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Chapter 1

Introduction

In this thesis I present an innovative approach related with the simulation of
dynamical systems described by differential equations, in particular, with linear
time invariant systems. This systems can be so complex in general that it turns
out advantageous to consider them in a decoupled way, so that the subsystems
are solved separately, e.g.: co-simulation of the two masses of a dual mass spring
damper system, or the co-simulation og MBD vehicle model and an EPAS sys-
tem model. This separation introduces an error because the initial system is
not decoupled. In current literature the simulation of these decoupled systems
is known as co- simulation and has been studied extensively [1, 2, 5, 7, 10, 11]...

From this different studies I selected a co- simulation approach from a recent
PhD thesis [1]. Here, it is applied a control theory technique to handle and
minimize the coupling error. The purpose of my thesis is to follow the lines of
this phD thesis in order to understand its chosen approach, the H∞ synthesis
method. To conclude with, I attempted to reproduce the results of the phD
thesis with a similar experiment set up.

The central chapter of my work chapter 6. However, to reach there I had to
introduce essential proofs and concepts from control theory and co- simulation.
I suggest that the reader who is only interested in co-simulation jumps directly
to chapter 5 and takes the first chapters as a reference. Personally, I found im-
portant to keep this additional chapters with this structure because they were
of great relevance for my understanding of the core of this thesis.

The thesis has been structured in the following way: on chapter 2 I give the
mathematical background related to the control theory results we will be using.
On chapter 3 I give a broad description of the required control theory notions
to keep in mind when reading the next chapters. chapter 4 introduces the H∞
norm and H∞ methods in robust control theory. chapter 5 presents formally
the notion of coupled system in co-simulation and its different schemes and con-
figurations. Finally, like described above. In chapter 6 I present and explain the

7
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core of this thesis, the application of the H∞ synthesis method to a decoupled
system with the purpose of minimizing the coupling error derived from the co-
simulation. Lastly, on chapter 7 we set up the dynamics of a double mass spring
damper where I attempted to reproduce the approach we described in chapter 6.



Chapter 2

Mathematical Background.

Control theory strongly depend on the frequent use and application of many
mathematical techniques. One of the main purposes of the study of control
systems is to develop a set of analytical tools so that reasonable, predictable
and trustworthy designs can be attained with no dependency on an extensive
computer simulation or experimentation.

The mathematical background required in the study of control theory include
among other mathematical fields and notions: complex variable analysis, differ-
ential equations or Laplace and Z transforms.

Furthermore, modern control theory requires an even broader mathematical
support that also relies on mathematical fields such as matrix theory, set the-
ory, linear algebra, variational calculus or probability theory.

2.1 Preliminaries

2.1.1 Complex Variable

We can divide a complex variable s = σ + jω ∈ C in two components, its real
part σ represented in the x- axis and its imaginary part jω represented in the
vertical axis.

Consider a complex variable function G : C → C, s 7→ G(s). Because s can
be divided in two parts, G(s) can also be represented as

G(s) = Re(G(s)) + j Im(G(s))

where Re (G(s)) represents the real part of G(s) and Im (G(s)) the imaginary
part.

9



10 CHAPTER 2. MATHEMATICAL BACKGROUND.

2.1.2 Analytical Functions

A function G : C → C is analytic in a region Ω if all its derivatives exist in that
region.

Example 2.1.1 (Analytical Functions). Consider the functions G1, G2

• The function

G1(s) =
1

s(s+ 1)

is analytical for all s except for s = 0 and s = −1.

• The function G2(s) = s+ 2 is analytical for all s.

In the study of analytical functions the notion of singularity is specially
important.

Definition 1 (Singularity). The singularities of a function are the points on
the plane where the function or its derivatives does not exist.

We present now a key type of singularity for a complex function, the poles
of the function.

Definition 2 (Pole). Consider an analytic function in the neighbourhood of
si ∈ C. We say that G(s) has a pole of order r in s = si if the limit

lim
s→s1

[(s− si)
rG(s)]

is finite and different from 0.

Example 2.1.2 (Pole). Consider the function

G(s) =
10(s+ 2)

s(s+ 1)(s+ 3)2

It has a pole of order 2 in s = −3 and two poles of order 1 in s = 0,−1

Definition 3 (Zero). Consider an analytical function G : C → C. We say that
G has a zero of order r in s = si if the limit

lim
s→si

[
(s− si)

−rG(s)
]

has a finite value different from zero. In other words G(s) has a zero of order r
in s = si if 1/G(s) has a pole of order r in s = si.

Example 2.1.3 (Zero). Consider again the function

G(s) =
10(s+ 2)

s(s+ 1)(s+ 3)2

This function has 4 finite poles in s = 0,−1,−3 and one zero in s = −2.
Moreover, we consider the existence of three infinite zeros since

lim
s→∞

G(s) = lim
s→∞

10

s3
= 0
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Figure 2.1: RLC circuit scheme

2.2 Ordinary Differential Equations. Linear sys-
tems. Laplace Transform.

A great variety of engineering and physical systems are modelled by differential
equations. Even though a big part of this physical systems are not linear, in
this thesis we restrict our attention to the linear and time invariant case, the
so- called LTI systems.

As an example of physical systems described by a system of ODE’s we can
use the representation of the RCL electric circuit in Figure 2.1, which states
that the sum of the voltages equal zero, i.e.

0 = VL + VR + VC − Vsrc

Denoting i(t), the current of the circuit, we can rewrite the equation of the first
equation in terms of i(t) so that

Ri(t) + L
di(t)

dt
+

1

C

∫
i(t)dt = Vsrc (2.1)

R

L
i(t) +

di(t)

dt
+

1

LC

∫
i(t)dt =

Vsrc

L
(2.2)

We transform now Equation 2.2,to a linear ODE system. Considering x1 the
charge of the capacitor, x2 the current flowing through the circuit and that the
charge is the integral of current over time, then

x1 =

∫
idt =

∫
x2dt

x2 = ẋ1 =
dx1

dt

using this definitions we can rewrite equations Equation 2.2, as the following
set of differetial equations

ẋ1 = x2
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ẋ2 =
1

LC
x1 +

R

L
x2 −

1

L
Vsrc

Because we have now two different states in the system, it is no longer
explicit which state is the output of our linear set of ODE’s. Therefore, by our
given definition of the current i(t) our parameter of interest is x2 so that we
must explicitly define the output of our system as such

y = 0x1 + 1x2 = x2

In general we can describe a linear ordinary differential equation of order n as

dnx(t)

dtn
+ an−1

dn−1x(t)

dtn−1
+ ...+ a1

dx(t)

dt
+ a0y(t) = f(t) (2.3)

We write a differential equation of order n in n differential equations of order 1.
This is a common procedure when solving differential equations with big order
because, as we stated in the RLC circuit example, solving equations of order 1
is normally easier than solving differential equations of higher order.

Thus, we can break our differential equation of order n, Equation 2.3, into
n differential equations of first order in the following way

dx1(t)
dt = x2(t)

dx2(t)
dt = x3(t)

.

.

.
dxn(t)

dt = −a0x1(t)− a1x2(t)− ...− an−2xn−1(t)− an−1xn(t) + f(t)

(2.4)

We can also express the state equations Equation 2.3 in matrix form as

dxn(t)

dt
= Ax(t) +Bu(t) (2.5)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1
−a0 −a1 −a2 · · · −an

 B =


0
0
...
0
1


Definition 4 (State variables). The state variables of a system are the minimal
set of variables x1(t), x2(t), ..., xn(t) whose knowledge for any initial time t0 and
of the input information completely determines the state of the system for every
time t > t0.

The state of a system refers to the past, present and future conditions of the
system.
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2.2.1 State Space representation

The state space representation is a formalized method for representing linear
systems of differential equations, developed to make it easier working with them.
This formalization utilizes matrix notation to represent linear sets of ODEs in
a mathematically relevant way.

In order to explain this representation let us consider again the system of dif-
ferential equations of the RLC circuit example represented in Figure 2.1

ẋ1 = 0x1 + 1x2 + 0Vsrc

ẋ2 =
1

LC
x1 +

R

L
x2 −

1

L
Vsrc

taking all the factors out we get[
ẋ1

ẋ2

]
=

[
0 1
1

LC
R
L

] [
x1

x2

]
+

[
0

− 1
L

]
Vsrc

where we consider the 2× 2 matrix

A :=

[
0 1
1

LC
R
L

]
the state matrix of the system, and the 2× 1 matrix

B :=

[
0

− 1
L

]
the input matrix.

Since we are using multiple states to describe the system, it is also necessary to
specify the output explicitly. Recalling the output of the LRC system as

y = 0x1 + 1x2

We can convert this into matrix notation such that

y =
[
0 1

] [x1

x2

]
where

C :=
[
0 1

]
is considered the output matrix.

Now that we have a particular idea in mind of the state space representation
we can generalize our previous example with the system

ẋ = Ax+Bu

y = Cx+Du
(2.6)

where A is the state matrix, B the input matrix, C the output matrix, x⃗ the
state vector and u the system input. This will also be the general system we
will take as a reference when we refer to a general LTI system during our paper.
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2.2.2 Laplace Transform

Among many other applications in many different fields, the Laplace transform
is one of the most important analytic tools we use to solve linear ordinary
differential equations.

Definition 5 (Laplace transform). We define the Laplace transform as

F (s) = L{f} (s) =
∫ ∞

0

y(t)e−stdt < ∞

where f(t) is a real function that satisfies∫ ∞

0

∣∣f(t)e−st
∣∣ dt < ∞

where s is a complex variable s = σ + jω with real numbers σ and ω.

This transform has two main characteristics of our interest:

Property 6. The homogeneous solution and the particular solution are obtained
by just one operation.

Property 7. The Laplace transform turns a differential equation into an alge-
braic equation in s ∈ C.

Therefore, once the differential equation is converted into an algebraic equa-
tion, in order to find a solution for our differential equation in the s domain,
is enough to just manipulate the algebraic equation through basic algebraic
rules, so that the final solution is obtained by taking the inverse of the Laplace
transform.

Definition 8 (Inverse of the Laplace tranasform). Given the Laplace transform
F (s), we denote its inverse f(t) as

f(t) = L−1 [F (s)] =
1

2πj

∫ c+j∞

c−j∞
F (s)estds

where c is a real constant, higher than the real parts of every singularity
Definition 1 of F (s).
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Laplace Transform Properties

f(t) F (s) =

∫ ∞

0

f(t)e−stdt (Definition) (2.7)

af(t) + bg(t) aF (s) + bG(s) (Linearity) (2.8)

eatf(t) F (s− a) (s− shift) (2.9)

f ′(t) sF (s)− f(0) (2.10)

f ′′(t) s2F (s)− sf(0)− f ′(0) (2.11)

f (n)(t) snF (s)− sn−1f(0)− ...− f (n−1)(0) (2.12)

tf(t) − F ′(s) (2.13)

tnf(t) (−1)nF (n)(s) (2.14)

u(t− a)f(t− a) e−asF (s) (t− translation or t− shift) (2.15)

u(t− a)f(t) e−asL(f(t+ a)) (t− translation) (2.16)

(f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ)dτ F (s)G(s) (2.17)

∫ t

0

f(τ)dτ
F (s)

s
(integration rule) (2.18)

We consider now an example for the application of the Laplace transform
when solving a linear ordinary differential equation.
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Example 2.2.1 (Laplace Transform). Consider the differential equation

d2x(t)

dt2
+ 3

dx(t)

dt
+ 2x(t) = 5us(t)

with initial conditions x(0) = −1, x(1)(0) = 2 and us(t) defined as

us(x) =

{
0 if x < 0
1 if x ≥ 0

Firstly we want to apply the Laplace transform on both sides of the equation
such that

s2X(s)− sx(0)− x(1)(0) + 3sX(s)− 3Y (0) + 2X(s) = 5/s (2.19)

Now, substituting the initial conditions we get

X(s) =
−s2 − s− 5

s(s2 + 3s+ 2)
=

−s2 − s− 5

s(s+ 1)(s+ 2)
(2.20)

expanding the latter

X(s) =
5s

2s
− 5

s+ 1
+

3

2(s+ 2)

Finally, taking the inverse Laplace transform, we get the complete solution of
our differential equation

x(t) =
5

2
− 5e−t +

3

2
e−2t t ≥ 0

2.3 Difference Equations. Z transform.

Frequently differential equations represent systems of continuous signals. Dif-
ference equations systems aim to represent these systems in discrete time, with
the advantage that they are easier to implement. Thus, difference systems are
commonly used to approximate differential equations.

We can write a difference equation of order n and constants coefficients a0, ..., an−1

as

x(k + n) + an−1x(k + n− 1) + · · ·+ a1x(k + 1) + a0x(k) = f(k) (2.21)

Analogous to the differential equations case it is convenient to turn this differ-
ence equation of order n to n difference equations of first order, such that

x1(k) = x(k)
x2(k) = x1(k + 1) = x(k + 1)

...
xn−1(k) = xn−2(k + 1) = x(k + n− 2)
xn(k) = xn−1(k + 1) = x(k + n− 1)

(2.22)
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so that

xn(k + 1) = −a0x1(k)− a1x2(k)− · · · − an−1xn(k) + f(k) (2.23)

Once more, we can also write these n state equations in matrix form as

x(k + 1) = Ax(k) +Bu(k) (2.24)

where

x(k) =


x1(k)
x2(k)

...
xn(k)

 ; A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 ; B =


0
0
...
0
1

 (2.25)

2.3.1 Z Transform

The Z-transform of a time series is the analogue to the Laplace transform for a
time dependent function.

Definition 9 (Z transform). Consider the sequence y(k) with k = 0, 1, 2, ... We
define the Z transform of y(k) by

Y (z) = Z {y} (k) =
∞∑
k=0

y(k)z−k (2.26)

where z is a complex variable.

2.3.1.1 Relationship between Laplace and Z transform

We can represent a sequence, or signal, y(kT ), k = 0, 1, 2, ... as an impulse train
separated by an interval of time T , also called sampling period.

Definition 10 (Impulse of the kth instant). The impulse of the k-th instant is
denoted as δ(t− kT ), where δ is the Dirac function.

In digital control one often samples a signal y(t) every T seconds so to form
a time sequence that represents the samples instants. Therefore, we can relate
the sequence y(kT ) with a signal that can be expressed as

y∗(t) =

∞∑
k=0

y(kT )δ(t− kT ) (2.27)

Taking the Laplace transform on both sides of the equation we get

Y ∗(s) = L [y∗(t)] =

∞∑
k=0

y(kT )e−kTs (2.28)
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Thus, we can see how the Z transform is related to the Laplace transform
through z = eTs.

Below we present an example of the application of the Z transform to a function
in the time domain.

Example 2.3.1 (Z transform). Consider the function

y(t) = eαtus(t); us(x) =

{
0 if x < 0
1 if x ≥ 0

(2.29)

To get the Z transform first we need to represent the values of y(t) on the
instants t = kT , k = 0, 1, 2... to get the function

y∗(t) =

∞∑
k=0

e−αkT δ(t− kT ) (2.30)

Then we obtain the Laplace transform on both sides of the equation

Y ∗(s) =

∞∑
k=0

e−αkT e−kTs =

∞∑
k=0

e−(s+α)kT (2.31)

expressing the previous equation in a more compact way and applying z = eTs

we obtain the z transform of our initial function

Y (z) =
z

z − e−αT
(2.32)

Z- Transform Properties

af(k) + bg(k) aF (z) + bG(z)e−stdt (Linearity) (2.33)

f(k + 1) zF (z)− zf(0)e−stdt (Left Shift by 1)
(2.34)

f(k + 2) z2F (z)− z2f(0)− zf(1)e−stdt (Left Shift by 2)
(2.35)

f(k + n) znF (z)− zn
n−1∑
k=0

f(k)z−k (2.36)

= zn

(
F (z)−

n−1∑
k=0

f(k)z−k

)
e−stdt (Left Shift by n) (2.37)
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f(k − n) z−nF (z) (Right Shift by n) (2.38)

kf(k) − z
dF (z)

dz
(Multiplication by time) (2.39)

akf(k) F
(z
a

)
(Scale in z) (2.40)

f

(
k

n

)
F (zn); n integer n ≥ 1 (Scale in time) (2.41)

f(k) ∗ g(k) F (z)G(z) (Convolution) (2.42)

f(0) = lim
z→∞

F (z) (Initial Value Theorem) (2.43)

lim
k→∞

f(k) = lim
z→1

(z − 1)F (z) (Final Value Theorem (if exists))

(2.44)

Let us now introduce another example, this time illustrating the application
of the Z transform to solve linear difference equations.

Example 2.3.2 (Z transform). Consider the difference equation

y(k + 1) + y(k) = 0 (2.45)

to solve this equation we are going to first take the z transform on both sides of
the equation such that

∞∑
k=0

y(k + 1)z−k +

∞∑
k=0

y(k)z−k = 0 k = 0, 1, 2 · · · (2.46)

applying the definition of Y (z) and one of the translation theorem from Equa-
tion 2.3.1.1 we can write the previous equation as

z [Y (z)− y(0)] + Y (z) = 0 (2.47)

solving for Y (z) we obtain

Y (z) =
z

z + 1
y(0) (2.48)

we can expand Y (z) in the power serie

Y (z) = (1− z−1 + z−2 − z−3 · · · )y(0) (2.49)

so that
y(k) = (−1)ky(0) k = 0, 1, 2, ... (2.50)
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Chapter 3

Control Theory
Prerequisites

Control theory is an interdisciplinary subfield of science whose main purpose is
to influence the behaviour of a dynamical system, commonly denominated plant
of the control system, so that the output of the system follows a reference signal
i.e. desired control signal, with a fixed or changing value. In order to fulfill
this, it is needed to design a controller that checks the output of the dynamical
system and compares it with the reference. The difference between output of
a system and the reference signal is called error signal. This difference is com-
monly used to modify the input of the system through feedback Definition 17
to bring the actual output closer to the reference.
The main focus of Control theory is the study of the stability section 3.4 of a
system, understood as the convergence of the output of a system to the reference
signal, its controllability Definition 28 and its observability Definition 30.

We divide the control theory field into two sections: linear control theory, gov-
erned by linear differential equations, and nonlinear control theory, governed
by nonlinear differential equations. As we said in chapter 2, in this master
thesis we will focus our attention on a major subclass of linear control theory
systems, linear time invariant systems (LTI), amenable to the frequency do-
main mathematical techniques, which include tools such as the Laplace or the
Z transform, and can always be expressed in a more compact way thank to
the notion of transfer function Definition 20 and block diagram representation
subsection 3.2.3.

The results presented and definition presented on this chapter have been in-
spired mostly in [4, 9, 12].

21
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3.1 Preliminaires

3.1.1 Process

Definition 11 (Process). We define process as a continuous time physical sys-
tem to be controlled.

Example 3.1.1 (Process). Mathematical models that describe the swinging of
a clock pendulum (Figure 3.1) or the flow of water in a pipe are examples of
processes.

Choosing x1(t) as the angular position and x2(t) as the angular velocity of

Figure 3.1: Scheme view of a classical pendulum

the pendulum, the previous scheme can be mathematically modelled with a state-
space structure as follows

dx1(t)

dt
= x2(t)

dx2(t)

dt
= −(g/l) · sin(x1(t))− (b/(m ∗ l2)) · x2(t)

y(t) = x1(t)

3.1.2 Controller. Feedback vs Feedforward.

Definition 12 (Controller). Is the component of a control system that observes
some of the input variables and adjusts some other output variables to achieve
a desired operation. In control theory we have two main types of controllers:
feedback and feedforward.

Example 3.1.2. The heating system of many houses have a thermostat which
can be consider the controller of a control heating system. The thermostat will
notice when the temperature (output) in the house is too cold, and then it will
turn on the heater (controlled output) so the that the temperature reaches back
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Figure 3.2: Block diagram with a feedback controller where, Y is the controlled
variable , U the manipulated variable, D the disturbance (D) and Ysp the desire
set point so that once the controlled variable Y is measured the information
is sent to the controller which compares the obtained measured variable value
with the desired set point ((Ysp)

its desired value. Once the heater has been on for a while the thermostat will
sense when the temperature is too hot, and shut off the heater.

As we mentioned before, in this example, the controller of our system is clearly
represented by the thermostat, which indicates the heater how to behave. The
heater is the processor that warms the air inside the house to the desired temper-
ature, the air temperature reading mechanism inside the house is the feedback.
And finally, the house is the environment in which the heating system operates.

Definition 13 (Feedback controller). This controllers can only act on the result
of a disturbance, once the system is affected by it, so that the controlled variable
is ”fed back” into the controller. Its main drawback comes from the fact that
the controlled variable might not be at the desired set point so that the feedback
controller will not react until there has been a significant deviation from the
reference.

Example 3.1.3. Suppose the thermostat of the heating system of a house is a
example feedback controller. If the door of the house is opened on a cold day, the
house cools down. This way, after the temperature fells below the desired tem-
perature (reference), the heater will then be turned on, but there would inevitably
be a period when the house was colder than desired.

Definition 14 (Feedforward controller). With these controllers, the distur-
bances are measured and accounted before they can affect the system fighting
the slowness of the feedback controllers. However, in order to achieve this the
effect of the disturbances on the system must be perfectly predicted, and there
must not be any surprise disturbances.

Example 3.1.4. Consider the thermostat of the heating system of a house to be
a feedback controller. If the door of the house is is opened, with this controller
the heater will be automatically turned on before the house can get too cold.
Nevertheless, if a window is opened without being measured, the thermostat,
might miss it letting the house cool down.
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Figure 3.3: This time the disturbance D is measured instead of the controlled
variable Y. The meausred information is again sent to the controller which
manipulated U to prevent the effect which may be caused by the disturbance
during the process.

Frequenctly, the feedforward controller takes care of the major disturbance,
and the feedback controller takes care of everything else that might cause the
process variable to deviate from its set point.

3.1.3 Open Loop vs. Closed loop systems

Definition 15 (Open loop system). Open loop systems are control systems in
which the output does not have an effect on the control signal. Thus, in this type
of control systems there is no reason to apply feedback or measure the output to
compare it with the input or any other reference signal of the system.

This leaves us with a situation where, for every reference signal there is a fixed
operation. Therefore, the accuracy of the system depends only on how we cali-
brate the relationship established between the input and output of the system in
order to obtain a desired output.

Definition 16 (Closed loop systems). In this type of control systems the output
has a direct effect over the control of the system. This implies that the closed
loop systems are feedback control systems.

As we mentioned before, we refer to the difference between the input and output
signal as the error signal of the system, in closed loop systems we will make use
of feedback in order to reduce the error of the system.

3.1.3.1 Feedback control system

Definition 17 (Feedback system). We consider as a feedback system to the
systems that compare the output of any variable of the system with its input or
any other variable, so to establish the most adequate control design.

Definition 18 (Gain). We define the gain of a control system as the value that
relates magnitude of the input to the magnitude of the output signal at steady
state, i.e. the ratio of the change in input to the change in output.
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Figure 3.4: General Open Loop vs Closed Loop Systems

Figure 3.5: Example of a textile dryer as an open loop system

Definition 19 (Feedback Control). Feedback control is an operation that, in
presence of disturbances, tries to reduce the difference between the output and
input of the system under the premises of this difference (or error signal). We
can distinguish two different feedback control systems:

• Positive feedback control systems: systems where the set point and output
values are added together by the controller. The effect of this type of feedback
control is to increase the systems gain, so that the overall gain is greater than
the gain without feedback.

• Negative feedback control system: system where the set point and output
values are subtracted from each other. The effect of negative feedback control is
to “reduce” the overall gain.
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The majority of feedback control systems are negative, reducing the effects
of the gain. This is because negative feedback control produces stable circuit
responses, improves stability and increases the operating bandwidth Definition
44 of a given system.

Recall that we use feedback control when we consider only unpredictable distur-
bances; Predictable disturbances can be included inside the system, in absence
of control.

Figure 3.6: Feedback control

3.2 Transfer Function and Block diagrams

We commonly represent dynamical systems in the form of time domain systems
of ordinary differential equations. However, there is another way to represent
LTI systems using the Laplace transform Definition 5.

Transfer functions describe how an incoming input signal is modified when go-
ing through a system, they can be used to describe the response of the system
to an arbitrary input function. In this section we describe how to convert a
system represented in state space form into a transfer function and vice versa,
and introduce some techniques for using block diagrams to create composite
transfer functions of multiple systems.

3.2.1 Transfer Function

Definition 20 (Transfer Function). The transfer function of a linear system
is the Laplace transform of the impulse response with initial conditions equal to
zero.

Consider a system with input u(t), output y(t) and impulse response g(t),
then we define the transfer function G(s) as

G(s) = L [g(t)] (3.1)
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This transfer function is related to the Laplace transform of the input (u(t)) U(s)
and the Laplace transform of the output (y(t)) Y (s) of the system through the
following equality

G(s) =
Y (s)

U(s)
(3.2)

and all the inital conditions equal to zero.

Consider now the input- output equations of a general linear time invariant
system of order n and constant coefficients

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) =

bm
dmu(t)

dtm
+ bm−1

dm−1y(t)

dtm−1
+ · · ·+ b1

du(t)

dt
+ b0u(t)

(3.3)

In order to obtain the transfer function of our system we will take the Laplace
transform on both sides of the equation and impose that our initial conditions
are zero:

(sn + an−1s
n−1 + · · ·+ a1s+ a0)Y (s) =

(bmsm + bm−1s
m−1 + · · ·+ b1s+ b0)U(s)

(3.4)

Thus, from this expression, the definition of the transfer function comes straight-
forward,

G(s) =
Y (s)

U(s)
=

bmsm + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0)
(3.5)

3.2.1.1 Laplace Transfer Function from State Space equations

Consider the LTI system in its state space form Equation 2.2.1

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

taking the Laplace transform of this system we obtain

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

and since the general form of the transfer function is Y(s)/U(s), we can rewrite
the previous equations so that

sX(s) = AX(s) +BU(s)

sX(s)−AX(s) = BU(s)

(sI −A)X(s) = BU(s)
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X(s) = (sI −A)−1BU(s)

Substituting this in the output equation

Y (s) = CX(s) +DU(s)

Y (s) = C(sI −A)−1BU(s) +DU(s)

G(s) =
Y (s)

U(s)
= C(sI −A)−1B +D

Recall the similarities between the expression sI - A with the equation used
to find the eigenvalues of a matrix, det(λI−A). This illustrates why the charac-
teristic equation of a system described by the state matrix eigenvalue structure
also describes the pole structure in the Laplace domain.

3.2.1.2 Properties of the transfer function

1. The transfer function is only defined for linear and time invariant systems.
it is not defined for non linear systems.

2. The transfer function between the input and output variables of a system is
defined by the Laplace transform of the impulse response. Thus, the transfer
function relates the Laplace transform of the output variables and the Laplace
transform of the input variables.

3. To obtain the transfer function of a system we need its initial conditions
to be zero.

4. The transfer function is independent of the input of the system.

5. The transfer function of a continuous system is defined as a function of
s, with s complex variable. The transfer function of discrete time difference
equation systems (subsection 3.2.4) is defined as a function of z where the Z
transform is used, and which we will present later in this chapter.

Definition 21 (Proper and Strictly Proper Transfer Function). We say that
the transfer function of the Equation 3.5 is strictly proper if deg(U(s)) = n >
m = deg(Y (s)). If n = m the we say that the transfer function is proper.

Example 3.2.1 (Strictly Proper, Proper and Non Proper Transfer functions).
Here we present one example of a strictly proper, a proper and a non proper
transfer function:

1. Strcitly proper:

G(s) =
Y (s)

U(s)
=

b1s
3 + b2s

2 + b3s+ b4
s4 + a1s3 + a2s2 + a3s+ a4
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2. Proper:

G(s) =
Y (s)

U(s)
=

s4 + b1s
3 + b2s

2 + b3s+ b4
s4 + a1s3 + a2s2 + a3s+ a4

3. Non proper:

G(s) =
Y (s)

U(s)
=

s4 + b1s
3 + b2s

2 + b3s+ b4
a1s3 + a2s2 + a3s+ a4

Definition 22 (characteristic equation). Consider again our reference linear
system Equation 3.3 with its reference transfer function Equation 3.5. We define
the characteristic equation of our transfer function as

U(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0

3.2.2 Transfer Function of Multivariable systems (MIMO)

Generally, if a linear system has p inputs and q outputs we can define the
transfer function that relates the j-th input with the i-th output as

Gij(s) =
Yi(s)

Rj(s)
(3.6)

with Rk(s) = 0, k = 1, 2, · · · , p, k ̸= j.

Hence, when all the p entries are considered at a time, the i-th output transfer
function can be written as

Yi(s) = Gi1(s)R1(s) +Gi2(s)R2(s) + · · ·+Gip(s)Rp(s) (3.7)

we can express the latter in matrix form as

Y (s) = G(s)R(s) (3.8)

where

Y (s) =


Y1(s)
Y2(s)
...

Yq(s)

 ; R(s) =


R1(s)
R2(s)

...
Rp(s)

 ;


G11(s) G12(s) · · · G1p(s)
G21(s) G22(s) · · · G1p(s)

...
...

. . .
...

Gq1(s) Gq2(s) · · · Gqp(s)

 (3.9)

3.2.3 Block Diagrams

Block diagrams are often used by control engineers to model every kind of sys-
tems. A block diagram, together with transfer function, can describe how the
system components are connected without further mathematical details. Con-
sequently, if we know the mathematical and functional relationship of each of
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Figure 3.7: Block diagram of a SISO (i.e. single input single output) system.

the elements of the system, the block diagram serves as a tool that enable us to
obtain the analytical solution of the system and to compute it.

In Figure 3.7 it is shown the block diagram of a linear feedback control sys-
tem, whose main components are:

r(t), R(s) = command or reference input.
y(t), Y (s) = output or controlled variable.
b(t), B(s) = feedback signal
u(t), U(s) = acting signal which is the error signal e(t), E(s) when H(s) = 1
H(s) = feedback transfer function
G(s)H(s) = L(s) loop transfer function
G(s) = transfer function of the direct path
M(s) = Y (s)/R(s) = transfer function of the closed loop or the system.

We can express the transfer function of the closed loop M(s) using G(s), H(s)
such that

Y (s) = G(s)U(s) (3.10)

and
B(s) = H(s)Y (s) (3.11)

Furthermore, we can define the acting signal as

U(s) = R(s)−B(s) (3.12)

substituting Equation 3.12 on Equation 3.10 we get

Y (s) = G(s)R(s)−G(s)B(s) (3.13)

and substituting Equation 3.11 on Equation 3.13 and solving for Y (s)/R(s) we
get the transfer function

M(s) =
Y (s)

R(s)
=

G(s)

1 +G(s)H(s)
(3.14)
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Recall that in general a control system can contain more than a closed loop.

Let us now address the multivariable case. We will designate input and output
signals individually.

From Figure 3.8 we can express the relationships of the different components
of the system as

Y (s) = G(s)U(s)
U(s) = R(s)−B(s)
B(s) = H(s)Y (s)

(3.15)

where Y (s) is the output vector with dimensions q × 1; U(s), R(s), B(s) are
vectors of with dimension p× 1, and G(s), H(s) are the matrix of two transfer
functions with dimension q × p and p× q respectively.

Substituting the third equation of Equation 3.15 on the second one and then
the second one to the first one we obtain

Y (s) = G(s)R(s)−G(s)H(s)Y (s) (3.16)

solving Y (s) from Equation 3.16 we get

Y (s) = [I +G(s)H(s)]
−1

G(s)R(s) (3.17)

and considering that the determinant of I + G(s)H(s) is not zero, the matrix
of the closed loop can be defined as

M(s) = [I +G(s)H(s)]
−1

G(s) (3.18)

accordingly, we can rewrite Equation 3.17 as

Y (s) = M(s)R(s) (3.19)

Example 3.2.2. In figure Figure 3.9 it is illustrated a reduction of a multiple
loop system represented as block diagram subsection 3.2.3 and the derivation of
its transfer function.

3.2.4 Transfer Function on Discrete dynamical systems

When we consider a discrete- time dynamical system, inputs and outputs can
be represented as samples of sequences separated by a sample period h. Assume
the continuous time data r(t) is sampled through an ideal sampler r∗(t) with a
sample period T . The output of this ideal sampler is basically a impulse train
(i.e. train of action potentials spaced over time, with time varying intervals
between them) with the values of r(t) at a sample period T driven by the im-
pulses. Intuitively this ideal sampler cannot be found in the physical world,
we just use it as an assumption to represent mathematically the time discrete
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Figure 3.8: Block diagram of a MIMO (i.e. multiple input multiple output)
system
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Figure 3.9: Successive reduction of a multiple loop Block diagram
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Figure 3.10: Block diagram of a discrete- time system

signal. In order to reconstruct the missing signal between the sampling period
points we will use a hold operator. This operator determines the process input
until a new number from the sequence (sample) is delivered, making the input
continuous.

As a reference example of hold operator we will consider the simplest one, the
zero order hold, ZOH, which is also the one applied in [1] for its simplicity given
the results of more complex methods do not make a big difference when approx-
imating the coupling variables.

The ZOH operator is defines the value of the signal at t = kT to be constant
until the next impulse arrives at t = (k + 1)T .

To obtain the transfer function of the system in Figure 3.10 we use the Fourier
representation of the signal r∗(t).

r∗(t) = r(t)δT (t) (3.20)

where δh(t) is the train of unitary impulses

δT (t) =

∞∑
k=−∞

δ(kT ) (3.21)

Moreover, δh(t) is a periodic function of period h that can be described as the
Fourier serie

δT (t) =

∞∑
n=−∞

Cne
−j2πnt/T (3.22)

where Cn is the Fourier coefficient

Cn =
1

T

∫ T

0

δT (t)e
−jnωstdt (3.23)

and ωs = 2π/T is the sampling frequency.

Since the unitary impulse is defined as a pulse with width δ and height 1/δ
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Figure 3.11: Block diagram of a time discrete system with a ficticious sampler

when δ → 0, Cn can be written as

Cn = lim
δ→0

1

Tδ

∫ δ

0

e−jnωstdt = lim
δ→0

1− e−jnωst

jnωsTδ
=

1

T
(3.24)

Substituting Equation 3.24 in Equation 3.20 we get

r∗(t) =
1

T

∞∑
k=−∞

r(t)e−jnωst (3.25)

and taking the Laplace transform of this last expression and using its translation
property (Equation 2.16) we get

R∗(s) =
1

T

∞∑
k=−∞

R(s− jnωs) =
1

T

∞∑
n=−∞

R(s+ jnωs) (3.26)

where equation Equation 3.26 represent the Laplace transform of the sample
signal r∗(t). We can rewrite this equation as

R∗(s) =

∞∑
k=0

r(kT )e−kTs (3.27)

and since the limits of the sum of R∗(s) go from −∞ to ∞, replacing s with
s+ jnωs in Equation 3.26 we get

R∗(s+ jmωs) = R∗(s) (3.28)

3.2.4.1 Pulse Transfer Function

The Laplace transform of the output y(t) of the system can be described as

Y (s) = G(s)R∗(s) (3.29)

We denote the sample form of y(t) by y∗(t). Applying Equation 3.28 to Equa-
tion 3.29 and the translation property of the Laplace transform (Equation 2.16)
we get

Y ∗(s) =
1

T

∞∑
n=−∞

G(s+ jnωs) +R∗(s+ jnωs) (3.30)
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Figure 3.12: Block diagram of a time discrete closed loop system

using the equality Equation 3.26 we can rewrite Equation 3.30 as

Y ∗(s) = R∗(s)
1

T

∞∑
n=−∞

G(s+ jnωs) = R∗(s)G∗(s) (3.31)

where G∗(s) is defined in the same way as R∗(s) does in Equation 3.26 and is
called Pulse Transfer Function of G(s).

Now that all functions in Equation 3.31 are sampled, where G∗(s), R∗(s), Y ∗(s)
are of the form Equation 3.27, we take the Z transform Equation 2.26 on both
sides of their equations using that z = eTs obtaining

Y (z) = G(z)R(z) (3.32)

where G(z) is defined as the Z transfer function Equation 2.26 of G(s).

Example 3.2.3 (Closed loop Transfer Function of a discrete time systems).
Consider the Figure 3.14, where the output of the sampler is the input of the
system, so that the system has inputs R(s) and E∗(s), and outputs E(s), Y (s)
we can write the cause effect equations of the system as follows

E(s) = R(s)−G(s)H(s)E∗(s)

Y (s) = G(s)E∗(s)
(3.33)

Taking the pulse transfer function of the first member in Equation 3.33 and
solving for E∗(s) we get

E∗(s) =
R∗(s)

1 + [G(s)H(s)]
∗ (3.34)

now, if we substitute Equation 3.34 in the second memeber of Equation 3.33 we
get

Y (s) =
G(s)R∗(s)

1 + [G(s)H(s)]
∗ (3.35)
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taking the pulse transform in both sides of the equation Equation 3.35 and using
Equation 3.28 we get the close loop transfer function

Y ∗(s)

R∗(s)
=

G∗(s)

1 + [G(s)H(s)]
∗

Finally taking the Z transform on both sides of the equation we obtain

Y (z)

R(z)
=

G(z)

1 +GH(z)
(3.36)

3.2.4.2 Z Transfer Function of ZOH

The transfer function of the zero order hold operator is defined as

Gzoh(s) = L [gzoh(t)] =
1− e−Ts

s
(3.37)

Hence, the combination of the transfer function of the hold operator and the
process becomes

G(z) = L [Gzoh(s)GP (s)] = L̃
(
1− e−Ts

s
GP (s)

)
(3.38)

now, applying the time delay property (Equation 2.3.1.1) of the Z transform to
Equation 3.38 we obtain

G(z) = (1− z−1)L̃
(
(GP (s)

s

)
(3.39)

which corresponds to the Z Transform of the zero order hold operator.

Example 3.2.4 (ZOH Transfer Function combined with the Transfer Function
of a system). Consider the system in Figure 3.10 with transfer function

Gp(s) =
1

s(s+ 0.5)
(3.40)

with sample period equal to 1. Applying Equation 3.39 we obtain the Z transform
of the system

G(z) = (1− z−1)L̃
(

1

s2(s+ 0.5)

)
(1− z−1)L̃

(
2

s2
− 4

s
+

4

s+ 0.5

)
=

0.426z + 0.361

z2 − 1.606z + 0.606

(3.41)



38 CHAPTER 3. CONTROL THEORY PREREQUISITES

3.2.5 State matrix and transition state equation of a con-
tinuous system

Consider the state equation

dx(t)

dt
= Ax(t) +Bu(t) (3.42)

Consider now the initial state vector x(t0) and the input vector u(t) for
t ≥ t0. We define the first term of Equation 3.42 as the homogeneous part of
the state equation.

Definition 23. We define ϕ(t), the transition state matrix with dimensions
n× n of the state equation Equation 3.42. ϕ(t) satisfies

dϕ(t)

dt
= Aϕ(t) (3.43)

In particular, given the initial state x(0) at t = 0, we define ϕ(t) as

x(t) = ϕ(t)x(0) (3.44)

the solution of the homogeneous state equation at t ≥ 0.

One way to determine ϕ(t) is to take the Laplace transform Definition 5 on
both sides of the equation dx(t)/dt = Ax(t) +Bu(t) Equation 3.42

sX(s)− x(0) = AX(s) (3.45)

By solving this equation for X we obtain

X(s) = (sI-A)−1x(0) (3.46)

where we need (sI-A) not to be singular (i.e. its determinant has to be different
from 0). Now taking the inverse Laplace transform in both parts of the equation
we get

x(t) = L−1
[
(sI-A)−1

]
x(0) t ≥ 0 (3.47)

Comparing Equation 3.44 with Equation 3.47 the transition state matrix
can be defined as

ϕ(t) = L−1
[
(sI-A)−1

]
(3.48)

Now consider the whole state equation Equation 3.42, taking the Laplace
transform on both sides we obtain

sX(s)− x(0) = AX(s) +BU(s) (3.49)

where x(0) is the initial state vector at t = 0, solving Equation 3.49 for X(s)

X(s) = (sI-A)−1x(0) + (sI-A)−1 [BU(s)] (3.50)
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Thus, the transition state equation of Equation 3.42 is given taking the inverse
Laplace transfer function on both sides of Equation 3.50

x(t) = L−1
[
(sI-A)−1

]
x(0) + L−1

[
(sI-A)−1 [BU(s)]

]
= ϕ(t)x(0) +

∫ 1

0

ϕ(t− τ)BU(τ)dτ t ≥ 0
(3.51)

3.2.6 State Matrix and transition state equation of a dis-
crete system

Consider the discrete time control system in Figure 3.11. The output signal is
a continuous time signal that corresponds to the output of the sampler device,
f(t), a sequence of steps that can be described as

f(t) = f(kT ); kT ≤ t < (k + 1)T , k = 0, 1, 2... (3.52)

Consider the process G with the equations

dx(t)

dt
= Ax(t) +Bf(t)

y(t) = Cx(t) +Df(t)
(3.53)

where x(t) is a n × n state vector, f(t) and y(t) are the scalar input and
output of the system respectively, and A, B, C, D the coefficient matrices.

Definition 24 (State transition equation). Given the system Equation 3.53 we
define the state transition equation as

x(t) = ϕ(t− t0)x(t0) +

∫ t

t0

ϕ(t− τ)Bf(τ)dτ t ≥ t0 (3.54)

Particularly, if our interest is restricted to the response of the sample instants
we can apply t = [(k + 1)T ] and t0 = kT so that Equation 3.54 turns to

x [(k + 1)T ] = ϕ(T )x(kT ) +

∫ (k+1)T

kT

ϕ [(k + 1)T − τ ]Bf(τ)dτ (3.55)

Since by the definition of f(t) given in Equation 3.52 f(t) is partially con-
stant, from the input f(τ) in Equation 3.55 we can take the sign out of the
integral so that

x [(k + 1)T ] = ϕ(T )x(kT ) +

∫ (k+1)T

kT

ϕ [(k + 1)T − τ ]Bdτf(kT ) (3.56)

or

x [(k + 1)T ] = ϕ(T )x(kT ) + θ(T )f(kT ) (3.57)
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where

θ(h) =

∫ (k+1)T

kT

ϕ [(k + 1)T − τ ]Bdτ =

∫ T

0

ϕ(T − τ)Bdτ (3.58)

Moreover, with nh (n ∈ Z+) considered the initial time, the transition state
equation can be rewritten as

x [(n+N)T ] = ϕN (T )x(nT ) +

N−1∑
i=0

ϕN−i−1(h)θ(T )f [(n+ i)T ] (3.59)

where N ∈ Z+.

On the other hand, the output of the system on the sample instants is
obtained substituing t = nh and Equation 3.57 on Equation 3.53

y(nT ) = Cx(nh) +Df(nT )

= Cϕ(nh)x(0) +C

n−1∑
i=0

ϕ [(n− i− 1)T ] θ(T )f(iT ) +Df(nh)
(3.60)

Definition 25 (Equations of system described only with discrete signals).
When a linear system has only discrete signals, its dynamic can be described
with the equations

x [(k + 1)T ] = Ax(kT ) +Br(kT )

y(kT ) = Cx(kT ) +Dr(kT )
(3.61)

We can also find a solution for these discrete state equations making use of
the Z transform.

Consider

x [(k + 1)T ] = Ax(kT ) +Br(kT ) (3.62)

taking the Z transform on both sides of the equation we get

zX(z)− zx(0) = AX(z) +BR(z) (3.63)

solving for X(z)

X(z) = (zI-A)−1zx(0) + (zI-A)−1BR(z) (3.64)

finally, taking the inverse z transform in both sides of the previous equation we
get

x(nh) = L−1
[
(zI-A)−1z

]
x(0) + L−1

[
(zI-A)−1BRz

]
(3.65)
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3.2.7 Transfer Function and characteristic equation of a
discrete system

Once our discrete system is modelled with Equation 3.61 and the initial state
x(0) is established as zero so that Equation 3.64 is turned into

X(z) = (zI-A)−1BR(z) (3.66)

and substituting this previous equation in the second equation of Equation 3.61we
get

Y(z) =
[
C(zI-A)−1B+D

]
R(z) = G(z)R(z) (3.67)

from where we can define the transfer function as

G(z) = C(zI−A)−1B+D (3.68)

and we can define the characteristic equation (see Definition 22) as

|zI−A| = 0 (3.69)

Definition 26 (LTI discrete system). We can describe a general, linear, time
invariant (LTI), discrete system with the difference equation of constant coeffi-
cients

y [(k + n)h] + an−1y [(k + n− 1)T ] + an−2y [(k + n− 2)T ]

+...+ a1y [(k + 1)T ] + a0y(kT )

= bmr [(k +m)T ] + bm−1r [(k +m− 1)T ]

+...+ b1r [(k + 1)T ] + b0r(kT )

(3.70)

with n ≥ m.

Taking the Z transform in both sides of Equation 26 and establishing zero
initial conditions, we can write the transfer function as

Y (z)

R(z)
=

bmzm + bm−1z
m−1 + ...+ b1z + b0

zn + an−1zn−1 + ...+ a1z + a0
(3.71)

where the characteristic equation is obtained from the denominator

zn + an−1z
n−1 + ...+ a1z + a0 = 0 (3.72)

3.3 Controlability and Observability of a Sys-
tem

Now we will characterize a control system analysing its controllability and ob-
servability, two crucial properties of the behaviour of control system proposed
by Kalman.
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Figure 3.13: Control system with feedback and control system with feedback
and an observer

To understand the motivation under its investigation and the key conditions
that characterize whether a control system is conrollable let us look at the sys-
tems in Figure 3.13 where the process is described by the state equation

dx(t)

dt
= Ax(t) +Bu(t) (3.73)

and the close loop system of the figure arises from applying feedback to the
state variables through the feedback gain matrix K so that

u(t) = −Kx(t) + r(t) (3.74)

so that, the closed loop system can be described by

dx(t)

dt
= (A-BK)x(t) +Br(t) (3.75)

The objective of this design is to find a feedback matrix K thank to which the
eigenvalues of A-BK (or the closed loop system) have specific desired values.
The existence of solution assigning poles arbitrarily (i.e. the eigenvalues of the
transfer function of the closed loop system A-BK) through the feedback of the
states, is directly based on the controllability of the states of the system.

Thus, we can characterize the controllability of our system Equation 3.73 with
the following proposition:

Proposition 27. If the system represented in the Equation 3.73 is control-
lable, then it exists a feedback matrix that allows the eigenvalues of A-BK to
be assigned arbitrarily.
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Figure 3.14: Block diagram where we can find controllable (C), non- controllable
(NC), observable (O) and non- observable (NO) components
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Now that we have an intuitive notion of what controllability means in control
theory let us formally define this concept.

3.3.1 Controllability

Definition 28 (Completely Controllable system). We say that a process is
completely controllable if each state variable of the process can be controlled to
reach a certain objective in a finite amount of time, through some unrestricted
control of u(t).

Definition 29 (Controllability of the states). Consider the LTI system

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.76)

We say that the state x(t) is controllable at t = t0 if it exists a continuous input
through u(t) intervals that will move the state to some final state x(tf ) in a
finite time (tf − t0) ≥ 0.

If each state x(t0) of the system is controllable in a finite interval of time we
say that the system is completely controllable.

3.3.2 Observability

Essentially, a system is completely observable if each state variable of the system
has an effect on some of the outputs.

Definition 30 (Observability). Considering the LTI system in Equation 3.76
we say that the sate x(t0) is observable if for each input u(t) exists a time tf ≥ t0
such that all the knowledge we have from u(t), A, B, C, D, and the output y(t)
at t0 ≤ t ≤ tf , are enough to determine x(t0).
If every state of the system is observable for a certain tf finite, we say that the
system is completely observable

Example 3.3.1 (Illustrated controllability and observability with different block
diagrams). Controllability and observability is illustrated in a block diagram ba-
sis on Figure 3.14
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Figure 3.15: Stable and unstable regions in the s plane

3.4 Stability

Intuitively a system is said to be stable, if its output is under control. Otherwise,
it is said to be unstable. In control theory the most important form of stability
for systems and signals that take inputs is BIBO stability, where a stable system
produces a bounded output for a given bounded input.

3.4.1 BIBO stability for continuous systems

Consider u(t), y(t), g(t) the input, output and impulse response of a SISO LTI
system with initial conditions equal to 0; We say that a system under this
premises is a bounded- input/ bounded- output (BIBO) system if its output y(t)
is bounded for a bounded input u(t). The integral that relates u(t), y(t), g(t) is

y(t) =

∫ ∞

0

u(t− τ)g(τ)dτ (3.77)

taking the absolute value of this expression on both sides

|y(t)| =
∣∣∣∣∫ ∞

0

u(t− τ)g(τ)dτ

∣∣∣∣ (3.78)

or

|y(t)| ≤
∫ ∞

0

|u(t− τ)| |g(τ)|dτ (3.79)

where if u(t) is bounded
|u(t)| ≤ M (3.80)
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Figure 3.16: Stable and unstable regions in the z plane

and being M finite and positive definite we have that,

|y(t)| ≤ M

∫ ∞

0

|g(τ)|dτ (3.81)

thus, if y(t) is bounded or |y(t)| ≤ N < ∞ with N finite positive number, the
following condition needs to remain

M

∫ ∞

0

|g(τ)|dτ ≤ N < ∞ (3.82)

or for any finite positive Q ∫ ∞

0

|g(τ)|dτ ≤ Q < ∞ (3.83)

which means that the surface under the curve |g(τ)| has to be finite.

Let us now explain how the roots of the characteristic equation Definition
22 are related with BIBO stability. Firstly, let us define the transfer function
G(s) of a system in the Laplace domain as

G(s) = L [g(τ)] =

∫ ∞

0

g(t)e−stdt (3.84)

taking the absolute value of this expression

G(s) =

∣∣∣∣∫ ∞

0

g(t)e−stdt

∣∣∣∣ ≤ ∫ ∞

0

|g(t)|
∣∣e−st

∣∣ dt (3.85)
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since |e−st| = |e−σt| where σ is the real part of s, if it is the case that s adopts
a pole of G(s) then G(s) = ∞ so that

∞ ≤
∫ ∞

0

|g(t)|
∣∣e−st

∣∣dt (3.86)

and if one or more roots of the characteristic equation are in the half right plane
s or in the jω axis so that ω ≥ 0 then∣∣e−σt

∣∣ ≤ M = 1 (3.87)

so that Equation 3.86 turns into

∞ ≤
∫ ∞

0

M |g(t)|dt =
∫ ∞

0

|g(t)|dt (3.88)

which violets the BIBO stability requirements.

Proposition 31 (BIBO Stability). We say BIBO stability requirements are
fullfilled when the roots of the characteristic equation (i.e. the poles of G(s))
are not located in the half right plane or in the jω axis, i.e. all of them need to
be located on the left half plane s.

3.4.2 BIBO stability for discrete systems

Consider u(kh), y(kh), g(kh) the input, output and the impulse sequence of a
discrete time SISO LTI system, with zero initial conditions; we say that a system
under this premises is BIBO stable if its output sequence y(kh) is bounded for
a bounded input u(kh).

Property 32. If a discrete time system is BIBO stable it satisfies

∞∑
k=0

|g(kh)| < ∞ (3.89)

Proposition 33. BIBO stability for discrete time systems require that the roots
of the characteristic equation are located inside the unit circle |z| = 1

3.5 Sampling and Reconstruction

Our computers can deal with discrete- time signals, but they cannot directly
handle the continuous-time signals that are prevalent in the physical world. In
this section we present the interface between the continuous and discrete time
signals.

A discrete-time signal is constructed by sampling a continuous-time signal, and
a continuous-time signal is reconstructed by interpolating a discrete-time signal.
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3.5.1 Sampling

Before presenting the main results of this section, let us introduce a set of basic
definitions regarding the sampling process and the reconstruction of the signal
of our control system.

Definition 34 (Sampling process). We call sampling process to the conversion
of the output signal of a process into a finite number of numbers (signals).

Usually in signal theory an Analogue- Digital (A-D) converter is used to get
a finite precise digital number from an analog output depending on how many
bits or levels are used in the conversion.

Example 3.5.1 (Audio Sampling). When we are recording music we want to
capture audio covering the entire range of human hearing, i.e. 20–20000 Hz.
In this specific cases, audio wave- forms are typically sampled at 44.1 kHz, 48
kHz, 88.2 kHz, or 96 kHz. This approximately double-rate requirement is a
consequence of the Nyquist theorem (Sampling theorem 65). Indeed, sampling
rates higher than about 50 kHz to 60 kHz cannot supply more usable information
for human listeners.

Example 3.5.2. Another, more general, sampling process example will be func-
tions that vary with time. If we set a continuous function or signal f(t) to be
sampled, and assume the sampling is performed by measuring the value of the
continuous function every h seconds, where we say h is the sampling period, then
the sampled function is given by f(nT ) where n ∈ Z.

Definition 35 (Sampling Period). The time between two sampling instants is
called the sampling period. Thus, when periodic sampling is applied, the output
is measured and the control signal is applied at each k- th time unit.

Definition 36 (Sampling Frequency). We define the Sampling frequency as
ws = 2π/T where T is the sampling period or interval.

Example 3.5.3 (Sampling Frequency). Since the units of the sampling fre-
quency are samples per second or hertz, 48 kHz is equivalent to 48,000 samples
per second (1Hz = s−1).

Property 37. The sampling period is the inverse of the sampling frequency.

Example 3.5.4 (Sampling period). In signal theory the sampling period can
be seen specifically as the time difference between two consecutive samples in a
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Figure 3.17: Sampler for complex values signals

Sound. Consider a situation where the sampling frequency is 44100 Hz, then
the sampling period is 1/44100 = 2.2675736961451248e−5 seconds. Therefore,
the samples are spaced approximately 23 microseconds apart.

Example 3.5.5 (Time dependance). Programs that solve problems over time
need to use data that are time dependent, i.e., information that changes with
time. E.g yt representing the temperature of the day t with t = 0, 1, 2...; yt
representing piece of a stock at a day t; or yit representing weight ratio i at a
day t.

Definition 38 (Sampler). A sampler is a device that converts continuous- time
signals into a sequence of numbers.

Example 3.5.6 (Sampler). A theoretical ideal sampler would produce samples
which are equivalent to the instant value of the continuous signal at desired
points.

3.6 Frequency Domain

We know from previous sections that the solution of a control system in the time
domain is frequently harder to determine analytically, specially for systems with
high order. On the other hand, in the frequency domain we can use graphical
methods that are not limited to low order systems. Furthermore, the frequency
domain is also more convenient when measuring the sensibility of the noise of a
system or when studying the variation of parameters.

To start with, we develop the idea of transfer function in the frequency do-
main.

Definition 39 (Input and output of a system with sinusoidal time). We define
the input of a linear system with sinusoidal time, amplitude R and frequency ω0

r(t) = R · sen(ω0t) (3.90)

The output in a stable state y(t) of the system will also be sinusoidal with fre-
quency ω0 but possibly with different amplitude and phase, so that

y(t) = Y · sen(ω0t+ ϕ) (3.91)

where Y is the sinusoidal wave amplitude and ϕ is the phase shift.
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Consider now the transfer function M(s) of the SISO linear system Figure 3.7,

Y (s) = M(s)R(s)

If we are in a permanent sinusoidal state, we replace s for ȷω so that

Y (jω) = M(jω)R(jω)

We can also write Y (jω) = |Y (jω)|∠Y (jω) with analogous definitions for
M(jω) and R(jω). From this definitions and the definition of the transfer
function of. Figure 3.7, Y (s) = M(s)R(s), we can define both, the magnitude
relation of our system

|Y (jω)| = |M(jω)| |R(jω)|

and its phase relation

∠Y (jω) = ∠M(jω) + ∠R(jω)

Thus, for the input r(t) = R · sen(ω0t) and the output y(t) = Y · sen(ω0t + ϕ)
we define the sinusoidal amplitude of the output as Y = R |M(jω0)| and the
sinusoidal output phase of the output as ϕ = ∠M(jω0).

Therefore, once we know the transfer function M(s) of a linear control sys-
tem, its amplitude (|M(jω)|) and phase characterization (∠M(jω)) will describe
completely their steady state performance.

3.6.1 Frequency output of a closed loop system

Consider the transfer function of the closed loop system Figure 3.7

M(s) =
Y (s)

R(s)
=

G(s)

1 +G(s)H(s)
(3.92)

which in a permanent sinusoidal state i.e. s = jω turns into

M(jω) =
Y (jω)

R(jω)
=

G(jω)

1 +G(jω)H(jω)
(3.93)

we can express then the transfer function in a permanent sinusoidal state M(jω)
in terms of its magnitude and phase characterization, so that

M(jω) = |M(jω)|∠M(jω) (3.94)

where the magnitude of M(jω) is defined as

|M(jω)| =
∣∣∣∣ G(jω)

1 +G(jω)h(jω)

∣∣∣∣ = |G(jω)|
1 +G(jω)H(jω)

(3.95)
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and the phase of M(jω)

∠M(jω) = ϕM (jω) = ∠G(jω)− ∠ [1 +G(jω)H(jω)] (3.96)

Now that we have introduced a new way of representing the transfer function
of a control system when they belong to a permanent sinusoidal state, we will
introduce the main concepts we will need to study in the frequency domain to
analyse the behaviour of our control system.

Definition 40 (Cutting frequency). It is a limit in the frequency response of a
system where the energy that flows through starts decreasing.

Next we briefly introduce a tool that will be used in our our main chapter,
chapter 6, to smooth the high frequency signals of our coupling error.

Definition 41 (Low- pass filter). A low pass filter only allows low frequency
signals from 0Hz to the cutting frequency point ωc to pass and blocks any higher
signal.

Figure 3.18: Characterization of a feedback control system

As it can be seen in the figure Figure 3.18 if the cutting frequency ωc is in-
finitely increased, the output Y (jω) could be identical to the input R(jω) for all
frequencies. Thus, a system could follow exactly a step input in the time domain.

From equation Equation 3.95 it can be observed that |M(jω)| can only be
one for all frequencies if G(jω) = ∞, which is impossible to attain in real life.
Indeed, it is undesirable since the majority of the control systems become un-
stable when their close loop is really high.

Furthermore, every control system are subject to noise during their operation,
thus, apart from responding to the input, the system has to be able to reject
and suppress the noise and the non-desirable signals.
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Property 42. Control systems with high frequency noise need to have a finite
cutting frequency ωc

Definition 43 (Resonance Frequency). The resonance frequency ωr is the fre-
quency where the peak of resonance occur (see Figure 3.18), i.e. Mr, where M
is the transfer function of the closed loop of a system.

Definition 44 (Bandwidth). The bandwidth (BW) is the frequency where the
magnitude of the closed loop system |M(jω)| does not drop under -3 decibels.

Proposition 45. In general the bandwidth of a control system, gives an indica-
tion of the properties of the transient response (i.e. the response of the control
system during the transient state, state where the output stays after applying an
input to the control system until reaching the steady state) in the time domain
and it is proportional to the speed of the response of the system to an input
signal.

Property 46. A big bandwidth corresponds to a short increase of time in the
response of the system given that the highest frequency pass more easily through
the system. On the contrary, if the bandwidth is small only low frequency signals
can pass the system and the answer will be slow.

Property 47. The bandwidth indicates the noise filtering and system robustness
characterization of the system.

Definition 48 (Robustness). Robustness represents a sensibility measure of a
system with variation of parameters. A system is consider to be robust if it is
not sensible to parameters variation.

We will now illustrate the the concepts of cutting frequency, resonance fre-
quency, and bandwidth studying how are they determined for a general control
system of second order in the frequency domain.
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Figure 3.19: Control system with non- unitary feedback

3.6.2 Mr, ωr and BW of a reference control system of sec-
ond order

Let us now consider the system represented in Figure 3.19, Mr the resonance
peak, ωr resonance frequency and the bandwidth BW are related in a unique
way with the damping factor ζ and with the natural frequency (undamped)
of the system. The transfer function of the closed loop of the second order
reference system Figure 3.19, Mr is

M(s) =
Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(3.97)

which in permanent sinusoidal state s = jω is

M(s) =
Y (jω)

R(jω)
=

ω2
n

(jω)2 + 2ζωn(jω) + ω2
n

=
1

1 + j2(ω/ωn)ζ − (ω/ωn)2

(3.98)

which can be simplified by doing u = ω/ωn as

M(ju) =
1

1 + j2uζ − u2
(3.99)

where the magnitude and phase of M(ju) are

|M(ju)| = 1

[(1− u2)2 + (2ζu)2]
1/2

∠M(ju) = ϕM (ju) = −tan−1 2ζu

1− u2

(3.100)

Reasonance frequency

We can compute the resonance frequency by taking the derivative of |M(ju)|
with respect to u and matching it to zero. From this we obtain

4u3 − 4u+ 8uζ2 = 4u(u2 − 1 + 2ζ2) = 0 (3.101)
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whose roots are ur = 0 and
ur =

√
1− 2ζ2 (3.102)

and where the solution of ur = 0 indicated that the slope of |M(ju)| against ω
is zero when ω = 0 and it is not a true maximum if ζ ≤ 0.707. This way the
equation Equation 3.102 gives the resonance response

ωr = ωn

√
1− 2ζ2 (3.103)

so that the last equation is meaningful only when 2ζ2 ≤ 1 or ζ ≤ 0.707, which
implies that for all values of ζ higher than 0.707 the resonanse response is ωr = 0
and Mr = 1.
Substituting Equation 3.102 on Equation 3.100 and simplifying we obtain

Mr =
1

2ζ
√

1− ζ2
(3.104)

where ζ ≤ 0.707.
From this latter formula it is important to notice that Mr is just a function

that depends on the relative damping ζ, and ωr is a function that depends both
on ζ and ωn

Bandwidth
According to the bandwidth definition we need to make |M(ju)| = 1/

√
2

|M(ju)| = 1

[(1− u2)2 + (2ζu)2]
1/2

= 1/
√
2 (3.105)

thus, [
(1− u2)2 + (2ζu)2

]1/2
=

√
2 (3.106)

which take us to
u2 = (1− 2ζ2)±

√
4ζ4 − 4ζ2 + 2 (3.107)

Were we need to pick the + sign so u can be a positive real number for all
possible ζ. Therefore, we can define the bandwidth of our reference system of
second order as

BW = ωn

[
(1− 2ζ2)±

√
4ζ4 − 4ζ2 + 2

]1/2
(3.108)

Addition of a pole to the transfer function of the trajectory

Property 49. Adding a pole to the transfer function of the trajectory makes
the closed loop system less stable, and decreases its bandwidth.

Example 3.6.1. Consider again the transfer function

G(s) =
ω2
n

s(s+ 2ζωn)
(3.109)

If we add a pole at s = −1/T the transfer function turns into

G(s) =
ω2
n

s(s+ 2ζωn)(1 + Ts)
(3.110)
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Addition of a zero to the transfer function of the trajectory

Property 50. The general effect of adding a zero to the transfer function of
the trajectory is to increase the closed loop system bandwidth.

Example 3.6.2. Consider the transfer function

G(s) =
ω2
n

s(s+ 2ζωn)
(3.111)

If we add a zero at s = −1/T the transfer function turns into

G(s) =
ω2
n(1 + Ts)

s(s+ 2ζωn)
(3.112)

so the transfer function of the closed loop is

M(s) =
ω2
n(1 + Ts)

s2 + (2ζωn + Tω2
n)s+ ω2

n

(3.113)

where the bandwidth is

BW = (−b+ 1/2
√
b2 + 4ω4

n)
1/2 (3.114)

3.7 Nyquist Stability Criteria

The Nyquist criteria is a method that determines the stability of a closed loop
system in the frequency domain.

Given the transfer functions G(s), H(s) in Figure 3.20, we would like to study
the stability of this general system applying the Nyquist stability criteria. For
this purpose, we need some concepts and results that conform this relevant
graphical technique.

From Figure 3.20, consider the open-loop transfer function G(s)H(s), which

Figure 3.20: Caption

maps s to the GH- plane.
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Definition 51 (Close path). Consider the path γ : [a, b] → C we say that γ is
a closed path if γ(a) = γ(b).

Definition 52 (Contour). A closed path on the s- plane is considered a contour.

Definition 53 (Plot). A closed path on the GH- plane is considered a plot.

Property 54. Given Figure 3.20, every countour on the s-plane can be mapped
to w = G(s)H(s), plot on the GH-plane.

Figure 3.21: Contour on the s-domain mapped to a plot on the GH- plane

Considering now, the zeros Definition 3 and poles Definition 2 of the trans-
fer function G(s)H(s) we have the following properties:

• If a clockwise contour does not encircle zeros nor poles, then the plot will
not encircle the origin.

• If a clockwise contour encircles a zero, then the plot will encircle the ori-
gin clockwise once.

• If a clockwise contour encircles a pole, then the plot will encircle the origin
counterclockwise once.

Theorem 55 (Cauchy’s Argument Principle). If a clockwise contour encircles
Z zeros and P poles, then the number of clockwise encirclements of the origin
N, is given by

N = Z − P → Z = N + P

Looking back at our closed loop system example Figure 3.20, we know that
its transfer function is of the form

G(s)

1 +G(s)H(s)
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Having analyzed the values of the poles and zeros of F (s) = 1 + G(s)H(s)
Cauchy’s argument principle stated that for a clockwise contour Γ on the s-
plane Z = N + P where

• Z is the number of zeros of F i.e., number of closed-loop poles in the con-
tour.

• P is the number of poles of F, i.e., number of open-loop poles in the con-
tour.

• N is the number of clockwise encirclements of the origin for the plot F (Γ)

• N is also the number of clockwise encirclements of −1 for the plot GoH(Γ)

Example 3.7.1. Consider the transfer function

G(s)H(s) =
s

s2 + 2s+ 2
=

s

(s+ 1 + j)(s+ 1− j)

with open loop poles (−1+j), (−1−j) then by definition of F (s) = 1+G(s)H(s)

F (s) =
s2 + 3s+ 2

s2 + 2s+ 2

F(s) has two zeros (closed loop poles) at s = −1, s = −2. Accordingly, it can
be seen in Figure 3.22 how the contour plot encircles 2 poles (crosses), Z = 1,
and 1 zero (circles), P = 2 so that (N = Z − P = −1). Thus, F plot encircles
the origin counterclockwise i.e. N = −1 by the Cauchy Argument Theorem 55.

Property 56. The stability of system is related to whether there exists any
closed-loop poles (or zeros of F(s)) on the Right Half Plane.

Definition 57 (Nyquist Contour Γn). The Nyquist contour consist on 3 seg-
ments:

1) The imaginary axis from 0 to +j∞.

2) A semicircle of infinite radius that encloses the entire right half s -plane.

3) The imaginary axis from −j∞ to 0.

Therefore, the Nyquist Contour is a ‘big’ semicircle that encloses the right half
plane, and the direction of the encirclement is clockwise.

Proposition 58 (Nyquist Stability criterion). By the Cauchy’s principle of
argument (Theorem 55)

Z = N + P
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Figure 3.22: Example Contour and Plot

where Z is the number of zeros of F i.e. the number of unstable closed-loop poles;
P is the number of poles of F i.e. the number of unstable open- loop poles, and
N is the number of clockwise encirclements of -1 on the GH- plane for the plot
GoH(Γ).

The Nyquist Stability criterion states that:

• The closed loop system Figure 3.20 is stable, (i.e. Z = 0) when N = −P .

• A feedback system is stable if and only if N = −P i.e. the number of the coun-
terclockwise encirclements of the point –1 by the Nyquist plot in the GH-plane
is equal to the number of the unstable poles of the open-loop transfer function.

The implications of the Nyquist stability criterion can be summarized with
the following properties:

Property 59. If the open-loop system is stable (P = 0), the closed-loop system
is stable if and only if the Nyquist plot does not encircle –1 point

Property 60. If the open-loop system has P unstable poles, the closed-loop
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Figure 3.23: The Nyquist Contour is a ‘big’ semicircle that encloses the RHP.
The direction of the encirclement is clockwise.

system is stable if and only if the Nyquist plot encircles –1 point P times coun-
terclockwise.

Property 61. If the Nyquist plot passes through -1, then the system has a
closed-loop pole on the imaginary axis (critically stable).

The procedure for determining the stability using the Nyquist stability cri-
teria can be divided in 4 steps

1) Draw the Nyquist plot

2) Determine the clockwise encirclement N.

3) From the open-loop transfer function, find the number of unstable open-
loop poles (P).

4) Stable if N = −P .

The procedure to sketch the Nyquist plot is easy with the use of a computer,
let us illustrate this with an example:

Example 3.7.2 (Nyquist plot). Consider

G(s)H(s) =
s

s2 + 2s+ 2

We will now divide the sketching according to the 3 segments the Nyquist con-
tour Definition 57 has:

Segment 1( The imaginary axis from 0 to +j∞): to plot this segment we
make use of Bode plot.
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We need to find 4 different points:
◦ ω = 0;
◦ phase = 180◦C (Real intersection);
◦ phase = 180N + 90◦C (Imaginary intersection);
◦ ω = ∞

Around this points we can also deduce the trend in a way such that if the phase
is decreasing, the plot goes clockwise and if the phase is increasing, the plot goes
counterclockwise. With this information we can already plot these points on the
GH- plane and draw a smooth line to connect them.

Segment 2 (A semicircle of infinite radius that encloses the entire right half
s- plane): to be able to plot segment 2 we need to take into consideration that
non-proper transfer functions are not physically realizable.
It is easy to see that our transfer function G(s) is proper since

lim
s→∞

s

s2 + 2s+ 2
= lim

s→∞

s

s2
= 0

Segment 3 (the imaginary axis from −j∞ to 0): To plot this segment we
just need to applied that G(s) = G(s), thus, segment 3 is the mirror reflection
of segment 1 around the real axis.

Let us know do a full study of the Nyquist stability criterion applied to two
different close loop systems systems.

Example 3.7.3 (Nyquist Stability Criterion I). Consider the system with open-
loop transfer function

G(s)H(s) =
1

(s+ 1)(0.1s+ 1)

We would like to determine the stability of the closed-loop system using the
Nyquist stability criterion:

1)To sketch the Nyquist Plot we follow the procedure explained at (see 3.7.2)
and make use of the Bode plot in Figure 3.7.3:

Segment 1:
◦ when ω → 0, G(jω)H(jω) → 1;
◦ No intersection on the real axis since the phase is never 180◦C for 0 < ω < ∞
◦ There is an intersection on the imaginary axis when ω =

√
10

◦ when ω → ∞, G(jω)H(jω) → 0
◦ since the phase is always decreasing the plot goes clockwise.

Segment 2: Since the system is strictly proper, Segment 2 is the origin.
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Figure 3.24: Bode Plot for G(s) = 1
(s+1)(0.1s+1)

Figure 3.25: Nyquist plot for G(s) = 1
(s+1)(0.1s+1)

Segment 3: Mirror reflection of segment 1.

• The Nyquist plot is sketched in Figure 3.25

2) Find N and P to analyse stability:
◦ The Nyquist plot does not encircle -1. Therefore N = 0
◦ The open-loop poles are -1, -10. Therefore, P = 0.
3), 4) Since Z = N + P = 0 ⇒ the closed-loop system is stable by the Nyquist
stability Criterion (Proposition 58).

Example 3.7.4 (Nyquist Stability Criterion II). Consider a feedback system
with open-loop transfer function

G(s)H(s) =
a(s− 1)

s2 + s+ 4
, a > 0
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Figure 3.26: Caption

We would like to determine the values of a such that the system is stable.

To analyse the stability we want to first fix a = 1.

1) For this value of a the Bode plot is illustrated in Figure 3.26

Segment 1:
◦ when ω → 0, G(jω)H(jω) → −0.25
◦ There is a real intersection when ω ≈ 2, the instersection is around 1.
◦ There is an intersection with the imaginary axis when 1 < ω < 2, the inter-
section is between 0.1j and j
◦when ω → ∞, G(jω)H(jω) → 0
◦ since the phase is always decreasing the plot goes clockwise.
Segment 2: The system is strictly proper, thus, Segment 2 is the origin.
Segment 3: Mirror reflection of segment 1.

2) Find the values for N and P:
◦ The poles are at (−0.5− 1.94j), (−0.5 + 1.94j). Therefore, P=0.
• If a < 4 then −0.25a < −1 so the Nyquist plot does not encircle −1. There-
fore, N = 0 ⇒ the closed loop system is stable for these values of a
• If a > 4 then −0.25a > −1 so the Nyquist plot encircles −1 once. Therefore,
N = 1 and Z = 1 ⇒ There is one unstable pole for the closed-loop system.

Property 62. The Nyquist stability criteria fosters the absolute stability of a
system and gives information about the relative stability of a stable system and
about the instability of an unstable system. It also gives us information about
how to improve the stability of the system.

Property 63. The Nyquist trace gives us information about the characteristics
of the frequency domain such that, Mr, ωr, the bandwidth, and more.
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Figure 3.27: Nyquist plot of Example II

3.8 Aliasing and the Sampling theorem

In the next subsection we are going to introduce and explain one of the main
potential problems that can appear during the sampling process, the aliasing
effect.

Definition 64 (Aliasing). The effect that causes distinct continuous signals to
become indistinguishable when digitally sampled is called aliasing. When this
phenomenon occurs the original signal cannot be reconstructed uniquely from
the digital signal.

One way of constituting a sample- data control system is to make first a
continuous time design and then approximate it into a discrete- time controller.
This way, given an enough small sampling period the system should behave as
the continuous system that was firstly provided.

In the following example it can be appreciated the great importance of choosing
a small enough time step in order to construct the sample- data control system.

Example 3.8.1 (Aliasing). If we consider two sinusodial signals

f1(t) = sin((1.8t− 1)π), f2(t) = sin(0.2πt)

with the sampling period h = 1 we observe that there is no way to distinguish
f1(t), f2(t) from the sampled values between the two signals, see Figure 3.28.
This is because it is impossible to determine if the sampled values are obtained
from a low or high frequency signal. As a consequence, the continuous- time
signal cannot be recovered from the sample- data signal, which implies the loss
of information during a sampling process.

We would like to point out that during the sample process not only infor-
mation can be lost due to aliasing, but also due to interferences between the
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sampled continuous-time signal and the sampling frequency. Indeed, the intro-
duction of new frequencies can also occur when sampling, causing fading and
beating in the sample- data. To avoid the aliasing effect Whittaker discovers

Figure 3.28: Example of aliasing

a result that he published in 1915 and Shannon will later cite when presenting
his Sampling theorem in 1949.

Theorem 65 (Sampling theorem; 1949 Shannon). If a signal contains no fre-
quencies above ωmax (maximum frequency of our signal), then the continuous-
time signal can be uniquely reconstructed from a periodically sampled sequence
where the sampling frequency is greater that 2ωmax.

Definition 66 (Nyquist Rate). In accordance with the Sampling theorem, the
Nyquist rate denotes the specific sampling rate (in Hz) that equals twice the
highest frequency or bandwidth of a given function or signal.
Therefore, with an equal or higher rate than the Nyquist rate we can say that
the resulting discrete- time sequence is free of aliasing effect.

Definition 67 (band-limited signal). Signal whose value is non-zero between
some −ωmax and ωmax Hz.

In order to understand the sampling theorem let us consider a band limited
signal x(t). We can represent the latter band-limited signal in the frequency
domain as shown in Figure 3.29 To avoid the aliasing effect we need a sampling

Figure 3.29: Band limited signal

frequency at which there is no loss of information, not even after sampling. For
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Figure 3.30: Signal when the sampling rate is higher, equal and lower than twice
its highest frequency

this purpose, we will apply the sampling theorem and the Nyquist rate so that
the sampling frequency picked should be two times the maximum frequency of
our signal.

Definition 68 (Fourier transform of the signal xs(t)).

Xs(w) =
1

Ts

∞∑
n=−∞

X(w − nwmax) (3.115)

where Ts is the sampling period and wmax = 2π
Ts

In Figure 3.30 it is illustrated the different cases we face depending on how
we pick the sampling frequencies we apply to our signal x(t), in terms of its
Fourier transform Equation 3.115: in the first figure we see our signal sampled
at a higher rate than the Nyquist rate, so that the signal is fully recovered, in
the second figure our signal is sampled at a rate that is equal to twice the highest
frequency, thus, according to the sampling theorem, is also fully recovered, on
the last figure the sampling rate is lower than twice the highest frequency of our
signal, therefore it can be seen how the signal is not fully recovered.
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Chapter 4

H∞ methods in Control
Theory

In chapter 3 we studied the notions of control theory and signal processing
required to understand the main chapter of this thesis, chapter 6. In this section
we will describe what the H∞ norm and the H∞ methods are in a control theory
background and its corresponding controllers. In chapter 6 we apply the H∞
synthesis method in co- simulation to reduce the coupling error.

4.0.1 H∞ norm

Definition 69 (H∞ norm). Let the transfer function of a stable linear system
be given by

G(s) = C(sI −A)−1B +D

where A, B, C, D are its state space matrices. The H∞ norm refers to the largest
singular value of the transfer function in the frequency domain on a permanent
sinosoidal state (s = jω)

∥G(s)∥∞ = sup
ω

σ(G(jω))

4.1 H∞ methods

We can find different methods for controller design such as PID (proportional–integral–derivative
controller [9, Pages 45-49]) or pole-placement controller design [9, Pages 52-57]),
in this thesis we are interested in LTI feedback optimization methods, in par-
ticular in H- infinity optimization.

H∞ methods are optimization methods that attain to synthesize controllers
that stabilize control systems. Indeed, the H∞ problem can be described math-
ematically as an optimization problem that aims to find a controller that solves
an optimization problem.

67
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The main advantages of H∞ techniques over classical control techniques rely
on the fact that they can be applicable to multivariate systems with cross- cou-
pling between channels, in a way that can be used to minimize the closed loop
impact of a perturbation. On the contrary, its most important disadvantage is
the need for a reasonably good model of the system to be controlled. Hence,
the optimal controller we get is only optimal for a specified cost function, but
it does not have to be the best in terms of other performance measures.

4.1.1 Representation of the feedback control system

Let us first introduce a general notation for linear systems that are controlled
and derive the equations of the final closed loop system.

Consider Figure 4.1, where G denotes the transfer function of our LTI sys-
tem with state vector x, and the input and output of the system is splitted in
two so that, u is the input vector with the disturbance signal, uc is the control
signal, y is the output vector with the measurement signal and Error is the
performance signal. The state representation of our system G is given by

Figure 4.1: Feedback control system with an H∞ controller

G :

 ẋ
Error

y

 =

A B1 B2

C1 D11 D12

C2 D21 D22

 x
u
uc

 (4.1)

where D22 = 0 so that our system is strictly proper from uc to y. If this is
not possible we should be able to find a controller K̃ where D22 = 0 and then
contruct a controller for the system Equation 4.1 such that

K = K̃(I +D22K̃)−1

The linear controller in Figure 4.1 is denoted with the letter K. K takes y as an
input and outputs the control signal uc. The state space representation of our
controller K is given by

K :

(
ẋK

u

)
=

(
KA KB

KC KD

)(
xK

y

)
(4.2)
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where xK is the state vector of the controller.

Now we can derive the expressions that characterize the closed loop system
represented in Figure 4.1. Denoting Gcl, the closed loop system, we can derive
its state- space representation combining Equation 4.1 and Equation 4.2

uc = KCxK +KDy = KCxK +KDC2x+KDD21u

ẋK = KA + xK +KBy = KAxK +KBC2x+KBD21u

ẋ = Ax+B1u+B2uc = (A+B2KDC2)x+B2KCxK + (B1 +B2KDD21)u

Error = C1x+D11u+D12uc = (C1+D12KDC2)x+D12KCxK+(D11+D12KDD21)u

from this equations we have

Gcl :

 ẋ
ẋK

z

 =

 A+B2KDC2 B2KC B1 +B2KDD21

KBC2 KA KBD21

C1 +D12KDC2 D12KC D11 +D12KDD21

 x
xK

u


(4.3)

where the closed loop system states are

(
x
xK

)
and we can partition the matrix

in Equation 4.3 as

Acl =

(
A+B2KDC2 B2KC

KBC2 KA

)
; Bcl =

(
B1 +B2KDD21

KBD21

)
Ccl =

(
C1 +D12KDC2 D12KC Dcl = D11 +D12KDD21

)
so that

Gcl :

(
ẋcl

error

)
=

(
Acl Bcl

Ccl Dcl

)(
xcl

u

)
(4.4)

From Equation 4.4 we can define the transfer function of Gcl in terms of
Acl, Bcl, Ccl, Dcl as

Gcl = Ccl(sI −Acl)
−1Bcl +Dcl

4.1.2 H∞ Optimization problem

The H infinity optimization problem in control theory is the task of minimizing
the H∞ norm of a stable linear system, in our case the closed loop system in
Figure 4.1, represented by the transfer function Gcl.

H∞ Problem

min γ

subjected to [
AT

clG+GAcl + CT
clCcl CT

clDcl +GBcl

BT
clG+DT

clCcl DT
clDcl − γI

]
≺ 0
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where Gcl(s) = Ccl(sI −Acl)
−1Bcl +Dcl < γ.

In order to solve this optimization problem we want to find out the controller
that minimizes the coupling error of the error plant of a concrete co- simulation
system.
To solve this problem one can use the Matlab control toolbox and the python
control library. Moreover, in order to understand briefly how this problem is
solved analytically It is recommended to read in [7, Chapter 2]



Chapter 5

Coupled systems and co-
simulation

This chapter and its respective sections follows the structure of [1, Chapter
2]. Co- simulation, along with the H∞ synthesis method is one of the core
concepts we are aiming to understand in this thesis. Here it is introduced a
broad background and characterization and classification of how to simulate
decoupled systems in a distributed way.

5.1 Coupled systems

In a co- simulated system, the different subsystems that form a coupled problem
are simulated in a distributed way. During the simulation, the subsystems are
solved in what is called a black box manner, i.e. the systems are seen in terms
of its inputs and outputs without any knowledge of how they work internally.

Some co- simulation schemes allow us to execute the integration of each subsys-
tem in parallel. With this scheme the resources needed for the computation are
distributed between the different cores of the same computer.

The numerical integration of the subsystems its coordinated so that the cou-
pling variables introduce information in a subsystem regarding its environment
(inputs) or take the information of a subsystem to share it with the rest of the
simulation elements (outputs). The exchange of information of these coupling
variables is done in a discrete manner, i.e. at a certain instants of communica-
tion that belong to what we refer to as the communication interval.

Definition 70 (Coupling problem). Refers to the problem that raises from the
innacuracy of the coupling variables when exchanged in a distributed manner.
For example, this can be the case when we have multiple time rates and the cou-
pling variables are not updated fast enough. As a consequence, the unavoidable

71
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Figure 5.1: Coupled dynamic system at different levels of coupling.

coupling error degrades the accuracy of the result and can even destabilise the
co- simulation.

Furthermore, since the coupling variables are transmitted by signals or en-
forced by control systems, the associated communication delay, measured noises
and control errors may degrade as well the accuracy and stability of the co- sim-
ulated system.

Definition 71 (coupling methods). Refers to the means by which the coupling
variables must be approximated.

5.2 Co-simulation

Co-simulation results convenient when simulating multi-domain problems. Some
of its multiple advantages include a better numerical efficiency that enables soft-
ware tolerance integration, and its implementation using multiprocessors and
distributed computer systems.

Definition 72 (Co-simulation). Co-simulation is the cooperation of simulation,
where the solution of a system of linear (or nonlinear) differential equations is
distributed.

However, it is not easy to find a general method that is adequate for all its
possible applications. Indeed, one of the main disadvantages of this technique
results from the exchange of information through the discrete temporal interface
that creates coupling and discretization errors. This errors might degrade the
accuracy of the integration and its stability.



5.3. CALCULATION SCHEMES 73

Figure 5.2: Co- simulation of 2 coupled subsystems with 3 different caculation
schemes

5.3 Calculation schemes

In co- simulation each subsystem is calculated by a local solver at a fixed or
variable micro- step δt. The coupling input- output communication occurs at
every macro- step ∆t and ∆t ≥ δt. Depending on the calculation scheme we
apply to our co- simulated environment we will be prioritizing stability, accu-
racy or computational efficiency. In the next section we classify the different
calculation schemes we could apply to out co- simulated system.

■ Parallel or Jacobi Scheme In this scheme each subsystem is calculated
simultaneously and the input during the communication interval is updated ac-
cording to previous values.

■ Sequential or Gauss Seidel scheme in this scheme coupled systems are
calculated in a specific sequence. Subsystems calculated first or a priori, update
the input by extrapolation, the subsystem calculated ’afterwards’, or a posteri-
ori in the sequence will then approximate the output of the first ones (i.e. its
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input) by interpolation.

■ Iterative scheme This scheme starts with one of the previous calculation
schemes (Parallel or Sequential scheme) and continues integrating the subsys-
tems by iterations. As a consequence, each subsystem can roll back to a previous
macro- step and the input can be interpolated by previous iterations. The itera-
tive process will terminate when we get a specific error tolerance or an iterative
time bound.

Generally, given the same size of ∆t it has been observed that with respect
to stability and accuracy the Iterative Scheme is the most accurate and sta-
ble, while the Parallel Scheme is the worst in these two categories. Neverthe-
less, with what concerns to computational efficiency, the Parallel Scheme is the
fastest and Iterative Scheme the slowest [5].

Furthermore, in terms of the difficulty of implementation the Parallel Scheme
results to be the easiest with commercial software, while advance features of
main- auxiliary, such as pyFMI [2] are required for the other schemes.

In order to have a good balance of all of these important categories a com-
bination of the calculation schemes has been proposed as the ideal choice. In
this thesis we focus our attention on the study of the parallel approach and how
to minimize its accuracy and stability error.

5.4 Off- line and Online co- simulation

Depending on how physical parts (i.e. sensors) are involved in the exchange of
information of our co- simulated system we can also classify co- simulation in:
Off- line and online co- simulation.

• Off-line co- simulation: in this type of co simulation models are calcu-
lated separately by domain specific solvers and coupled by exchange variables
at specific communicative instants tK , as it is shown in (Figure 5.3).

• Online co- simulation: in this type of co simulation models we usually
have physical parts in the loop where measured variables are exchanged to the
virtual models at the sensor sampling rate.

In both cases the system has the same integration problem.

Definition 73 (The integration problem). The main problem the integration
of a coupled co- simulated system has is caused by the exchange variables being
available at specified communicative instants or sampling time, but unknown at
local integration steps δt1, δt2.

Thus, we will need to make use of extrapolation methods that approximate
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Figure 5.3: The integration of 2 coupled systems under off- line co- simulation.

this variables when needed during the integration steps.

5.5 Coupling configurations

Depending on how the system is divided and coupled, every couple dynamical
system can have different configurations. In order to understand its main dif-
ferences let us illustrate these configurations on a dual mass- spring- damper
Figure 5.4 (linear oscillator with two degrees of freedom), where it is possible to
study the masses separately. In this example each subsystem with a mass can
be coupled by two different approaches: the applied- force approach or by the
algebraic constraint.

In order to study our specific system we can set the following inital condi-
tions: m1 = m2 = 1 kg, k1 = 10N/m, k2 = 1000N/m, kc = 100N/m,
d1 = d2 = dc = 0Ns/m, ẋ1,0 = 100m/s, ẋ2,0 = −100m/s taking the null
initial displacements so that the system starts from a resting point. With this
initial conditions set up we can obtain the following movement equations

Figure 5.4: Reference example: Dual mass spring damper system

m1ẍ1 = −kc(x1 − x2)− dc(ẋ1 − ẋ2)− k1x1 − d1ẋ1

m2ẍ2 = −kc(x2 − x1)− dc(ẋ2 − ẋ1)− k2x2 − d2ẋ2

(5.1)

with matrix representation(
m1 0
0 m2

)(
ẍ1

ẍ2

)
+

(
d1 + dc −dc
−dc dc + d2

)(
ẋ1

ẋ2

)
+

(
k1 + kc −kc
−kc kc + k2

)(
x1

x2

)
=

(
f1
f2

)
(5.2)
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or in a more compact way

MẌ +DẊ +KX = f (5.3)

where M is the mass matrix, Ẋ the velocity matrix, X the position vector, f
the vector of generalized forces, D the damping matrix and K the rigidity matrix.

In Equation 5.2 f1, f2 represent the applied forces for each corresponding mass,
for simplicity of our study we assume this forces are zero. We can obtain the ana-
lytical solution of the system transforming the second order differential equation
system Equation 5.5 into a first order differential equation. With this purpose,
let set the vectors

Z =


x1

x2

ẋ1

ẋ2

 ; Ż =


ẋ1

ẋ2

ẍ1

ẍ2

 (5.4)

from where we can obtain the first order differential equation

Ż = AZ (5.5)

where matrix A is obtained from Equation 5.2

A =


0 0 1 0
0 0 0 1

−(k1+kc)
m1

k1

m1

−(d1+dc)
m1

dc

m1
kc

m2

−(k2+kc)
m2

dc

m2

−(d2+dc)
m2

 (5.6)

and
Z(t) = eAt · Z0 (5.7)

is the solution of Equation 5.5 with Z0 a vector that contains the initial posi-
tions and velocities of the subsystems.

Now that we have integrated the analytical solution of the reference non- de-
coupled system, let’s compare its results with the results we obtain when we
decouple its masses with different coupling configurations.

5.5.1 Applied force

■ Force Displacement Coupling In this coupling configuration the system
has been separated in a way that the intermediate spring damper is embedded
in Subsystem 1, and subsystem 2 has a force input

Fc = kc(x1 − x2) + dc(·x1 − ·x2)
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Figure 5.5: Double mass spring damper coupled with a FD and a DD configu-
ration

We see in Figure 5.5 how the subsystem 1 contains the information of k1, d1, kc, dc,m1

while the Subsystem 2 only contains the informaton of k2, d2 and m2.

Thus, we have the following equations for m1 and m2:

m1ẍ1 + (c1 + c2)ẋ1 − ccẋ2 + (k1 + kc)x1 − kcx2 = f1

m2ẍ2 − ccẋ1 + (cc + c2)ẋ2 − kcx1 + (kc + k2)x2 = f2
(5.8)

To find the dynamical response we need to compute the acceleration of the
system:

ẍ1 =
cc[ẋ2] + kc[x2] + (c1 + cc)ẋ1 − (k1 + kc)x1 + f1

m1

ẍ2 =
[cc(ẋ1 − ẋ2) + kc(x1 − x2)]− c2ẋ2 − k2x2 + f2

m2

(5.9)

In this equations we can find the parameters that each subsystem is missing
in square brackets. This parameters are going to be the exchange information
between the subsystems, i.e. their coupling variables. Hence, the resultant force
of the spring and damper connecting the two systems are going to be the outputs
of subsystem 1 and the inputs of subsystem 2

Fc = y1 = cc(ẋ1 − ẋ2) + kc(x1 − x2) (5.10)
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and the velocity and displacement of the second mass are be the outputs of
subsystem 2

y2 =

(
x2

ẋ2

)
(5.11)

and the inputs of subsystem 1.

■ Displacement Displacement coupling In this configuration both sub-
systems share the intermediate spring- damper with a displacement input.

This time the acceleration of the subsystems is given by:

ẍ1 =
cc[ẋ2] + kc[x2]− (c1 + cc)ẋ1 − (k1 + kc)x1 + f1

m1

ẍ2 =
cc[ẋ1] + kc[x1]− (cc + c2)ẋ1 − (kc + k2)x2 + f2

m2

(5.12)

where again we find in square brackets the information that needs to be ex-
changed among the subsystems during the communication interval. As a result,
both subsystems give as outputs its velocity and displacement

y1 =

(
x1

ẋ1

)
; y2 =

(
x2

ẋ2

)
(5.13)

which are the respective input of the other subsystem.

In [8] it has been already studied the greater accuracy and stability of Dis-
placement Displacement coupling over Force Displacement coupling.

5.5.2 Algebraic constraint

This approach will normally be applied to the coupling of rigid bodies and can
be divided in two different configurations: the Force- Force coupling and the
Displacement- Displacement coupling (see Figure 5.6). For both configuration
exists a bi- directional dependency of the inputs and the outputs of each sub-
system at the same t. This creates an algebraic loop problem Definition 76
that needs to be solved.

5.5.3 The algebraic Loop

Whether an algebraic loop appears inside a closed loop interconnection or not is
determined by the feed through and non feed- through connections of the closed-
loop subsystem.

Definition 74 (Feed through). The feed through connection has the output
related to the input at the same time, e.g. y = f(t, x, u).

Definition 75 (Non Feed- through). If the output is not dependent on the input
at the same instant, e.g. y = f(t, x) then the connection is non- feed through.
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Figure 5.6: Different coupling configurations under the algebraic constraint

Definition 76 (Algebraic Loop). We say that an algebraic loops appear when
a closed loop interconnection is only constitued by feed- through connections,
meaning that there is no explicit calculation sequence.

The algebraic loop can be broken just by adding non- feed through connec-
tions (e.g. a low pass filter). Consequently, the main drawback of the algebraic
loop is the need of adding additional dynamics to our original system.

Property 77. MIMO systems can have both feed through and non feed through
connections, see Figure 5.7. However, unless we have access to the feed- through
information of the subsystems, what might seem initially an algebraic loop may
just be a software issue, this is considered a fake algebraic loop.

5.5.4 Qualitative study of the coupling configurations

For each system exists different coupling configurations depending on how the
components interact with each other. The coupling configuration we choose will
influence the accuracy and stability of the system response. In order to find out
which is the best coupling configuration for our system we need to observe the
equations of our system: [

ż
y

]
=

[
A B
C D

] [
z
u

]
(5.14)

where
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Figure 5.7: MIMO with feed through and non feed though connentions. No
algebraic loop.

• z: state variable
• y: output
• u: input
• ż: state derivative
• A: state matrix
• B: input matrix
• C: output matrix
• D: feedthrough matrix

In Figure Figure 5.8 we can see two subsystems being co- simulated. Tak-
ing subsystem 1 as a reference, we should follow the following steps to obtain
the system response:

1. Exchange the necessary amount of information to obtain inputs and outputs
when we are at the communication interval (t = tn).
2. Evaluate the state- derivative vector ẋn = Azn +Bun.
3. Integration step. The subsystem is solved and we move to the next
time step t = tn+1

4. Compute the output at t = tn+1, yn+1 = Cxn+1 +Dun+1

Each of these steps have an effect on the final response of the system. Ob-
serving step 4 we can realize how in order to compute yn+1 we need missing
data (un+1). There are few ways to solve this situation.

If the feed-through matrix is of the form D = 0, the output of the subsys-
tem does not depend on the input e.g. this is the case of the displacement-
displacement coupling configuration of two masses joined by a spring. In this
case, step 4 only consists on evaluating yn+1 = Cxn+1.
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Figure 5.8: Evaluation of the state space equation during a time step of a SISO
system co simulated with a Jacobi configuration

On the other hand if D ̸= 0 the output does depend on the input, and needs to
receive updated information at the communication interval, e.g. force displace-
ment coupling configuration of two masses joined by a spring. In this latter case
we will need to make use of an extrapolation method that approximates the in-
put value for the current time instant i.e. un+1 using the available information
from previous steps.

Therefore, it is expected that couplings configurations where D = 0 are more
stable and accurate than configurations with D ̸= 0.

5.6 Stability of co- simulation

Stability of co- simulation, mainly refers to the convergence property of the
coupling error, in the numerical analysis field this concept is related directly
to the spectral radius (the largest absolute value of its eigenvalues of a square
matrix) of the difference equations.

5.6.1 Numerical Analysis Framework

In order to make the analysis simpler we can consider a LTI system

ẋ = Ax+Bu
y = Cx+Du

u = Ly
(5.15)
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where x is the state vector and L is the coupling matrix mapping the output
vector y to the corresponding system input u. If we are in a mono- simulation
case the equality u = Ly is satisfied for every value of time, thus, the two first
equations of the previous system can be rewritten as

ẋ =
(
A+BL (I −DL)

−1
C
)
x (5.16)

On the other hand, if we are in a co-simulation context, the coupling matrix
L occurs only at the communicative instant tn, thus, we can describe the coupled
dynamical system as

˙̃xn = Ax̃n +BΨ(ũ(τ))
ỹn = Cx̃n +DΨ(ũ(τ))

ũn = Lỹn

(5.17)

where Ψ is the extrapolation operator, τ ∈ [tn, tn+1), and the subsystem input
is

Ψ(ũ(τ)) = ũn τ ∈ [tn, tn+1) (5.18)

In the ideal case where the system can be exactly solved, the updated state x̃n

at the next communicative instant tn+1 is derived as

x̃n+1 = eA∆tx̃n +

∫ tn+1

tn

eA(tn+1−τ)Bũndτ = eA∆tx̃n +K(∆t)BLỹn (5.19)

with K(∆t) =
∫ tn+1

tn
eA(tn+1−τ)dτ

Indeed, we can express the dynamical coupled system with constant extrap-
olation (ZOH) as[

x̃n+1

ỹn+1

]
=

[
eA∆t K(∆t)BL
CeA∆t CK(∆t)BL+DL

]
︸ ︷︷ ︸

A∗

[
x̃n

ỹn

]
(5.20)

Definition 78 (Spectral radius). Let λ1, ..., λn be the eigenvalues of a matrix
A ∈ Cn×n. We define the spectral radius of A as

ρ(A) = max {|λ1| , ..., |λn|}

Proposition 79. The numerical stability of co- simulation depends on the spec-
tral radius ρ(A∗), so that if ρ(A∗) ≤ 1 and there is no more than one eigenvalue
on the unit circle the system is stable and the numerical result convergent.

Property 80. The spectral radius of A∗, ρ(A∗) depends on the macro- step
∆t, the extrapolation operator Ψ (see (Figure 5.9)), and the system dynamics,
i.e. matrices A,B,C,D and L based on the coupling configuration and system
parameters.
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Figure 5.9: Spectral radius of co- simulation with different extrapolation meth-
ods: ZOH, FOH, SOH.

Example 5.6.1. Consider a linear time invariant coupled system of two sub-
systems with a single state x, a single input u, a single output y and for which
the coupling is determined by the value of two parameters d1 and d2.

Subsystem 1

ẋ1 = −x1 + u1

y1 = x1 + d1u1

(5.21)

Subsystem 2

ẋ2 = −x2 + 3u2

y2 = −5x2 + d2u2

(5.22)

and the coupling

y

[
u1

u2

]
=

[
0 1
1 0

]
︸ ︷︷ ︸

L

[
y1
y2

]
(5.23)

Now, discretizing the coupled system using constant extrapolation, i.e. rewriting
it such that

xn+1 = Φ(xn, un) = Φ(xn, Lyn)

yn+1 = Cxn+1 +DLyn
(5.24)

and letting ∆t → 0 we obtain[
yn+1(1)

yn+1(2)

]
=

[
1 0
0 1

]
︸ ︷︷ ︸

C

[
xn+1(1)

xn+1(2)

]
+

[
d1 0
0 d2

]
︸ ︷︷ ︸

D

[
0 1
1 0

]
︸ ︷︷ ︸

L

[
yn(1)

yn(2)

]
(5.25)
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where we can state that the coupled system is stable if the spectral radius
ρ(DL) ≤ 1 where λ1,2 = ±

√
d1d2

5.6.2 Control Theory Framework

Figure 5.10: Co- simulation emulated by a closed loop sample- data with con-
stant extrapolation, (ZOH operator)

Assuming the solver is accurate enough and restricting our subsystems to
the LTI class with zero initial condition represented by a transfer function in the
frequency domain, the coupled dynamical system can be emulated by a close-
loop sample data system, as in Figure 5.10, where co- simulation stability is
highly related to the stability of the closed loop interconnection (see section 3.4)
and the coupling error is seen as the multiplicative disturbance.

5.7 Stability of weakly coupled systems

The stability and accuracy of the weakly coupled systems i.e. subsystems that
are not coupled by the exact values, changes according to the communication
step size ∆t. In this section we will analyse the different types of errors that
will help us computing the approximation order of our co- simulation systems.

5.7.1 Local Error

To analyze the error in one step of our numerical approximation, we assume the
state x̃n−1 and input ũn−1 from the previous macro- step tn−1 are error free.
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Thus, the local error εxn can be derived as

xεxn = xn − x̃n =

eA∆txn−1 +

∫ tn

tn−1

eA(n∆t−τ)Bu(τ)dτ − eA∆tx̃n−1

−
∫ tn

tn−1

eA(n∆t−τ)BΨ(u(τ))dτ

=

∫ tn

tn−1

eA(n∆t−τ)B(u(τ)−Ψ(u(τ)))dτ

≤

∣∣∣∣∣B
∫ tn

tn−1

eA(n∆t−τ)dτ

∣∣∣∣∣ εun,max

(5.26)

where εun,max = ∥u(τ)−Ψ(u(τ))∥∞ , τ ∈ [tn−1, tn) the maximum norm of the
input error on the communicative interval. The corresponding Taylor expansion
can be described as

εxn
≤
∣∣∣∣BA (−I + eA∆t)

∣∣∣∣ εun,max

=

∣∣∣∣BA (A∆t+
(A∆t)2

2
+

(A∆t)3

6
+ ...)

∣∣∣∣ εun,max

= |BO(∆t)| εun,max

(5.27)

Property 81. When a k degree extrapolation method is used to approximate
the input the local error εxn

is bounded by

|B|O(∆tk+2)

Thus, the output local error can be derived as

εyn
≤ |Cεxn

+Dεun
|

≤
∣∣CO(∆tk+2) +DO(∆tk+1)

∣∣ (5.28)

so that for a feed- through system (D ̸= 0), the output global error εyn
is bounded

by O(∆tk+1), whereas for a non feed- through system (D = 0), εyn
is bounded

by O(∆tk+2).

5.7.2 Global Error

The global error is the error made by the numerical approximation during the
whole simulation time. We can derive this error by removing the error- free
assumption from the local error,

ξxn
= xn − x̃n = eA∆txn−1 +

∫ tn

tn−1

eA(n∆t−τ)Bu(τ)dτ − eA∆tx̃n−1−
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−
∫ tn

tn−1

eA(n∆t−τ)BΨ(u(τ))dτ

= eA∆tξxn−1 +

∫ tn

tn−1

eA(n∆t−τ)B [u(τ)−Ψ(u(τ)) + Ψ(u(τ))−Ψ(ũ(τ))] dτ

≤ eA∆tξxn−1 + εxn +

∣∣∣∣∣
∫ tn

tn−1

eA(n∆t−τ)B [Ψ(u(τ))−Ψ(ũ(τ))] dτ

∣∣∣∣∣
And taking Ψ as a linear operator we have that

Ψ(u(τ))−Ψ(ũ(τ)) = Ψ [u(τ)− ũ(τ)] = O(∆tk+1)

We can bound our global as

ξxn
≤ eA∆tξxn−1

+ |B| (O(∆tk+2) +O(∆tk+2))

≤ eA2∆tξxn−2
+ |B|O(∆tk+2)(1 + eA∆t)

≤ |B|O(∆tk+2)(1 + eA∆t + ...+ eA(n−1)∆t) = |B|O(∆tk+2)
1− eAn∆t

1− eA∆t

= |B|O(∆tk+1)(1− eAtn)

thus, the output global error during the simulation time [0, tn] is

ξyn
= yn − ỹn = Cξxn

+Dξun
≤ O(∆tk+1) (5.29)

Property 82. For both, feedthrough and non feed through systems, the global
error of the state and the output global errors are of order O(∆tk+1)

5.7.3 Error from the solver

In [1] it is argued the reasons why we could just neglect the solver error in co-
simulation.

Consider that the subsystems are solved with a m- step, explicit or implicit
numerical method where δt is the solver integration step (micro step),

x̃n = f(tn; ˜̃xn−m, ˜̃xn−m+1, ..., ˜̃xn−1; δt) explicit method (5.30)

x̃n = f(tn; ˜̃xn−m, ˜̃xn−m+1, ..., ˜̃xn; δt) implicit method (5.31)

we can define the approximation error from a p order explicit (or implicit)
method as

εnxn
= x̃n − ˜̃xn = x̃n − f(tn; x̃n−m, x̃n−m+1, ..., x̃n−1; δt) (5.32)
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whose local and global error are, respectively

εnxn
= O(δtp+1);

ξnxn
= O(δtp)

(5.33)

hence, the local error in co- simulation can be derived as

ε
′

xn
= xn − ˜̃xn

= xn − x̃n + x̃n − ˜̃xn

= εxn
+ εnxn

≤ O(∆tk+2) +O(δtp+1)

(5.34)

Now, if we remove the error free condition of the local error from previous steps
condition, the global error of co- simulation is derived as

ξ
′

xn

= xn − ˜̃xn

= xn − x̃n + x̃n − ˜̃xn

= ξxn
+ ξnxn

≤ O(∆tk+1) +O(δtp)

(5.35)

Property 83. The error from the solver is bounded by the sum of the coupling
error with order O(∆tk+1) and the approximation error from the solver of order
O(δtp).

Property 84. Given that the macro step normally is larger than the micro
step (i.e. ∆t ≥ δt), and that high order and multi- step numerical methods are
quite common while extrapolation of high degree is rarely used because of stability
issues, we have that p ≥ k.

Proposition 85. From the results of this section we can state given that the
coupling error is dominant over the error from the solver it is reasonable to
neglect the latter error from our analysis and focus on the coupling error.

We will focus our analysis in the coupling error when improving the co
simulation behaviour.



88 CHAPTER 5. COUPLED SYSTEMS AND CO- SIMULATION



Chapter 6

H∞ in co-simulation

Co-simulation is widely used in industry for the simulation of multi-domain sys-
tems. However, as we have seen in the co- simulation chapter, due to the not
continuous communication between our coupling variables, simulation results
end up being unstable and inaccurate.

Among the different strategies that have been developed in the recent years
to control co-simulation drawbacks, the aim of this thesis is focused in applica-
tion of the H∞ synthesis method.

When we are in a mono-simulation scenario where the dynamic equations are
solved together by one solver, accuracy and stability of the simulation relies
just on the time-stepping method and the step size. Nevertheless, when we are
in a co-simulation stage, stability and accuracy results also dependent on the
discrete communication between the different subsystems.

We can distinguish our co- simulation systems according to: the time- step-
ping method of the main, which can be explicit, semi explicit, and implicit
(iterative); the slave subsystems section 5.3, and the coupling configurations
section 5.5.

We will follow [1] and study the explicit-parallel co-simulation scenario in the
frequency domain. This scheme is argued to be chosen for being easy to imple-
ment and the most common of all the calculation schemes. Nevertheless, as we
saw in chapter 5, it will also lead us to accuracy and stability drawbacks. Its
main disadvantage is the need of using extrapolation methods to approximate
the inputs of each subsystem, which are unknown during the communication
interval ∆t. In this thesis we choose the zero- order hold (ZOH) (subsubsec-
tion 3.2.4.2) as the main holder operator of our decoupled system.

Recall that because in an explicit co-simulation approach we cannot go back
and recalculate the input, the coupling error of our co- simulation system can

89
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be notable compared to iterative schemes. In order to improve the explicit
co-simulation result and reduce the extrapolation error we will study the H∞
controller design presented in [1, Paper III].

6.1 Closed loop interconnection formulation

To show how by coupling a system, co-simulation deteriorates stability, we con-
sider a mono- simulation system and decouple it as a closed loop interconnection
of two subsystems.

In order to focus on the analysis of the deterioration of the coupling error we
assume that the coupled subsystems are linear, time invariant, single input-
single output, with homogeneous initial condition, and accurately solve by an
appropriate solver so that the coupling error is greater than the integration error.

We denote our subsystems with the transfer functions Q1(s) and Q2(s) were
s denotes a variable in the complex plane (see chapter 2). Recall that depend-
ing on whether Q1(s) and Q2(s) are proper (the degree of the numerator is less
than the degree of the denominator) or strictly proper [13] (the degree of the
numerator is less or equal than the degree of the denominator) the connection
is, respectively, feed- through (proper) or non feed-through (strictly proper), see
Definition 74 Definition 75.

We will see the communication of our input and output variables every macro-
step as a sample data closed loop interconnection Figure 5.10 where stability
issues arise.

Definition 86 (Sampled input). We define the sampled input u∗(t), and its
Laplace transform u∗(s) as the product of the continuous input u(t) and a peri-
odic impulse train (see Equation 3.20).

u∗(t) =

∞∑
n=−∞

u(t)δ(t− n∆t), u∗(s) =
1

∆t

∞∑
n=−∞

u(s− jnωs) (6.1)

where ωs = 2π/∆t is the sampling frquency.

Definition 87 (Approximated input). We define the approximated input as the
Laplace transform of our sample input u∗(s) held with an extrapolation operator
H(s), in our case the zero- order- hold (subsubsection 3.2.4.2)

ũ(s) =
H(s)

∆t

∞∑
n=−∞

u(s− jnωs)

= H(s)u∗(s)

(6.2)

We could have used different holders H(s) for each of the subsystems. In
Figure 6.1, as in [1, Paper III] we will assume that the same H(s) is applied in
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Figure 6.1: co-simulated system as a closed-loop interconnection, and a trun-
cated subsystem with coupling error ξu as an input multiplicative disturbance

the whole interconnection.

The stability analysis of the present co-simulated system Figure 6.1 is charac-
terized by two main factors:

1.Input coupling error ξu caused by extrapolation and its influence on sim-
ulation accuracy.

2.Numerical stability and robustness of co-simulation.

6.2 Analysis of the coupling error

Definition 88 (Coupling error ξu). We define the input coupling error ξu as
the difference of the continuous input and its approximation

ξu(s) = ũ(s)− u(s) =
H(s)

∆t

∞∑
n=−∞

u(s− jnωs)− u(s)

=
H(s)

∆t

∞∑
n=1

u(s± jnωs)︸ ︷︷ ︸
Higher frequency

+

(
H(s)

∆t
− 1

)
u(s)︸ ︷︷ ︸

Lower frequency

(6.3)

Since there is insufficient data to know how the original signal looks like, we
need to give special attention to the case where the frequency of the input signal
u(s) denoted by ω is high so that the sampling frequency from ũ(s) denoted by
ωs = 2π/∆t is not high enough to fulfill the Nyquist criterion causing aliasing
effect (Definition 64); in this case, the lower and higher frequency part of ξu
are not possible to decouple and the problem is not treatable to our knowledge.
In order to avoid the aliasing effect we need to ensure that ∆t is small enough.
Following this condition, in [1, Paper III] ∆t is chosen according to the subsys-
tem bandwidth (Definition 44). However, this will not guarantee the stability
of our co-simulated system.
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Now, in order to introduce the definition of the different coupling errors you
get depending on the extrapolation method that is used to approximate the
coupling variables during the communication interval, we first define the most
basic three holder operators: zero order hold (ZOH), first order hold (FOH),
second order hold (SOH).

HZOH(s) =
1− e−s∆t

s
(6.4)

HFOH(s) =
1 +∆t

∆t

(
1− e−s∆t

s

)2

(6.5)

HSOH(s) =

(
0.5− e−s∆t + 0.5e−2s∆t

∆t2

)(
2−∆t2s2e−s∆t − 2∆tse−s∆t − 2e−s∆t

s

)
+

(
1.5− 2e−s∆t + 0.5e−2s∆t

s2

)
+

1− e−s∆t

s
(6.6)

Computing the coupling error ξu combined with the different holder operators
H(s) (see Equation 3.38) we obtain the following Taylor series expansions

ξu,ZOH(s) = u(s)

(
1− e−s∆t − s∆t

s∆t

)
+

1− e−s∆t

s∆t

∑
(s)

= u(s)

1−
(
−s∆t+ (−s∆t)2

2 + (−s∆t)3

6 + ...
)
− s∆t

s∆t


+
1−

(
−s∆t+ (−s∆t)2

2 + (−s∆t)3

6 + ...
)

s∆t

∑
(s)

=

[
−1

2
s∆t+ s2O(∆t2)

]
u(s) + [1 + sO(∆t)]

∑
(s)

(6.7)

with the notation ∑
(s) =

∞∑
n=1

u(s± jnωs) (6.8)

Analogously,

ξu,FOH(s) =

[
− 5

12
(s∆t)2 + s3O(∆t3)

]
u(s) +

[
1 + s2O(∆t2)

]∑
(s) (6.9)

ξu,SOH(s) =

[
−3

8
(s∆t)3 + s4O(∆t4)

]
u(s) +

[
1 + s3O(∆t3)

]∑
(s) (6.10)

As a consequence of this equations if ∆t is small enough ξu(s) can be correctly
approximated by its low frequency component [14] which enables to extract the
following results.
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Theorem 89. A k- degree extrapolation method gives an error with order O(∆tk+1),
everytime

∑
(s) is negligible [1, paper III].

Property 90 (Frequency property). The error grows with the input frequency.

The co- simulated system represented in Figure 6.1 and its respective nom-
inal system satisfy that

ũ(s)Q(s) = ỹ(s) and u(s)Q(s) = y(s) (6.11)

thus, the output error can be seen as a linear map from the input error

ξu(s)Q(s) = (ũ(s)− u(s))Q(s) = ỹ(s)− y(s) = ξy(s) (6.12)

Definition 91 (Output coupling error). We define the output coupling error of
our LTI coupled system as the linear projection of our coupling error ξu(s) in
the frequency domain with the same error that characterizes ξu(s), i.e.

ξy(s) = ỹ(s)− y(s)

6.3 Stability and Robustness

In this section we describe how the different components of our decouple sys-
tem need to behave to guarantee the stability of our system. Assuming that
the nominal system is designed to be stable, we present two main results that
ensure the stability of the closed loop of the co-simulation system.

In co-simulation stability is characterized by the convergence of the error ξy.
We represent the closed loop interconnection of our the co- simulated system
Figure 6.1as

ỹ1 = (1 + ϕ)Q1ỹ2 and ỹ2 = (1 + ϕ)Q2ỹ1 (6.13)

where ϕ is an operator that denotes multiplicative disturbance that represents
the coupling error of our system.

Now, considering the nominal system we can extend its closed loop inter-
connection y1 = Q1y2, y2 = Q2y1 to

y1 = (1 + ϕ)Q1y2 − ϕQ1y2 and y2 = (1 + ϕ)Q2y1 − ϕQ2y1 (6.14)

from where we can derive the output error ξy = [ξy1
, ξy2

] by computing the
difference

ξy1 = ỹ1 − y1 = (1 + ϕ)Q1ξy2 + ϕQ1y2 (6.15)

ξy2 = ỹ2 − y2 = (1 + ϕ)Q2ξy1 + ϕQ2y1 (6.16)

In a more compact representation, by definition of ξy(s) Definition 91 in Fig-
ure 6.1, the output approximated output of our closed loop system becomes

ỹ =
1

1− (1 + ϕ)2Q1Q2

[
(1 + ϕ)Q1 (1 + ϕ)2Q1Q2

(1 + ϕ)2Q1Q2 (1 + ϕ)Q2

]
ũ (6.17)
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On the other hand we can express the error free output of the nominal system
as

y =
1

1−Q1Q2

[
Q1 Q1Q2

Q1Q2 Q2

]
u (6.18)

Thus, we can derive ξy from the difference ξy(s) = ỹ(s)− y(s) so that

ξy =
1

1− (1 + ϕ)2Q1Q2

1

1−Q1Q2

[
ϕQ1 + ϕ(1 + ϕ)Q2

1Q2 ϕ(2 + ϕ)Q1Q2

ϕ(2 + ϕ)Q1Q2 ϕQ2 + ϕ(1 + ϕ)Q1Q
2
2

]
ξu

ξy =
1

1−Q1(1 + ϕ)Q2(1 + ϕ)

[
ϕ(1 + ϕ)Q1Q2 ϕQ1

ϕQ2 ϕ(1 + ϕ)Q1Q2

]
ξu (6.19)

where ξy =
[
ξy1

ξy2

]
and y =

[
y1 y2

]T
.

Since Q1, Q2 and the terms cascaded with ϕ are designed to be stable the
nominal closed- loop system is stable. Therefore, in order to analyze the conver-
gence of the output error ξy we just need to study the transfer function of the
closed loop system −(1 + ϕ)2Q1Q2, which needs to follow the Nyquist criterion
Theorem 58 in order to be stable, i.e. not encircle the point −1 + j0 in the
complex plane.

Now we introduce the main two theorems [1, Paper III](and some of their related
properties) that characterize the stability of the presented closed loop system.
Both of them based their formulation on the Nyquist stability criterion.

Theorem 92 (Small gain theorem). Given that
∥∥(1 + ϕ)2Q1Q2

∥∥
∞ is the max-

imum gain Definition 18 of our SISO system represented in Figure 6.1. The
closed loop interconnection in Figure 6.1 defined by the equations Equation 6.13
is input-output stable Definition 31, if the maximum norm of its loop gain
satisfies ∥∥(1 + ϕ)2Q1Q2

∥∥
∞ < 1 (6.20)

This theorem implies that the system is stable if −(1+ϕ)2Q1Q2 is bounded
within the unit circle, and since ZOH does not amplify the system gain, it is
guaranteed a stable co- simulation if the nominal system satisfies

∥Q1Q2∥∞ < 1 (6.21)

with no aliasing effect.

Property 93. The smaller the loop gain −(1 + ϕ)2Q1Q2 of the system is, the
better the rejection to disturbance (or coupling error).

Property 94. Although scaling down the coupling variables gives incorrect sim-
ulation results, the loop gain will also be reduced making the system more stable,
which can be useful for a stable initial setup.



6.4. H∞ PROBLEM FORMULATION 95

Figure 6.2: Formulation of an error system for one coupling variable

Theorem 95 (Passivity theorem). The closed loop interconnection in Fig-
ure 6.1 defined by the equations Equation 6.13 is stable if its subsystems Q1(1+ϕ)
and −Q2(1+ϕ) are strictly passive (in the context of the delay or phased lag 39
led by extrapolation) or output strictly passive with zero- state observable (i.e.
generalization for a nonlinear system).

Geometrically, this theorem says that the system is stable if it has a phase
angle, section 3.6 of less than 180 degrees, so the Nyquist plot (Figure 3.25) does
not encircle the −1+j0 on the complex plane and the Nyquist stability criterion
is satisfied. Physically speaking this theorem implies that an additional energy
flow into the interconnection of the system, if it is not sufficiently dissipated,
might make the system unstable.

As a consequence of the small gain theorem and the passitivity theorem we can
conclude that to improve the stability of the co- simulated system Figure 6.1
the loop gain should be reduced (Theorem 92) or the phase delay compensated
(Theorem 95).

6.4 H∞ Problem Formulation

We know from Proposition 85 that the sample- hold process is the main source
of error of co- simulation. To deal with this error and minimize it we want to
study the application of a particular H infinity controller design, presented in
[1, paper III] Recall that the input coupling error is described by Equation 6.3
where u(s) is a coupling variable that is not accessible and therefore, ξu is un-
known.

The error system plant presented in [1], is based on the formulation of an input
coupling error system presented in the research work in modern signal recon-
struction [6], this is illustrated in Figure (Figure 6.2). Here K1 is a feedback
controller that compensates the error to correct the output of the system, K2

is a low pass filter Definition 41

K2(s) =
1(

s
2πfK2

)2
+ 1.4142 s

2πfK2
+ 1

(6.22)
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Figure 6.3: Generalized plant P and undetermined controller K as an equivalence
to the error system

that smooths the input signal. H∗(s) is the resulting holder operator (ZOH)
after applying a Padé approximation

H∗(s) ≈ 120000

s2 + 600s+ 1.2e05

According to this the problem consists on finding the best pair of K1, K2 to
reduce ξu(s). Given that we do not have access to the exact input u(s) nor ξu(s)
one could try to tackle this problem considering that K1(s)K2(s)H

∗(s) = 1 (i.e.
the original signal is unchanged, thus ξu(s) = 0) so that K1(s)K2(s) = H∗(s)−1.
However, because H∗(s)−1 is improper 21, this transfer function has always at
least one pole at infinity, meaning that not all the poles are inside the unit circle,
which makes it unstable and a not valid nor implementable solution.

Instead, [1, Paper III] proposes to reformulate the problem as a minimization
of the L2 norm of the coupling error ∥ξ∥2, such that

∥ξu∥2 = ∥Tueu∥2 ≤ ∥Tue∥∞ ∥u∥2 (6.23)

where Tue is the transfer function of the error system. The L2 norm of the error
∥ξu∥2 is upper bounded by the supremum norm of the error system ∥Tue∥∞ ∥u∥2
(i.e. ∥ξu∥2 ≤ ∥Tue∥∞ ∥u∥2).

According to this, if we design K1(s) and K2(s) properly, they should give
us a minimal energy gain ∥Tue∥∞, so that the energy of coupling error is min-
imized. To implement this problem, we apply the H∞ synthesis optimization
method (chapter 5).

6.4.1 H∞ synthesis for the coupling design

To apply H∞ synthesis method to our problem we need to transfer the error
system in Figure 6.2 to a generalized plant P , (see Figure 6.3) where u is the
disturbance input to the plant and ξu is the input error. Once this is done we
can describe our H∞ problem as follows:
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Theorem 96 (H∞ Problem:). Given a LTI system G, find a feedback gain K
such that the closed loop system is stable and the following is satisfied:

∥ξu∥2 < γ ∥u∥2 , ∥Tue∥∞ := sup
Re{s}>0

∥Tue(s)∥ < γ (6.24)

where γ is the level of L2 gain performance to be minimized.

This problem requires that the synthesized control law K is stable, proper
and casual (i.e. the degree of the numerator is smaller than the degree of the
denominator), so it only depends on previous inputs.

Wf is defined in [1] as a weighting function,

Wf =
1

1
2πfWf

+1 + 1
(6.25)

designed to be another low- pass filter, this time with regards to the low fre-
quency component of the coupling error. Even though the sampling and holder
H∗(s) is Padé approximated, and the highest component of ξu results from its
high frequency part, the minimization of ∥ξu∥2 when we apply the smoother K2

in all frequency range will, in particular, distort the low- frequency component.
This is the reason why it is required to include in the plant of our error system
another low-pass filter, which this time is meant to decrease the error in the low
frequency range (

H(s)

∆t
− 1

)
u(s)

Furthermore, in order to gain computational efficiency, the optimization
could also bound the poles of the error system plant adding pole- placement
constraints to the arguments of our minimization problem.
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Chapter 7

Implementation

In this chapter we aim to reproduce the results of the studied approach. With
this purpose, let us consider a double mass spring damper decoupled through a
displacement-displacement configuration, see Figure 7.1.

Figure 7.1: Caption

From chapter 5 we know the acceleration of this dynamical system equations
is defined by:

ẍ1 =
cc[ẋ2] + kc[x2]− (c1 + cc)ẋ1 − (k1 + kc)x1

m1

ẍ2 =
cc[ẋ1] + kc[x1]− (cc + c2)ẋ1 − (kc + k2)x2

m2

and that the exchange of information during the macrostep, i.e. the coupling
variables of the decoupled system are:

y1 =

(
x1

ẋ1

)
y1 =

(
x2

ẋ2

)
In Figure 7.2, Figure 7.3 the non- decoupled system is simulated with a RK4
solver, ∆t = 50 ms and the following parameters:

99
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Masses Underdamped Overdamped
m1 = 8.6856,
m2 = 6.7863

k1 = 176.6611, k2 = 895.8553,
kc = 171.7,

d1 = 3.6585, d2 = 16.4162, dc =
0.0857

m1 = 3.2365,
m2 = 8.9549

k1 = 120.5520, k2 = 995.0490,
kc = 701.9907,

d1 = 20.2187, d2 = 231.6654,
dc = 12.5520,

Figure 7.2: Simulation with parameters: d1 = 3.6585, d2 = 16.4162, dc =
0.0857, k1 = 176.6611, k2 = 895.8553, kc = 171.7, m1 = 8.6856, m2 = 6.7863;
over time.

Figure 7.3: Simulation with parameters: d1 = 20.2187, d2 = 231.6654, dc =
12.5520, k1 = 120.5520, k2 = 995.0490, kc = 701.9907, m1 = 3.2365, m2 =
8.9549; over time.

7.1 Co-simulation

For the co-simulation test we decoupled our double mass spring damper as we
presented in Figure 7.1 and simulate the subsystems using again RK4 method
as a solver, a micro step of δt = 1ms, a macro step of ∆t = 50ms and the
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Figure 7.4: x1, x2, ẋ1, ẋ2 with ZOH extrapolation for the underdamped system
over time.

zero-order hold to approximate the coupling variables during the communica-
tion interval. We also use the same two sets of parameters we used for the
reference (mono-simulated) system.

The system parameters, the micro-step and macro-step values are all taken from
the experimental results in [1]. However, we did not picked the same coupling
configuration, which in [1, Paper III, p 13] is a force- displacement configuration
and here a displacement-displacement configuration.

In Figure 7.4 and Figure 7.5 it is plotted the simulation of the reference
variables in black in contrast to the resulting variables of the decoupled systems
over time (x-axis). These are drawn in different colours illustrating that distin-
guish the communication instants, where the macrostep is represented by the
change of colour. To implement the co- simulated system I used the MPI mod-
ule in python with two different cores, two for Subsystems 1 and 2 (secondary),
and a third one for the update of the coupling (primary).
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Figure 7.5: x1, x2, ẋ1, ẋ2 with ZOH extrapolation for the overdamped system
over time.
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7.2 Approximation of the H∞ method

Now, it is of our interest, given the difference in the mono-simulation and co-
simulation results illustrated in the plots, to find and synthesized a H∞ con-
troller according to the designed plant of our error system Figure 6.3, where we
recall

K2(s) =
1(

s
2πfK2

)2
+ 1.4142 s

2πfK2
+ 1

(7.1)

Wf =
1

1
2πfWf

+1 + 1
(7.2)

H∗(s) ≈ 120000

s2 + 600s+ 1.2e05
(7.3)

that smoothes the coupling error and brings the coupling variables closer to the
reference system.

In order to do this I used the matlab control toolbox as suggested in [1, Paper
III]. In particular, I used

h2hinfsyn.m

Figure 7.6: Matlab h2hinfsyn.m

a function that need to be given a plant, see P in Figure 7.6, the number of
measurement signals (1 in our closed loop error system), the number of con-
trol signals (1), the number of signals subjected to the H2 constraint (0), the
weights of performance of H2 and H∞, [W∞,W2] which since we do not have
fixed ([0, 0]) and a name value argument that will permit us to restrict the con-
troller to the H∞ norm and put pole placement constraints (restrict the value of
our eigenvalues so all of them behave inside the stability region of our method).
This function outputs the state space representation of our controller K1 and
the state space representation of the closed loop system.

In order to set the plant the matlab function needs as a parameter, we de-
fine the missing values of our two low pass filters with the same values that are
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given for the force- decoupled double mass spring damper test in [1, Paper III],
i.e. fK2 = 10Hz, fWf

= 0.2. Now, computing the transfer function inside the
matrix of our error system Figure 6.3 we have all the required to implement the
mentioned matlab function.

Figure 7.7: Simulation of coupling the variables with parameters fk2
= 10 and

fwf
= 0.2, with the H∞controller, over time.

In Figure 7.7 we plotted in blue, over time, the approximation of the coupling
variables once applied our synthesized the controller. We compared this results
plotting the coupling variables approximated with the ZOH approximation in
green and the reference in black. In Figure 7.7 It is clear that the obtained
results smooth our coupling signal excessively, making it further away from
the reference than when we extrapolated it with the ZOH. I relate to this two
main possible scenarios: a bad selection of the low pass filter parameters fK2

,
fWf

, which are specific for each controller desinged depending on our dynamical
system, or a problem with the synthesis of the controller.
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In order to study both scenarios at the same time we studied the behaviour of
a different controller this time synthesized with a bigger value for the parameters
fK2

, fWf
, whose transform function is given in [1, Paper III]

K1(s) =
(s+ 1682.9)(s+ 6.2825)(s2 + 600s+ 1.2e05)(s2 + 266.6s+ 3.553e04)

(s+ 1470.1)(s+ 6.2833)(s2 + 1870s+ 9.674e05)(s2 + 617.6s+ 5.111e05)
(7.4)

where fK2 = 30 Hz, fWf
= 1 Hz.

this time in order to synthesized the controller we just needed to use the Matlab
control toolbox function

tf2ss.m

which converts a continuous-time or discrete-time single-input transfer function
into an equivalent state-space representation.

In figures Figure 7.8 we plotted the results for the approximated coupling
variables with our new synthesized controller Equation 7.4 in blue, the coupling
variables approximated with the ZOH approximation in green and the reference
in black, over time.

In this case we also plotted the solutions. In both cases could see a bigger
improvement of the approximation of the H∞ controller.

Even though it could be first appreciated an improvement of the coupling
variables approximation for our second controller, when computing the normal-
ized root mean square (NRMS) error of the coupling variables and the solutions

ϵNRMS,x =

√∑T
t=0 (x(t)− xref (t))

2
/T

xref,max − xref,min

the evidence does not seem consistent.

0.14095558240065628 error X1ZOH

0.14449389607213403 error X1HINF

0.1285915260887583 error DX1ZOH

0.1305777235335553 error DX1HINF

0.12397044587346658 error X2ZOH

0.1098653753680789 error X2HINF

0.13852078615214833 error DX2ZOH

0.11364227132142762 error DX2HINF
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Figure 7.8: Simulation of the underdamped system when applying our synthe-
sized H∞ controller to our coupling variables and when using ZOH extraplation
method, over time.
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Furthermore, when checking if the controller the matlab function synthesises
with this parameters matches the same state matrix that characterizes Equa-
tion 7.4 we get different results, which clears up the fact that the synthesis of
the controller of our experiments is not well computed for reasons that, we still
cannot explain.
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Chapter 8

Conclusions

In this thesis we presented a co- simulation approach for linear time invariant
systems based on the control theory method, H∞ synthesis.

This papers aims to decompressed the detailed and required theoretical fact
one needs to understand our reference paper [1, Paper III].

After this theoretical part, a couple of experiments were performed in Python
to demonstrate the method. A couple of spring damper systems were used to
show the effect of the controller. Not all the results in [1] could be reproduced,
in particular the synthesis of the controller using the Matlab Control Toolbox.
Nevertheless, I believe this is a located issue, based on a misunderstanding of
the Matlab controlbox functions that synthesize H∞ controllers according to
an specific plant. I still cannot explain what has been the confusion when im-
plementing these control functions, nor how to specify the parameters that are
involved in the error plant.

This thesis opens up two fascinating fields of study, control theory and de-
coupled simulation. If I would have more time to continue with this project
I would have tried to inquire even deeper in the Matlab control Toolbox plat-
form, the python control library, and the analytical procedure that solves the
H∞ minimization problem.

109
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