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Abstract. This paper examines the properties of Carmichael numbers
with the aim of constructing an algorithm for computation. This includes
a recently published characterization, whose applications in computing
are studied. The resulting algorithm is then described and a run time
comparison with an older algorithm is presented.

1. Introduction

With the practical application of prime numbers in modern cryptography,
the search for primes has gained a lot of attention outside of mathematics. Many
algorithms have been developed to test primality as efficiently as possible and
in 2002 Agrawal et al. managed to develop the AKS primality test, which is a
deterministic test able to check primality in polynomial time [1]. The history of
prime testing stretches far back, however, and Pierre de Fermat famously stated
in 1640 [2]:

Theorem 1. (Fermat’s little theorem) If p is a prime, then for any integer b
coprime to p

bp−1 ≡ 1 (mod p) (1)

This begs the question: Is this a property unique for prime numbers? In
other words, could we with certainty determine the primality of a number by
checking if the congruence is satisfied for all integers b? The answer proves to
be no, as there is a set of composite numbers for which Fermat’s little theorem
also holds. These numbers, the ”Carmichael numbers”, are a challenge in the
construction of primality tests and more knowledge on them might result in
more efficient primality tests.

2. Properties of the Carmichael Numbers

Carmichael numbers are the composite numbers satisfying Fermat’s little
theorem. From the Chinese remainder theorem and the properties of primitive
roots, we can obtain a characterization of these numbers.
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Lemma 2. (Chinese remainder theorem [4]) Let n1, n2, ..., nr be pairwise rela-
tively prime positive integers. Then the system of congruences:

x ≡ a1 (modn1)

x ≡ a2 (modn2)

...

x ≡ ar (modnr)

(2)

has a unique solution modulo N = n1n2...nr.

Definition 3. (Euler’s totient function [5]) For a given integer n, ϕ(n) is the
number of positive integers up to and relatively prime to n. For example, 1, 3, 7, 9
are all the numbers up to and relatively prime to 10 and consequently, ϕ(10) = 4.

Definition 4. (Primitive roots [6]) A number a is a primitive root modulo n if
there exists an integer k for any value of b relatively prime to n that satisfies
ak ≡ b (modn). For example, with 31 = 3 ≡ 3 (mod 10), 32 = 9 ≡ 9 (mod 10),
33 = 27 ≡ 7 (mod 10) and 34 = 81 ≡ 1 (mod 10), we have that 3 is a primitive
root modulo n, since 1, 3, 7, 9 are all the relatively prime numbers up to 10.

Lemma 5. [5],[6],[7] If p is an odd prime and k ≥ 1, there must exist a primitive
root a modulo pk. Furthermore, we have that

(i) aϕ(p
k) ≡ 1 (mod pk) (ii)ϕ(pk) = pk−1(p− 1)

From this we can derive the traditional characterization of Carmichael num-
bers known as Korselt’s criterion:

Theorem 6. (Korselt’s criterion) A composite integer m > 2 is a Carmichael
number if and only if m is square-free and for every prime p dividing m:

p− 1 |m− 1 (3)

Proof. This proof is inspired by the proof given in [8]. We start off by showing
that a Carmichael number is odd. This can be proven by contradiction if we as-
sume that m = 2k is a Carmichael number, where k is an integer. The definition
of Carmichael numbers then gives us the congruence b2k−1 ≡ 1 (mod 2k). Set-
ting b = 2k−1, which is coprime to 2k, we obtain the congruence (2k−1)2k−1 ≡
(−1)2k−1 ≡ −1 ≡ 1 (mod 2k). This congruence only holds for k = 1 and since
2k = 2 isn’t a composite number, we get a contradiction. Thus, all the prime
factors of a Carmichael number are odd and Lemma 5 can be used.

We start off by writing an arbitrary Carmichael number of d prime factors
as m =

∏d
i=1 p

ki
i . Since the factors pi are prime, we can conclude from Lemma

5 that there must exist a primitive root ai modulo pki
i for each i. From the

Chinese remainder theorem (Lemma 2) we know that there also must exist
an a such that a ≡ ai (mod pki

i ) for each i. a must not be divisible by any
pi for ai to be primitive roots. Therefore, a is coprime to m and since m is a
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Carmichael number, the congruence am−1 ≡ 1 (modm) holds. Now, by reducing
this congruence, we have that am−1

i ≡ 1 (mod pki
i ). Comparing this to Lemma

5 (i), we see that ϕ(pki
i ) must divide m− 1 and from Lemma 5 (ii) we get that

pki−1
i (pi − 1) | m − 1. This only holds for ki = 1, as pi is a factor of m and

therefore cannot divide m− 1, proving that m is squarefree. Furthermore, this
gives us that pi − 1 | m − 1 for each i. Therefore, if a number is a Carmichael
number it is implied that it satisfies Korselt’s criterion.

To obtain an equivalence, we examine a composite, squarefree number m
satisfying Korselt’s criterion. Now put an integer a prime to m. Then it follows
that every prime factor p also is prime to a and Fermat’s little theorem gives us
ap−1 ≡ 1 (mod p). For any integer s we have that as(p−1) ≡ 1s (mod p). Since
p − 1 | m − 1, it follows that am−1 ≡ 1 (mod p). Furthermore, since this holds
for all factors p of m, the congruence am−1 ≡ 1 (modm) is obtained.

This characterization was discovered by Alwin Korselt in 1899. As an exam-
ple, we can check the numbers 147, 231 and 561. Factoring 147, we obtain the
prime factors {3, 7, 7} and the condition that the number must be squarefree
allows us to determine that 147 is not a Carmichael number. For 231 we obtain
the factors {3, 7, 11} and can conclude that 231 is squarefree. For the prime fac-
tor 7 however, we have that 7−1 ∤ 231−1 and consequently 231 does not satisfy
Korselt’s criterion. Finally, 561 is squarefree, as it has the factors {3, 11, 17}.
Checking for all the factors, we get that 3 − 1 | 561 − 1, 11 − 1 | 561 − 1 and
17− 1 | 561− 1 and 561 is thus a Carmichael number.

Unaware of the results of Korselt, Robert Carmichael went on to present
the first of these numbers in 1910 [9], hence their name. In that paper, as well
as a follow-up paper from 1912 [10], he showed some of the properties of these
numbers:

Theorem 7. Every Carmichael number m is odd, squarefree and comprised of
three or more factors. If p and q are prime divisors of m, then

(i) p− 1 | m− 1 (ii) p− 1 | m
p
− 1 (iii) p ∤ q − 1 (4)

It also follows that any prime divisor p <
√
m. A proof will be given in

Proposition 11.
Václav Šimerka already wrote about the first seven numbers in a paper from

1885 [12], but his work would go unnoticed. The first seven Carmichael numbers
are:

561, 1105, 1729, 2465, 2821, 6601, 8911

In 1994W.R. Alford et. al. proved that there exists infinitely many Carmichael
numbers [13], based on the work Paul Erdős.

3. The Kellner-Sondow Characterization

Exploring Carmichael numbers in the context of p-adic theory, Kellner
and Sondow [14] were able to give a new characterization for the Carmichael
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numbers. They first defined sp(m) as the sum of the digits of m when written
in base p. For example, s5(106) = 6 can be obtained by writing 106 = (411)5
and then summing the digits 4 + 1+ 1 = 6. Using this function, they were able
to characterize the Carmichael numbers as follows:

Theorem 8. An integer m > 1 is a Carmichael number if and only if m is
squarefree and for every prime p dividing m:

sp(m) ≥ p and sp(m) ≡ 1 (mod p− 1) (5)

This characterization was obtained without assuming compositeness and us-
ing the properties of the sp function. Kellner and Sondow defined the set S
as the squarefree integers m greater than 1, for which every prime divisor p
satisfies sp(m) ≥ p. They then managed to prove that the Carmichael numbers
were a subset of S.

Similarly to the example for Korselt’s criterion (Theorem 6), we examine
the numbers 231 = 3 · 7 · 11 and 561 = 3 · 11 · 17 again. Since 231 = (450)7, we
get that s7(231) = 9. As 9 ̸≡ 1 (mod 7 − 1) we can confirm that 231 is not a
Carmichael number. For 561 however, we can obtain the digit sums s3(561) = 7,
s11(561) = 11 and s17(561) = 17. These all satisfy the congruence in Theorem
8 and 561 is once again confirmed to be a Carmichael number.

To effectively make use of the sp function we first describe an arbitrary
integer N as N = akb

k + ak−1b
k−1 + ... + a1b + a0, where b is the desired

base. The digits for (N)b are then the coefficients {ak, ak−1, ..., a1, a0} and

sp =
∑k

i=0 ai. For a factor p of a Carmichael number m, we note that m can
be written as m = akp

k + ak−1p
k−1 + ...+ a1p, i.e. a0 = 0, as p must divide m.

Since m is squarefree, we get that a1 > 0 and setting mp = m/p we get that
sp(m) = sp(mp).

We can now examine the similarity between the new characterization and
Korselt’s criterion. Using the description above, we can write that m−sp(m) =∑k

i=1 aip
i−

∑k
i=1 ai. Combining the sums, we get thatm−sp(m) =

∑k
i=1 ai(p

i−
1). For any positive integer x, px− 1 = (p− 1)

∑x−1
i=0 pi, i.e. a multiple of p− 1.

Thus, p− 1 | m− sp(m) = (m− 1)− (sp(m)− 1). Korselt’s criterion states that
p − 1 | m − 1 and, consequently, p − 1 | sp(m) − 1, which matches Theorem 8.
For a more detailed analysis, see Section 4 of [14, p. 8].

Another consequence of this description can be seen, when studying the
largest factor r of a Carmichael number. If mr is the product of the remaining
factors, i.e. mr = m/r, and d is the total number of factors, then rd−1 >
mr > r. The upper limit comes naturally from r being the largest factor. For
the lower limit, assume that mr ≤ r. (mr)r is then represented by a single
value and as we have for any digit ak that ak < r, sp(mr) becomes less than
r and is thus unable to satisfy Theorem 8. From this we can write mr as
mr = ad−1r

d−2 + ad−2r
d−3 + ... + a1. (mr)r and, consequently, (m)r have a

number of digits less than or equal to d− 1. Setting d = 2 would yield one digit
and thus not satisfy Theorem 8, proving that d ≥ 3.

Other properties of a Carmichael number m, such as 2 ∤ m and p <
√
m for

any factor p of m, can also be derived using the new characterization. More-
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over, the property given in Theorem 7 (ii) can also be proved using this new
characterization:

Corollary 9. If p is a factor of a Carmichael number m, with mp being the
product of the remaining factors, then

p− 1 | mp − 1 (6)

Proof. To prove Equation 6, we start off with the simplest example before gen-
eralizing for any p and mp. If the number of factors d = 3 and r is the largest
factor, then (mr)r has two digits a2, a1 and mr can be written as mr = a2r+a1.
Describing sr(mr) in terms of a1, we get

sr(mr) =
mr − a1

r
+ a1 (7)

From Theorem 8 we have that r− 1 | mr−a1

r + a1− 1. As multiplication with an
integer doesn’t destroy divisibility, we multiply with r to get that r−1 |mr−r+
(r−1)a1. Adding and subtracting by 1, we get r−1 |mr−1−(r−1)+(r−1)a1,
with the last two terms being obvious multiples of r−1. This means that mr−1
also has to be a multiple and thus r − 1 |mr − 1.

Generalizing this for any mp yielding n digits when written in base p, we
can write sp(mp) in a similar fashion:

sp(mp) =
mp −

∑n−1
i=1 aip

i−1

pn−1
+

n−1∑
i=1

ai (8)

where a1, a2, ... are the digits of mp in the base of p. Following the same pro-

cedure, we end up with p − 1 |mp − 1 − (pn−1 − 1) +
∑n−1

i=1 (p
n−i − 1)pi−1ai.

Since for any positive integer x, we have that px − 1 = (p − 1)
∑x−1

i=0 pi, we
can disregard all the terms with coefficients of this shape. This leaves us with
p− 1 |mp − 1 once again.

This property can be very useful in the computation of Carmichael numbers
and is used in both the algorithms appearing in the following section. Kell-
ner and Sondow also gave another relationship with clear applications for the
computation, namely a sharp upper limit for the prime factors:

Theorem 10. For any prime p dividing a Carmichael number m:

p ≤
√

17m

33
(9)

4. Making an algorithm

As Carmichael numbers are characterized in terms of their prime factors,
the challenge of creating an algorithm that generates these numbers seems to
be how to obtain the factors and check them in as few steps as possible. To
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avoid time consuming primality tests, a precomputed list of primes can be useful
when checking these factors. Obtaining the factors first and then constructing
the Carmichael number has the advantage that a factorization process can be
avoided. No efficient integer factorization algorithm is known, although it hasn’t
been proved that no such algorithm exists [15].

My work was based on the algorithm used by Pinch to generate all the
Carmichael numbers up to 1015. Pinch constructed the algorithm using the
following three propositions [16]:

Proposition 11. Let m be a Carmichael number less than X, with d factors
arranged in increasing order p1 < p2 < ... < pd.
(i) Let n < d and put P =

∏n
i=1 pi. Then pn+1 < (X/P )1/(d−n) and pn+1 is

prime to pi − 1 for all i ≤ n.
(ii) Put mr =

∏d−1
i=1 pi and L = lcm{p1 − 1, ..., pd−1 − 1}. Then, for the largest

factor r, mrr ≡ 1 (modL) and r − 1 divides mr − 1.
(iii) Each prime factor p satisfies p <

√
m <

√
X.

Proof. To prove part (i), we first note that for any integer n, m has d−n factors
larger than or equal to pn+1. This gives us the inequality P · pd−n

n+1 < m and,

consequently, pn+1 < (X/P )1/(d−n). Since pn+1 is a prime number larger than
pi − 1 for all i ≤ n, it follows that pn+1 is prime to pi − 1. Part (ii) follows
directly from Korselt’s criterion and r − 1 | mr − 1 is proven in Corollary 9.
For part (iii) we also use the results of Corollary 9. p− 1 | mp − 1 implies that
p ≤ m/p and the condition that m is squarefree gives a strict inequality, as
p = m/p⇔ m = p2. Therefore, it follows that for any factor p of a Carmichael
number m, p <

√
m <

√
X [11].

Proposition 12. Let P =
∏d−2

i=1 pi. There are integers 2 ≤ D < P < C such
that, putting ∆ = CD − P 2, we have

q =
(P − 1)(P +D)

∆
+ 1,

r =
(P − 1)(P + C)

∆
+ 1,

P 2 < CD < P 2(
pd−2 + 3

pd−2 + 1
)

Where q and r are the second largest and the largest prime factor, respec-
tively.

Proposition 13. Let P =
∏d−2

i=1 pi. Then

q < 2P 2

r < P 3

Proof. To prove the inequalities we use Proposition 12. Putting ∆ = 1, d < P
and substituting into the expression for q we get that q < (P−1)(2P )+1 < 2P 2.
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For the second inequality we use the inequality of Proposition 13. PuttingD ≥ 2
and pd−2 ≥ 3, have that C ≤ 3P 2/4. Using this in the expression for r, we obtain
r < P 3.

At the first stage of Pinch’s algorithm, successive lists of primes p1, ..., pd−2

are generated, following the inequality of Proposition 11 (i). From these primes

P =
∏d−2

i=1 pi is then calculated and depending on the size of P , two different
algorithms are used to obtain q and r. Pseudocode representation:

Algorithm 1 Pinch’s algorithm

Use Proposition 11 (i) to generate lists of primes

for all lists of primes do

P ← the product of the primes

if P is small then

smallP(P)

end if

if P is large then

largeP(P)

end if

end for

For smaller values of P , Proposition 12 is used: first by looping over all D
within 2 ≤ D < P , then all C permitted by the inequality for Proposition 12
(iii). If the resulting q and r are prime numbers satisfying Korselt’s criterion,
then the product Pqr is a Carmichael number. Pseudocode representation:

Algorithm 2 For Smaller P

function smallP(P)

for D ← 2 to P do

for C ← P 2/D to P 2(pd−2+3
pd−2+1 )/D do

Calculate q and r according to Proposition 12

if prime and satisfying Korselt’s criterion then

add Pqr to list of Carmichael numbers

end if

end for

end for

end function

For larger values of P , q permitted by Proposition 11 (i) and 13 (i) are instead
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looped over. For such q, mr = Pq and L = lcm{p1 − 1, ..., pd−2 − 1, q − 1} are
calculated and the possible r are computed in two distinct loops.

For smaller r, a value P ′ that satisfies mrP
′ ≡ 1 (modL) is computed.

For numbers congruent to P ′ (modL) and larger than q, a primality check and
Korselt’s criterion are used to determine if r is a factor of a Carmichael number.

Larger r are obtained by running over the small factors f of mr − 1 and
computing (mr − 1)/f + 1. If the resulting number is a prime r satisfying
mrr ≡ 1 (modL), then it is a factor of a Carmichael number. Pseudocode
representation:

Algorithm 3 For Larger P

function largeP(P)

Obtain q permitted by Propositions 11 (i) and 13 (i)

for all permitted q do

mr ← Pq

for small r larger than q do

Find P ′ were mrP
′ ≡ 1 (modL)

if r is prime, r ≡ P ′ (modL) and r satisfies Korselt’s criterion then

add Pqr to list of Carmichael numbers

end if

end for

for small f do

r ← (mr − 1)/f + 1

if integer, prime and mrr ≡ 1 (modL) then

add Pqr to list of Carmichael numbers

end if

end for

end for

end function

Pinch’s algorithm effectively limits the numbers checked for the last two
prime factors, by expressing them in terms of P . Moreover, the algorithm is
split into smaller algorithms at two points depending on the size of P and r,
respectively. This allows the values of q and r to be computed appropriately for
the given size, however finding a suitable range where to consider a value large
or small requires some testing. The process where successive lists of primes are
created can also be time consuming for certain X and for X = 106 it took up
roughly 41% of the total computing time. In the creation of these lists, it is
also necessary to know the maximal number of factors for a given X to avoid
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unnecessarily large lists.
With this in mind, I created my own algorithm. The idea was to start from

the largest factor and then generate the lower factors to obtain the Carmichael
numbers. This required a factorization process, which was mentioned before to
be a slow process for large arbitrary integers. The speed of the algorithm was
therefore dependent on how effectively the conditions given from the properties
of Carmichael numbers could limit this process. The new findings of Kellner and
Sondow were also taken into consideration and the sharp estimate from Theorem
10 allowed for a shorter list of primes to be examined. Other helpful conditions
were unfortunately not found and the characterization itself was shown to be
less efficient than Korselt’s criterion for testing.

In a run time comparison, I let two functions examine lists of a random
number of randomized prime factors. The first function used Korselt’s criterion
to determine if the factors constituted a Carmichael number and the second one
used the Kellner-Sondow characterization. There was a total of 105 lists and
both functions examined the same lists. The first function completed the task
with an average of 2.0075s and the second in 2.7947s, meaning that the run time
for checking with the Kellner-Sondow characterization was on average roughly
39% slower. That being said, the choice of testing method had a minimal effect
on the speed of the algorithm, with the testing taking up a maximum of roughly
5% or 7% of the total run time of my algorithm for X up to 1010, depending on
the method.

Using Theorem 10 we start by looping over every prime r up to
√

17X
33 , where

X is the desired upper limit for the Carmichael numbers. Now we can loop for
integers f larger than 1 and use Theorem 7 (ii) to obtainmr asmr = f(r−1)+1.
As for the upper limit of mr, the smallest value of X/r and rD−1 is chosen,
where D is the maximum number of factors for a Carmichael number within X.
These mr are then factorized. These factors must be prime numbers satisfying
Korselt’s criterion and the number of factors must be less than or equal to D−1.
If a square or a factor not satisfying this is found, we immediately move on to
the following mr, to shorten the factorization process. The factorization process
grows to be the most lengthy process for higher mp and shortening this process
has great significance for the efficiency of the algorithm. If all factors satisfy the
criterion, however, these are multiplied with r to obtain a Carmichael number.

Algorithm 4 is a pseudocode presentation of the procedure:
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Algorithm 4 My algorithm

for every permitted prime r do

M ← the lower value of rD−1 and X/r

for f where r < mr < M do

mr ← f(r − 1) + 1

for every possible factor of mr do

if squares, factors not satisfying Korselt’s criterion or more thanD−1
factors are found then

Break loop

end if

end for

if all factors satisfy Korselt’s criterion then

mrr is a Carmichael number

end if

end for

end for

Both of the algorithms, written in Python code, can be found here.

5. Results

The new algorithm had less of a dependency on the number of factors, as the
factorization process didn’t assume a certain number of factors. However, since
the upper limit X/r is large for r << X, the secondary upper limit pD−1 was
introduced, with D being the maximum number of factors, and the factorization
process was stopped after D− 1 factors to avoid superfluous calculations. From
the results in Pinch’s article, we can see how many prime factors are needed,
for a given upper bound X.

Table 1. Number of Carmichael numbers with d prime factors up to 1015

[16].
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d
log10X 3 4 5 6 7 8 9 Total

3 1 0 0 0 0 0 0 1
4 7 0 0 0 0 0 0 7
5 12 4 0 0 0 0 0 16
6 23 19 1 0 0 0 0 43
7 47 55 3 0 0 0 0 105
8 84 144 27 0 0 0 0 255
9 172 314 146 14 0 0 0 646
10 335 619 492 99 2 0 0 1547
11 590 1179 1336 459 41 0 0 3605
12 1000 2102 3156 1714 262 7 0 8241
13 1858 3639 7082 5270 1340 89 1 19279
14 3284 6042 14938 14401 5359 655 27 44706
15 6083 9938 29282 36907 19210 3622 170 10212

The comparison was performed by testing the speed of the algorithms for
different values of X. To more accurately compare the time of the computation

Pinch’s algorithm was modified to have the sharp upper limit
√

17X
33 , given by

Theorem 10.

Table 2. Run time comparison in seconds between Pinch’s algorithm
(Pinch) and the new one (New) for Carmichael numbers up to X.

log10X 5 6 7 8
Pinch 0.140625 0.484375 3.1875 29.078125
New 0.046875 0.59375 3.15625 21.609375

In Table 2, the new algorithm seems to be slightly faster. Although the
algorithms are of comparable speed, the new algorithm has the advantage that
there is no split in computation methods and therefore there is no need to find
were to put this split. However due to time constraints, larger values of X
weren’t checked and it is possible that Pinch’s algorithm is more efficient for
larger Carmichael numbers.

While the new algorithm may allow for quick calculations of Carmichael
number, the methods used also come with limitations. The Carmichael numbers
for a certain number of factors cannot be computed, as the number of factors of
m are unknown before the factorization. Furthermore, considering Table 3, we
can see that for larger m the factorization process grows quickly. The algorithm
used a rudimentary factorization method and more efficient factorization meth-
ods may be used, but factorizing an integer is a problem generally considered to
be a slow process [15]. This means that for larger values of m, the efficiency of
the algorithm might drop off and in that case, a supplementary method would
be necessary.
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Table 3. Comparison of the run times for the factorization (Factor) and
the total process (Total), as well as their ratio for a given upper limit X.

log10X Factor Total Factor/Total
5 0.015625 0.046875 0.33
6 0.15625 0.59375 0.26
7 1.40625 3.15625 0.39
8 13.171875 21.609375 0.52
9 148.09375 294.890625 0.50
10 1917.296875 3872.5625 0.50

Examining Table 3, we can see that the relative factorization time shows
a tendency to increase for larger numbers as expected. Curiously, the relative
time dips for certain X and it seems to be specifically those X that entails an
increase in D.

Finally, it is worth noting that the programs were written in Python, which
is an interpreted language. Interpreted languages are famously slower [17], but
with the use of the NumPy [18] module which is written in C, computation can
be significantly sped up. This module was purposefully avoided, however, for
the sake of comparison and with the use of NumPy, the run time could have
most likely been shortened for both the algorithms.
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