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Abstract

This thesis’ main goals were to provide accurate forecasts and informative physical parameter
estimates for energy use of the district heating in the Tingbjerg neighborhood, Copenhagen. Our
work is aimed as a contribution for future work towards efficient on-demand energy production.
We applied Dynamic Double Machine Learning to estimate the causal effects of weather observa-

tions on energy use. These results were used as a reference for feature selection for Dense-LSTM and
ARMAX models. Dense-LSTM networks were used for 24 (hour) step ahead predictive modeling.
ARMAX models were employed for physical characteristic estimation.
According to Dynamic DML, we have found the most impactful weather observations to be am-

bient temperature, solar radiation, wind speed, rainfall and relative humidity, in this order. We
found Dense-LSTM networks to be superior to their LSTM counterpart and provide highly accu-
rate predictions. Lastly, by using ARMAX models we were able to extract informative physically
interpretable parameters such as heat loss coefficients, solar gain and diurnal curves, all of which
describe heat demand of different building groups under 24hr period.
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1 INTRODUCTION

1 Introduction

In Denmark, around 40% of the total energy consumption is related to buildings [1]. In an effort
to decrease this figure, increasing the energy efficiency of all existing housing is simply not feasible,
as well as impractical. An alternative idea is to focus on not overproducing power and, as a result,
cutting down on unnecessary waste of resources and pollution. Additionally, the ability to predict
demand allows for better integration of renewable energy sources such as wind and solar. These
power sources, however, are irregular and their power output depends on weather conditions. Hence,
the transition to an energy system based on renewables requires methods for forecasting of power
load and generation.
Despite all previous work and current initiatives, there exists a large and well documented discrep-

ancy between anticipated and actual energy consumption in buildings. [18] As such, in this thesis
we focus on forecasting the load side of this problem. In particular, we examine energy demands
for district heating of the neighborhood of Tingbjerg, Copenhagen (Figure 1).

Figure 1: Map of central Copenhagen district with the enlarged and highlighted map of the Tingb-
jerg neighborhood on the left hand side. Background map from Open Street Map [16].

District heating is an efficient way to provide heat to buildings in densely populated areas, and it
has become a crucial part of the agenda to ensure a renewable, non-fossil heat supply in the future
[2]. Part of its success is the flexibility that comes from the water used for district heating, since it
can store excess energy from renewable sources. Hot water circulating within the district heating
system is sent all around Tingbjerg neighborhood, where smart heat-exchangers cool the water by
employing its heat to warm radiators and tap water for several houses, meanwhile recording the
energy use, data which we use in this thesis.
One goal for on-demand energy production is to lower the temperature of the supply water circu-

lating within the district heating network. This adjustment would result in lower heat production
costs as well as reduced heat losses in the transmission and distribution network [12]. This tem-
perature change be done via developing control systems, but these require accurate forecasts and
models for energy demands for various districts. Providing such forecasts as well as an informative
understanding of energy demands is the goal of this thesis.
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1.1 Thesis Goals 1 INTRODUCTION

1.1 Thesis Goals

The goal of this thesis is to further the foundation onto which a better on-demand energy production
for heating of the Tingbjerg neighborhood can be built. More specifically the three main aspects
of interests are:

1. Feature selection:
Asses which weather observations hold significant effect on heat consumption and include
them in our models.

2. Prediction:
Highly accurate predictions of heat consumption under different weather conditions at least
24 steps (hours) ahead.

3. Physical Parameter Estimation:
Extraction of heat loss coefficients (HLC) for different building groups. Impact of sunlight on
energy consumption (Solar Gain) and daily patterns in heat consumption (Diurnal Curves).

These are three different tasks and a single method is not sufficient to optimally perform all of them.
Time series models might be better for estimating of physically interpretable parameters since they
are clearly parameterised. However, they might under-perform in predictive accuracy compared
to neural networks models. On the other hand, neural networks do not allow for straight-forward
parameter extraction.
Both approaches are sensitive to feature selection, we need to be able to identify which predictors

have a detectable causal relationship to energy consumption which we are modeling. To accomplish
this task we solicit Dynamic Double Machine Learning (Dyn. DML).

This thesis will focus on the techniques mentioned above to give us a well rounded understanding
and model for heating dynamics of the Tingbjerg neighborhood.

1.2 Thesis Structure

The thesis is structured into the following sections Theory, Method, Results, Discussion. Each starts
with a preamble explaining its internal structure and how its contents relate to the subsequent ones.

This thesis assumes the reader has a basic knowledge of mathematical statistics, such as Maximum
Likelihood estimation, Neural Networks, Time series and Function Estimation. However, we aim
to provide enough theoretical background that the method can be understood without it.

Without further ado, we begin with the Theory.
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2 THEORY

2 Theory

This section aims to provide the theoretical knowledge required for understanding the methods used
in the subsequent parts of the thesis.

We will begin by introducing Kernel Estimation for Regression, which is used to impute missing
measurement values from our data, as well as B-splines which we use to extend some of our time-
series models.
Next we will give an introduction to class of time-series models named Auto-Regressive Mov-

ing Average (ARMAX). These are the most basic physically interpretable framework we use for
modeling heating consumption in the Tingbjerg district. Their interpretability allows us to extract
physical coefficients from them, such as heat loss coefficients (HLC), solar gain and diurnal curves
for different groups of buildings.
We then introduce Long Short-Term Memory (LSTM) networks, why they are a suitable network

for time-series modeling and why we use them to provide 24h-ahead predictions for heating needs
of the neighborhood.
Lastly, we provide an understanding of Double Machine Learning which is used to estimate lagged

treatment effects of weather on heat consumption of the neighborhood. This is used as a guide for
feature selection for ARMAX and Neural Network models.

2.1 Function Estimation and Interpolation

We begin with a brief introduction of local polynomial approximation, which is used for imputation
of missing values in our data.

2.1.1 Kernel Estimation for Regression

Assume we have a theoretical relation

Y = g(X(1), ..., X(q)) + ϵ (1)

where ϵ is white noise and g is an unknown continuous function. Given N observations,

O = {(X(1)
1 , ..., X

(q)
1 , Y1), ..., (X

(1)
N , ..., X

(q)
N , YN )}

For the sake of visualisation, we can imagine our relation (1) be depicted in the following Figure
2.

0 100 200 300 400 500

0

20

40

60

80

100

120 Function g(X)
Obs. of Y from O( )

Figure 2: Some unknown function g(X) (red) with its noisy observations (black dots).
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2.1 Function Estimation and Interpolation 2 THEORY

Guessing the function is generally unfeasible, just like in the case depicted in Figure 2. Regardless
of this, we would still like to have an estimate ĝ(·) of g(·). One method to achieve this is general
kernel estimation.

A general kernel estimator for function g(X(1), ..., X(q)) is the Nadaraya-Watson estimator [11]

ĝ(x) =
1
N

∑N
s=1 Ys

∏q
i=1 k{h−1(x−X

(i)
s )}

1
N

∑N
s=1

∏q
i=1 k{h−1(x−X

(i)
s )}

(2)

where h ∈ [1,∞] (bandwidth), and k is the kernel function, for which there are many choices.
However, it can further be shown (see [7]) that the Epanechnikov kernel asymptotically minimizes

the mean squared error among all kernels given that an optimal value for bandwidth is chosen.

For a given bandwidth h, the Epanechnikov kernel is

kEpa
h (u) =

3

4h
(1− u2

h2
1{|u|≤h}) (3)

where 1{·} is the indicator function and u is the argument for k.

Lastly, we introduce the optimal choice in the bandwidth h. From [11] we know that the bandwidth
h determines the smoothness of ĝ:

• If h is large - variance is small, but the bias is large.

• If h is small - variance is large, but bias is small.

Using the illustrative example from Figure 1, this can be visualised as follows

0 100 200 300 400 500

0

20

40

60

80

100

120
g(X) - h too small
g(X) - h too large
Obs. of Y from O( )

Figure 3: Two estimates of g(·). One with bandwidth h that is too large (purple) and one with
bandwidth that is too small (green).

Figure 3 depicts the two cases for choosing sub-optimal value for the bandwidth h.

It can also be easily seen that in the limits

• As h→ ∞, ĝ(x) = Ȳ .

• As h→ 0, ĝ(x) = Yi at x = (X
(1)
i , ..., X

(q)
i ).
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2.1 Function Estimation and Interpolation 2 THEORY

We wish to select the bandwidth h s.t. that is an optimal mixture of bias and variance. This can
be done by minimising the mean squared error (MSE) between the observation Yi of the function
g(Xi) and its estimate ĝ(Xi).

MSE(h) :=
1

N

N∑
i=0

[ĝ(Xi)− Yi]
2 (4)

It is trivial to see that ˆMSE(h) → 0 as h → 0. We can avoid pitfall by using only a part of our
data to estimate ĝ and the rest to evaluate ˆMSE which is usually referred to as a Cross-Validation
(CV) procedure.
Most extreme version of CV is called ’Leave one out’ method. As the name suggests, we create an

estimator leaving our a single observation (Xi, Yi) and use it to estimate the error. More explicitly,
for every data-point (Xi, Yi) we define an estimator ĝ(i) for Yi based on all data except the one in
question.

The N estimators ĝ(1), ..., ĝ(N) which can be written as

ĝ(j)(x) =
1

N−1

∑
s ̸=j Ys

∏q
i=1 k{h−1(xi −X

(i)
s )}

1
N−1

∑
s ̸=j

∏q
i=1 k{h−1(xi −X

(i)
s )}

then the ’leave one out’ Cross-Validation criterion is

CV (h) :=
1

N

N∑
i=1

[Yi − ĝ(i)(Xi)]
2π(Xi)

and we can find the optimal value for bandwidth h by minimising the CV.
It can be shown that under weak assumptions that the estimate of the bandwidth ĥ obtained

when minimizing the CV criterion is asymptotic optimal (see [7]).

It is however important to note that while ’leave one out’ CV is often optimal, it realistically might
not be computationally feasible when the N is large. In that case one employs ’K-fold’ CV, where
data is divided into K folds, leaving one out for error estimation, and procedure is repeated on all
K folds.

2.1.2 B-Splines

Apart from the above method, there is another approach towards interpolation, smoothing, and
function approximation - Splines, which are piece-wise polynomials that are continuous differentiable
up to a certain order [6]. For our purposes we are interested in a particular type of splines, namely
B-splines, which have previously been used to model solar gain, such as in [19].

Definition 1 B-splines of order m are recursively defined starting with B-splines of order 1. A
B-spline of order 1 is a function defined on non-decreasing sequence t := (ti) are right continuous
characteristic functions of this partition, i.e.

Bi1 := X1(t) := 1{ti≤t≤ti+1} (5)

under the constraint that these functions form a partition of unity, i.e.

9



2.1 Function Estimation and Interpolation 2 THEORY

∑
i

Bi1(t) = 1, for all t (6)

In particular ti = ti+1 =⇒ Bi1 = Xi = 0.

From the first order B-splines we recurrently obtain higher order B-splines in the following manner:

Bim := ωimBi,m−1 + (1− ωi+1,m)Bi+1,m−1 (7)

where

ωim :=

{
t−ti

ti+k−1−t , if ti ̸= tt+k−1

0, otherwise
(8)

[6]

From the above Definition 7, we can see that the B-spline Bm(x) is a piece-wise polynomial of
order m, meaning that the spline consists of m polynomials of degree m− 1 which transitions from
one polynomial to the next at the knots. [19] Furthermore, we note that B-splines are completely
determined by the the m+ 1 knots which will be particularly useful for us in Section 3.4.

With B-splines defined we can proceed to define a spline function Sm,t

Definition 2 A spline of order m with knot sequence t is a linear combination of B-splines Bim

associated with that knot sequence. We denote this linear combination by

Sm,t := {
∑
t

ϕiBim : ϕi ∈ R} (9)

[6]

Using the spline function Sm,t we can approximate the unknown function of interest g(·) by scaling
up and down the individual B-splines by the scaling factors ϕi. [19] This can be done by, once
again, minimising some loss-function, e.g. the MSE

MSE(ϕ) =
1

N

N∑
i=0

[Sm,t(ϕ)− Yi]
2 (10)

this can be viewed essentially as regressing Yi on the base-splines Bim.

In case of our example in Figure 2, we can choose the knots to be the sequence t = [0, 1, ..., 1000].
With 9 B-splines, the spline interpolating ĝ(·) looks as follows.
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2.1 Function Estimation and Interpolation 2 THEORY

0 100 200 300 400 500

20

0

20

40

60

80

100

120 Function g(X)
Spline Estimate
B-Splines
Obs. of Y from O( )

Figure 4: True g(·) (red) and its spline estimate (orange) which is constructed out of the scaled
B-splines (ϕiBi in grey) visualised below.

In Figure 4 we see that with just 9 B-splines, the estimate for our example is rather accurate. We
see the individual scaled B-splines (in gray) which after being summed up result in our estimate.
It is obvious that with more B-splines and knots, our estimate would improve. However, in our

case we will not be using B-splines to interpolate our data, but use them to extend our models to
estimate some physical relationships.

We move on to introducing the time-series models which will later be extended using B-splines.
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2.2 Time Series Modeling 2 THEORY

2.2 Time Series Modeling

In this thesis we are modeling heat consumption, which is an autoregressive process (i.e. current
observations are dependent on the past observations). We model such processes using time-series
models such as ARMAX, and Recurrent Neural Networks such as LSTM.

We begin by introducing the parametric ARMAX models. This model will be using to model heat-
ing consumption with the goal of later extracting heat loss coefficient, solar gain and diurnal curves
out of the model.

2.2.1 Auto Regressive Moving Average (ARMA) models

A general form of an auto-regressive process is defined as follows.

Definition 3 The process yt is called an ARMA(p, q) process if

A(z)yt = C(z)et (11)

where A(z) and C(z) are monic polynomials of order p and q respectively, z is time lag operator,

A(z)yt = (1 + a1z
−1 + ...+ apz

−p)yt = yt + a1yt−1 + ...+ apyt−p (12)

C(z)et = (1 + c1z
−1 + ...+ cpz

−q)et = et + c1et−1 + ...+ cpet−q (13)

and et is a zero-mean white noise process with variance σ2e . The process is stationary if the roots
of A(z) = 0 lie withing the unit circle, and invertible if the roots C(z) = 0 do. [8]

As can be seen in Definition 3 above, the current observation yt of the ARMA process is dependent
on the past p observations of itself, as well as p past noise-terms. One models these types of pro-
cesses by estimating the polynomial coefficients of the A(z) and C(z) polynomials.

We can consider many processes as approximately an ARMA process, e.g. heat in the radiator, if it
was increasing for the past few hours, it is likely around the same or slightly increasing. However,
only past observations of the process might not be sufficient to explain it. As such, we might wish
to introduce some additional predictors. We do this by extending the ARMA model, by including
additional measurements xt, hence the extended models are called the ARMAX.

Definition 4 The process yt is called an ARMAX(p, q, d) process if

yt =
B(z)

A(z)
xt−d +

C(z)

A(z)
et (14)

where the monic polynomials A(z) and C(z) are the same as for the ARMA process, and xd is
the d-step delayed exogeneous input signal influencing the process yt via the polynomial

B(z) = b0 + b1z
−1 + ...+ bsz

−s (15)

Alternatively, if A(z) = 1 or C(z) = 1, the process is typically called MAX or ARX processes,
respectively [8].
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2.2 Time Series Modeling 2 THEORY

The ARMAX model can be both generalised and simplified, both representations being equally
useful and considered in this thesis. The generalisation is called the Box-Jenkins model.

Definition 5 The Box-Jenkins model is given by

yt =
B(z)

A2(z)
xt−d +

C1(z)

A1(z)
et (16)

where the polynomials A1(z) and A2(z) are allowed to have different model orders. However, both
polynomials still must have all roots withing the unit circle to ensure stability. The conditions on
C1(z) are the same as for the ARMAX model [8].

The main feature of this model is, of course, the different model orders for A1(z) and A2(z) monic
polynomials, which allows for added complexity. On the other end of the complexity spectrum,
however, we have regression with ARMA errors where we set the order of B(z) and A2(z) poly-
nomials to zero. The flexibility of model complexity is generally positive, nonetheless in turn this
results in complications w.r.t model selection.

2.2.2 Model Identification and Selection Tools

The key observation for our model selection is that after our desired model is fitted, we should
be left with residuals resembling independent and identically distributed (i.i.d.) white noise i.e.
normally distributed and, most importantly, with little to no significant dependence in time.
For this reason, a few methods for checking whether a given time-series is auto-correlated, or oth-

erwise has some time-dependencies. Most popular tools for investigating these are Auto-Correlation
Function (ACF), Partial Auto-Correlation Function (PACF), and their extensions. These are de-
scribed in detal in [8]. We restrict ourselves to describing their use. We do this through the use of
an example.

(a) Autocorrelation Function (b) Partial Autocorrelation Function

Figure 5: ACF and PACF for 40 time-lags of a highly auto-correlated and seasonal process. Blue
dots represent ACF and PACF estimate at the given time-lag. Light-blue areas represent 95%
significance.

Figure 5 illustrates the ACF and PACF estimates for a highly auto-correlated process. From ACF
we can also notice that the auto-correlations have a 24 hour seasonality. We therefore wish to select
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a model that in some way captures 24 hour seasonality as well as at least 5 lag points. After fitting
the model, we generally would wish to see the ACF and PACF for the residuals that looks like the
one in Figure 6.

(a) Autocorrelation Function (b) Partial Autocorrelation Function

Figure 6: ACF and PACF for 40 time-lags of white noise. Blue dots represent ACF and PACF
estimate at the given time-lag. Light-blue area represent 95% significance.

Figure 6 shows no significant correlation in observations for any time lag in model residuals. This
is the end goal for selecting a good model. Additionally, one usually performs a series of basic
whiteness tests for the residuals.
The general model selection process is usually dependent on having a good initial guess for the

type of model that would best fit our problem and then increasing the order of the monic polyno-
mials until the residuals do not seem to posses any time-dependence and pass some whiteness tests.

This leaves us with the issues of providing a good initial model guess, which we tackle in the
following section introducing the physical interpretation of the ARMAX model.

2.2.3 Physical Interpretation of ARMAX Process

It is not obvious how above time-series models can be used to model physical systems, and how to
interpret the ARMAX model. We present an example demonstrating the link between ARMAX
and state space model, which can be illustrated with a circuit diagram. For this purpose we adapt
an example from (Jiménez and Madsen, 2006) [9].

Consider a simplification of a house, which we can represent as a box with 4 walls (Figure 7). The
walls consists of 3 parts - inner, outer and insulating (middle) materials.
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Figure 7: Simplified representation of a house with 3 layered walls. Namely, inner wall (dotted),
insulation (solid gray) and outer wall (dashed). U - heat loss coefficient, g - solar energy transmit-
tance, Ta - ambient temperature, Ti - internal temperature, Ig - solar radiation and Q is the heat
flux through density of the wall.

We can represent the above system in an circuit diagram as Figure 8

Figure 8: Circuit diagram for the simplified representation of the house from Figure 7. H1, H2, H2

represent the heat conductance of the 3 wall layers with C1 and C2 being heat capacitances.

In our simple system, we can understand the heat exchange out through the wall Q as induced by
the difference between ambient and internal temperatures (Ta−Ti) and decreased by solar radiation
(Ig) as it heats up the building. This can be written as the following steady-state equation:

Q = U(Ti − Te)− gIg (17)

where U is the heat loss coefficient, and g is a parameter for solar energy transmittance.
In general, instead of a steady state, we wish to model the dynamic model which requires us to

examine additional parameters. For instance heat capacitance of the wall/building. In Figure 8 we
have further specified the heat capacitances (Ci) and conductances (Hi) of the 3 wall layers.
Taking Q as our main measured output variable, we write the dynamic state space model for the

above system as

C1
dT1
dt

= H1(Te − T1) +H2(T2 − T1) +
dω1

dt
(18)

C2
dT2
dt

= H2(T1 − T2) +H3(Ti − T2) +
dω2

dt
(19)

Q = H3(Ti − T2) + e (20)
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where e ∼ N(0, σ2q ), ω1 and ω2 are two independent Wiener processes with incremental standard
deviations σ1 and σ2.

We rewrite the above system into

[
dT1
dT2

]
=

[
− 1

C1
(H1 +H2)

H2
C1

H2
C2

− 1
C2

(H2 +H3)

][
T1
T2

]
dt+

[
H1
C1

0

0 H3
C2

] [
Te
Ti

]
dt+

[
dω1

dω2

]
(21)

Q = H3(Ti − T2) + e (22)

Introducing aij and bij to simplify the notation and considering only the deterministic part of the
state space model, Eq. (20) can be written as

[
dT1
dT2

]
=

[
−a11 a12
a21 −a22

] [
T1
T2

]
dt+

[
b11 0
0 b22

] [
Te
Ti

]
dt (23)

Taking the Laplace transform gives

[
s+ a11 −a12
−a21 s+ a22

] [
T1
T2

]
=

[
b11 0
0 b22

] [
Te
Ti

]
(24)

By isolating T1 and T2 we obtain

[
T1
T2

]
=

1

det(A)

[
b11(s+ a22) a12b22
a21b11 b22(s+ a11)

] [
Te
Ti

]
(25)

The measurement equation equivalent to (22) is

Q = c(Ti − T2) + e (26)

Substituting (25) in (26) gives

Q = cTi − c
a21b11
det(A)

Te + c
b22(s+ a11)

det(A)
Ti + e (27)

which can be seen as an ARMAX model of the form

A(q)Q = B1(q)Ta +B2(q)Ti + C(q)e (28)

The key observation is that order of the polynomials (A, B1, B2 and C) in the above equation (28)
follows directly form the specified RC-network. In this particular example, we have two unknown
states T1 and T2, for which we would include polynomials of order 2. Although, it is generally not
very computationally tasking to fit an ARMAX model, it is therefore quite easy to test different
order of polynomials, using the one above as a starting point.
Another important observation is that extending the ARMAX model above to account for other

measured parameters like solar radiation (Ig), is rather straight forward. We can include it in the
RC-diagram as another source or current, and the corresponding ARMAX model becomes

A(q)Q = B1(q)Ta +B2(q)Ti +B3(q)Ig + C(q)e (29)
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2.2.4 Obtaining Physical Parameters

A particularly important aspect of the above state-space model for us are the physical parameters.
In particular, in this thesis we are interested in the U value describing the heat loss coefficient due
to ambient temperature. Recall the steady-state equation we started with

Q = U(Ti − Ta)− gIg + e (30)

The equation above must correspond to the steady-state equation obtained from (28) by putting
q = 1. [9]. However, the comparison between (28) and the steady state equation above is not
straightforward. From the comparison we can obtain two estimates of U

U1 =
B1(1)

A(1)
=

∑s
i=0 b1i

1 +
∑r

i=0 ai
(31)

U2 =
B2(1)

A(1)
=

∑s
i=0 b2i

1 +
∑r

i=0 ai
(32)

In each case, the U value is a function of the parameters θ = (a1, ..., ar, b11, ..., b1s, b22)
T . From

which we can obtain the individual error for the U − values by the following error propagation
formula

V (U) =

[
v11 v12
v21 v22

]
=

(
∂f

∂θ

)
V (θ)

(
∂f

∂θ

)T

(33)

where f(θ) =
(
U1(θ)
U2(θ)

)
.

The two values estimated for U can be combined into a single value, by convex weighting as

U = λU1 + (1− λ)U2 (34)

Using the variance of each of the two U -values to determine the weighting λ,

λ =
v22 − v12

v11 + v22 − 2v12
(35)

And the corresponding standard deviation as the square root of its variance as

σ(U) =

√
v11v22 − v212

v11 + v22 − 2v12
(36)

We use the variance for construction of confidence intervals for our estimates.

With this we have all the necessary information to obtain physically interpretable parameters from
ARMAX models.
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2.3 Machine Learning and Recurrent Neural Networks

In the previous section we introduced the ARMAX model as a way of modeling heat consumption in
a building. While ARMAX models have an advantage of straighforward and physically interpretable
parameters, their performance depends on our ability to include explanatory variables in a smart
way, which might be a limiting factor for predictive performance.
One method for avoiding this issue is to completely nonparametrically model interactions of our

covariates using Neural Network models, more specifically networks such as the Long Short Term
Memory (LSTM) networks that are widely used for time-series modeling.

We assume most readers are familiar with the basic concepts of neural networks such as Multi-layer
Perceptron (MLP) and Convolutional Neural Networks (CNN). However, to be prudent we give a
simplified introduction that allows us to discuss Recurrent Neural Networks (RNN) and Long Short
Term Memory (LSTM) networks.

We begin with the basic perceptron model and build up towards the LSTM to explain why it is our
network of choice for modeling time-series data. In all following examples we will consider a single
input, single hidden node and single output networks as they provide all necessary components to
provide the necessary understanding without overburdening us with unnecessarily complex notation.

2.3.1 Basic Perceptron

At its most basic, a neural network is a function y(x, ω, b) with some internal weights ω. A simple
example of this is the perceptron with a single input, hidden and output nodes (Figure 9).

Figure 9: Representation of a basic perceptron network consisting of a single input node (square
with X next to it), single hidden node (circle with h next to it) and an output node (circle with y).
Output of one node into the next are weighted according to U and V .

The simple network above can be explicitly written out as a nested function

y = go[V ho]

= go[V gh(Ux)]
(37)

where V and U are some weights (ω = (U, V )), go is the output function and gh is activation
function of the hidden node, and h is the latent state of the node. We interpret the above equation
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(37) starting with innermost parenthesis where we have the network input x weighed by U that in
an argument for gh, which in turn is a weighted input for the output function go.
There is a variety of choice for hidden and output functions, but some popular candidates are the

g(a) = tanh(a) and the rectifier function (ReLu) g(a) = max(0, a).

We train the network by finding a set of weights ω which minimise some loss-function between the
multiple targets d and the output of the network y given some input pattern x. Given that we are
using the mean squared error loss function, we minimise

E(ω) =
1

2N

N∑
n=1

(dn − yn(ω, xn))
2) (38)

To minimise the above function we need to differentiate it w.r.t. ω. This is generally done numeri-
cally, using a scheme known as back propogation, which is explained in [15]. As with most numerical
approximation methods, the weights are updated. In the simple case above, the updates for the
weights are

input-to-hidden weights update ∆U = −η ∂E
∂ωU

hidden-to-output weights update ∆V = −η ∂E
∂ωV

(39)

This, of course, becomes more complex with more nodes and more layers added to the network,
but general principle remains. With this basic understanding of a simple network, we move onto
the Recurrent Neural Networks.

2.3.2 Recurrent Neural Networks

We can think of the most basic Recurrent Neural Networks (RNNs) as being very similar to the
basic neural network introduced above, with a few key differences.

1. The input is sequential, returning a sequence of data.

2. We send feedback from the hidden layer to accompany the next sequential input entering said
hidden layer.

Figure 10: Simple Perceptron (left) next to a simple Recurrent Neural Network (right).
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This is illustrated in the Figure 10, where we see the feedback from the hidden layer passed back
while being weighed by weights W . More formally, we have input data in form of a sequence
x0, x1, ..., xT , with t being the index of the sequence. The operation of this network is,

y(t) = go(V h(t)) (40)

h(t) = gh(Ux(t) +Wh(t− 1)) (41)

where go and gh are activation functions for output and hidden layer nodes respectively. Com-
paring to eq. (37) we see that the main difference is the additional parameter Wh(t− 1) which is
the weighted latent state from the previous observation in the input sequence xt.
The key to these networks is that they can be unfolded in time. We demonstrate this with the

following simple example.

Figure 11: Visualisation of unfolding a simple feedback network in time. The simple recurrent
network (left) is unfolded in time (right).

yo = go[V ho] = go[V gh(Ux0)]

y1 = go[V h1] = go[V gh(Ux1 +Wh0)] = go[V gh(Ux1 +Wgh(Ux0))]

y2 = go[V h2] = go[V gh(Ux2 +Wh1)] =

= go[V gh(Ux2 +Wgh(Ux1 +Wh0))] =

= go[V gh(Ux2 +Wgh(Ux1 +Wgh(Ux0)))]

(42)

Examining both Figure 11 and the last line of eq. (42), we see that the unfolded network in time
looks like a MLP with a few hidden layers that are not fully connected and some shared weights.
In fact, it can be shown [15] that the partial derivative required for weight update is of the form

∂Et

∂W
=

t∑
k=0

∂Et

∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂W

(43)

This is similar to how one trains a regular neural network through back propogation. The key dif-
ference between MLP training is that here we share weights which means that we have to sum up
the gradients for e.g. W along the layers (i.e. time steps). The process of unrolling an RNN in time
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is called backpropogation through time. [15] However, there is one prevailing issue with training a
RNN this way - exploding and vanishing gradients.

We can see how this occurs by examining equation (43). Note that the derivative ∂ht
∂hk

is in itself

a chain-rule [15]. As ht = gh(Uxt +Wht−1), we have ∂ht+1

∂ht
= g′h(·)W . If the difference between t

and k is large, as it would be if we are considering long sequences of data, we have long sequences
of multiplied gradients. It is then easy to understand the two numerical issues which can occur. If
gradients in this sequence are small - we risk them vanishing. If they are large - we risk an explosion.

There are several ways of combating this. The first one is to adjust weight initialisation and use an
activation function like ’relu’. Another, and more involved, solution is to change the behaviour of the
hidden feedback notes through a completely different network architecture. In the next subsection
we examine exactly this network, namely the Long Short-Term Memory (LSTM) network.

2.3.3 Long Short-Term Networks

The LSTM networks were first introduced by Schmidhuber (1997), and, as mentioned in previous
section, they deal with the problem of vanishing gradients.

Figure 12: Visual comparison of an RNN unfolded in time (left) and a LSTM network unfolded in
time (right).

The simplest way of understanding the LSTM network is as a RNN with only two key differences
that can be seen in Figure 12.

1. Additional recurrent parameter ct passed along ht in the regular RNN.

2. LSTM unit replaces the regular hidden node.

For an RNN, a hidden node consisted of some hidden function with internal weights, an LSTM
unit is simply a more complicated function which we illustrate below.

The additional parameter ct is the internal memory of the node which is used in the internal
computations of the LSTM unit in the following manner.
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Figure 13: Flowchart of a single LSTM unit. Orange squares represent a hidden funtion, yellow
circles represent an elemen-twise operation, and arrows represet the copy-operation. Original image
from [5], edited by Justinas Smertinas.

The LSTM unit visualised in Figure 13 mainly consists of 3 gates - forget (ft), input (it), output
(ot). All 3 gates have a similar structure, which in a simplified notation can be written as

ft = σ(xtU
f + ht−1W

f )

it = σ(xtU
i + ht−1W

i)

ot = σ(xtU
o + ht−1W

o)

where (Uf , U i, Uo) and (W f ,W i,W o) are weights and σ(·) is the logistic function. For the sake
of brevity, we will not go through the weight-updating procedure. However, we draw attention
to the relative derivative for the LSTM node ∂ct/∂ct−1, which explains the non-vanishing and
non-exploding gradients.

∂ct
∂ct−1

= ct−1σ
′(·)W fot−1 tanh

′(ct−1)

+ c̃tσ
′(·)W iot−1 tanh

′(ct−1)

+ it tanh(·)W cot−1 tanh
′(ct−1)

+ ft

(44)

Similarly to previous expression for the gradient of different weights [see equation], we will multiply
many terms like ∂ct/∂ct−1 above when computing such gradients. What can be concluded from the
above expression is that such terms can be both < 1 and > 1, hence avoiding gradients to vanish
or explode [15].

The property of non-vanishing gradients makes LSTM networks great for applications with long
sequences of data, such as those in this thesis.
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2.4 Double Machine Learning

One of the key problems in modeling physical and weather dependent systems is feature selection
[17]. We might have access to many predictors (e.g. weather observations), but it is not entirely
clear which are significant enough, or whether they provide information that others don’t.

Consider the following linear model

y = x1θ0 + g0(x2) + e (45)

where e is zero mean i.i.d. random noise, x1 is some an additional predictor we are considering,
and x2 is another predictor.

Usually, one would simply fit the model and check whether θ0 is significant. However, for large
neural network models this can be extremely computationally costly. In case of simple regression
be unclear in exactly what or how much impact x1 has, and since it might correlate with some x2.
But is this a causal connection? And how much? Typically, we do not know. Although, it would
of course be very useful information to have - it would greatly aid us in parameter selection.
To connect this idea to our investigation, consider the following illustrative example.

Figure 14: Example of how the sunlight (x2) is confounded with ambient temperature (x1) and as
such, has both direct and indirect effect on the energy consumption (y).

In Figure 14 we see how the effect of sunlight (x2) is confounded with ambient temperature (x1)
and as such, has both direct and indirect effect on the energy consumption (y). More explicitly,
the sunlight heats up the ambient temperature, thus influencing the energy consumption indirectly.
Additionally, sunlight directly heats up the house by shining on it. As a result, estimating the true
effect (θ) of ambient temperature becomes difficult as bias is introduced from sunlight.

Estimates for the pure treatment effect θ, when controlling for all many possible covariates X is
very important in medical drug trials. The statistical certainty is generally achieved through the
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means of randomised controlled trials. This, however, is impossible in most situations including
ours - we can not control the weather (yet). As such, we have only observational data.

We attempt to solve this issue with the Double/Debiased Machine Learning (DML) procedure. It
was first introduced by Chernozhukov et al. in 2018 [4], and focuses on providing a good estimate
for θ0 from observational data alone. We will begin by introducing the basic DML framework for
observation independent in time and then extend for time-series data.

2.4.1 Basic DML framework

Take a model {
Y = Dθ0 + g0(X) + U E(U |X,D) = 0

D = m0(X) + V E(V |D) = 0

where D is a treatment/policy variable of interest (e.g. ambient temperature from the previous
example) and X are our control covariates (e.g. other weather observations such as solar radiation,
wind-speed, etc.) and g0 and m0 are some functions describing relationships between X and Y,D
respectively [4]. We are interested in true treatment effect θ0.

The most basic DML framework

1. Split the set of observations into two strictly disjoint index sets I1 and I2.

2. Train model l̂0 on I2 to explain yi with xi, where xi are observations of the control covariates,
i.e. xi ∈ X.

3. Train model m̂0 on I2 to explain di with xi.

4. On I1, obtain prediction errors
ûi = yi − l̂0(xi)

v̂i = di − m̂0(xi)

5. Obtain estimate of θ0 from ûi and v̂i

θ̂0 =

∑
i∈I1

v̂2i

−1∑
i∈I1

v̂iûi


which is just the linear regression estimate.

We note that function l̂0 and m̂0 are estimated via straightforward ML algorithms like SVMs or
Random Forests, however they must be rather accurate.

Due to the data-splitting into indices I1 and I2 and the cross estimation procedure, the estimate θ0
should be uncorrelated to X [4]. Hence, the DML procedure above hinges on the data-splitting into
independent data-sets I1 and I2. This is difficult for time-series accomplish, as the observations
tend to be dependent in time, making us unable to use the basic framework for our data.

For the basic DML framework it can be shown that
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Theorem 1 Consider the Double ML estimator θ̂0 and assume that wi = (yi, di, x
T
i )

T are inde-
pendent draws from some distribution P and that U and V satisfy some weak regularity conditions
(see [4]). Then

√
n(θ̂0 − θ0)

D−→ N(0, σ2) (46)

as N → ∞ where

σ2 = [E(V 2)]−1E(V 2U2)[E(V 2)]−1 (47)

The above allows for a construction of confidence intervals around the θ̂0 estimate. However,
the first assumption that wi are independent poses an obvious obstacle for application of DML on
time-series data. We will approach this problem in the following subsection, but before that we
make a few observations about the general DML procedure.

As stated before, a crucial step in the DML procedure is the data-splitting into sets I1 and I2. This
could be an issue when there is a lack of data. However, in the case where the application requires
both accurate prediction of Y , which is done using neural networks, the data is already typically
split into adequately sized train, validate and test data-sets. Furthermore, if we wish to test an
additional predictor which is not in our original dataset, we can use our existing predictive neural
network as as model l̂0.

Lastly, we note that the treatment variable D in this context is thought to be binary, i.e. D ∈ [0, 1].
This come from the DML and other causal inference topics originating from the context of medical
trials. While there now are extensions to basic DML s.t. θ is a function estimate, that is not yet
the case for time-series version discussed in the following Section. This poses some difficulties when
working with continuous predictors such as e.g. ’rainfall’. One can decide on a threshold of what
is considered to be a treatment, e.g. ’rain vs. no rain’, but this is not always obvious. As such, we
will cover our approach to this in the Methods section.
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2.4.2 Dynamic DML framework

G.Lewis and V.Syrgkanis (2021) provide an extension of the basic DML framework towards time
series, where observations can be dependent in time. They proposed an extension of the DML
framework to estimate dynamic effects of treatment. This extended Dynamic DML approach al-
lows for both continuous and discrete treatments in each time period, which is conducive to weather
effects.

The work of Lewis and Syrgkanis is largely based on a recursive peeling process, typical in g-
estimation. This formulates a strongly convex objective at each stage, which allows the framework
to, among other things, provide finite sample guarantees. In their paper, they prove asymptotic
normality of the estimates, even when the state is high-dimensional and machine learning algo-
rithms are used to control for indirect effects of the state. [10]

First, it is shown that their results work on a high-dimensional partially linear Markovian data gen-
erating process and later generalise to more complex dynamic treatment models (Structural Nested
Mean Models - SNMMs). However, just looking at the Markovian data process is illustrative.

Consider the said Markovian process {Xt, Tt, Yt}mt=1, where Xt ∈ Rp is the state space at time t,
Tt ∈ Rd is the treatment at time t and Yt ∈ R is the observed outcome at time t. These variables
are related via a linear Markovian process:

Yt = θ0Tt + µ′(X) + ϵt

Tt = p(Tt−1, Xt, ξt)

Xt = ATt−1 +BXt−1 + ηt

where ηt, ξt and ϵt are exogenous mean-zero random shocks, independent of all contemporneous
and lagged treatments and states. Later this assumption is dropped for a more general notion of
conditional sequential exogeneity.

Regardless, it is easily seen how the Markov process appears to be quite similar to an auto-regressive
process with a single time-lag covered earlier in Section 2.

Dynamic DML on Single Time Series

Most importantly for our purposes, the work or Lewis and Syrgkanis provides results for the case
where the data are stemming from a single treated unit, as opposed to short chains of data from
multiple units (panel data).
It provides and method to estimate the dynamic treatment effects θk of a treatment at period t

on an outcome in the period t+ k, for k ∈ {0, ...,m} for some fixed look-ahead horizon m. For any
m this is done by splitting the time-series into sequential B = n/m blocks of size m. Then each
blocks is treated as roughly independent observations and apply the Dynamic DML algorithm to
estimate parameters ψ̂t, which due to markovian stationary nature of DGP, we have ψ̂ = θ̂m−t. [10]

Analogously to Theorem 1 for basic DML, we have a similar results for Dynamic DML which
allows us to construct confidence intervals on the dynamic treatment effect estimates.
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Theorem 2 Let Dn be a sequence of families of data generating processes obeying Equation 2.4.2,
with the further restriction that p(x, t, ξ) = f(x, t) + ξ, and such that all random variables and the
ranges of all nuisance functions are bounded by a constant a.s. and that M := maxmt=1||ψ∗

t ||2 is
bounded by a constant. Moreover, for any D ∈ Dn:

E[Cov(Tt, Tt|Xt)] = E[ξt, ξ
′
t] ⪰ λI

Moreover, let Fb denote the filtration up until (not including) block b and let:

ϵB(ĥ) :=
2

B

B∑
b=B/2

E[||ĥb(Zb)− h∗(Zb)||22|Fb]

κ :=
m

max
t=1

1

λ

m∑
j=t+1

||E[Cov(Tb,t, Tb,j)|Xb,t]||op

where Z denotes all random variables within a block b, and ĥb are the estimates of the nuisance
models used within that block. Assume that m and ĥ satisfy for some constant ϵ > 0:

m3
√

log(dm) max
t∈[m]

(κ+ ϵ)m−t+1 − 1

κ+ ϵ− 1
E[ϵB(ĥ)] = o(1),

√
Bm2E[ϵB(ĥ)] = o(1),

m3 log(dm)√
B

max
t∈[m]

(κ+ ϵ)m−t+1 − 1

κ+ ϵ− 1
= o(1)

Let J denote a (md)× (md) upper triangular matrix consisting of d× d blocks, s.t. the (t, j) block
is deined as Jt,j := 1t≤jE[Cov(Tt, Tj |Xt)]. Moreover, let Σ be a be a (md) × (md) block diagonal
matrix with d× d blocks, s.t. the (t, t) diagonal block is deined as:

Σ(t, t) := E[(Ȳt−1 − E[Ȳt−1|Xt])
2Cov(Tt, Tt, Xt)]

Then the estimate ψ̂ satisfies√
B/2Σ−1/2J(ψ̂ − ψ∗) →d N(0, Idm)

[10]

The proof for the theorem above can be found in [10], as well as proofs for finite sample l2-error.

This allows for the construction of the following Dynamic DML algorithm. The proposed algorithm
for estimating dynamic treatment effects which we use is as follows (presented in the following page).

With the above theoretical knowledge we have the foundation needed for modeling heating of the
Tingbjerg neighborhood considered in this thesis. And move onto the methodology section where
said knowledge was applied.
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Algorithm 1: Dynamic DML

Data: A single time-series consisting of n = Bm samples:(Xi
1, T

i
1, ..., X

i
m, T

i
m, Y

i)
n
i=1

Partition the data into B = n/m blocks of m periods.
Denote with Xb

t , T
b
t , Y

b
t the state, action, outcome pairs in the t-th period of block b.

for each block b ∈ {B/2, ..., B} do
for each t ∈ {1, ...,m} do

Regress Y b′
m on Xb′

t using blocks b′ < b to learn estimate q̂b,t of
q∗t (x− t) := E[T b

m|Xb
t = xt];

Calculate residuals: Ỹ b
t := Y b

m − q̂b,t(X
b
t ) for each j ∈ {t, ...,m} do

Regress T b′
j on Xb′

t using all blocks b′ < b to learn estimate p̂b,j,t of conditional

expectation: p∗b,j,t(xt) := E[T b
j |Xb

t = xt].

Calculate residuals: T̃ b
j,t := T b

j − pb,j,t(X
b
t )

end

end

end
Using all the blocks b ∈ {B/2, ..., B}
for t=m, down to 1 do

Let Ȳ b
t := Ỹ b

t −
∑m

j=t+1 ψ̂
′
j T̃

b
j,t

Find solution to ψ̂t ∈ Rd to the system of equations:

2

B

B∑
B/2

(Ȳ b
t − ψ̃′

tT̃t,t)T̃
b
t,t = 0

end

Result: Dynamic treatment effect estimates ψ̂ = (ψ̂1, ..., ψ̂m)
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3 Method

We begin by introducing the dataset, its origins and how we dealt with missing observations. Then
we present our Dynamic DML procedure results from which we used for LSTM and ARMAX
modeling.

3.1 Data Examination

In this section we cover the data which will be used and, more importantly, we present the pre-
processing it was subjected to before statistical modeling. We will begin be examining the district
heating data, its missing-value imputation procedure, and lastly present the local weather data
obtained to accompany it.

3.1.1 Heating data - Introduction

The main subject of the thesis is the heating data for the neighborhood of Tingbjerg in Copenhagen.
This data comes from HOFOR, and covers the period of 2019-07-01 to 2021-05-21, with 46 heating
meters for the entire district.

Figure 15: Map of Tingbjerg neighborhood in Copenhagen oriented North. Green lines denote
district heating pipes supplying hot water to local heat exchangers (orange dots). Numbers on the
image correspond to building groups of the heating exchanger datasets we were able to successfully
clean.

Each meter is located at a central heat exchanger for a number of surrounding buildings. These
stations can be seen in Figure 15, showing blue colored heat-supply pipes. Each meter provides the
following information about the surrounding buildings it is servicing.
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• Installation Number - Tracking number for installation of the meter. If there is maintenance
or repairs, installation number is updated.

• Meter Number - Identifying number of the meter. Does not change.

• Time - Date and time at which the measurement was made by the meter.

• Energy [MWh] - Cumulative measurement of energy consumed by the connected houses.

• Flow [m3] - Cumulative measurement of the water volume pumped through the connected
houses.

• Forward [Co] - Point in time measurement of the hot water entering the heating station.

• Return [Co] - Point in time measurement of the returning water temperature from the houses.

• Area [m2] - Total living area of the heated houses by the heat-exchanger.

This data is structured as follows

Install Nr. Meter Nr. Time Energy [MWh] Flow [m3] Forward [Co] Return [Co]

33027178 405718 19-07-12 13:00:00 24274.94 671253.2 66.54 43.57

33027178 405718 19-07-12 14:00:00 24275.00 671255.5 66.60 46.70

33027178 405718 19-07-12 15:00:00 24275.06 671257.8 67.01 43.69

Table 1: Example of observations from a single heat exchanger.

As illustrated in the Table ?? of the data is hourly observations, however at the later part of the
dataset, the observations come in 15 minute intervals. The dataset is not complete, there are many
missing observations, with gaps of varying sizes. We address our strategy for working with this in
the following subsection.
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3.1.2 Heating data - Imputing missing data

We begin by doing a cursory examination for any discontinuities in our data.

Figure 16: Gaps in time between consecutive measurement for all 43 uncleaned dataset. Each
dataset corresponds to a different colour. An increase from baseline value by 1 means data is
missing for the given observation. Thick bands imply many missing measurements.

From Figure 16, it is clear that every single measurement has some discontinuities. We note that
all meters seem to have discontinuities in similar areas apart from few larger exceptions. We also
note that our measurements seem to start having irregularities after late 2020.

In Figure 16 we note that measurement gaps for the later section of data have exact same disconti-
nuities. This suggests that the faults were not with the meters themselves, but rather with central
data-collection apparatus. The gaps have a tendency to be only multiples of one hour added onto
the original measuring period. However, the key insight is that most gaps are rather small, missing
a measurement one hour in between. This makes imputation via interpolation reasonable simple.
We further illustrate this in the following example.

31



3.1 Data Examination 3 METHOD

(a) Example of missing Energy measurements [MWh]. (b) Differenced Energy measurements [MW].

Figure 17: Example of missing energy measurements on the right and the difference version of same
observations obtained by taking odiff = ot − ot−1 where o is an observation.

From Figure 17a we note how the consumption of energy appears to be more or less constant
compared to the missing measurements. This, however is not entirely the case.
Upon closer inspection (see Figure 17b), it is clear that the energy consumption is not exactly

constant. It peaks in the evenings, is rather constant thought the night, and slowly picks up in the
morning. However, even visually it is not difficult to guess what measurement should be imputed.

We argue that this structure in the data can be used to impute the missing values using a kernel
estimation method presented in Section 2.1.1.

There are multiple considerations we wish to take into account when imputing the data. Depending
on the bandwidth, the polynomial interpolation might behave unexpectedly when there are large
gaps in data, for this we set some boundaries for imputed values and include this in cross validation.

Imputation should follow some underlying structure of the data. For instance, both Energy and Flow
measurements should be increasing as these are cumulative measurements. This can be expressed
as

yt ≤ yt+1

It is especially required for this condition to hold true for the imputed values,

0 ≤ ŷt+1 − ŷt (48)

We apply condition (48) towards our cost-function during the polynomial interpolation to ensure
the structure is kept as best as possible as well as that we are not under or over-fitting.

CV2 = CV +
N−1∑
t=0

|ŷt+1 − ŷt|1{ŷt+1−ŷt≤0} (49)

After interpolation, our cross validation curve should look as following
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Figure 18: CV2-curve for Energy Measurements with a clear minimum at approximately 0.00375.

Resulting in the following interpolation curve.

(a) Example of missing Energy measurements. (b) Differenced Energy measurements [MW].

Figure 19: Example of missing energy measurements same as in Figure 17b

From Figure 18 we see that the CV curve has a clear minimum. Figure 19b shows a red curve
representing the polynomial interpolation, which subjectively looks rather believable. Due to the
small number of occasional values we impute, and believable nature of the interpolation, we are
satisfied with this approach.

After the interpolation procedure, discarding faulty datasets with very large gaps in their mea-
suremts, or some other faults, we were left with 20 dataset for the following building blocks expressed
as coloured buildings in Figure 15.
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3.1.3 Weather Data

The weather observations for the Tingbjerg neighborhood in Copenhagen come from the Coper-
nicus Climate Data Store, namely the ERA5-Land hourly dataset, which is a realanalysis dataset
providing view of the evolution of land variables over several decades. It was produced by combining
model data with observations. It is a gridded dataset with a resolution of 0.1o×0.1o (longitude and
latitude) which corresponds to an approximate resolution of 9km. [20]. For our weather parameters
we pick the grid-point closest to the Tingbejerg neighborhood located approximately at (55.7o,
12.5o).
Although ERA5 is a very broad dataset with over 50 different variables relating to temperatures,

radiation, vegetation, wind, precipitation and more, we chose the following 6 as the main focus of
our investigation.

• Ambient Temperature - Ta [C] - hourly average of the ambient temperature.

• Solar Radiation - Ig [J/m2] - energy per square meter from solar radiation.

• Net Rain - Rnet [m] - accumulated liquid and frozen water that falls to the Earth’s surface.

• Relative Humidity - RH [%] - absolute humidity relative to a maximum humidity.

• Wind Speed - Ws [m/s] - self explanatory.

• Wind Direction - Wd - degrees from the north that wind is blowing.

These weather parameters were chosen as they can in obvious ways influence thermal character-
istics of an object by either facilitating thermal exchange with the environment or influencing its
rate.

3.1.4 Heating seasons

The focus of our investigation is to examine predictability and performance for the house heating
within the Tingbjerg neighborhood, thus it makes sense to only consider parts of our dataset during
which the houses were actually heated. Generally, in Scandinavia, the houses are heated when the
ambient temperature is below 15o C. To ensure that all of our data is well withing the heating
season, we split our observation into the two following 6 month segments.
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Figure 20: Ambient Temperature in Copenhagen over time. Two blue coloured regions correspond
the two house heating seasons. Each hourly observation is coloured according to energy consumed
during that period of time.
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Figure 20 shows two periods of between Nov. 20th and April 20th. which are clearly heated, with
Ta generally well below 15o C. Observation for these two heating seasons were the main focus of
our investigation for each separate group of buildings we had after our data-cleaning procedure.
The Method for splitting these two observation periods into training and validation datasets will

be presented together with the method for which it is relevant.

3.2 Dynamic DML

The Parameter of interest for our investigation is the hourly energy consumption by different build-
ing groups in the neighborhood. We begin by investigating whether the weather conditions have
significant effects according to Dynamic DML. Results of this investigation are later used as a
reference for feature selection in further modeling.

3.2.1 Weather as Binary Treatment

As discussed in Section 2. Dynamic DML required express our weather observations in term of
binary treatment. Doing this with some predictors is easier than with other, e.g. consider rainfall,
we might classify treatment to be when it is raining, or for solar radiation - when there is solar
radiation vs. when there is not.
However, sometimes this binary approach is not straightforward. In case of rainfall, during the

cold season in Copenhagen it is rare not to have days without any precipitation. Thus it would
make more sense to set a threshold for what is considered to be a treatment somewhere above a
certain level of rainfall for instance the median observation?

Here we propose a setting of a smart threshold which provides a good balance between the above
consideration.

Definition 6 We define the smart threshold (Tsmart) to be a real value s.t. it maximises the num-
ber of observations we can consider to be individual treatments.

More thoroughly, consider column vector X of length N containing observations of some predictor.
Given a threshold T ∈ R, create a column vector I s.t. every element In = 1{Xn>T}, In ∈ I,
n ∈ [1, ..., N ]. Then

Tsmart := argmax
T

(
N∑

n=2

1{In=In−1
})

For each weather effect we are considering this looks as follows.
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Figure 21: Comparison between number of observations that would be considered a treatment is a
threshold is chosen according to the Tsmart rule vs. the median.

From Figure 21 above, we see that Tsmart for each weather effect is relatively close to the median
observation, which makes intuitive sense. Another benefit of the smart threshold maximising num-
ber of observations that can be considered as treatments is the improves statistical performance of
the Dynamic DML algorithm.

3.2.2 Accounting for human factor

Lastly, we consider some confounding variables might have been missed. From literature exploring
similar topics (see [18]) we know that a significant variable to be considered is human intervention.
One special consideration we make is that during some parts of the day, inhabitants of the

Tingbjerg neighborhood might use more hot water than other times, this might be confounded
with the solar radiation treatment variable, as people are usually more active during the day. To
mitigate this, we include hour of day as a one-hot encoded variable within our Dynamic DML
procedure.

3.2.3 Implementation

The script for obtaining the Dynamic DML treatment effects was implemented in Python3, by
adapting example code from [10] and using the EconML python module.
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3.3 LSTM modeling

The main goal with the neural network modeling used here is to find a set of features from the
weather observations which maximises predictive performance 24 hours ahead, assuming knowledge
of the future weather.
For this purpose we use LSTM and Dense-LSTM networks. This section begins with an explana-

tion of feature selection scheme based on our Dyn. DML investigation, following that we explain
our model selection procedure and the data-sets it was performed on.

3.3.1 Feature Selection

Approaching feature selection with a simple comparison in terms of Pearson correlation constitutes
the common practice [17]. Although, as it often pointed out, a correlation plot might fail to capture
non-linear or confounded effects.

Energy_diff Flow_diff Forward Return Rnet Ig Ta Ws Wd Hrs RH

Energy_diff

Flow_diff

Forward

Return

Rnet

Ig

Ta

Ws

Wd

Hrs

RH

1 0.8 0.78 0.39 -0.11 -0.081 -0.84 -0.18 0.16 0.16 -0.09
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Figure 22: Correlation matrix between all covariates available for us to use in modeling the Neural
Networks.

This can be clearly seen when examining Figure 22 depicting correlation matrix for the heated-
season dataset, we see very little correlation between solar radiation (Ig) and hourly energy con-
sumption (Energy diff ), however examining results for Dynamic DML in Figure 25, the effects is
actually quite large and is in line with other literature [19].

After obtaining results from Dynamic DML, we order our predictors in order of magnitude of effect.
The order is as follows:

Ta, Ig, Ws, Rnet, RH
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We decided to test features by forward selection according to this order. With every combination
we included the metadata for hour of day (Hrs), which were one-hot encoded into the input matrix.
If a feature was not found to benefit the performance of the network (measured on the validation
dataset), it was skipped and the next one in line was added instead.

3.3.2 Networks Considered

Two different types of network architectures were considered:

• Multilayer-LSTM:

– 2-3 layers of LSTM nodes.

• Dense-LSTM:

– 2 layers Dense Fully Connected nodes.

– 1-3 layers of LSTM nodes.

More detailed descriptions of the two network architectures will be presented in the Appendix 2.

The main idea for considering not only simple LSTM networks is to facilitate non-linear effects and
interactions between the input predictors. For instance interactions between Ig and Hrs might be
more difficult to capture with a pure LSTM network.

Determining optimal number of nodes in each layers of the network and other hyper parameters
was done in a two-fold grid search. The goal of the our grid-search is not primarily to find the best
set of parameters for a specific network, but to make comparison between networks with different
sets of features more fair. As such our grid-search is rather broad.

• Grid Search 1:

– Large steps in node size parameter space.

– Relatively large drop-out rate to prevent overfitting.

• Grid Search 2:

– Small steps in node size around the best performing network from previous search.

– Include search over hyper-parameters such as drop-off, batch-size and learning rate.

• Record Results: For later comparison in Result Section ??.

In both cases we employed early-stopping to save time as well as not over-fit the models. For more
detailed description of the grid-search parameter space, as well as additional scripts for recreating
results, see Appendix.
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3.3.3 Data Splitting
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Figure 23: Selection for training (blue), validation (orange) and testing (red) datasets.

Figure 23 illustrates our selection for training, validation and testing datasets. These span obser-
vations from the following time periods. Colours correspond to hourly energy use [MW].

• Train: from 2020-10-20 to 2021-04-20.

• Validation: from 2019-10-20 to 2020-01-01.

• Testing: from 2020-01-01 to 2020-04-20.

For each set of features, our networks were trained on the training dataset, and validated on the
validation datasets. As we were interested in which set of features best improves our predictive
performance, we validated each network with a unique combination of features on the validation
dataset.
As a general neural network training procedure entails, as we validated our models on the valida-

tion dataset, we indirectly also optimised the networks for the validation dataset. For reason, the
final chosen networks’ performance results were tested on the test set.

3.3.4 Implementation

Implementation of the LSTM and Dense-LSTM networks was performed in Python3 using Tensorflow,
Keras and Pandas libraries.
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3.4 ARMAX modeling

The main goal of this thesis is using time series models to estimate solar gain, diurnal curve and
the heat loss coefficients for different building groups. We begin this section by introducing our use
of B-splines to extendtime-series models to estimate solar gain, diurnal curves. Following that we
introduce our 3 base models upon which further extensions will be selected using forward selection.
Lastly we explain our approach to model selection and validation.

3.4.1 Model Extension Using B-Splines

As mentioned in the Theory section, the ARMAX models are considered to be part of the linear
class of models, however some relations within our model might be non-linear, such as the relation
between solar gain and measured solar irradiation. This might depend on the position of the sun
and the site characteristics. [19] We might also consider that the human interaction with the build-
ings’ hot-water system could also be a non-linear function throughout the day. For this reason we
introduce B-splines into our model.

The property of the basis-splines summing up to unity (as described in Section 2.1.2) is the most
important for us to be able to implement them within our model. In essence, we use the scaled
B-splines to approximate the non-linear interaction by multiplying them with our parameter of
choice. More explicitly,

Solar Gain B-splines

We wish to approximate solar-gain from the Incident Solar Radiation Ig data we have access to.
It stands to reason that dependent on the direction of the house’s facade, the heat gain from solar
radiation is different at different times of day as the sun moves across the sky. We aim to approxi-
mate this non-linear solar gain relationship.

We define B-splines on the sequence of knots to be hours of day during which we have sunlight.
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Figure 24: Incident Solar Radiation (Ig) [W/m2] for the cold periods of the year plotted for each
hour of the day. Colours correspond to hourly energy use [MW].

As we can see from Figure 24 above, we generally only have sunlight between 05 : 00 and 19 : 00, we
therefore define the knots tHrs to be some increasing sub-sequence of length q, in [5, ..., 19]. Which
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produces

Sgain(x)Ig =

q∑
i=1

ϕiBi,m(x)Ig :=

q∑
i=1

si(x)Ig (50)

After including Sgain in one of our selected model, we can recreate the solar gain curve as a sum
of the basis splines with the estimated ϕi coefficients. To avoid confusion between the polynomials
in the time series models and B-splines we introduce notation si for the scaled B-spline.

Diurnal Effect B-splines

We define B-splines on the sequence of Hrs ∈ [0, ..., 23] hours of the day for the entirety of the
dataset. The set-up is very similar as for the Solar Gain, however this time we do not have any
physical observations to incorporate, so we simple include the following in the model of our choice

D(x) =

q∑
j=1

ϕjBj,m(x) :=

q∑
i=1

hi(x) (51)

Reconstruction of the diurnal curve D is once again rather straightforward, we simply sum up
B-splines weighted by ϕj . We note that the B-splines we use here are slightly different from the
ones introduced in Section 2.1.2. We would expect the diurnal curve to be periodic on the 24 hour
interval, hence we require the B-splines to also be periodic on the same interval. The periodic
B-splines are succinctly introduced in [3]. They use is identical to regular B-splines.
To avoid confusion between the polynomials in the time series models and B-splines we introduce

notation hi for the scaled periodic B-spline.

3.4.2 Base Models

For sake of comparison, we will be considering 3 models of increasing complexity. We will begin with
the following 3 base models and for each group of buildings begin forward selection of covariates.
As our dataset does not provide measurement for the internal house temperature, we include a
dummy variable Ti := 21 + ϵ where ϵ ∼ N(0, 0.05).

1. Linear Regression

As the crudest model, we will consider the simple linear regression model on the 48h averages
of our data. The models will be of the following form:

fa
y48t = β1Ta48t + β2Ig48t + e (52)

We chose 48h averages to potentially escape some of the auto-correlation within observations.

2. ARX
As an intermediate base-model we choose the following ARX model.

A1(z)yt = BTa(z)Ta +BT i(z)Ti +

3∑
i=1

siIg +

3∑
i=1

hi + ϵ (53)
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3. ARMAX
As our most complex base-model we choose the following ARMAX model.

A1(z)yt =
BTa(z)

A2(z)
Ta +

BT i(z)

A2(z)
Ti +

3∑
i=1

siIg +
3∑

i=1

hi + C1(z)ϵ (54)

We begin with hourly energy consumption modeled using Ta and Ig as inputs, as it largely agrees
with our Dyn. DML investigation as well as other literature (see [13]). As the stating order for
both ARX and ARMAX models we choose z = 2 as it agrees with DML investigation.

3.4.3 Model Selection and Validation

Model Selection:

Starting with the base model, our forward selection was performed in the following three steps:

1. Additional Predictor Selection

We proceeded to examine viability of adding other weather predictors such as winds-speed by
performing likelihood-ratio (LR) test between the original model and the extended one with
the additional weather parameter.

2. Spline Selection

After selecting all relevant weather predictors, we perform a similar operation in selecting the
number of base splines used for the Ig and Hrs components of our model. Each time we add
a spline, we perform a LR test with the previous model and continue this operation until we
do not see significant improvement.

3. Order Selection

Lastly, we extend the model complexity trough increasing the model order until the residual
auto-correlation looks mostly insignificant. We do this by examining ACF and PACF which
was introduced in the Theory Section 2.2.4.

Model Validation:

Our model validation procedure consisted of the two main stages

1. Time Series Plots

It is often easy to spot deficiencies or errors in our model through simple visualisation of its
performance, for this reason we performed diagnostic plots of

• Measure vs. Predicted Energy Consumption

• Residuals

• Inputs vs. Residuals

If nothing immediate could be visually identified, we moved on to the next stage.
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2. Testing the Residuals

We are interested in whether our model is able to capture most of the structure within
the measured observations and leave us with white noise. For this purpose we perform the
following whiteness tests.

• Examine ACF and PACF

• Examine Cumulative Periodgram

The above estimation and validation procedure was performed on each usable dataset corresponding
to a heat-exchanger servicing a specific building group in the Tingbjerg neighborhood.

3.4.4 Physical Parameter Extraction

The focus of interest from the ARMAX validated model are the parameters for Ta which can be
interpreted as the heat-loss coefficient. We extract our parameters for Ta in very much the same
way as presented in section 2.2.4 due to inclusion of the dummy variable. However, if one does not
include the dummy variable, the steady-state equation somewhat simpler

Q = U(Ta)− gIg + e (55)

The above equation we can still interpret as having the internal house temperature to be somewhat
constant, but captured by the moving average part of the equation. The estimate and variance are
still obtained in the same manner as in equations (32) and (33), however we do not have the
weighting according to equation (34).
Lastly, as each validated ARMAX model corresponds to a different set of houses, with different

heated area, we adjust each estimate for the area of the housing considered. This makes the values
more directly comparable.

3.4.5 Implementation

ARMAX modeling was performed in R using the TSA package which allows for fitting of Box-Jenkins
Models. Physical parameter extraction was performed by adapting code from [14], as TSA uses a
different model structure from regular lmfit or forecasting used in [14].
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4 Results

We begin this section by demonstrating results of our Dynamic DML investigation which were used
of for Neural Network and ARMAX modeling. This is followed by the results for Neural Network
modeling as they have been most heavily influence by feature selection. Lastly, we present the
extracted parameter estimates from the time-series models.

4.1 Dynamic DML Results

In this section we present results of Dynamic DML scheme which was presented in Section 2. and
implementation discussed in Section 3. The results from the following Figure were used for ARMAX
and Neural Net modeling.

4.1.1 Dynamic Effects of Weather Conditions on Energy Consumption
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Figure 25: Dynamic DML estimate of dynamic treatment effect for each weather condition as well
as the lagged effect. Estimated on Building Group 2.

In Figure 25 we observe that the 3 most prominent weather effects appear to be ambient temperature
(Ta), solar radiation (Ig) and wind-speed (Ws). We can also tell that the all three estimated effects
appears to be significant up to lag t − 2. With the effect for Ta potentially being statistically
significant for lag t− 2.
The last two weather effects, namely rainfall (Rnet) and relative humidity (RH) appear to heave

the least prominent effects and are only effective at the time lag t− 0.
The effects on energy consumption make intuitive sense. As we would expect, energy consumption

should to down as Ta increases, the sun radiates heat onto the buildings hence decreasing demand
and wind blows the heat away - increasing consumption.
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4.2 Prediction via Neural Networks

We begin by presenting the predictive performance of the LSTM and Dense-LSTM networks. We
predict the heat consumption 24 hours ahead for Building Group 2.

Model Ta Model Ig Model Ws Model Rnet Model RH
0.026
0.028
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RM
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RMSE comparison: LSTM vs Dense-LSTM networks
LSTM
Dense-LSTM

Figure 26: Validation RMSE for LSTM and Dense-LSTM networks. Each model increases in
complexity using more predictors as outlined in Section 3. Color codes correspond to weather effects
in Figure 25 that are in the order of Ta, Ig, Ws, Rnet and RH.
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Figure 27: Test RMSE for LSTM and Dense-LSTM networks. Each model increases in complexity
using more predictors as outlined in Section 3. Color codes correspond to weather effects in Figure
25 that are in the order of Ta, Ig, Ws, Rnet and RH.

Figure 27 shows Dense-LSTM network outperforming LSTM networks for any combination of pre-
dictors we considered on the test dataset. We see the best test RMSE for the Dense-LSTM networks
using Ta, Ig and Ws. Overall we see that at each step the Dense-LSTM networks significantly out-
perform pure LSTM networks.
Comparing to Figure 26 to Figure 27 it can be seen that results on the validation and test sets

are largely in agreement and unsurprisingly predictive accuracy for both types of networks slightly
deteriorates. However as the scale of y-axis in both Figures is kept the same, we see that the LSTM
predictions deteriorate more than for the Dense-LSTM networks - the performance gap increases.

The following Subsection 4.2.1 will present individual network performance results in more detail.
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4.2.1 LSTM network
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Figure 28: LSTM Network 24 step (hour) ahead Energy Use [W] predictions. Using Ambient
Temp., Hour of the day as predictors. Input: 48 step back predictor information and perfect weather
knowledge 24 steps ahead.

Figure 28 shows surprisingly good predictions using only Ta and input. However, there appears to
be severe lag (or rather a phase shift) in the predictions - the predicted (red) line generally appears
to be on the right of the observations (black). This is most apparent when viewing top left side
subplot illustrating the entire validation set. We note that the residuals appear to have a lot of
structure in them.
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Figure 29: LSTM Network 24 step (hour) ahead Energy Use predictions. Using Ambient Temp,
Solar Radiation, Wind-speed and Relative Humidity, Hour of the daya as predictors. Input: 48 step
back predictor information and perfect weather knowledge 24 steps ahead.

46



4.2 Prediction via Neural Networks 4 RESULTS

Figure 29 shows much improved predictions results. However, there still appears to be some shift
in the predictions - the predicted (purple) line seems to be on the right of the observations while in
the same shape. We note that this apparent lag is not of much fewer than 24 steps. Last, we note
that the residuals in Figure 29 clearly appear to not be white.

4.2.2 Dense-LSTM network

1100 1200 1300 1400 1500 1600
Observation Index

0.3

0.4

0.5

0.6

En
er

gy
 C

on
su

m
pt

io
n

24 step ahead, Predictions on Validation Sample

Validation Sample
Predicted

250 500 750 1000 1250 1500 1750 2000
Observation Index

0.3

0.4

0.5

0.6

0.7

En
er

gy
 C

on
su

m
pt

io
n

24 step ahead, Predictions on Validation Sample

Validation Sample
Predicted

0 50 100 150 200 250
Epoch

0.000
0.002
0.004
0.006
0.008
0.010

Training and Validation Loss
train loss
val loss

500 1000 1500 2000
Observation Index

0.2

0.1

0.0

0.1

Re
sid

ua
l

Residuals

Residuals
Residual Mean
3 std

Figure 30: 24 step (hour) ahead ’Energy Use’ predictions using only ’Ambient Temp’, ’Hour of
the day’ as predictors. Input: 48 step back predictor information and perfect weather knowledge
24 steps ahead.

Figure 30 shows the results for predictions using only Ta and input. At first glance they might
not appear better than for the LSTM network using the same inputs, while the RMSE is acutally
smaller: This can be be explained by the following consideration. The network consistently under-
estimates the energy consumption. While it is not good at estimating peak consumption, it also
doesn’t have the apparent phase shift that the LSTM network did.
We note that residuals are not evenly distributed around the mean zero and indicate there is

further structure that could be exploited.
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Figure 31: 24 step (hour) ahead ’Energy Use’ predictions using only ’Ambient Temp’, ’Solar
Radiation’, ’Hour of the day’ as predictors. Input: 48 step back predictor information and perfect
weather knowledge 24 steps ahead.
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Figure 32: 24 step (hour) ahead ’Energy Use’ predictions using only ’Ambient Temp’, ’Solar
Radiation’, ’Wind-speed’, ’Hour of the day’ as predictors. Input: 48 step back predictor infor-
mation and perfect weather knowledge 24 steps ahead.

By including solar radiation as a covariate to the model we obtain improved results. From Figure
31 it can be seen that the network underestimates energy consumption to a lesser degree than one
presented in the previous section. The network is generally able to capture peak consumption well.
We note how the residuals are more evenly distributed around the mean zero. Lastly, we note how
the model is still not able to capture the finer peaks of energy consumption.

Figure 32 show the best predictive network we were able to train using Ta, Ig and Ws. We note
how the residuals are even more evenly distributed around the mean zero. We also see that the
model is still able to capture the finer peaks of energy consumption, as compared to all networks
presented above.
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4.2.3 Optimal Parameters

Through our gridsearch we noticed two general patterns for optimal layer sizes for LSTM and
Dense-LSTM networks.
Layer Sizes:

• LSTM: Improves with larger layer sizes. Generally, the LSTM networks ended up being the
max layer sizes in grid-search.

• Dense-LSTM: Generally good performance with large number of nodes in the middle layers.
E.g. for Dense-LSTM model 3 the optimal size is [12, 24, 48, 24]

Learning Rate:
For both networks, relatively small learning rate of 0.0005, however further changed yielded very
little change in the results.

In the Appendix we provide the optimal parameters as well as implementation example for our best
performing model so that it can serve as a baseline in future work.

The topic of model selection with regards of choosing optimal parameters is further discussed in
Section 5.2.1.
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4.3 ARMAX physical parameter estimates

In this section we first present the HLC estimates for all 20 building groups, then solar gain and
diurnal curves.

4.3.1 Heat Loss Coefficient
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Figure 33: Heat Loss Coefficient (HLC) estimates for 20 groups of building in the Tingbjerg
neighborhood. Estimates from Linear Regression (red), ARX (yellow) and ARMAX-ish models
(green). We note that the sign of the estimates here is inverted for convenience. As temperature
increases, the heat loss should decrease.

Figure 34: Map of the Tingbjerg neighborhood with HLC represented as heat-map over the build-
ings. Numbers on the image correspond to building groups, for further reference see Figure 15
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Comparing estimates from the 3 different types of models we see (Figure 33) that there are sys-
tematic difference between the estimates, however the relative difference is almost always the same
(i.e. shape of the estimates is relatively the same). This suggests that if we wanted to compare the
buildings between each other, any of the models could potentially be used.
Nonetheless, some observation suggest benefits of using the most complex ARMAX-like model.

Most notably, the house groups 18 and 19 are nearly identical (as can be seen Figure 34). However
the difference in the estimate is very large when viewing the LR estimates.

Very noticeably, as the complexity of the model increases, the HCL estimated generally become
lower, and in this case, more optimistic. From Figure 33 we can also observe many cases where the
estimates from the ARX and ARMAX models are largely in agreement, however some estimated
differ by a significant margin.

Lastly, we can remark on some extreme observations. Group 4, has by far the largest HLC. This
is unsurprising, as it is a school building. Group 24 (located on the bottom left of Figure 34) has
the lowest HLC due to being a much newer buildings than ones in the rest of the building groups
considered.

4.3.2 Solar Gain

Examining Figure 35 we see the solar gain curves obtained through method described in Section
3.4.1. A recurring feature of most solar gain curves estimated from the ARMAX-like model have
a recurring feature, namely a large negative spike towards the end of the day. This is unsurprising
since our measurement for solar radiation is measured incident to earth, while the sun radiates at
a low angle during evenings leading to the gain function to compensate for the angle of radiation.
The second most prominent feature generally is a second peak around 11:00 each day for most

building-groups. This is most likely when the solar radiation has strongest impact on the building,
but it is not obvious when viewing the solar-gain curves. To illustrate this, we examine Figure 36
which illustrates the interaction between the solar-gain and average daily sunlight for each building
group.

From Figure 36 we see that indeed, the largest impact is around 11:00 for most houses. However,
we also see some positive impact adding to energy use, which should not be possible, it is very
likely that this is confounded effect from using 24 hours as knots for our B-splines and the results is
some confounding with the diurnal effect. We note that the confidence intervals around the positive
values generally are include zero.
We also see that many building groups appear to have two separate instances when solar radiation

has large impact on energy consumption. Considering that most building in the Tingjerg neighbor-
hood have East and West facing facades, this is unsurprising and is likely when most sunlight hits
the windows on those parts of the buildings.
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Figure 35: Solar Gain curves for the 20 building groups.

52



4.3 ARMAX physical parameter estimates 4 RESULTS

0 5 10 15 20

Hour

0.00

0.05

0.10

0.15

S
o
l.
 R

a
d
. 
[W

/m
2
]

0 10 20

0.4

0.2

0.0

A
v
g
. 
R

e
sp

o
n
se

 [
W

/m
2
]

Building Group 2

0 10 20

0.2

0.0

Building Group 3

0 10 20

0.75

0.50

0.25

0.00

Building Group 4

0 10 20

0.4

0.2

0.0

Building Group 5

0 10 20

0.4

0.2

0.0

A
v
g
. 
R

e
sp

o
n
se

 [
W

/m
2
]

Building Group 8

0 10 20

0.2

0.0

0.2

Building Group 9

0 10 20

0.2

0.0

Building Group 10

0 10 20

0.4

0.2

0.0

Building Group 11

0 10 20

0.75

0.50

0.25

0.00

A
v
g
. 
R

e
sp

o
n
se

 [
W

/m
2
]

Building Group 13

0 10 20

0.3

0.2

0.1

0.0

Building Group 14

0 10 20

0.2

0.0

0.2

Building Group 15

0 10 20

0.2

0.1

0.0

Building Group 16

0 10 20

0.4

0.2

0.0

A
v
g
. 
R

e
sp

o
n
se

 [
W

/m
2
]

Building Group 17

0 10 20

1.0

0.5

0.0

Building Group 18

0 10 20

0.75

0.50

0.25

0.00

Building Group 19

0 10 20

0.4

0.2

0.0

Building Group 20

0 10 20

Hour

0.2

0.1

0.0

0.1

A
v
g
. 
R

e
sp

o
n
se

 [
W

/m
2
]

Building Group 21

0 10 20

Hour

0.5

0.0

Building Group 22

0 10 20

Hour

0.2

0.1

0.0

Building Group 23

0 10 20

Hour

1.0

0.5

0.0

Building Group 24

Average Solar Impact
Average Incident Solar Radiation

Figure 36: Solar Impact curves for the 20 building groups.
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4.3.3 Diurnal Curves
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Figure 37: Diurnal Curve - Workday estimates (black) with respective the 95% confidence intervals
(grey). Diurnal Curve - Weekend estimate (red) with the 95% confidence intervals (rose).
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Examining the extracted Diurnal Curves for workdays illustrated in the above Figure 37 we see that
they generally have similar shapes. There is a minimum at approximately 05:00 in the morning
with a peak around 20:00. For weekends we see that the minimum shift slightly to the right and
the peak consumption is at approximately 13:00.

There are two building groups that clearly do not follow the general shape, namely 4 and 11. This
is consistent with our knowledge that building group 4 is a school and 11 has partial commercial
use.
Another pair of irregular looking observations are building groups 18 and 19. As previously noted,

these are two identical houses, however they appear to have an odd consistent response throughout
the day, following the usual dip at 05:00 in the morning. And the curves do not change significantly
betweeen workdays and weekends.

Examining said CI in Figure 37 we not a general trend that the 05:00 dip generally has a very small
CI, whereas the peaks in the afternoon have large variation. There are some notable exceptions to
this, notable groups 18, 19 and 22. We also note that there is a lot of overlap between confidence
intervals for weekend and workday diurnal curves for some building groups.
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5 Discussion

5.1 Dynamic DML

Using Dynamic DML has proven useful as a guide for feature selection for the predictive Neural
Network. Adding features in the order of treatment effect made marked improvements to predictive
performance, if only to a certain point. While the Dyn. DML suggested significant effects from
rainfall and relative humidity, they did not prove to be practically significant, or we simply were
not able to utilise them to improve neither Dense-LSTM nor ARMAX models. This is somewhat
unexpected, as the DML test statistics consider improvements of the predictive errors.
We still firmly believe in the potential future utility of dynamic DML estimates, especially since

running a simple DML procedure might be far less costly than training multiple neural networks
and comparing the results. Its ability to extract legged effects has similar utility to widely used
Auto-correlation and Lag-Dependence Functions, but for covariates rather than the time-series
itself.

5.2 Neural Network Models

In our investigation we were able to highly accurately predict energy consumption of buildings in
the Tingbjerg neighborhood 24h ahead assuming, accurate weather predictions, which provides a
good basis for future on-demand energy production.
In addition, we have found a surprising size difference and ease of training the Dense-LSTM

networks as opposed to the LSTM networks.

5.2.1 Training Parameters

Dense-LSTM networks require far less computational resources to train. We have found that the
training time for an optimal LSTM network was 20 times longer that for a Dense-LSTM network
purely due to their size difference.
As noted in the results section, LSTM networks benefit from larger layer sizes. However we are

skeptical towards this. Since neural networks are universal function approximators [15], it is very
likely that the increased size of LSTM layers allows the network to remember sequences of obser-
vations rather than extracting some relationship between the input covariates. We do not believe
this is the case for the Dense-LSTM network, as the optimal networks are of relatively small size.

Dense-LSTM networks are a fairly straightforward extension of the LSTM networks. While they
perform really well, they are quire sensitive to some specifications, particularly such as that all
layers (especially dense) must be returning sequences of numbers up to the penultimate LSTM layer.
Training a single network to return a sequence is challenging. From our experience, it might be
simpler to construct a network predicting values a set number of steps ahead and then construct
an ensemble network.
Surprisingly, the ’ReLu’ activation functions in both LSTM nodes performed better than the

generally recommended ’Tanh’. ’ReLu’ can have rather large output, and so are generally less
recommended in the context of LSTM networks. However, they do allow for easier estimation of non-
linear dependencies. Our best guess is that the ’ReLu’ gate might be better suited to accommodate
one-hot encoded inputs of our metadata, as well as non-linear combinations of features. We also
suggest further investigation in to how the ’Leaky-ReLu’ activation function or a mixture of them
between the Dense and LSTM layers impact performance.
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5.2.2 Performance

The Dense-LSTM network performance is impressive, especially given the relatively small size of
the network. However, there are possible improvements to be made by inclusion of additional
meta-data. As we saw from Section 4.3.3, each building group has a regular pattern in its heat
consumption. We already tried to capture this by including one-hot encoded metadata for hour of
the day. This could be expanded towards inclusion of day of the week, month or holiday metadata.
As we saw from Section 4.3.3, the profile for workday and weekend curves is quite different.

An obvious aspect that could be improved is the parameter search. Our grid-search had to be rather
broad due to the number of models we had to perform it on and limited computational resources.
More data would have benefited the training of the network. In our case, our validation sample

is covering only the part of the year where the temperatures are generally increasing (see Figure
23). This indirectly biases the network against observations where the general trend is for the
heat consumption to increase. A perfect scenario would be to have a year of observations for each
training, validation and testing set. This could futher decrease between the validation and test set
performance.

5.3 ARMAX models and Heat Loss Coefficients

In our investigation, we were able to successfully extract HLC, solar gain, and diurnal curves
from the fitted models. This provides insight into characteristics of different building groups in
the Tingbjerg neighborhood. With this data, we obtain an informative view of the heating needs
through the day which supports future work for on-demand energy supply.

5.3.1 Heat Loss Coefficient

As pointed out in Section 4.3.1, there are systematic differences between the HLC estimated by
different models, but the relative differences are almost the same.
One explanation for such differences in outlined in Section 2.4, specifically problems of estimat-

ing treatment effects from a regression model. When using the ARX and ARMAX models we
potentially capture more time-dependency in observations that would otherwise be attributed to
some covariates. This could explain why we see a smaller difference between estimates of ARX vs.
ARMAX when compared against the LR.
Confidence intervals on the estimate did not prove to be particularly useful when judging the

accuracy of the estimate. In Figure 33 we see that for all three model types the CIs are narrow,
meaning the estimates are precise. However, we are unsure of whether they are accurate.
If the goal is to provide the most physically accurate estimates as possible, then more complex

models could be a better option. They could then be further improved by better incorporation of
various covariates. Unlike with the LSTM models, we were not able to incorporate wind-speed into
the ARMAX models in a significant way. We speculate that the challenge for this is that energy
consumption is influenced not byWs itself, but its non-linear interaction with the Ta. However, Ta
and Ig were still the most significant covariates, which is in line with our Dyn. DML investigation
results.
The last consideration we have is that fitting ARX and ARMAX models is quite tedious and might

not be suitable for mass real world application. The LR estimates appear to be stable. While the
estimates are potentially more biased, if the bias is consistent, then the 48hr average LR estimates
could be ’good enough’ to compare HLC of different buildings.
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5.3.2 Solar Gain

One of the problems with our solar gain estimates is that some of them are positive, which is not
physically possible. The effects should be negative w.r.t. energy consumption. We suspect that this
is due to some confounding factors with the diurnal effect. Using the position of the sun as knots
for solar gain extraction (i.e. use azimuth angle) would potentially prevent that. Using location
of the sun instead of hours of day could also result in more accurate estimates, while in this thesis
we worked under the assumption that position of the sun stays consistent under the observation
period.
As we saw from Figure 36, it can be more informative to view the impact of the suns radiation,

rather than the pure solar-gain curves. Both tend to clearly show the influence on the east and
west facing facades of most buildings within Tingbjerg neighborhood (see Figure 15). However, the
impact curve shows a more realistic picture of when the sun will have the most impact on average.

5.3.3 Diurnal Curves

From our investigation of energy consumption via the ARMAX models, we were able to extract
diurnal curves for different building groups. We believe this to be a novel way to visualise heat
demand for the houses over a period of 24 hours. It additionally allows to identify the purpose
of the building, since the diurnal curves for residential and non-residential building have distinct
shapes.
As we can see, it is beneficial to split diurnal curves into work-day and weekend. The shapes of

the two classes are generally different with peaks at different times of day. It stands to reason that
the energy consumption would look different for workdays and weekends, since people spend more
or less time at home, and also sleep in on weekends, hence the shift of the minimum to the right.
Overall, it is very informative to see the physical parameters for each building, as it allow us to

anticipate when the building usually requires more heat supply, etc. We believe that this knowledge
provides a good foundation for more precisely supplying the neighborhood with heat without waste.

Finally, we could use a more stable ARMAX coefficient estimation tool. We used the TSA pack-
age in R which made things rather tricky and allowed to only use low order polynomials for the
covariates. The only better alternative for ARMAX model fitting is currently MATLAB, although it
comes with the disadvantage of not being open-source nor freely available.

5.4 Weather Data Considerations

Weather data used for this thesis has a relatively low resolution of approx. 9km in longitude and
latitude. This means we do not know the precise weather conditions in Tingbjerg, but rather an
average for the entirety of the Copenhagen municipality. The average might not be entirely accurate
for Tingbjerg neighborhood and so we would not be able to estimate the influence of more subtle
weather effects.
We consider its position on the map (see Figure 1) from which we see that the east side of the

neighborhood is spanned by open areas such as a field and a body of water. It could mean that the
neighborhood experiences more west-blowing wind, or that its relative humidity is different from
the average due to proximity to a body of water.

58



6 CONCLUSION

6 Conclusion

In this thesis we set out to investigate three aspects of district heating modeling, namely, feature
selection by application of Dyn. DML, 24 step-ahead prediction via Neural Networks, and physical
parameter estimation from ARMAX time-series models.
We found Dyn. DML to be a useful tool for feature selection. According to Dynamic DML

the most impactful weather observations on heating consumption are ambient temperature, solar
radiation, wind speed, rainfall and relative humidity, in this order (Figure 25).
Using the above results as a reference for feature selection, we were able to construct Dense-LSTM

networks that provide highly accurate 24h ahead predictions for heat consumption in the Tingbjerg
neighborhood, assuming perfect knowledge of future weather (Figure 32). Best performance was
achieved using ambient temperature, solar radiation, wind speed as weather inputs alongside a 48hr
look-back data. Implementation for this network can be found in the Appendix. We found Dense-
LSTM networks to be overwhelmingly better than the pure-LSTM counterpart (Figures 26 and
27).
Lastly, by using ARMAX models we were able to extract informative physically interpretable

parameters such as heat loss coefficients (Figure 33), solar gain (Figure 35), and diurnal curves
(Figure 37), all of which describe heat demand of different building groups under 24hr period.
Solar gain curves show clear influence of the east and west facing facades for the buildings in the
neighbourhood. Diurnal curves show clearly distinct curves between residential and other buildings.
Our work in this thesis provides a solid contribution for future work on on-demand energy pro-

duction.

6.1 Future Work and Extensions

We believe that our precice predictions and extraction of distinct building characteristics provide
provide a solid basis for future work for the on-demand heating production for the Tingbjerg neigh-
borhood. The most direct method is by integrating our finding in a control system construction for
heat production and supply.

Further work could be done to investigate effects of weather on various buildings and neighbor-
hoods via the Dyn. DML method. By having a large enough set of buildings one could perform a
panel study of weather effects. It would also be beneficial to extend the Dyn. DML method from
considering simple treatment policy effect estimation and towards function estimation.

This work shows that it is possible to construct Dense-LSTM networks which highly accurately
predict the heating consumption for a given building group. Apart from the base improvements we
suggested in the Discussion section 5.2, further extensions of this work could involve exploration
of prediction horizon, sensitivity of the model to irregular changes in covariates, and lastly, a
comparison of an ensemble network predicting heating demand of the entire neighborhood and a
network based on cumulative data on the entire neighborhood.
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7 Appendix 1

7.1 LSTM network - Grid-Search Parameters

For each set of input features we performed a general grid-search over the following parameter space
to find the optimal number of nodes in each layers

• Grid Search 1:

– LSTM Layer 1 nodes: n1 ∈ [12, 24, 48, 96, 192]

– LSTM Layer 2 nodes: n2 ∈ [12, 24, 48, 96, 192]

– Learning rate: 5 · 10−5

– Drop-off: 0.4

– Drop-off (recurrent): 0.4

– Batch-size: 128 observations

• Grid Search 2:

– LSTM Layer 1 nodes: n11 ∈ [n1 − 8, n1 − 4, n1, n1 + 4, n1 + 8]

– LSTM Layer 2 nodes: n22 ∈ [n2 − 8, n2 − 4, n2, n2 + 4, n2 + 8]

– Learning rate: [5 · 10−5, 5 · 10−4, 5 · 10−3]

– Drop-off: [0.2, 0.3, 0.4]

– Drop-off (recurrent): [0.2, 0.3, 0.4]

– Batch-size: 128 observations

7.2 Dense-LSTM network- Grid-Search Parameters

For each set of input features we performed a general grid-search over the following parameter space
to find the optimal number of nodes in each layers

• Grid Search 1:

– Dense Layer 1 nodes: nDense
1 ∈ [12, 24, 48, 96]

– Dense Layer 2 nodes: nDense
2 ∈ [0, 12, 24, 48, 96]

– LSTM Layer 1 nodes: nLSTM
1 ∈ [12, 24, 48, 96]

– LSTM Layer 2 nodes: nLSTM
2 ∈ [0, 12, 24, 48, 96]

– Learning rate: 5 · 10−5

– Drop-off: 0.3

– Drop-off (recurrent): 0.3

– Batch-size: 128 observations

• Grid Search 2:

– Dense Layer 1 nodes: nDense
11 ∈ [nDense

1 − 8, nDense
1 , nDense

1 + 8]

– Dense Layer 2 nodes: nDense
22 ∈ [nDense

2 − 8, nDense
2 , nDense

2 + 8]
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– LSTM Layer 1 nodes: nLSTM
11 ∈ [nLSTM

1 − 8, nLSTM
1 , nLSTM

1 + 8]

– LSTM Layer 2 nodes: nLSTM
22 ∈ [nLSTM

2 − 8, nLSTM
2 , nLSTM

2 + 8]

– Learning rate: [5 · 10−5, 5 · 10−4, 5 · 10−3]

– Drop-off: [0.2, 0.3, 0.4]

– Drop-off (recurrent): [0.2, 0.3, 0.4]

– Batch-size: 128 observations

7.3 Optimal Network Parameters

We list the features as well as hyper-parameters which achieved best results in our investigation.
Namely, the following parameters are for the Dense-LSTM model 3 (see Figure 32).

• Layer Sizes: [12, 24, 48, 24]

• Learning rate: 5 · 10−4

• Drop-off: 0.4

• Batch-size: 128 observations

In the following page we provide the entire script for implementation for the Dense-LSTM network
model as well as preparation of the dataset for training, validation and testing.
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7.4 Implementation Scripts

# -*- coding: utf-8 -*-
#-----------------------------
# You will need the following:
#-----------------------------
import numpy as np
import tensorflow as tf
import time

from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, TimeDistributed, LSTM
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K

from keras.callbacks import EarlyStopping

from sklearn.metrics import *
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

7.4.1 Script for Network Implementation

# -*- coding: utf-8 -*-
####################
# Dense-LSTM Model #
####################
model = Sequential()

# Learning rate and weight decay
adam = Adam(learning_rate=0.0005,beta_1=0.9,beta_2=0.99)
# Early Stopping - we don’t have all day.
es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=1, patience=100)
# Loss and Optimizer
model.compile(loss=’mse’, optimizer=’adam’)

# Layer 1 - Dense 12
model.add(TimeDistributed(Dense(12, activation=’relu’, input_shape=(train_X3.shape[1],

train_X3.shape[2]))))
#model.add(Dropout(0.4)) # How to add Dropout, if you want.

# Layer 2 - Dense 24
model.add(TimeDistributed(Dense(24, activation=’relu’)))
#model.add(Dropout(0.4))

# Layer 3 - LSTM 48
model.add(LSTM(48,

return_sequences=True,
activation=’relu’,
dropout = 0.4,
recurrent_dropout = 0.4))
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# Layer 4 - LSTM 24
model.add(LSTM(24, # !!Note that we are not returning sequences from this layer!!

activation=’relu’,
dropout=0.4,
recurrent_dropout=0.4))

# Layer Output
model.add(Dense(1))

history = model.fit(train_X, train_y, epochs=800, batch_size=128, validation_data=(
val_X, val_y), verbose=1, shuffle=True, callbacks=[es])

7.4.2 Scripts for Data Preparation

Here are some other useful methods for formatting time-series data into a supervised-learning
dataset for sequencial network.

# -*- coding: utf-8 -*-
# Original Author: Jason Brownlee
# URL: https://machinelearningmastery.com/convert-time-series-supervised-learning-

problem-python/
# Modified: Justinas Smertinas

# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

"""
Frame a time series as a supervised learning dataset.
Arguments:

data: Sequence of observations as a list or NumPy array.
n_in: Number of lag observations as input (X).
n_out: Number of observations as output (y).
dropnan: Boolean whether or not to drop rows with NaN values.

Returns:
Pandas DataFrame of series framed for supervised learning.

"""
n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):

cols.append(df.shift(i))
names += [(’var%d(t-%d)’ % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):

cols.append(df.shift(-i))
if i == 0:

names += [(’var%d(t)’ % (j+1)) for j in range(n_vars)]
else:

names += [(’var%d(t+%d)’ % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:

agg.dropna(inplace=True)
return agg
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The following function takes a Pandas dataframe, and converts it into a train, validate and test
dataset with wanted characteristics.

# -*- coding: utf-8 -*-
# Author: Justinas Smertinas

def create_dataset(dataframe, include = [’Energy_diff’, ’Ta’], lag_size = 72, to_scale
= True, horizon = 23, weather_knowledge = True):
"""
I’m sorry, I wrote this very tired, so it is not very readable code.
Arguments:

dataframe: Pandas dataframe.
include: List of Feature names in dataframe you want to include in the dataset.

FIRST ONE IS TREATED AS THE OUTPUT VARIABLE.
lag_size: Total lenght of sequence you want for one observation, is affected by

horizon argument.
to_scale: Whether to rescale data to be in [0,1] range.
horizon: How far ahead to you want to estimate. If lag_size = 72 and horizon =

23, the network would have 24 obs ahead output variable, and 48 obs long
sequences as input.

weather_knowledge: If True, horizon only removes observations of the output
variable, so we have perfect knowledge of covariates, but not output
leading up to the 24 step ahead output value.

Returns:
train_X, train_y
val_X, val_y
test_X, test_y
All are a 3D and 1D datasets, respectively.

"""

data = dataframe.loc[:,data_cold.columns.isin(include)]
values = data.values

# There should be calculated earlier. Evidence of my lazy programming
# Essentially, indexes showing where the train, validate and test samples should

begin and end in the original dataset.
train_ind1 = cold_ind2 - cold_ind1
train_ind2 = train_ind1 + (cold_ind4 - cold_ind3)
val_ind1 = int((cold_ind2 - cold_ind1)/2)
val_ind2 = cold_ind2 - cold_ind1
test_ind1 = 0
test_ind2 = int((cold_ind2 - cold_ind1)/2)

#-----------------------------------------
# normalize features OR don’t, your choice
#-----------------------------------------
if to_scale:

scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)
#print(scaled.shape)

else:
scaled = values

# frame as supervised learning
reframed = series_to_supervised(scaled, lag_size, 1)

#--------------------------------------
# drop columns we don’t want to predict
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#--------------------------------------
if ((horizon != 0) and (weather_knowledge == True)):

reframed.drop(reframed.columns[np.array(range(data.shape[1]*(lag_size-horizon
+1), data.shape[1]*(lag_size),data.shape[1]))], axis=1, inplace=True)

# split into train and test sets
values = reframed.values
train = values[train_ind1 : train_ind2, :]
validate = values[val_ind1 : val_ind2, :]
test = values[test_ind1 : test_ind2, :]

# split into input and outputs
train_X, train_y = train[:, :-data.shape[1]], train[:, -data.shape[1]]
val_X, val_y = validate[:, :-data.shape[1]], validate[:, -data.shape[1]]
test_X, test_y = test[:, :-data.shape[1]], test[:, -data.shape[1]]

elif ((horizon != 0) and (weather_knowledge == False)):
reframed.drop(reframed.columns[data.shape[1]*(lag_size) + np.array(range(1,

data.shape[1]))], axis=1, inplace=True)
reframed.drop(reframed.columns[np.array(range(data.shape[1]*(lag_size-horizon),

data.shape[1]*(lag_size)))], axis=1, inplace=True)

# split into train and test sets
values = reframed.values
train = values[train_ind1 : train_ind2, :]
validate = values[val_ind1 : val_ind2, :]
test = values[test_ind1 : test_ind2, :]

# split into input and outputs
train_X, train_y = train[:, :-data.shape[1]], train[:, -data.shape[1]]
val_X, val_y = validate[:, :-data.shape[1]], validate[:, -data.shape[1]]
test_X, test_y = test[:, :-data.shape[1]], test[:, -data.shape[1]]

else:
reframed.drop(reframed.columns[data.shape[1]*(lag_size) + np.array(range(1,

data.shape[1]))], axis=1, inplace=True)

# split into train and test sets
values = reframed.values
train = values[train_ind1 : train_ind2, :]
validate = values[val_ind1 : val_ind2, :]
test = values[test_ind1 : test_ind2, :]

# split into input and outputs
train_X, train_y = train[:, :-data.shape[1]], train[:, -data.shape[1]]
val_X, val_y = validate[:, :-data.shape[1]], validate[:, -data.shape[1]]
test_X, test_y = test[:, :-data.shape[1]], test[:, -data.shape[1]]

# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
val_X = val_X.reshape((val_X.shape[0], 1, val_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

return train_X, train_y, val_X, val_y, test_X, test_y

With the above scripts you should have everything required to reproduce our results of the best
performing Dense-LSTM model using Ta, Ig, and Hrs as input to the network. See Section 4.2.2.
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