046 0.101 0.097 0.405 0.717
MiDaS Large 0.161 0.241 0.075 0.059 0.102 0.094 0.444 0.724

MiDaS Small 0.190 0.264 0.162 0.252 0.136 0.183 0.393 0.666
Monodepth 0.345 0.839 0.246 0.504 0.212 0.422 0.415 0.853

* The ”optical illusion” scene where all models more or less fail to predict the depth, see Figure 5.10 for an illustra-
tion.
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5.3 Stability

As introduced during the 3D masking development in Section 4.3 under Temporal
Instability, predicted depth values are not consistent in time domain even if the
scene view is fixed. One cause for this is emphasised in Section 3.4, where it was
described that AdelaiDepth learns depth up to an affine transformation, meaning
depth up to an unknown scale and shift. Naturally, during a video sequence, if these
unknown scale and shift vary throughout the scene, the consequence is temporal
instability. This issue is present for all investigated models.

Temporal Instability can be illustrated by Figure 5.11 which shows the coefficient of
variation (CVi =

σi
µi

) during the scene, where i corresponds to pixel location. Here,
some regions that are supposed to be consistent, such as floor and walls, manifest
unwanted high variation during predictions. The only region expected to be bright
is the bottom right.

Evaluation Method
In order to perform quantitative evaluation of model stability, three different met-
rics were utilised. These were DSSIM (structural dissimilarity) (2.24), MAE (mean
absolute error) (2.25) and RMSE (root mean squared error) (2.26). As stated in
Section 5.1, the data set used is divided into three categories, high dynamics, low
dynamics and static. For ground truth, or reference frame, we use the first frame in
each scene, for each respective model. Thus, since the camera position is fixed, the
metrics will describe how well each succeeding frame matches the reference/ground
truth frame.

In order to perform stability evaluation fairly across all models and scenes, three
pre-processing steps are called for. These are static region bit-mask, depth alignment
and mean normalisation.

In order to not introduce errors from dynamic regions, a scene-specific static bit-
mask, representing the pixels to be excluded during the evaluation, was used. This
bit-mask is calculated by utilising an existing foreground–background detector, sim-
ilar to the background detector used in Section 4.3. An example of this bit-masking
technique is illustrated in Figure 5.13.

Next, depth alignment into realistic depth and mean normalisation is performed.
This is desired since the ground truth, or reference frame, is unique for every model.

Since the raw depth output is of unknown scale and shift, there exists a global scale
and shift that transform and align the depth map into realistic metric depth. To clar-
ify, for models that output disparity, the output scale may differ in the range of 10−5

and 105 depending on scene and model. Since the relation between disparity and
depth, i.e., the baseline and focal length in a stereo-camera setup, see Section 2.1, is
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DPT Large

10−2

10−1

DPT Hybrid

10−2

10−1

MiDaS Large

10−2

10−1

MiDaS Small

10−2

10−1

AdelaiDepth101

10−2

10−1

AdelaiDepth50

10−2

10−1

Coefficient of Variation

Figure 5.11 Coefficient of Variation. Coefficient of Variation in a logarithmic scale (for
visualisation purposes) from a sequence of 121 frames of the Low Dynamic kitchen scene.
Darker regions correspond to high stability, while brighter regions correspond to instability.
The equivalent RGB-image is shown in Figure 5.12.

Figure 5.12 Kitchen — Low Dynamic. Image from low dynamic kitchen scene. Minor
movement is only present in the bottom right corner.
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(a) Resulting bit-mask for High Dynamic -
Kitchen scene.

(b) Resulting bit-mask for Low Dynamic -
Kitchen scene.

Figure 5.13 Dynamic region bit-mask. Resulting bit-masks used to ignore true dynamic
regions during stability evaluation.

unknown, the focal length multiplied with the baseline can be asserted to be equal
to 1 and the transformation from disparity to depth becomes

d = f
B
Z
=

1
Z

(5.1)

where d is disparity and Z is depth. In order to end up in realistic depth space, for
example in the range of 2 to 20 m in the case of the kitchen scene in Figure 5.12,
a scale and shift transformation is found using least-squares fit, as first described in
(2.7), by

(s, t) = argmin
s,t

2

∑
i=1

(sdi + t−d∗i )
2 (5.2)

and solve for scale and shift, s and t, respectively, when d∗ is asserted to 2 and
20, and d is the minimum and maximum depth map output. This global shift and
scale is computed once for the reference frame, and then applied to every sequential
frame, which uniformly transforms each frame into realistic depth space:

draw
s,t−→ d2-20m.

The metrics are then calculated frame-wise and averaged into a final DSSIM, MAE
and RMSE measurement for each model. The MAE and RMSE are mean nor-
malised by the interquartile range, with MAE

Q3−Q1
and RMSE

Q3−Q1
, respectively.

Stabilisation Technique — Static Area Alignment
We propose a post-processing stabilisation technique applicable in real-time in or-
der to reduce the effect of temporal instability for static camera installations, com-
mon in video surveillance.

Acknowledging that the models only learn depth up to an affine transformation, and
inspired by the established use of scale and shift for ground truth alignment during
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accuracy evaluation, we suggest using the same technique in order to align to a pre-
vious predicted frame, i.e., a reference frame. We motivate this by the observation
that large parts of the pixel content of a fixed surveillance camera are static, such as
fixed ground, walls and stationary objects, etc., at which depths should be constant.
Hence, by continuously aligning, in terms of scale and shift, incoming predicted
depths to a reference frame, the overall scene stability should improve.

However, in order to not introduce alignment issues when dynamic objects are in-
volved, only static pixels in the current frame and reference frame should be in-
cluded when solving for the alignment coefficients with least-squares. Hence, simi-
lar to (2.7), this is mathematically described as

(s, t) = argmin
s,t

Ms

∑
i=1

(
sdi + t−dR

i
)2

(5.3)

where Ms, d, and dR are the number of static pixels, the current depth map, and the
defined reference depth map, respectively. The static pixels for each frame are, as
previously, identified by using an existing foreground–background detector out-of-
the-box.

The proposed post-processing stabilisation method is evaluated with similar
methodology as described in Section 5.3, and the overall transformations scheme
can be described as

draw
ŝ,t̂−→ daligned

s,t−→ daligned2−20m (5.4)

where ŝ and t̂ are the coefficients for the reference frame alignment.

This technique do add some latency. Most of the latency can be attributed to the
foreground–background detector used, as well as solving for the alignment coeffi-
cients. However, this should very much still be applicable for real-time usage since
optimised foreground–background detectors often are present in high performance
surveillance cameras. Also, the alignment coefficients can be solved for fast and ef-
ficiently, since the closed-form solution of linear least-squares (2.10) can be utilised.

Finally, this technique does not have impact on the accuracy metrics AbsRel and
δerr. This is because both accuracy evaluation metrics utilise the same alignment
technique targeting the ground truth values. This essentially reverses the operations
in (5.4).

Results
The results of the full stability evaluation for each level of dynamics are presented in
Tables 5.8, 5.9 and 5.10. For High Dynamics, the DPT models consistently scores
high in all three metrics. Interestingly, the more compact AdelaiDepth50 model,
while having the same input size, consistently achieves higher stability than Ade-
laiDepth101, and even outperforms both DPT models in RMSE. This is because
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AdelaiDepth50 performs remarkably well in the Roof Top scene, as shown in Figure
5.14, while the other models fall short. Similarly, for Low Dynamics, DPT Hybrid
performs the best in the DSSIM and MAE category, while AdelaiDepth50 performs
best in RMSE. For Static, all models perform better than in Low Dynamics. Sur-
prisingly, the winner on the static dataset is Monodepth, which is generally the less
accurate model.

Furthermore, while the average of each stability metric is the main measurement
presented, the locality, spread and outliers are also important aspects. This is pre-
sented for MAE for High Dynamics as a box-and-whisker plot in Figure 5.15.
Interestingly, while DPT Large have marginally lower median- and mean MAE
than AdelaiDepth50, the latter have much lower spread, or variation, which may
be preferable.

Table 5.8 High Dynamics Results from High Dynamics scenes. Lower is better in all cat-
egories.

Model DSSIM
×10−3

DSSIM w. stabilise
×10−3

MAE
×10−2

MAE w. stabilise
×10−2

RMSE
×10−2

RMSE w. stabilise
×10−2

AdelaiDepth101 7.41 6.30 (-15.0%) 4.30 3.53 (-17.9%) 7.83 6.20 (-20.8%)
AdelaiDepth50 4.47 5.51 (+23.3%) 2.48 2.08 (-16.1%) 4.31 3.56 (-17.3%)
DPT Large 3.41 1.18 (-65.4%) 2.43 1.86 (-23.5%) 6.03 5.78 (-4.0%)
DPT Hybrid 2.97 1.62 (-45.5%) 2.76 1.99 (-28.0%) 7.22 5.36 (-25.8%)
MiDaS Large 4.09 2.65 (-35.2%) 4.00 3.44 (-14.1%) 8.75 7.73 (-11.7%)

MiDas Small 11.71 8.14 (-30.5%) 7.64 6.81 (-10.9%) 16.50 15.92 (-3.5%)
Monodepth 9.03 8.52 (-5.6%) 4.42 5.57 (+26%) 10.81 11.68 (+8%)

Table 5.9 Low Dynamics Results from Low Dynamics scenes. Lower is better in all cate-
gories.

Model DSSIM
×10−3

DSSIM w. stabilise
×10−3

MAE
×10−2

MAE w. stabilise
×10−2

RMSE
×10−2

RMSE w. stabilise
×10−2

AdelaiDepth101 4.59 5.27 (+14.8%) 5.91 3.43 (-41.9%) 7.80 5.00 (-35.8%)
AdelaiDepth50 2.14 1.33 (-37.9%) 3.68 2.46 (-33.2%) 4.91 3.67 (-25.3%)
DPT Large 1.09 0.75 (-31.2%) 2.66 2.41 (-9.6%) 6.85 6.84 (-0.1%)
DPT Hybrid 0.64 0.53 (-17.2%) 2.33 2.04 (-12.4%) 5.55 5.57 (+0.5%)
MiDaS Large 2.00 1.10 (-45.0%) 3.61 2.85 (-21.1%) 6.07 5.16 (-15%)

MiDas Small 9.76 5.38 (-44.9%) 10.38 8.79 (-15.4%) 19.89 15.65 (-21.3%)
Monodepth 6.68 5.94 (-11.1%) 5.32 7.66 (+44.0%) 11.92 12.80 (+7.4%)

There exists a clear trend relating scene dynamics to overall scene stability. Nearly
all models progressively perform worse stability-wise from high to static scene data
set, indicating the issue with temporal inconsistency. By inspecting the captured
footage as an animated point cloud, there is correlation between movement in one
part of the scene, to large depth changes of static background areas in other parts of
the scene, see videos (a) and (d) in Table 5.11. In video (d), the movement of people
walking slightly distorts the overall scene and appears to slightly shake, stretch, and
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Table 5.10 Static Results from Static scenes. Lower is better in all categories.

Model DSSIM
×10−3

DSSIM w. stabilise
×10−3

MAE
×10−2

MAE w. stabilise
×10−2

RMSE
×10−2

RMSE w. stabilise
×10−2

AdelaiDepth101 2.74 0.71 (-74.1%) 3.03 1.80 (-40.7%) 3.87 2.61 (-32.7%)
AdelaiDepth50 0.97 1.20 (+24.3%) 2.23 1.89 (-15.1%) 3.17 2.79 (-11.9%)
DPT Large 0.26 0.22 (-15.4%) 1.43 1.40 (-2.2%) 4.55 4.57 (+0.5%)
DPT Hybrid 0.30 0.22 (-26.7%) 1.58 1.46 (-7.5%) 3.64 3.77 (+3.5%)
MiDaS Large 0.59 0.46 (-22.0%) 1.95 1.79 (-8.2%) 3.55 3.45 (-2.7%)

MiDas Small 2.54 1.14 (-55.1%) 3.79 3.20 (-15.6%) 6.28 6.18 (-1.7%)
Monodepth 0.40 0.38 (-5.0%) 1.06 1.08 (+1.8%) 2.43 2.29 (-5.8%)

0 100 200 300 400

Frame

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

AdelaiDepth101

RMSE - Average: 0.07834

RMSE Stabilized - Average: 0.06204 (-20.8)

0 100 200 300 400

Frame

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

AdelaiDepth50

RMSE - Average: 0.04311

RMSE Stabilized - Average: 0.03564 (-17.3)

0 100 200 300 400

Frame

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

DPT Large

RMSE - Average: 0.06022

RMSE Stabilized - Average: 0.05777 (-4.1)

0 100 200 300 400

Frame

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

DPT Hybrid

RMSE - Average: 0.07221

RMSE Stabilized - Average: 0.05358 (-25.8)

RMSE - High Dynamics [Entrance (0-180), Kitchen (180-300), Roof Top (300-440)]

Figure 5.14 RMSE — High Dynamics RMSE timeseries of AdelaiDepth and DPT models
in the High Dynamics dataset. Top left: AdelaiDepth101. Top right: AdelaiDepth50. Bottom
left: DPT Large. Bottom right: DPT Hybrid. The vertical bar represents change of scene.
Frame 0 to 180 is the Entrance scene. Frame 180 to 300 is the Kitchen scene. Frame 300 to
440 is the Roof Top scene.
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Figure 5.15 MAE — High Dynamics MAE for High Dynamics visualised at box plots.
While mean MAE is the main stability measurement, the locality, spread and outliers are also
important aspects.

shift back and forth in various regions. This is further illustrated in Figure 5.16,
demonstrating that instability levels varies over different regions of the scene.

The stability issue is visually very prominent in MiDaS Small, see video (b). This
is also the model that overall performs worst on the stability metrics. Compared
to DPT Large in video (a), which generally has very high results across all stabil-
ity metrics, the difference in very notable. As stated previously, surprisingly Ade-
laiDepth50 with the shallower ResNet50 encoder clearly outperforms the deeper
AdelaiDepth101 on all scenes and on all metrics. The difference, while subtle, is
visualised in video (c). The difference between AdelaiDepth50 and DPT Hybrid on
High Dynamic scenes is visualised in videos (e) and (f). The overall stability is rel-
atively similar for both the Roof Top and the Kitchen scenes. However, a difference
is how they both handle the transparent windows. DPT predicts, though unstably,
more accurate window depths, while AdelaiDepth predicts a more constant depth,
even though it is less accurate. Inspecting both DPT Large and Monodepth on the
static Roof Top Scene manually, shows that while DPT has arguably more accurate
room projection than Monodepth, it picks up the movement of small cars outside
the large window. This phenomenon is illustrated in video (g).

The stabilisation technique proposed, Static Area Alignment, shows in general sig-
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(a) CV — AdelaiDepth101

(b) CV Stabilised — AdelaiDepth101

(c) CV — DPT Hybrid

(d) CV Stabilised — DPT Hybrid

Figure 5.16 Coefficient of Variant (CV) — High Dynamics. Coefficient of Variant
(CVi =

σi
µi

) for Kitchen scene on AdelaiDepth101 and DPT Hybrid in logarithmic scale.
Darker regions corresponds to high stability, while brighter regions corresponds to high in-
stability.

nificant improvement at all levels of dynamics and all three dynamics. For high
dynamic scenes the DPT models have the most notable improvements. This im-
provement is illustrated in Figure 5.16 as well as visualised in video (h). For low
and static scenes the results varies, but generally results in increased stability. Ade-
laiDepth50 and AdelaiDepth101 show a slight increase in DSSIM, i.e., a decrease in
stability, for high and low dynamics. This could be attributed to the fact that DSSIM
is a more complex measurement, i.e., perceived change in structural information.
Finding a global alignment, by globally minimising according to least-squares prin-
ciples, does not necessarily lead to better overall such measurement. However, it
seems that in general, DSSIM is often also improved when MAE and RMSE are
improved. This can be visualised in video (i), and Figure 5.17, and showcase the
difficulty at finding a global alignment that results in a more structurally stable
scene overall. The MiDaS models have consistent gain in stability on all metrics
and all levels of dynamics. The difference, while subtle, is visualised in video (j).
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Table 5.11 Videos — Stabilty Evaluation. Video visualising generated point clouds as
animation. The models are mentioned in left to right order, when viewing side-by-side video.
For footage containing stabilised point cloud, the raw unstabilised point cloud is marked in
red.

Scene Video Description

Kitchen (a) DPT Large - High and Low Dynamics
Kitchen (b) Midas Small - High and Low Dynamics
Kitchen (c) AdelaiDepth101 and AdelaiDepth50 — High Dynamics
Entrance (d) AdelaiDepth101 — High Dynamics
Kitchen (e) DPT Hybrid and AdelaiDepth50 — High Dynamics
Roof Top (f) DPT Hybrid and AdelaiDepth50 — High Dynamics
Roof Top (g) DPT Large and Monodepth — Static

Kitchen (h) DPT Large w. stabilise — High Dynamics
Kitchen (i) AdelaiDepth50 w. stabilise — High Dynamics
Roof Top (j) MiDaS Large w. stabilise — High Dynamics

(a) DSSIM (b) DSSIM Stabilised

Figure 5.17 DSSIM AdelaiDepth50 — Stabilise Failure. DSSIM for Kitchen High Dy-
namics scene on AdelaiDepth50 in logarithmic scale. Notice that DSSIM increases in the
bottom region for the stabilised variant. Also notice DSSIM is invariant to changes in the far
wall, which generally is more uniformly varied, i.e., retaining the structural information.
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5.4 Depth Resolution

As was concluded in Section 4.5, an important aspect of a MDE model is its depth
range, i.e., the range at which different object depths are clearly discernible. This
section will therefore compare the seven models that have been evaluated so far in
terms of depth-range using a simple experiment setup. This depth range evaluation
consist of one scene, captured from two different points of view (POV). The first
POV is with the camera mounted with a straight perspective to the scene at hand.
The second scene is with a camera mounted from with a tilted perspective, more
similar to that of a typical surveillance camera installation. The scene is a corridor,
with mannequins placed at known distances. Importantly, one of the mannequins is
placed as front object, and the other is placed 1 m behind the first. The objective
is then to capture one frame with the mannequins positioned at 5, 10, 15 and 20
m from the camera, and in the subsequent analysis part, determine at what ranges
each model is able to distinguish this difference in depth. The setup is presented in
Figure 5.18. What is also worth mentioning is that the setup with straight POV is
also captured with optical zoom (increased focal length), while the tilted POV setup
was captured with lower focal length. However, the cameras were placed so that
they both could visualise everything behind the zero meter mark.

For each of the frames, in each camera setup, the front mannequin (pink shirt),
and the mannequin behind (dressed in blue), are manually annotated. The average
of these pixels’ depth values marks the object depth. The relative depth difference
between these objects is then calculated as

∆rel =
dA−dB

dA
(5.5)

where ∆rel is the relative depth difference, dA marks the depth of the frontmost man-
nequin, and dB marks the depth of the mannequin behind. That is, a ∆rel value of
zero marks that a model is unable to distinguish the depth difference between the
objects. The result is presented as a plot, marking the ∆rel for each model, at each
range. The result for the straight POV are given in Figure 5.19. Figure 5.19a shows
this result for the larger models. Firstly, it is noted that MiDaS Large fails com-
pletely on this scene. Secondly, all models are able to distinguish depth up to 10 m,
with AdelaiDepth101 having some issues already at 5 m. No model except DPT
Large is able to distinguish the objects in depth at 15 m. For the smaller models, in
Figure 5.19b, MiDaS Small is the only one that succeeds, and that up to 10 m.

In Figure 5.20, the result obtained for the setup with the camera mounted at a tilted
POV are shown. Figure 5.20b shows the result for the small models. Here, it is only
at 5 m the models are able to perceive the depth difference. Figure 5.20a shows the
result for the larger models. As is noted from this plot, almost all models remarks

85



Chapter 5. Model Evaluation

(a) Straight POV (b) Tilted POV

Figure 5.18 Depth Range Scene
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Figure 5.19 Depth Resolution Evaluation: Straight POV.
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a peak relative distance at 15 m. This is somewhat baffling. In Figure 5.21, the
relative difference in depth is plotted for the front most object and the annotated
background. Looking closer at the model’s values at 15 m, it is noted that they
all are very close to zero. In other words, they have almost faded together with
the background. Because of this, the ∆rel yields positive result at 15 m, as is seen
in Figure 5.20a, simply because both objects are part of the background, and the
behind mannequin is blended together with the background, which happens to be
slightly ahead of the background behind the front-most mannequin. Conclusively,
it is only DPT Large that is able to distinguish depth at 10 , and all models fail on
doing so on 15 m and longer.

5.5 Discussion

As discussed in Section 3.5, the models that have been investigated and evaluated
here are in many senses similar. All models apply a U-net architecture, in the pro-
cess of acquiring a dense prediction. They include similar loss functions, regard-
ing accuracy loss, and contour refinement loss. Every model, with the exception of
Monodepth, is fully supervised and trained on a mixture of data sets, for improved
generalisation performance. There are minor differences that separate these mod-
els from each other. AdelaiDepth toolbox models, including AdelaiDepth50 and
AdelaiDepth101, are intending to achieve consistent geometries, for accurate geo-
metric reconstruction, in addition of acquiring accurate depth estimations. DPT and
MiDaS, developed by Intel Labs, have instead focused fully on accuracy and on im-
proved generalisation by training on ten data sets, compared to five data sets for the
AdelaiDepth models. This is reflected in the results as the models perform similarly
but is still distinguishable when it comes to qualitative assessment, such as accuracy
and stability.

Accuracy
Comparing the accuracy results, from the outdoor and the indoor data sets, it is
concluded that the DPT and/or MiDaS models come out the strongest, relative to
AdelaiDepth, even though the difference is small in some cases. What is worth men-
tioning though is that the difference between the Intel models versus AdelaiDepth
models are bigger in terms of absolute relative error (AbsRel). In other words, when
allowed for some depth accuracy errors, i.e., allowing predictions being not more
than 1.25 off from the ground truth (delta-error), the performance difference is not
as compelling between the DPT/MiDaS and the AdelaiDepth models, see Table 5.5
and Table 5.6 for reference. Additionally, it is concluded that the accuracy perfor-
mance of the smaller models are significantly worse than that of the larger models.
Furthermore, MiDaS Small uniformly outperforms Monodepth in terms of accu-
racy. MiDaS generalisation performance appears distinctly advantageous relative to
Monodepth, being trained solely on data targeting autonomous driving.
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Moreover, it can be concluded that the performance of these models is highly scene
dependent. Additionally, connecting to the previous conclusion that the models are
in many senses similar, it appears that all models predict depth more easily on the
same type of scenes. To support this statement, we refer back to Table 5.7. This
table showed, as already stated, that the models achieve their best and worst results
respectively on the same scenes. That is, every model achieves its best, second best,
and so on, result for the same scene. By also looking closer at the sample from the
”Loading Area”-scene, containing the optical illusion of depth in Figure 5.10, it
proves as a good example of this scene dependency, affecting the performance of
the depth predictions. With this in mind, we find it as a compelling argument for
fine tuning on surveillance data. In fact, we suggest the possibility of utilising scene
specific fine tuning, due to the fixed installation nature of surveillance cameras, i.e.,
a model can be fine tuned on, e.g., indoor boutique data, for increased accuracy and
performance on these specific categories of scenes.

Stability
All models experience increased temporal instability when scene dynamics are in-
troduced. The level of instability can also be concluded to be highly scene depen-
dent, referring to Figure 5.14. Furthermore, it seems linked to the visibility and
occlusion of depth cues in the frame. From our recorded material, important depth
cues seem to be geometrical shapes such as corners, wall posts, windows, door-
frames, etc. If viewing the problem of performing 3D reconstruction of a scene as a
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function with the input being numerous such depth cues, it is not unreasonable that
the predicted depth reconstruction slightly varies as a person is walking through the
scene and occluding various depth cues. This effect was especially prominent for
MiDaS Small in the kitchen scene, as seen in video (b) in Table 5.11.

Furthermore, it was noticed that even in static scenes, tiny movements such as al-
most indiscernible outside traffic through a window, could introduce small insta-
bilities, as seen in video (g) in Table 5.11. This temporal stability is an important
aspect when developing real-time downstream applications, but is seldom evalu-
ated in the papers that accompany these models. Instead, the main focus lies only
on reaching high performance on known accuracy benchmark data sets. We think
stability evaluation, targeting the issue of temporal inconsistency, would benefit the
research and development in the field of Monocular Depth Estimation, and that our
proposed evaluation method and stabilisation technique is called-for. Moreover, we
can conclude from Figure 5.16 that this instability is not uniform across the image,
indicating that a single ”global” scale and shift alignment can be improved upon.
Instead, one idea that was out-of-scope for this thesis was to perform alignment in
local patches (eg. split into 8x8 sections) for each frame; however, this would de-
crease real-time performance and would not necessarily preserve accuracy. In fact,
during the writing of this thesis, the authors of AdelaiDepth released a paper [Xu
et al., 2022] aiming to address the issue of temporal inconsistency.

They identified the same overall issue regarding depth inconsistency and proposed a
scale and shift alignment module with a locally weighted linear regression method,
with scale and shift recovered by sparse ground truth anchor points. This is con-
ceptually similar to our proposed stabilisation method, although arguably more so-
phisticated. Their proposed technique even resulted in significant gain in accuracy
performance, further strengthening our conclusion that the field of Monocular Depth
Estimation would benefit with more consideration to temporal consistency and out-
put stability.

To conclude, our proposed stabilisation technique was successful on most models
and data sets by consistently reducing the chosen stability metrics, while not having
an impact AbsRel and δerr accuracy metrics. It is also worth mentioning that our
proposed stabilisation technique has promising practicability, as it only requires a
fast foreground–background model. Also, the alignment coefficients can be solved
for fast and efficiently, since it utilises the closed-form solution of a linear least-
squares approximation. In our work, we use all available depth values as input to
the optimisation problem, but we believe, for example, a sparse sampling of depth
values could be used to enhance performance with similar results.
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Depth Range
That the resolution of distinguishing depth becomes harder at larger ranges of depth
has already been concluded. It is as well an important aspects when utilising MDE
in computer vision applications. According to our evaluation in Section 5.4, DPT
Large is showing the best performance, as it is the sole model that is able to distin-
guish depth differences at 15 m and 10 m for the straight POV scene and tilted POV
scene, respectively. It is also concluded that the smaller models perform worse than
the larger models in this aspect. As distinguishing depth at long ranges is strongly
connected to the input pixel resolution, this comes as no surprise. This could also
be what is the underlying factor to why DPT Large outperforms the other models,
as it has the largest input image size, in addition to proving for great depth accuracy
results. However, as have been stated, the performance of these models are scene
dependent, and the depth range evaluation has so far only been evaluated on one
single scene. Therefore, these conclusions are not certainly applicable in other con-
texts. Referencing the depth range plots in Figures 5.19 and 5.20, it appears as that
the depth range of the models is more constrained for the scene captured from a
tilted POV. We see two possible answers to this observation. Firstly, all models are
trained on data sets that are mostly captured from a more straight-on perspective,
and not as a wall-mounted security camera, with the typical tilted perspective. Sec-
ondly, as the straight POV scene was captured with an optical zoom applied, this
could also be a reason for the different performance.

Summary
Bringing the evaluation results together, we can establish that the DPT models
and/or MiDaS are all-in-all the best performing models on our custom data sets
and evaluation metrics. This is in terms of both accuracy, stability and depth range
aspects, even though the performance difference is modest, and also not consis-
tent over multiple measurements and metrics in many cases. The favouring of Mi-
DaS/DPT models on our custom data sets could be derived to these models being
implemented with isolated focus on depth accuracy and generalisation performance,
compared to AdelaiDepth models that additionally acquire accurate scene geome-
try that has not been evaluated on in this thesis. The average accuracy results of all
models on our custom data sets compared to the existing data sets in Section 3.5,
are generally higher. Here, the indoor data set captured with a stereo camera is com-
pared to the NYUv2 data set. The outdoor LiDAR data set is compared to the longer
range iBims-1 and ETH3D data sets. This, along with the hypothesis of decrease of
depth range for a tilted point-of-view, could be an indication that the models have
not been trained on data targeting a surveillance domain. Of course, there might
be other underlying explanations to these results as well, but we believe it to be a
fair assumption that fine tuning these models on typical surveillance scenes should
increase the performance result on the custom data sets and metrics provided in this
thesis. Additionally, we stress the importance of temporal stability. Our naive pro-
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posed solution indicates that this can be mitigated, and our stability evaluation can
evince for such improvements. Lastly, it should be put forward that the larger mod-
els that achieve the highest results here are not as of now ready to be launched on
a constrained embedded system. Especially, the DPT-models show high inference
time on desktop GPUs without tensor accelerating hardware.
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6
Conclusion and Future
Work

6.1 Conclusion

Referencing the predefined goals defined in Section 1.2, they can be listed as: de-
velop a robust proof-of-concept privacy mask even with sub-perfect depth data run-
ning close to real time, determine the most vital functionality aspects for MDE used
in depth aware privacy masking, and perform benchmarking and analysis on metrics
related to these aspects in order to conclude on alternative solutions to improve on
such metrics. It can be concluded that these set goals have been met to a predomi-
nant degree. Firstly, we have presented a complete end-to-end depth aware privacy
masking algorithm, to be referenced to as a proof-of-concept. This algorithm is de-
signed for robustness and ”hide-rather-than-show”-criteria, which is achieved by
the stabilisation algorithm. This is principally fulfilled, especially when assuming
a more or less accurate and temporally stable depth input. For situations where the
MDEs do fall short, it has been determined to be sourced back to one or more of the
following aspects: depth accuracy, depth range resolution, and temporal stability.
Therefore, we have presented self-captured evaluation data and metrics to quan-
titatively evaluate performance relating to these aspects, targeting a surveillance
domain. This includes two custom data sets with pixel-aligned ground truth depth
data. We have also proposed a minor post-processing method to mitigate the effect
of temporal instability, without sacrificing accuracy, with promising results.

To summarise, with this thesis we hope to have given a thorough introduction to
what is referred to as monocular depth estimation utilising deep-learning. Our hope
is that this is a step forward towards utilising the potential of monocular depth es-
timation in downstream computer vision applications, such as depth aware privacy
masking. We suggest doing so, by referencing the proposed future work outlined in
Section 6.2.
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6.2 Future Work

To utilise the depth estimators considered in this thesis, it is firstly concluded that
some sort of fine-tuning or transfer learning is desirable in order to increase the
performance on typical surveillance data. Additionally, to account for the temporal
stability issues prominent in video usage, there are research from two papers we see
fit to reference. Firstly, as mentioned in Section 1.5, the authors of [Zhang et al.,
2019] implement a convolutional long-short-term-memory (CLSTM) framework in
addition to the depth estimation network. With this, they include an additional tem-
poral loss in order to strive for consistent depth with previous frames. Secondly,
as mentioned in Related Work, Section 5.5, AdelaiDepth have published a new pa-
per during the time of writing this thesis [Xu et al., 2022]. This paper investigates
applying a pixel-wise scale and shift operation of the output depth map based on
a sampled set of ground truth pixels and Gaussian smoothing. Conclusively, any
model chosen for utilising MDE in a downstream video application would benefit
being fine tuned on appropriate ground truth data, and account for temporal insta-
bility by introducing a CLSTM appendage and/or follow up on the scale- and shift
alignment post processing technique.

Considering that the proposed masking algorithm is a proof-of-concept, it should
not by any means be considered as a ready-to-use application. Firstly, it needs to be
tested on more scenes, and preferably realistic ”in-the-wild” captured scenes. This
is to ensure that it fulfils the set requirements for an arbitrary surveillance scene.
Secondly, it should be refactored and rewritten to the purpose of embedded run-
time. In addition, using a fine-tuned MDE model on scene-specific data, that is also
accounted for temporally unstable depth data should ultimately increase the gen-
eral robustness. Lastly, as pointed on in Section 4.4 in connection with Figure 4.15,
there are cases when the depth buffer fails to establish a continuous depth mask. In
order to mitigate this disruption in the mask wall seen in Figure 4.15, this can be
mitigated as illustrated in Figure 4.16, by defining the mask as a convex hull. As
also suggested, we believe it is feasible to instead implementing a linear interpola-
tion/extrapolation of depth values over the missing frame depth in the baseline.
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