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Abstract
Reinforcement learning (RL) algorithms have throughout the years found most success
on artificial domains where the state-space is fully observable. Atari 2600 games,
where the full screen is used as the input state, are thus commonly used to evaluate
the performance of an RL agent. Using the full screen as input could however be
unnecessary as a significant amount of pixels on the screen do not contain any relevant
information.

In this thesis a current RL algorithm is expanded using active vision. By restricting
the visible portion of the screen and giving the agent means to control its focus-of-
attention the state-space is made partially observable. With the addition of active
vision an agent must simultaneously learn to play the game and learn to control its
focus-of-attention. This more challenging task is solved using a modified version of
the recurrent A3C-LSTM network which can handle active vision.

Throughout the thesis different models, that simulate the human visual system in
different ways, were used. While all models used rectangular focal areas the models
differed from each other in how resolution was handled. The first models used a
single, constant resolution in the full focal area. By comparing these models it could
be shown that a larger focal area using a lower resolution is preferable to a smaller
focal area with higher resolution.

Next, the resolution was set to decrease with increased distance to the center of the
focal area. The model using the larger focal area and a lower resolution was replaced
with a model using the same large focal area but with higher resolution towards
the center and lower towards the edges. The decreasing resolution did not improve
performance.

As a final addition peripheral vision was added to the models. The peripheral vision
was created using a very low resolution background outside the focal area. This
addition did improve the performance of the models on Pong and Breakout while the
addition barely affected the performance on Beam Rider. The model using decreasing
resolution with the added peripheral was the best performing model on both Pong
and Breakout while the most successful constant resolution model without peripheral
achieved the best performance on Beam Rider.
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1 Introduction
In reinforcement learning (RL) a fully observable environment is generally assumed. This means
that reinforcement learning is most suitable on artificial domains such as games where the state-
space is fully observable. A popular way to evaluate the performance of agents based on reinforce-
ment learning has been through a suite of Atari 2600 games such as Breakout and Pong. In these
games the agent uses the full screen for learning and thus does not have to deal with the problem
of acting with incomplete information. However, using all the information available on the screen
can be problematic as the state-space can get very large. Also, a significant amount of pixels on
the screen do not contain any relevant information.

The goal for this thesis is to expand on the current RL algorithms using a focus-of-attention
mechanism that would allow the agent to limit its field of view and focus on only the most important
part of the screen. By omitting certain pixels the state-space becomes partially observable but, as
we assume that the focus will be on relevant points, the information loss should be small. With
only part of the screen visible for the agent it is being tasked with controlling its focus-of-attention
and to effectively act with incomplete information. This approach is called active vision and will
make the behavior of the agent more similar to human behavior.

In previous work [14] where the visual system of the agent was represented by a rectangle with
constant resolution it was shown that this approach could be used to achieve near-optimal perfor-
mance in Pong, Breakout and Space Invaders with only 35% of the screen visible. The model used
in this approach was based on a Deep Q-Network (DQN) [9] with extensions such as the addition
of an LSTM. The LSTM introduces recurrent layers in the network that allows the agent to store
information about past inputs in a hidden state. This extended model shared many similarities
with the model known as R2D2 [5]. Active vision was then introduced to the model forming the
Myopic Deep Recurrent Q-Network (MyDRQN) [14]. This agent can remember past observations
and can control both its movement and its focus-of-attention. An action that moves the player
within the game will be referred to as a natural action while an action that moves the focus-of-
attention will be referred to as a visual action. The introduction of active vision means that the
network must find and optimize one policy for the player movement and one policy for controlling
the focus-of-attention. At each time-step the screen is observed and the agent uses this information
to simultaneously decide on the next natural action and the next visual action. An agent will need
to learn both how to move and where to look in order to play the game successfully.

In this thesis the MyDRQN was replaced with a modified A3C-LSTM network that can handle the
visual task. It was thus important to first make sure that good performance could be achieved using
the rectangular vision window with constant resolution. The impact of lowering the resolution for
a constant resolution vision window was then studied. By lowering the resolution it is possible to
enlarge the agent’s field of view while keeping the amount of pixel-information present in the input
state small. Next, this vision window with homogeneous resolution was replaced with a vision
window where the resolution decreases when the distance to the center of attention increases. This
new vision window was created using three differently sized, concentric rectangles. The resolution
in the innermost rectangle was kept high while the resolution in the other rectangles were lowered.
Using the vision window with decreasing resolution the amount of pixel-information present in the
modified game screen can be lowered by a considerable amount without shrinking the agent’s field
of view. As a last step the pixels outside the vision windows were replaced with values from a
very low resolution version of the game screen. This new background can be considered to be the
peripheral vision of the agent. The use of different resolutions can be motivated biologically as it
mimics the human visual system to some extent.
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2 Research Questions
• Does the introduction of active vision speed up training since it reduces the size of the state-

space?

• Can the A3C-LSTM with focus-of-attention perform well on the different Atari games using
the rectangular vision window with constant resolution?

• Is the size of the vision window more important than the resolution of the input state?

• How will the vision window with decreasing resolution impact the performance of the model?

• Will the addition of peripheral vision affect the performance of the models?

• How much will the agent actually move its focus-of-attention while playing the games?

• Can similarities between how the agent and a human plays the game and controls its focus-
of-attention be found?

3 Reinforcement Learning
In Reinforcement Learning an agent that is able to observe the environment, takes actions that
affects the environment and receives rewards from the environment, is defined. Based on the
collected information the agent is tasked to learn a policy which maximizes some rewards received
from the environment. An RL-agent has to learn through trial-and-error. The algorithm used in
this project is based on an RL approach known as Actor-Critic. In order to explain this approach
it is reasonable to first introduce Markov Decision Processes, as most RL tasks can be expressed
as MDPs, and then continue with TD-Learning and the Policy Gradient.

3.1 Markov Process
A Markov Process is a stochastic process that describes a sequence of states S1,S2,... with the
special property that the current state completely characterizes the process. This property is
known as the Markov property and can formulated as:

P[St+1|St] = P[St+1|S1, S2, ..., St] . (3.1)

A Markov Process can be expressed as a tuple ⟨S,P⟩ where S is a finite set of states and P is a
state transition probability matrix with entries on the form Pss′ = P[St+1 = s′|St = s] to describe
the probability for the transition from state s to state s′.

3.2 Markov Reward Process
A Markov Reward Process (MRP) is a Markov Process where numerical rewards associated with
the different transitions have been introduced. An MRP can be expressed as a tuple ⟨S,P,R, γ⟩
where S is a finite set of states, P is a state transition probability matrix, R is a reward function
and γ ∈ [0, 1] is the discount factor. The reward function represents the next expected reward
Rt+1 given a current state and can be expressed as Rs = E[Rt+1|St = s]. The discount factor γ
is used to discount future rewards in order to make immediate rewards more valuable than future
rewards.

In general, the next reward is not very interesting by itself. A simple example would be an environ-
ment where non-zero rewards are only given out in terminal states. Thus, it is more interesting to
study the total amount of (discounted) reward along a trajectory {St, Rt+1, St+1, Rt+2, ...}. This
quantity is known as the return Gt and is given as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 . (3.2)
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The inclusion of the discount factor γ prevents the return from diverging when no terminal states
exist in the environment and the trajectory is of infinite length.

Using the definition of the return it is possible to formulate an expression for the value of a state
s. The value of state s is defined as the expected return when starting in state s:

v(s) = E[Gt|St = s] . (3.3)

One should note that by this definition the value of a terminal state is always zero.

3.3 Markov Decision Process
A Markov Decision Process (MDP) is an MRP where the agent is able to make decisions and thus
take actions. MDPs are used to formally describe environments in reinforcement learning and can
be expressed as a tuple ⟨S,A,P,R, γ⟩ where S is a finite set of states, A is a finite set of actions,
P is a state transition probability matrix, R is a reward function and γ ∈ [0, 1] is the discount
factor. As the agent is allowed to take actions the state transitions and the associated rewards
now depend on both the current state and the chosen action. The entries in P and R can thus be
expressed as:

Pa
ss′ = P[St+1 = s′|St = s,At = a] , (3.4)

Ra
s = E[Rt+1|St = s,At = a] . (3.5)

In an MDP the agent chooses actions and behaves in a certain way. This means that it is useful
to describe this behavior with a policy π. A policy is a probability distribution over actions given
states:

π(a|s) = P[At = a|St = s] . (3.6)

For a given policy π it is possible to define value functions for the MDP. The state-value function
for an MDP is the expected return starting in state s and then following policy π:

vπ(s) = Eπ[Gt|St = s] . (3.7)

Further, the action-value function for an MDP is the expected return starting in state s, taking
action a and the following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a] . (3.8)

When using MDPs we want to find the best possible performance and thus "solve" the MDP. In
other words we want to find the optimal value functions and the optimal policy. The optimal value
functions are defined as:

v∗(s) = max
π

vπ(s) , (3.9)

q∗(s, a) = max
π

qπ(s, a) . (3.10)

and the optimal policy is defined as the policy π∗ for which π∗ ≥ π, ∀π. Here it is useful to know
that π ≥ π′ if vπ(s) ≥ vπ′(s), ∀s.
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Further, it can be shown that there exists an optimal policy π∗ for any MDP and that vπ∗(s) = v∗(s)
and qπ∗(s, a) = q∗(s, a). It is also possible to generate the optimal policy if the optimal action-value
function is known by maximizing over it:

π∗(a|s) =

{
1 if a = argmax

a∈A
q∗(s, a)

0 otherwise
. (3.11)

To find the optimal value functions, and thus also the optimal policy, the Bellman optimality
equations are typically used. These important equations can be written the following way:

v∗(s) = max
a
Ra

s + γ
∑
s′∈S
Pa
ss′v∗(s

′) , (3.12)

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′ max

a′
q∗(s

′, a′) . (3.13)

These equations are however non-linear and no closed-form solutions exist in general. This means
that to solve these iterative methods are commonly used.

3.4 TD-Learning
The temporal-difference learning algorithm can be used to iteratively solve the Bellman optimality
equation for either the state-value function, found in Equation 3.12, or the action-value function,
found in Equation 3.13. This is thus an example of value-based reinforcement learning, in which a
value function is computed in order to find the optimal policy. The simplest temporal-difference
learning algorithm is known as TD(0) and can be described with the following update rule:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) . (3.14)

In the equation above α is the learning rate, the estimated return Rt+1+γV (St+1) is known as the
TD-target and Rt+1 + γV (St+1) − V (St) is known as the TD-error. The update rule thus moves
the value V (St) towards the the TD-target.

If TD(0) instead is applied on the action-value function the following update rule can be found:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) . (3.15)

It should also be noted that TD(0) learns on-policy. This means that it learns about policy π from
experience sampled from the same policy π.

3.5 Q-Learning
An alternative iterative value-based method is Q-Learning. This method works off-policy and
solves the Bellman optimality equation for the action-value function, found in Equation 3.13. In
an off-policy setting experience is sampled from behavior policy µ to learn about target policy π.
In Q-Learning actions are chosen according to the behavior policy µ while the action-values are
updated towards the value of an alternate action chosen by the target policy π. If the target policy
is chosen to be greedy the update rule can be written as

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)) (3.16)

where α is the learning rate, Rt+1 + γmax
a

Q(St+1, a) is the target and Rt+1 + γmax
a

Q(St+1, a)−
Q(St, At) is the error.
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3.6 Value Function Approximation
In environments where the state-space is too large it is not possible to learn the value for each state
individually. Instead some function approximator is used to estimate the value functions for the
different states. This function approximator can, for example, be a linear combination, a Gaussian
mixture model or a neural network and is defined using parameters ω. When using value function
approximations it is possible to generalize from seen states to unseen states. In the linear case the
value functions are represented by a linear combination of features x:

vω(s) = x(s)Tω , (3.17)

qω(s, a) = x(s, a)Tω . (3.18)

In Equation 3.17 the approximated state-value function is expressed as vω(s) while the approx-
imated action-value function in Equation 3.18 is expressed as qω(s, a). With a given function
approximator the value function approximations can be expressed as:

vω(s) ≈ vπ(s) , (3.19)

qω(s, a) ≈ qπ(s, a) . (3.20)

A useful method to find good parameter choices is stochastic gradient descent. If a differentiable
function J(ω) is defined as

J(ω) = Eπ[(vπ(s)− vω(s))
2] (3.21)

or, using the action-value function instead,

J(ω) = Eπ[(qπ(s, a)− qω(s, a))
2] (3.22)

a local minimum can be found by moving ω in the opposite direction of the gradient ∇ωJ(ω):

∆ω = α(vπ(s)− vω(s))∇ωvω(s) (3.23)

or:
∆ω = α(qπ(s, a)− qω(s, a))∇ωqω(s, a) (3.24)

where α is the step-size. Further, it should be noted that vπ(s) is in practice replaced by some
target; for example by (Rt+1 + γvω(s)), if TD(0) is used.

3.7 Policy Gradient
In policy-based reinforcement learning the policy is directly parameterized using parameters θ
according to:

πθ(a|s) = P[At = a|St = s, θ] . (3.25)

Using a policy objective function J(θ) a policy gradient method can be used to search for a local
maximum in J(θ). The parameters can then be updated by moving θ in the direction of the
gradient:

∆θ = α∇θJ(θ) . (3.26)
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To compute the policy gradient analytically the following identity is used:

∇θπθ(a|s) = πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

= πθ(a|s)∇θ log πθ(a|s) (3.27)

where ∇θ log πθ(s, a) is known as the score function. Using the identity above the policy gradient
theorem can be derived:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s) Qπθ

(s, a)] . (3.28)

A disadvantage with using the policy gradient is the high variance. One way to reduce this variance
is to introduce the advantage function, which will be discussed in the section Advantage Function.

3.8 Actor-Critic
In actor-critic algorithms value-based reinforcement learning is combined with policy-based rein-
forcement learning. These algorithms maintain two sets of parameters; ω and θ. An example is
an action-value based actor-critic. Here, the critic is used to estimate the action-value function
Qω(s, a) ≈ Qπθ

(s, a) by updating parameters ω and the actor updates the policy parameters θ in
the direction suggested by the critic.

The parameters ω can, for example, be updated by the critic using the TD(0) algorithm. The
TD(0) update rule found in Equation 3.15 is used to find the TD-target Rt+1 + γQω(St+1, At+1)
and this target is then used to replace qπ(s, a) in Equation 3.24 to get:

∆ω = α(Rt+1 + γQω(St+1, At+1)−Qω(St, At))∇ωQω(St, At) . (3.29)

The parameters ω found by the critic is used to estimate the action-value function as Qω(s, a) ≈
Qπθ

(s, a) and is then inserted into the policy gradient theorem found in Equation 3.28:

∇θJ(θ) ≈ Eπθ
[∇θ log πθ(a|s) Qω(s, a)] . (3.30)

With this result, the update rule for the actor can be written as:

∆θ = α∇θ log πθ(a|s) Qω(s, a) . (3.31)

It should be noted that approximating the policy gradient can introduce bias. However, if the
value function approximation in chosen carefully it can be shown that no bias will be introduced
and that the exact policy gradient still can be followed.

3.9 Advantage Function
It is important to reduce the high variance of the policy gradient. This can be achieved by
introducing the advantage function:

Aπθ
(s, a) = Qπθ

(s, a)− Vπθ
(s) . (3.32)

While the action-value function estimates how good (or bad) it is to take a certain action from a
certain state, the advantage function estimates how much better (or worse) it is to take a certain
action than expected. As the advantage function can significantly reduce the variance the critic
from the actor-critic algorithm should estimate Aπθ

(s, a) instead of Qπθ
(s, a). This can be done

by first approximating both Qω(s, a) ≈ Qπθ
(s, a) and Vν(s) ≈ Vπθ

(s) and then computing the
estimated advantage function:
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A(s, a) = Qω(s, a)− Vν(s) . (3.33)

Thus, the policy gradient can be rewritten as:

∇θJ(θ) ≈ Eπθ
[∇θ log πθ(a|s) A(s, a)] . (3.34)

3.10 Exploration vs. Exploitation
When training an RL-agent the trade-off between exploration and exploitation needs to be consid-
ered. The agent needs to both explore new states and trajectories and also exploit the previously
gathered information to make the best choices and to follow the trajectories with the best rewards.
If a policy is fully exploratory all decisions are made randomly and the agent might not reach the
states with the best rewards. If a policy instead is fully greedy and always exploits the current
information to take the action that is considered the best the agent will probably act sub-optimally
as the best trajectories have not been found.

One way to deal with exploration and exploitation is to use an ϵ-greedy policy. This type of policy
can be considered a combination between a fully greedy policy and a random policy. When using
an ϵ-greedy policy the next action is chosen uniformly at random with probability ϵ and chosen
greedily with probability (1 − ϵ). Thus, every state can be reached with a non-zero probability
while the actions that are considered the best will be chosen with a higher probability.

A second way to deal with this is to let the action get chosen probabilistically from a multinomial
distribution. If each possible action is given a value that estimates how good it is to take this
action, a softmax function can be used to transform these values into probabilities. After the
softmax function has been applied each action will be associated with a probability value between
0 and 1 and these values will sum up to 1.0. Then, an action is chosen by picking one from the
probability distribution. An action that is considered good will be chosen with a higher probability
but every action can be chosen with a non-zero probability. As more information is collected the
probability for the best action will increase towards 1, while the probabilities for the other actions
will decrease towards 0.
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4 Deep Reinforcement Learning
In Deep Reinforcement Learning neural networks are used for value function approximation. While
neural networks are powerful it can be problematic to combine a neural network with reinforcement
learning. There are for examples issues with convergence and the fact that consecutively sampled
experiences are highly correlated also causes problems. However, there are ways to deal with these
problems and these solutions are presented below.

4.1 The DQN Algorithm
One of the first successful implementations of Deep Reinforcement Learning was the Deep Q-
Network (DQN) [9]. This algorithm is based on Q-Learning and the policy used is ϵ-greedy. In
order to deal with the problem with highly correlated samples a method known as experience replay
is used. When using experience replay the N latest transitions (St, At, Rt+1, St+1) are stored in a
replay memory D. Then, after an action has been performed, a random mini-batch of transitions
is sampled from D and used in the next optimization step. This means that consecutive parameter
updates will not have these highly correlated samples [9]. A problem with using experience replay
is that a lot of memory is required to keep a large replay memory. Thus, it is of interest to introduce
another solution to the correlation problem; asynchronous algorithms.

4.2 The A3C Algorithm
The Asynchronous Advantage Actor-Critic (A3C) [8] algorithm is based on the Advantage Actor-
Critic algorithm described in the section Advantage Function. The algorithm is asynchronous in
the sense that many independent action-learners, with their own set of network parameters and
local copy of the environment, sync up with the global network independently of each other. The
A3C uses a convolutional neural networks with a softmax output for the policy πθ(s) and a linear
output for the value function Vν(s), respectively. Note that even though the parameters θ for the
policy and the parameters ν for the value function are shown as separate, some of the parameters
are always shared in practice [8]. In this implementation the parameters for the convolutional
torso are shared while the parameters for the dense output layers are separate. For simplicity
Vν(s) = Vθ(s) is used in this project.

When using A3C the number of action-learners are decided and each action-learner is initialized
with the parameters of the global network. Then, actions are taken according to the, now, local
policy until a terminal state is reached or until tmax steps has been performed. The policy can be
seen as a probability distribution over the actions and the action is thus chosen probabilistically.
The total discounted reward Rtot, which is an estimate of Qπθ

(s, a) [8] from Equation 3.32, is
computed through bootstrapping and an estimate of the advantage function is computed as [8]:

Aθ(st) = Rtot − Vθ(st) = (

k−1∑
i=0

γiRt+1+i + γkVθ(st+k))− Vθ(st) (4.1)

where k can vary but is upper bounded by tmax [8]. Using this advantage function both a value
loss and a policy loss can be computed and combined with the entropy H(πθ) = −

∑
πθ log πθ to

compute the total loss:

Lvalue =
1

2

k−1∑
i=0

Aθ(st+i)
2 , (4.2)

Lpolicy =

k−1∑
i=0

(− log πθ(at+i|st+i) Aθ(st+i)− βH(πθ(st+i))) , (4.3)

Ltotal = 0.5 · Lvalue + Lpolicy . (4.4)
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In Equation 4.4 the 0.5 is used to make policy learning faster than value learning and β is a
parameter that control the strength of the entropy term [8]. The entropy H(πθ) is initially high
when the choice of action is random but decreases towards 0 when the probability for a certain
action increases towards 1. This way the entropy term lowers the loss the most when the prediction
is uncertain making the agent more likely to explore and finding more diverse strategies. Further,
note that πθ(st) is a probability distribution while πθ(at|st) is the conditional probability that
action at is chosen in state st. Given the total loss the local gradient is computed with respect to
θ and then, the local gradient is applied to the global network in an asynchronous fashion and the
local parameters are reinitialized with the now updated global parameters. Pseudo-code for the
A3C algorithm can be found in Algorithm 1. The pseudo-code is based on a figure in the original
A3C paper [8].

The advantage with using asynchronous updates is that consecutively sampled experiences no
longer are highly correlated as they are sampled from different independent action-learners. This
is thus a replacement for experience replay but without the need to keep a large buffer of experiences
in memory.

Algorithm 1 Pseudo-code for A3C.
Initialize global network with parameters Θ
Initialize global shared counter T
Choose amount of action-learners
for all action-learner threads do

while T < Tmax do
Initialize local step-counter t = 0
Synchronize local parameters θ = Θ
Get state st
while t < tmax and st is not terminal state do

Perform action at according to probabilistic policy πθ(st)
Receive and save reward Rt+1 and new state st+1

t← t+ 1
T ← T + 1

end while
Compute total discounted reward Rtot through bootstrapping
Compute estimate of advantage function Aθ(st) = Rtot − Vθ(st)
Compute total loss Ltotal = 0.5 · 12

∑
Aθ(st)

2 −
∑

(log πθ(at|st) Aθ(st)− βH(πθ))
Use loss to compute local gradient with respect to θ
Update global Θ asynchronously using local gradient

end while
end for

4.3 A3C with LSTM
In the Atari environments, presented in Sections 6.1-6.3, consecutive states are correlated and
more than one state is needed to determine which way something is moving. In the original
DQN paper [9] this is dealt with by representing each state with four consecutive frames. This
quadruples the input size and thus increases the size of the state-space, which can slow down
training. Another way to give the agent information about more than the current frame is to
introduce some recurrent elements in the network. More specifically, a Long Short-Term Memory
(LSTM) [4] is added to the network after the convolutional layers. The LSTM is fed with the output
from the convolutional layers and the outputs from the LSTM from the previous time-step. This
allows the agent to remember information from previous states and to thus make better decisions.
The resulting model, the A3C-LSTM, uses smaller kernels and more filters in its convolutional
part than suggested for the original DQN from 2013 [9] and the original A3C from 2016 [8]. The
use of smaller kernels, usually of size 3 × 3 or 5 × 5, and more filters has become the standard
in convolutional neural networks as these have been shown to be more cost-effective and to have
better generalization properties [13]. Figure 1 is an overview of the model architecture.
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Figure 1: Overview of the architecture of the A3C algorithm with LSTM.

4.4 Other Extensions Included in A3C-LSTM
Below follows two important extensions that are included in the A3C-LSTM used in this project.
First, the idea behind a shared optimizer is explained and the Shared Adam optimizer is introduced
followed by an introduction of Generalized Advantage Estimation.

4.4.1 Shared Optimizer

The choice of optimizer can impact the performance and the behavior of a machine learning
algorithm. Choosing a good optimizer is thus important. In the original A3C paper three different
optimizers were used: SGD with momentum, RMSProp and Shared RMSProp. Of these three
Shared RMSProp was the most robust optimizer, followed by the normal RMSProp optimizer [8].
The RMSProp optimizer is defined by the following updates

gt ← βgt−1 + (1− β)∆θ2t−1 (4.5)

θt ← θt−1 − α
∆θt−1√
gt + ϵ

(4.6)

(4.7)
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where g is the moving average of squared gradients, β is a moving average parameter, α is the
learning rate and ϵ is a small constant for numerical stability. While θ are shared across threads
in both the normal RMSProp and Shared RMSProp, the difference between the optimizers is
whether or not the moving average of squared gradients g are also shared across threads. In
Shared RMSProp, where g is shared across threads, g is updated asynchronously [8].

Adam is another popular optimization algorithm that can be used instead of RMSProp. The Adam
optimizer can be defined with the following updates

gt ← ∇θft(θt−1) (4.8)
mt ← β1mt−1 + (1− β1)gt (4.9)

vt ← β2vt−1 + (1− β2)g
2
t (4.10)

m̂t ←
mt

1− βt
1

(4.11)

v̂t ←
vt

1− βt
2

(4.12)

θt ← θt−1 − α
m̂t√
v̂t + ϵ

(4.13)

where f is the objective function, g is the gradients of the objective function, m is the biased
first moment estimate (m̂ is bias-corrected version), v is the biased second moment estimate (v̂ is
bias-corrected version), β1 and β2 are decay rates, α is the learning rate and ϵ is a small constant
for numerical stability [6]. In the extended version of A3C a shared version of this optimization
algorithm, called Shared Adam, is used. For Shared Adam the moment estimates mt and vt as
well as the parameters θ are shared across threads and updated in an asynchronous fashion.

While Adam usually is a good choice, it has been shown that there exist convergence issues when
using the optimization algorithm. A way to deal with these issues is AMSGrad, which is a modified
version of the Adam algorithm [11]. The changes affect the second moment estimates v and can
be expressed in the following way:

vt ← β2vt−1 + (1− β2)g
2
t (4.14)

ṽt ← max(ṽt−1, vt) (4.15)

v̂t ←
ṽt

1− βt
2

(4.16)

In other words; AMSGrad used the maximum of the second moment estimate instead of using
the latest value. This algorithm has been shown to have better convergence properties than the
normal Adam algorithm [11].

4.4.2 Generalized Advantage Estimation

In the original A3C algorithm a k-step TD-error was used to estimate the advantage function
Aθ(s, a). The advantage function could also have been estimated using, for example, a 1-step or a
2-step TD-error. Generalized Advantage Estimation, or GAE, combines these different TD-errors
to make a more robust estimation of the advantage function [12]. Below, the GAE is derived,
starting with the definition of the so called TD(0)-error:

δVt = Rt+1 + γVθ(st+1)− Vθ(st) (4.17)

Next, TD(0)-errors for different time-steps (δVt , δVt+1, ... ) are combined to form estimators Â(k)
t [12]:
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Â
(1)
t := δVt =− Vθ(st) +Rt+1 + γVθ(st+1) (4.18)

Â
(2)
t := δVt + γδVt+1 =− Vθ(st) +Rt+1 + γRt+2 + γ2Vθ(st+2) (4.19)

Â
(3)
t := δVt + γδVt+1 + γ2δVt+2 =− Vθ(st) +Rt+1 + γRt+2 + γ2Rt+3 + γ3Vθ(st+3) (4.20)

Â
(k)
t :=

k−1∑
l=0

γlδVt+l = −Vθ(st) +Rt+1 + γRt+2 + ...+ γk−1Rt+k + γkVθ(st+k) (4.21)

It can be noted that the estimator Â
(k)
t is equivalent to the advantage estimation, Aθ(s, a), used

by the original A3C algorithm, as seen in Equation 4.1. The generalized advantage estimator
Â

GAE(γ,λ)
t can now be defined as the exponentially-weighted average of the Â

(k)
t estimators

Â
GAE(γ,λ)
t := (1− λ)(Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...)

= (1− λ)(δVt + λ(δVt + γδVt+1) + λ2(δVt + γδVt+1 + γ2δVt+2) + ...)

= (1− λ)(δVt (1 + λ+ λ2 + ...) + γδVt+1(λ+ λ2 + λ3 + ...) + ...)

= (1− λ)(δVt (
1

1− λ
) + γδVt+1(

λ

1− λ
) + γ2δVt+2(

λ2

1− λ
) + ...)

=

∞∑
l=0

(γλ)lδVt+l

(4.22)

where λ is a parameter 0 ≤ λ ≤ 1 [12]. There are two special cases of the generalized advantage
estimator that should be addressed: when λ = 0 and when λ = 1. For these special cases the
following holds:

Â
GAE(γ,0)
t = δVt = Rt+1 + γVθ(st+1)− Vθ(st) (4.23)

Â
GAE(γ,1)
t =

∞∑
l=0

γlδVt+l =

∞∑
l=0

γlRt+l+1 − Vθ(st) (4.24)

For the case when λ = 1 the variance is usually high and when λ = 0 the variance is lower but
bias is usually introduced. The choice of the parameter 0 < λ < 1 is thus a trade-off between bias
and variance [12].
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5 Focus-of-Attention
A focus-of-attention (FoA) mechanism allows an agent, or a human, to focus on a certain part
of an image or a text while giving less attention to other parts [3]. For a human the focus-of-
attention mechanism is important as the brain cannot process all the visual input data at once.
By adding focus-of-attention to a reinforcement learning agent the input data should shrink in size
and possibly speed up training.

When training an agent on the Atari environments full pre-processed screens are used as inputs to
the network. The pre-processing of the environments will be described in the section Pre-processing
and Modifications. With inputs of size 80 × 80 the state-space becomes very large. In fact, the
state-space is unnecessarily large as many input pixels aren’t important. A way to deal with this
is to introduce focus-of-attention to these Atari games. By adding focus-of-attention the screens
are modified in a way that focuses the view of the agent on the relevant part of the screen. Visual
actions are also introduced that move the center of attention each time-step. With this set-up the
agent needs to learn how to play the game and at the same time learn where to put its attention.

The introduction of focus-of-attention makes sure that pixels with no or little importance will,
with enough training, be disregarded by the model. This will effectively decrease the size of the
state-space, which could speed up training. The introduction of the visual actions, i.e., to move
the center of attention up, down, left or right or to do nothing, can however slow down the training
due to the added complexity to the task. Further, the introduction of focus-of-attention makes
the true game state only partially observable, which to some degree violates the Markov property.
However, by moving its focus-of-attention the agent does technically have access to the full true
game state. This dynamic is similar to how the human visual system works where the human eyes
are moving around and locating interesting parts in order to build up a mental map of a scene.

This model with focus-of-attention was created by duplicating the head in Figure 1 in order to
create one natural head, which controls the actual player movements, and one vision head, which
controls the visual movements. This results in a model with four outputs instead of the two in the
model without the focus-of-attention mechanism. The natural head outputs its own value function
V nat
νnat(st) and its own softmax output for the policy πnat

θnat(st). Further, the vision head similarly
outputs V vis

νvis(st) and πvis
θvis(st). Note that the four sets of parameters θnat, θvis, νnat and νvis

share the parameters for the convolutional torso and the LSTM. This means that most parameters
are shared and because of this the expressions are simplified as θ = θnat = θvis = νnat = νvis in
this project. An overview of the model can be seen in Figure 2 and a more detailed illustration of
the convolutional torso can be seen in Appendix A.1.
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Figure 2: Overview of the architecture of the A3C-LSTM algorithm with focus-of-attention.

For this model a transition from state St to St+1 is made through a natural action Anat
t and a

simultaneous visual action Avis
t . The reward Rt+1 from this transition depends only on the natural

action Anat
t , however. The visual action Avis

t doesn’t directly affect the state of the game, but
instead affects what part of the information is accessible to the agent. This means that while Rt+1

is not affected by Avis
t , the state St+1 is affected and thus also the following natural action Anat

t+1

and the next reward Rt+2. In order to account for this behavior the A3C loss function derived
in Equations 4.1-4.4 is split in two parts. The first part is the total loss of the natural head and
the second part is the total loss of the vision head. In the loss function for the natural head the
reward Rt+1 can be used as this reward is affected by the natural action Anat

t . However, in the loss
function for the visual head the reward Rt+1 has to be replaced with Rt+2 as this is the reward
that is affected by the visual action Avis

t . Both Rt+1 and Rt+2 are thus needed and a transition is
represented by (St, A

nat
t , Avis

t , Rt+1, Rt+2, St+1). A transition is illustrated in Figure 3.
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Figure 3: A transition of the A3C-LSTM algorithm with focus-of-attention.

5.1 Modifications of Loss Function
For this new model the total loss Ltotal can be divided into two parts: the total loss of the natural
head Lnat

total and the total loss of the vision head Lvis
total. For the natural head the loss is defined

in a similar way as the loss for the original A3C as shown in Equations 4.1-4.4 with the difference
that generalized advantage estimation is used in the policy loss to make the advantage estimation
more robust. This means that the value loss of the natural head can be defined as:

Lnat
value =

1

2

k−1∑
i=0

Anat
θ (st+i)

2 , (5.1)

Anat
θ (st) = (

k−1∑
i=0

(γnat)iRt+1+i + (γnat)kV nat
θ (st+k))− V nat

θ (st) (5.2)

where Anat
θ (st) is the simple (not generalized) estimate of the advantage function for the natural

head. Next, the policy loss of the natural head with generalized advantage estimation can be
defined as:

Lnat
policy =

k−1∑
i=0

(− log πnat
θ (at+i|st+i) Â

GAE,nat
t+i − βnatH(πnat

θ (st+i))) , (5.3)

ÂGAE,nat
t =

k−1∑
i=0

(γnatλnat)iδnatt+i , (5.4)

δnatt = Rt+1 + γnatV nat
θ (st+1)− V nat

θ (st) (5.5)

where ÂGAE,nat
t is the generalized advantage estimation for the natural head and δnatt is the TD(0)-

error for the natural head. Then, the value loss and the policy loss are combined as before in order
to form the total loss for the natural head:

Lnat
total = 0.5 · Lnat

value + Lnat
policy . (5.6)

For the vision head Rt+1 needs to be replaced with Rt+2 as discussed above and visualized in
Figure 3. With this small modification the value loss for the vision head can be defined as:

Lvis
value =

1

2

k−2∑
i=0

Avis
θ (st+i)

2 , (5.7)

Avis
θ (st) = (

k−2∑
i=0

(γvis)iRt+2+i + (γvis)kV vis
θ (st+k))− V vis

θ (st) (5.8)

where Avis
θ (st) is the simple estimate of the advantage function for the vision head. Further, the

policy loss can in this case be defined as:
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Lvis
policy =

k−2∑
i=0

(− log πvis
θ (at+i|st+i) Â

GAE,vis
t+i − βvisH(πvis

θ (st+i))) , (5.9)

ÂGAE,vis
t =

k−2∑
i=0

(γvisλvis)iδvist+i , (5.10)

δvist = Rt+2 + γvisV vis
θ (st+1)− V vis

θ (st) (5.11)

where ÂGAE,vis
t is the generalized advantage estimation for the vision head and δvist is the TD(0)-

error for the vision head. The losses is then combined in the same way as for the natural head:

Lvis
total = 0.5 · Lvis

value + Lvis
policy . (5.12)

Finally, the total loss of the natural head can be combined with the total loss of the vision head
to find the total loss:

Ltotal = Lnat
total + Lvis

total . (5.13)

Note that in the derivation above there exists one set of hyperparameters γ, λ and β for the natural
head and one set for the vision head. This makes it possible to make one of the heads more short-
sighted than the other or to introduce more variance in one of the heads and less in the other one.
Throughout this project γnat = γvis, λnat = λvis and βnat = βvis are used for simplicity, however.

Pseudo-code for the A3C-LSTM algorithm with focus-of-attention can be found in Algorithm 2.

Algorithm 2 Pseudo-code for A3C-LSTM with focus-of-attention.
Initialize global network with parameters Θ
Initialize global shared counter T
Choose amount of action-learners
for all action-learner threads do

while T < Tmax do
Initialize local step-counter t = 0
Synchronize local parameters θ = Θ
Get state st
while t < tmax and st is not terminal state do

Perform natural action anatt according to probabilistic policy πnat
θ (st)

Perform visual action avist according to probabilistic policy πvis
θ (st)

Receive and save reward Rt+1 and new state st+1

t← t+ 1
T ← T + 1

end while
Compute total discounted rewards Rnat

tot and Rvis
tot through bootstrapping

Form estimate of advantage function for natural head Anat
θ (st) = Rnat

tot − V nat
θ (st)

Form estimate of advantage function for vision head Avis
θ (st) = Rvis

tot − V vis
θ (st)

Compute generalized advantage estimations ÂGAE,nat
t (st) and ÂGAE,vis

t (st)

Form loss Lnat
total = 0.5 · 12

∑
Anat

θ (st)
2 −

∑
log πnat

θ (anatt |st) Â
GAE,nat
t (st)− βH(πnat

θ )

Form loss Lvis
total = 0.5 · 12

∑
Avis

θ (st)
2 −

∑
log πvis

θ (avist |st) Â
GAE,vis
t (st)− βH(πvis

θ )
Form total loss by summing Lnat

total and Lvis
total

Use loss to compute local gradient with respect to θ
Update global Θ asynchronously using local gradient

end while
end for
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5.2 Pre-processing and Modifications
Before focus-of-attention, or a so called vision window, can be applied the game screen must be
pre-processed and slightly modified. Each frame for the Atari games used in this project is an
RGB image (values between 0 and 255) with a width of 160 pixels and a height of 210 pixels.
These images are first cropped using game-specific information. This step removes pixels of no
importance and leaves only the pixels representing the actual game area. Next, the size of the image
is decreased to 80 × 80 pixels, converted to gray-scale and normalized to pixel values between 0
and 1. As a last step the state is normalized using an unbiased mean, µ, and an unbiased standard
deviation, σ, of the pixel values before it is used as the input state to the convolutional network.
The normalization is done as follows:

st ←
st − µ

σ
. (5.14)

After this normalization the dark pixels will attain negative values while the light pixels will get
positive pixel values.

It is also common to repeat each action for a few frames in order to reduce the size of the state-
space. In this project each action is repeated for four frames. Further, each state is represented by
a max-pooling operation of the three previous frames in order to represent some sense of direction.
If the frames are represented by xn, n = 1, 2, ..., and the states by st = sn/4, n = 4, 8, ..., each
state can be written as st = sn/4 = maxpool(xn/4, xn/4−1, xn/4−2). Note that frame-stacking, as
suggested in the original DQN paper, is not used to detect velocities and accelerations. Figures 4,
5 and 6 show examples of pre-processed states from the Atari games Pong, Breakout and Beam
Rider.

(a) State st. (b) State st+1. (c) State st+2.

Figure 4: Pre-processed consecutive states for the game Pong starting from some state st.

(a) State st. (b) State st+1. (c) State st+2.

Figure 5: Pre-processed consecutive states for the game Breakout starting from some state st.
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(a) State st. (b) State st+1. (c) State st+2.

Figure 6: Pre-processed consecutive states for the game Beam Rider starting from some state st.

It is also standard to clip all rewards to either −1, 0 or +1. While this is done to generalize across
different games it also makes the agent unable to differentiate between a small positive reward and
a large positive reward.

Other modifications to the environment are to automatically use the reset action when a life is lost
and to count a loss of a life as a terminal state. The first of the two modifications allows the agent
to actually learn how to play the game without having to learn how to restart, while the second
modification helps with value estimation.

A final modification is to take a random number of no-operation actions at the beginning of each
episode. This is done in order to introduce some randomness into the otherwise deterministic Atari
games. Without this added randomness the agent might not explore enough states to learn a good
behavior.

5.3 Constant Resolution Vision Window
A straightforward way to modify the screen in order simulate the focus-of-attention of the agent
is to use a rectangular area as the focal area. The focal area, which holds all the pixels that are
visible to the agent, can be defined using a focal point (fx, fy), a focal width and a focal height.
The focal point marks the center of attention and the focal width and focal height controls the
size of the rectangular focal area. The resolution of focal area also needs to be decided. Different
resolutions of the same input state can be seen in Figure 8. This type of vision window is referred
to as a Constant resolution vision window and an overview of the window can be seen in Figure 7.

Figure 7: Overview of the Constant vision window.
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(a) 80× 80 resolution. (b) 40× 40 resolution. (c) 20× 20 resolution.

Figure 8: Input states in different resolutions.

When introducing focus-of-attention to the model a focal step-size also needs to be chosen. The
focal step-size controls how many pixels the focal point will move when a visual action is taken.
With the focal step-size set to 4 a visual action will move the focal point four pixels in the appro-
priate direction. Further, two other restrictions to the movement of the focal point are introduced.
First, the focal point can not be moved off the screen. In a case where a visual action would move
the focal point off-screen the focal point will not be moved. This means that the focal point can
only reach a specific selection of locations and that these locations depend on the initialization
of the focal point. In other words, the initialization affects which states that are reachable. This
leads to the second restriction; the focal point can only be initialized in certain locations based on
the focal step-size. With this restriction the same states can always be reached independently of
the initialization. A visualization of the possible locations for the focal point can be seen in Figure
9. Note that the possible locations for the focal point, marked by green squares in the figure, are
evenly spread out across the screen.

Figure 9: Possible locations for focal point with a focal step-size of 4.

The Constant vision window described above is applied on the original input image and simply
replaces all pixel values outside of the focal area with zeros while keeping all pixels within the focal
area unchanged. Note that this operation is applied after the normalization of the pixel values
described in the section Pre-processing and Modifications, which means that a pixel value of 0
does not represent the color black. The normalization is done before applying the vision window
to avoid having the focal point influence the normalization and to make sure that the pixels outside
the vision window are kept constant zero. By replacing all pixels outside the focal area with zeros
the input states for the focus-of-attention model will have the same size as the input states for the
original model: 80 × 80 pixels. A few examples of input states can be seen in Figure 10 along with
corresponding visualizations which makes it easier to follow what is actually happening when the
agent is playing the game.
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Figure 10: Input states in the top row and corresponding visualizations in the bottom row.

The main reason that the values of the pixels outside of the focal area is replaced with zeros as
opposed to being cut out is that information about where the agent is looking is available to the
model. If the pixels are cut out the input state will shrink in size but the agent will have to learn
that the input is only a subspace and then learn to act accordingly.

5.4 Decreasing Resolution Vision Window
While the Constant vision window is a straight-forward way to simulate focus-of-attention it would
be interesting to introduce a new type of vision window that better mimics the human visual
system. The focal area of this new vision window is created using a focal point (fx, fy), three
different resolutions and three rectangular areas with the focal point as their centers. The smallest
rectangular area uses the best resolution while the largest rectangular area uses the worst available
resolution. This way the resolution decreases when the distance to the focal point increases. The
pixels outside the focal area are replaced with zeros in the same way as they were for the Constant
vision window. The restrictions on the movement of the focal point described in the previous
section is also applied on this vision window (see Figure 9). This type of vision window is referred
to as a Decreasing resolution vision window. An overview of the window can be seen in Figure 11
and a comparison between three different resolutions can be found in Figure 8.
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Figure 11: Overview of the Decreasing vision window.

When applying the Decreasing vision window an interesting metric is the amount of information,
expressed in pixels, present in the input state. In the original 80 × 80 input state there is 6400
pixels worth of information present while only 400 pixels worth of information is present in the
low resolution input state shown in Figure 8c. The amount of pixel-information, ID, present after
applying the Decreasing vision window, and thus combining the three different resolutions, can be
computed the following way:

ID =
(f

(1)
w · f (1)

h )

( 802

R
(1)
v ·R(1)

h

)
+

(f
(2)
w · f (2)

h )− (f
(1)
w · f (1)

h )

( 802

R
(2)
v ·R(2)

h

)
+

(f
(3)
w · f (3)

h )− (f
(2)
w · f (2)

h )

( 802

R
(3)
v ·R(3)

h

)
(5.15)

where f
(1)
w and f

(1)
h are the width and height of the innermost rectangle making up the focal area,

f
(2)
w and f

(2)
h are the width and height of the middle rectangle, f (3)

w and f
(3)
h are the width and

height of the outermost rectangle, R(1)
v , R(2)

v and R
(3)
v are the three different vertical resolutions

and R
(1)
h , R(2)

h and R
(3)
h are the three different horizontal resolutions. Note that if the resolution i

is 40× 40 then R
(i)
v = R

(i)
h = 40. The formula computes the three different areas and divides them

with certain factors to account for the lower resolutions. Note that Equation 5.15 computes the
maximum amount of pixel-information present in the input state. If the focal point is moved to a
corner of the screen only a fourth of the maximum amount of pixel-information is actually present
in the input state.

In order to make comparisons between the Decreasing and the Constant vision windows the amount
of pixel-information present after applying the Constant vision window can also be computed. This
is more straight-forward as shown below:

IC =
(fw · fh)
( 802

Rv·Rh
)

. (5.16)

Above fw is the focal width, fh is the focal height, Rv is the vertical resolution and Rh is the
horizontal resolution. Again, this is actually an expression for the maximum amount of pixel-
information present in the input state.

A few examples of input states with the Decreasing vision window applied can be seen in Figure 12
along with corresponding visualizations which makes it easier to follow what is actually happening
when the agent is playing the game.
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Figure 12: Input states in the top row and corresponding visualizations in the bottom row.

5.5 Peripheral Vision
To further mimic the human visual system it is interesting to introduce peripheral vision to the
agent. The peripheral vision of a human is wide but blurry, making it useful for noticing movements
but ill-suited for making out details. In order to extend the Constant and the Decreasing vision
windows with something that simulates peripheral vision a small change is made. The pixels
outside the focal area, that previously were set to zero, are now replaced with a very low resolution
version of the input state. A very low resolution version of an input state can be seen alongside
three higher resolution version in Figure 13. Note that the white paddle at the bottom makes the
pixels slightly lighter and that the removed bricks makes the pixels slightly darker in the very low
resolution input state, as seen in Figure 13d. Further, a visualization of how a focus-of-attention
input is created from the RGB game screen can be seen in Appendix A.1.

(a) 80× 80 resolution. (b) 40× 40 resolution. (c) 20× 20 resolution. (d) 5× 5 resolution.

Figure 13: Input states in different resolutions.

The formula to compute the maximum amount of pixel-information present in the input state is
also changed when the peripheral vision is added. The amount of pixel-information available when
the peripheral is added to the Constant vision window, ICP

, is computed as follows:

ICP
= IC + 2 ·

(
⌈
( 80−fw

2 )

80/R
(P )
h

⌉ · ⌊
80− ( 80−fh

2 )

80/R
(P )
v

⌋+ ⌈
( 80−fh

2 )

80/R
(P )
v

⌉ · ⌊
80− ( 80−fw

2 )

80/R
(P )
h

⌋

)
(5.17)

where the amount of pixel-information IC for the Constant window is computed as shown in
Equation 5.16, fw is the focal width, fh is the focal height, R(P )

v is the vertical resolution of the
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peripheral and R
(P )
h is the horizontal resolution of the peripheral. If the peripheral instead is

added to the Decreasing vision window the amount of pixel-information, IDP
, can be computed

the following way:

IDP
= ID + 2 ·

⌈ ( 80−f(3)
w
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 (5.18)

where the amount of pixel-information ID for the Decreasing window is computed as shown in
Equation 5.15, f (3)

w is the outermost focal width, f (3)
h is the outermost focal height, R(P )

v is the
vertical resolution of the peripheral and R

(P )
h is the horizontal resolution of the peripheral. Note

that ⌈x⌉ is the ceiling function and ⌊x⌋ is the floor function.

The Equations 5.17 and 5.18 compute the amount of pixel-information present in the input state
when the focal point is located in the center on the screen. The expressions for ICP

and IDP
are

somewhat complex, but this is needed to deal with non-square focal areas, non-square resolutions
and situations where only a fraction of a peripheral pixel is visible behind the focal area. Two
example calculations can be seen in Appendix A.2.

A few examples of input states using the Decreasing resolution vision window with peripheral
vision can be seen in Figure 14 along with corresponding visualizations which makes it easier to
follow what is actually happening when the agent is playing the game.

Figure 14: Input states in the top row and corresponding visualizations in the bottom row.

The use of peripheral vision mimics important aspects of the human visual system. The area with
higher resolution around the focal point resembles a human’s foveated vision while the very low
resolution background resembles the peripheral vision of a human. The resolution of the peripheral
vision is too low for the agent to make out details but high enough to track movements. The fact
that the resolution decreases as the distance to the focal point increases is also true for the human
visual system. One aspect that is not included in the vision windows used, is the fact that human
vision is almost circular. The choice to instead use rectangular focal areas was made both for
simplicity and due to the pixelated nature of the game states.
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6 Experiments
Before running the different experiments it is important to know how the different Atari games
work. The Atari environments used in this thesis are Atari 2600 games from the Arcade Learning
Environment (ALE) suite [1], which is a popular choice for reinforcement learning related research.
The games Pong, Breakout and Beam Rider are used in this project and are implemented using
OpenAI Gym [2].

6.1 Pong
The game of Pong is very simple. The player controls the green paddle on the right using the
following actions: stand still, move up and move down. The orange paddle on the left is the
opponent. The goal of the game is to score more points than the opponent and to reach 21 points
first. The player can score a point by hitting the white ball and make it go past the opponent on
the left. The opponent scores in the same way: by hitting the ball past the player on the right.
Every time a point has been scored the ball is reset in the middle of the screen. A typical game
state in the game Pong can be seen in Figure 15.

Figure 15: A typical screen in Pong.

The rewards returned from the environment are in accordance with the score of the game from
the perspective of the agent: a reward of +1 is returned when the agent scores, a reward of −1 is
returned when the opponent scores and for all other time-steps a reward of 0 is returned. As the
game ends when either the player or the opponent reaches 21 points the maximum score of Pong
is 21.

6.2 Breakout
In Breakout the player controls the red paddle on the bottom of the screen by either standing still,
moving left or moving right. The goal of the game is to make the ball hit and destroy the bricks
that can be seen on the top half of the screen. There are six rows of bricks, represented by different
colors. When a brick is destroyed by the ball the ball rebounds and the player will have to hit it
back up. If a brick in one of the middle rows is destroyed the speed of the ball increases, making
the game more difficult. If the player cannot return the ball and it moves past the paddle at the
bottom the player loses a life. The player starts with five lives and if all lives are lost the game is
over. Two typical game states can be seen in Figure 16.
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Figure 16: Two typical screens in Breakout.

In Breakout the rewards returned by the environment is in accordance with the game score. A
reward of +1 is returned when a brick in the bottom two rows is destroyed, a reward of +4 is
returned when a brick in the two middle rows is destroyed and a reward of +7 is returned when a
brick in the top two rows is destroyed. As in Pong a reward of 0 is returned for all other time-steps.
Using this information the total score for destroying all the bricks can be found to be 432 points.
To beat the game of Breakout all bricks need to be destroyed twice. This means that the maximum
score of the game is 864.

As mentioned before the three actions stand still, move left and move right can be chosen at each
time-step in the game of Breakout. However, there is actually a fourth action available. This
action is known as ’FIRE’ and its only use within this game is to start the game after a life has
been lost. If this action is chosen at any other time it has the exact same effect as choosing to
stand still.

6.3 Beam Rider
In Beam Rider the player controls the yellow space-ship at the bottom of the screen and the goal is
to destroy enemies by shooting them. The game is divided into sectors and in each sector the player
must destroy 15 enemies in order to proceed within the game. As the player is moving through
the sectors new enemy types, with unique movement patterns, are introduced. In Beam Rider the
player has access to two different types of ammunition: laser shots and torpedoes. The laser shot
is unlimited but can only destroy certain enemy types. The torpedoes can destroy everything but
the player only has access to three torpedoes per sector. The amount of torpedoes available to the
player is represented by purple rectangles at the top right of the screen. At the end of each sector
a so called Sector Sentinel appears. This big, red enemy is worth a lot of points but can only be
destroyed using torpedoes. It is thus smart to use the torpedoes sparingly during the sectors. The
player starts with two extra lives and a life is lost if the player’s space-ship is hit by an enemy.
Typical game screens from Beam Rider can be found in Figure 17.
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Figure 17: Three typical screens in Beam Rider.

The player gets points when enemies are destroyed. The normal enemies gives a smaller point
reward while the Sector Sentinel at the end of each sector gives a larger reward if the player
manages to destroy it. The point value per enemy grows as the player makes its way through the
sectors. If no enemy is hit during a time-step the reward from the environment is 0. Beam Rider
is a game that only ends when all lives are lost. Thus, there are no actual max score and the game
can go on indefinitely.

There are nine actions in Beam Rider. The agent can choose to stand stand still, to move left or to
move right. The agent can also choose to use the ’FIRE’ action to shoot the laser shot or choose
the action ’UP’ to shoot a torpedo. In the Arcade Learning Environment suite the ’FIRE’ and ’UP’
actions can be combined with the move left and move right actions. Thus the following actions
exist; ’NOOP’, ’LEFT’, ’RIGHT’, ’FIRE’, ’FIRE+LEFT’, ’FIRE+RIGHT’, ’UP’, ’UP+LEFT’
and ’UP+RIGHT’.

6.4 Experiment Set-up
A number of different focus-of-attention models were tested on the Atari games Pong, Breakout
and Beam Rider. For each focus-of-attention model the size(s) of the focal area(s), the resolution(s)
and the focal step-size need to be chosen. Below the different models are listed:

• Non-FoA, res80 : The A3C-LSTM model without the FoA task with full 80× 80 resolution.

• Non-FoA, res40 : The A3C-LSTM model without the FoA task with the lower 40× 40 reso-
lution.

• Constant 50x50, res80 : A 50× 50 focal area with constant resolution and a focal step-size of
4. Uses a resolution of 80× 80. The pixels outside the focal area are set to zero.

• Constant 50x50, res40 : A 50× 50 focal area with constant resolution and a focal step-size of
4. Uses a resolution of 40× 40. The pixels outside the focal area are set to zero.

• Constant 70x70, res40 : A 70× 70 focal area with constant resolution and a focal step-size of
4. Uses a resolution of 40× 40. The pixels outside the focal area are set to zero.

• Decreasing 30-50-70 : A focal area made up of a 30×30 area with 80×80 (high) resolution, a
50×50 area with 40×40 (medium) resolution and a 70×70 area with 20×20 (low) resolution.
A focal step-size of 4 is used. The pixels outside the focal area are set to zero.

• Constant(P) 70x70, res40 : The Constant 70x70, res40 model with added peripheral. The
pixels outside the focal area are replaced with a 5× 5 resolution version of the game state.

• Decreasing(P) 30-50-70 : The Decreasing 30-50-70 model with added peripheral. The pixels
outside the focal area are replaced with a 5× 5 resolution version of the game state.
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The sizes of the focal areas are decided in such a way that they are small enough to force the agent
to learn a good policy for the visual actions, yet large enough to let the agent reach good scores on
the games. The focal step-size is chosen to be 4 pixels per action in all cases. This value allows the
agent to move its focus-of-attention fast enough to track movements while keeping some continuity
between time-steps. A summary of the models can be seen in Table 1 and example states can be
seen in Figure 18.

Table 1: Summary of the models used in this thesis.

Model name Focal area(s) Resolution(s) Peripheral
Non-FoA, res80 - 80× 80 -
Non-FoA, res40 - 40× 40 -

Constant 50x50, res80 50× 50 80× 80 -
Constant 50x50, res40 50× 50 40× 40 -
Constant 70x70, res40 70× 70 40× 40 -
Decreasing 30-50-70 30× 30, 50× 50, 70× 70 80× 80, 40× 40, 20× 20 -

Constant(P) 70x70, res40 70× 70 40× 40 5× 5
Decreasing(P) 30-50-70 30× 30, 50× 50, 70× 70 80× 80, 40× 40, 20× 20 5× 5

(a) Non-FoA, res80. (b) Non-FoA, res40. (c) Constant 50x50, res80. (d) Cons. 50x50, res40.

(e) Cons. 70x70, res40. (f) Cons.(P) 70x70, res40. (g) Decreasing 30-50-70. (h) Decr.(P) 30-50-70.

Figure 18: Example states for the different models used in the thesis.

As mentioned in Sections 5.4 and 5.5, where the vision windows were introduced, the amount of
pixel-information present in a model is an interesting metric to consider when comparing results.
Thus, the Equations 5.15, 5.16, 5.18 and 5.17 are used to compute the amount of pixel-information
present in the different models. The results of the computations are presented along with the full
size of the focal area in Table 2.
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Table 2: Model comparison.

Model name Total focal area Pixel-information
Non-FoA, res80 - 6400
Non-FoA, res40 - 1600

Constant 50x50, res80 50× 50 2500
Constant 50x50, res40 50× 50 625
Constant 70x70, res40 70× 70 1225
Decreasing 30-50-70 70× 70 1450

Constant(P) 70x70, res40 70× 70 1241
Decreasing(P) 30-50-70 70× 70 1466

The hyperparameters used by the models were initially set to values that have been shown to work
well for the A3C-LSTM without focus-of-attention [7] and then tuned within a limited range. One
important hyperparameter is the λ introduced in the section Generalized Advantage Estimation.
This choice is a trade-off between bias and variance and as the Atari games are very deterministic
(only the number of no-operation actions at the start of each episode and the initialization of the
focal point introduces randomness to the game) the GAE-λ is chosen in a way that introduces
quite a lot of variance to the model. Another hyperparameter of importance is the amount of
action-learners used by the A3C. Increasing the amount of action-learners improves convergence
properties but increasing it too far can slow down training if not enough computing resources are
available. In this thesis 32 action-learners are used. A full list of hyperparameters can be found in
Appendix A.3.

The experiments were run on a node on Berzelius, which is the premier AI/ML cluster at the Na-
tional Supercomputer Centre (NSC) at Linköping University. Berzelius is made up of 60 NVIDIA®
DGX-A100 compute nodes and each of these nodes is equipped with 8 NVIDIA® A100 Tensor
Core GPUs [10].
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7 Results
The results of the experiments are presented in this section. The performance of an agent through-
out the training process is quantified as the score per episode. While the training agents in the 32
action-learner threads choose their actions probabilistically from the trained policies, a test agent,
that runs on its own thread, evaluates the model by choosing actions greedily with respect to the
policies. After each evaluation the score is saved and the thread is put to sleep for a pre-determined
amount of seconds before starting the next evaluation. In this thesis the thread is set to sleep for
20 seconds between each evaluation.

During training the score can vary a lot between consecutive tests. In order to better visualize how
the score changes over time, an exponential moving average, EMA, is introduced. By replacing
the normal score with the EMA it is easier to see trends and to compare the performance between
different models. The exponential moving average for time-step t can be computed the following
way:

EMAt = κ · SCOREt + (1− κ) · EMAt−1 (7.1)

where κ controls how much previous scores will affect the next EMA. For the results below κ was
chosen to be 0.05. For this choice of κ the latest score, SCOREt, will make up for 5% (0.05) of the
average, SCOREt−1 for 4.75% (0.05 · 0.95), SCOREt−2 for 4.51% (0.05 · 0.952) and so on. The
latest score will thus always be the most important factor in the average.

The scores, or the EMAs, are plotted both against time and against the number of episodes. The
score versus time plots can be used to compare the different models while the score versus episode
plots are provided to allow for comparisons with experiments run on different hardware set-ups.

First, results from three models described in Section 6.4 are presented. The three models are Non-
FoA, res80 ; Non-FoA, res40 and Constant 50x50, res80. The first model is the standard model
without focus-of-attention and full 80× 80 resolution. This model is mostly used for comparisons.
The other two models represent different ways of limiting the amount of pixel-information present
in the input state. In the model Non-FoA, res40 sub-sampling is used on the full image to decrease
the amount of pixel-information from 6400 pixels to 1600 pixels (see Table 2). For Constant 50x50,
res80 the amount of pixel-information is decreased to 2500 pixels (or to a lower amount depending
on the location of the focal point) by applying a vision window with constant resolution. This
third model was the one used in previous work done on the subject [14]. All three models can be
considered baselines in this thesis. The performance of the different models can be seen in Figures
19-21.

Figure 19: Performance in Breakout for baseline models.
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Figure 20: Performance in Pong for baseline models

Figure 21: Performance in Beam Rider for baseline models

The Figures 19-21 showed that the sub-sampling done in the model Non-FoA, res40 had little
effect on the performance. The lower resolution caused small drops in performance on Breakout
and Beam Rider while it actually slightly improved the performance on Pong. For all the games
the addition of the focus-of-attention task slowed down performance significantly. This drop in
performance was the biggest for Beam Rider and smallest for Pong.

As the lower resolution barely had any effect on the performance the next step involved constant
vision windows with lowered resolution. In this step the models Constant 50x50, res40 and Con-
stant 70x70, res40 were introduced and plotted alongside Non-FoA, res80 and Constant 50x50,
res80. The 50× 50 window with lowered resolution obviously holds less pixel-information than the
previously used 50 × 50 window. In fact it only used 625 pixels worth of information (see Table
2). More interesting is the fact that Constant 70x70, res40 uses 1225 pixels worth of information
compared to the 2500 of Constant 50x50, res80. This means that the larger window covers more
of the screen while still using less pixel-information. The performance of the models can be seen
in Figures 22-24.
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Figure 22: Performance in Breakout for low resolution constant vision windows.

Figure 23: Performance in Pong for low resolution constant vision windows.

Figure 24: Performance in Beam Rider for low resolution constant vision windows.
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Figures 22-24 show that the model Constant 70x70, res40 performs better than the Constant
50x50, res80 model for all games. The Constant 70x70, res40 model even performs better (reaches
the maximum score faster) than the Non-FoA, res80 model in Pong. The lowered resolution in
Constant 50x50, res40 has some effect on performance. While the drop in performance is next to
none for Pong and Beam Rider the performance drop is large for Breakout.

The third step introduced the Decreasing 30-50-70 model. This model uses multiple resolutions
and is compared with the Constant 70x70, res40 model that uses the same total size of the focal
area. The Decreasing 30-50-70 model contains more pixel-information than the Constant 70x70,
res40 model close to the focal point while it contains less pixel-information further from the focal
point. In total the Decreasing 30-50-70 model uses a maximum of 1450 pixels worth of information
while Constant 70x70, res40 uses 1225 pixels (see Table 2). The two models thus uses a similar
amount of pixel-information. Comparisons of the models can be found in Figures 25-27.

Figure 25: Comparison between constant and decreasing vision windows in Breakout.

Figure 26: Comparison between constant and decreasing vision windows in Pong.
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Figure 27: Comparison between constant and decreasing vision windows in Beam Rider.

The Figures 25-27 show that the introduction of the decreasing vision window does not, in general,
improve performance. In Breakout the performance of the two models (Constant 70x70, res40 and
Decreasing 30-50-70 ) are somewhat similar but during the last hour the model with the constant
resolution performs better. In Pong the decreasing resolution vision window performs slightly
better and in Beam Rider the constant vision window would be preferable.

As a last step peripheral vision is added to the models. This means that the models Constant(P)
70x70, res40 and Decreasing(P) 30-50-70 are now in focus. By adding these 5 × 5 resolution
backgrounds a maximum of only 16 pixels worth of information is added to the input states (see
Table 2). These models are compared with the models Constant 70x70, res40 and Decreasing
30-50-70 in order to see what effect the addition of the peripheral has on the performance. The
results are presented in Figures 28-30.

Figure 28: Performance of models with added peripheral in Breakout.
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Figure 29: Performance of models with added peripheral in Pong.

Figure 30: Performance of models with added peripheral in Beam Rider.

The results in Figures 28-30 show that the addition of the peripheral can have a big impact on the
performance. On Breakout and Pong the addition of the peripheral improves both the constant
and the decreasing resolution models significantly. On both of these games the Decreasing(P) 30-
50-70 model can be considered to perform the best out of all the focus-of-attention models. In the
case of Pong, both the Constant(P) 70x70, res40 and the Decreasing(P) 30-50-70 models perform
better than the standard Non-FoA, res80 model. In the last game, Beam Rider, the addition of
the peripheral does not improve the model. For the decreasing resolution model the performance
remains more or less unchanged while the performance of the constant model gets slightly worse.
On Beam Rider, the best focus-of-attention model is the Constant 70x70, res40 model.

To visualize where the agent is looking while playing the games the movement of the focal point
during 10 full games were recorded and turned into so-called heat maps. Common positions are
bright while uncommon positions are dark. Heat maps for the different games can be found in
Figure 31 and Figure 32 and the figures are related to the models Constant 70x70, res40 and
Decreasing(P) 30-50-70, respectively.
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(a) Breakout. (b) Pong. (c) Beam Rider.

Figure 31: Heat maps of the focal point for the different games for model Constant 70x70, res40.

(a) Breakout. (b) Pong. (c) Beam Rider.

Figure 32: Heat maps of the focal point for the different games for model Decreasing(P) 30-50-70.
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8 Discussion

8.1 Non-FoA Models
The first round of results, presented in Figures 19-21, show the performance of two non-FoA models.
These plots show that lowering the resolution from 80× 80 to 40× 40 barely affects performance.
In Pong, the performance is actually improved when lowering the resolution while the effect on
Breakout is minimal and the performance on Beam Rider gets a little worse. By lowering the
resolution some information is obviously lost but the size of the state-space is reduced at the same
time. The loss of pixel-information can deteriorate the performance while the reduction of the
state-space can improve performance. For a visually simple game like Pong (only two paddles and
one ball are present) the lower resolution does not result in any real loss of information. This
means that the reduction of the size of the state-space is enough to actually improve the model.
The opposite happens for Beam Rider. This game is visually more complex and the lower resolution
thus results in the loss of some important information. As a result the reduction of the state-space
is not enough to speed up the learning.

8.2 Constant Resolution Models
In Figures 19-21 focus-of-attention is introduced with the Constant 50x50, res80 model. This
model is similar to the one used in the previous thesis on the subject [14]. The results show
that the performance of the model is good on Pong and Breakout while the model struggles with
Beam Rider. The performance on Pong and Breakout can be considered near-optimal; on Pong
the maximum score is reached quite quickly and on Breakout all bricks of the first stage is almost
cleared. The performance on Beam Rider, while not fast, can be considered okay as there is a steady
but slow improvement. The learning of this model is however much slower than the learning of the
non-FoA models.

As suggested in Section 8.1, a change in resolution from 80 × 80 to 40 × 40 does not affect the
performance very much. Because of this two new constant resolution vision windows were added in
the second round of results, as seen in Figures 22-24. The first new model, Constant 50x50, res40,
is simply a lower resolution version of Constant 50x50, res80 using 625 pixels worth of information
instead of 2500. While there is no real effect of this lowered resolution on Pong and Beam Rider, the
new model is struggling to play Breakout. The fact that there is no real effect on Pong is expected;
the game is visually very simple and the lower resolution makes no real difference. The problems
with Breakout are also not that surprising. The small window combined with lower resolution
could cause problems for this visually more challenging game. It is more surprising that there is no
real effect of the lowered resolution on Beam Rider. It was on this visually challenging game that
the difference in performance between the models Non-FoA, res80 and Non-FoA, res40 was the
largest. The similar performance of the models Constant 50x50, res80 and Constant 50x50, res40
on Beam Rider could be explained by the fact that small vision window is a larger problem than
the lower resolution. In other words, the small vision window is the bottleneck for these models
and this property causes both the models to perform badly.

The next model to consider is the Constant 70x70, res40 model presented in Figures 22-24. This
model uses a larger focal area than Constant 50x50, res80 but a lower resolution. This setting
makes sure that the new Constant 70x70, res40 model uses less pixel-information than the Constant
50x50, res80 model: 1225 pixels worth of information instead of 2500. For all games the new
constant resolution model performs better than the previous constant resolution models used in
this thesis. The improvement is very big for Breakout and Beam Rider, but the performance on
these games is still worse for this model than for the standard Non-FoA, res80 model. For Pong,
the Constant 70x70, res40 model performs better than the Non-FoA, res80 model in the sense
that it reaches the maximum score of 21 faster. The results of this new constant model with larger
focal area suggest that the size of the vision window is more important than the resolution of the
input state.

The Figures 22-24 also show that the introduction of the focus-of-attention task does not, in
general, speed up the training process. The plots further show that the beginning of training is

40



especially slow for the FoA models. This is probably due to the fact that the size of the state-space
is actually increased for untrained models when focus-of-attention is introduced. When applying
the vision window the amount of actual game states remain unchanged and for each of these states
there now exists many different input states based on the location of the focal point. It is not
until the agent learns to control its focus-of-attention that the size of the state-space is effectively
reduced. On top of this the size of the action-space is increased which further slows down training.
These different effects can be seen in Figure 23 depicting the performances of models on the game
of Pong. For the first couple of minutes the FoA models struggle to improve where the non-FoA
model does. This can be due to the fact that the size of the state-space is initially increased for
the FoA models. Then, as the models improve and the vision window is controlled with success,
the performance of the FoA models improve faster than the non-FoA model as the size of the
state-space effectively has been reduced.

8.3 Decreasing Resolution Models
In Figures 25-27 the Constant 70x70, res40 model is compared to the Decreasing 30-50-70 model.
This model uses a decreasing resolution vision window which means that it uses three different
resolutions within its focal area. In a 30× 30 area around the focal point the resolution is 80× 80.
The resolution is then reduced to 40× 40 for the middle focal area of size 50× 50. The outer focal
area is of size 70 × 70 and uses a resolution of 20 × 20. The two models used are using the same
total focal area while the decreasing model uses higher resolution in its center and lower resolution
further from the focal point. The changes in resolution changes the amount of pixel-information
used by the model from 1225 to 1450 pixels (see Table 2). The amount of pixel-information is thus
almost the same for the two models.

For Breakout and Beam Rider the use of the decreasing resolution deteriorates the performance
slightly. The performance on Pong is more or less unchanged. As discussed earlier in both Section
8.1 and Section 8.2 the agent is not affected much when changing the resolution between 80× 80
and 40×40, which means that the higher resolution in the center of the Decreasing 30-50-70 model
does not improve the model in any significant way. The drop in resolution from 40× 40 to 20× 20
in the outer focal area, however, seems to cause some problems for the agent when learning. With
this low resolution (20 × 20) the information loss is large enough to make a difference. This is
probably why the performance of Decreasing 30-50-70 is slightly worse than the performance of
Constant 70x70, res40 for Breakout and Beam Rider. The changes in resolution does not, however,
seem to affect the visually simple game of Pong. In Pong, the low resolution of 20× 20 is probably
enough for the agent to locate the ball and the paddles. This means that there is no real difference
between the two models.

The different resolutions of the Decreasing 30-50-70 model can possibly make the training process
more challenging for the agent. When only using one resolution a certain game object always look
the same but when using three different resolutions the same game object can take on multiple
shapes. A ball can look like a sharp dot if located in the center of the focal area but it can also
look like a blurry blob if located further from the focal point. Also, at some point in time a certain
area of the screen can be given in high resolution and at another point in time this same area can
be given in a lower resolution. In other words, the multiple resolutions of the decreasing vision
window introduces a new challenge for the agent.

It should also be noted that the Decreasing 30-50-70 model performs better than the constant
resolution windows of size 50 × 50 presented in Figures 22-24, even though the decreasing model
did not outperform the Constant 70x70, res40. The Decreasing 30-50-70 model can be seen as
a 50 × 50 window padded with a lower resolution area. It is thus clear that the low resolution
(20 × 20) area adds valuable information to the model. Again, it would seem that the size of the
focal area is more important than the resolution used.

8.4 Peripheral Vision
The final models are shown in Figures 28-30. Here, the Constant 70x70, res40 model is extended
with peripheral vision forming the Constant(P) 70x70, res40 model and the Decreasing 30-50-70
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model is extended the same way, creating the Decreasing(P) 30-50-70 model. The addition of the
5× 5 resolution background known as the peripheral only adds a maximum of 16 pixels worth of
information to the model. The peripheral vision is too low resolution to make out details, but
should be enough to track some movements and notice changes.

The results shown in Figures 28-30 are rather interesting; the addition of the peripheral when
playing Breakout or Pong improves the performance while the addition of the peripheral when
playing Beam Rider seems to cause problems for the agent. Starting with the Constant(P) 70x70,
res40 model it can be seen that the performance on Breakout and Pong improves while the per-
formance on Beam Rider gets worse with the addition of the peripheral vision. Moving on to the
Decreasing(P) 30-50-70 model it can be seen that the addition of the peripheral improves the
performance on Breakout and on Pong while the performance on Beam Rider remains unchanged.
The fact that both models improve on Pong when adding the peripheral is probably due to the
fact that the very low resolution is enough to track the objects in this visually simple game. Also,
as discussed in Section 8.3, the two models Constant 70x70, res40 and Decreasing 30-50-70 are
technically very similar when playing Pong which means that the two new models, Constant(P)
70x70, res40 and Decreasing(P) 30-50-70, should also be very similar. On Pong, both models with
the peripheral performs better than the standard Non-FoA, res80 model.

The improvement on Breakout when adding the peripheral is significant, even though the peripheral
only adds a maximum of 16 pixels worth of information to the model. When playing Breakout the
focal area is generally located on the lower half on the screen, which is visualized by the heat maps
in Figures 31a and 32a. This means that the agent usually has no information on the locations
of the remaining bricks. The very low resolution peripheral can however help with this; it can
give the agent enough information to know on which part of the screen the remaining bricks are
located. Also, the improvement on Breakout is in accordance with the previous observation that
the size of the focal area is more important than the resolution.

The results on Beam Rider is not, however, in accordance with this. The addition of the peripheral
does not affect Beam Rider very much. There is even a drop in performance for the constant
resolution model when adding the peripheral. The unchanged performance of Beam Rider for the
decreasing resolution model can be explained by the fact that the agent usually keeps its focus-
of-attention in the center of the screen, as seen in the heat maps in Figures 31c and 32c. This
means that the peripheral only adds some pixels by the edges of the screen which barely hold
any information. The deteriorated performance of the constant resolution model is more difficult
to explain. One explanation could be the variance that is present in all the models. Another
explanation could be the fact that the added peripheral makes the agent move its vision window
less frequently. In the heat maps for Beam Rider (Figures 31c and 32c) it can be seen that for
a model without peripheral the focal point moves more than for a model with peripheral. With
the added peripheral, that mostly adds information along the edges, the agent seems to be less
likely to move its focus-of-attention. This could cause the model to perform worse as this added
information is not precise enough to base decisions on.

A final remark on the results is that the variance of the models can cause certain models to perform
better or worse if re-trained. More specifically, it has been noticed that there is a certain chance
that a model gets stuck in a local minima for some time when playing Breakout. If an agent gets
stuck in a local minima too long this can greatly deteriorate performance. Thus, it would have
been interesting to run each model multiple times to get more reliable statistics. However, due to
constraints on time and on the available resources on Berzelius, this was not possible.

When comparing the different FoA models the Decreasing(P) 30-50-70 model performs the best
on Pong and Breakout, while the Constant 70x70, res40 model performs the best on Beam Rider.
It should also be noted that all the models with a total focal area of size 70× 70 performs better
than the Constant 50x50, res80 model that was presented in previous work [14].

8.5 Analysis of Agent Behavior
When looking at the heat maps in Figure 31 it is easy to see that the focal point does not move
much in a trained model. In Breakout, the most important area of the screen seems to be the
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bottom half where the paddle is located while the right half is most important when playing Pong
as this is the area where the player’s paddle is located. In Beam Rider the vision window is usually
quite centered but is occasionally moved down to the bottom. While it is true that there are not
much movement of the vision window it should be noted that when comparing Figure 31 and Figure
32 it can be seen that there are more movement for the more successful model. For Breakout and
Pong, the Decreasing(P) 30-50-70 was the best model and the heat maps in Figures 32a and 32b
suggest more movement than the heat maps in Figures 31a and 31b. The opposite is true for Beam
Rider; Constant 70x70, res40 was the better model and the heat map in Figure 31c shows more
movement than the heat map in Figure 32c. The movement of the focus-of-attention thus seems
to be of importance.

In Breakout the agent generally struggles to clear all the bricks of the first stage. The agent plays
well until only a few bricks remain, at which point the agent can get stuck in an endless loop or
just simply miss the ball. Due to the fact that the focal area of the agent usually covers the lower
half of the screen it is not surprising that the agent struggles to hit the last couple of bricks as
it cannot see them. This problem is to some extent solved by the added peripheral in the model
Decreasing(P) 30-50-70. The agent also uses a rewarding tactic while playing Breakout; the agent
creates a tunnel through the brick wall and shoots the ball through said tunnel allowing the ball
to bounce on the top of the top row. This tactic quickly generates a lot of points without the need
of hitting the ball a single time. When using this tactic the agent does not, however, move its
focus-of-attention up to see what is going on. Instead it patiently waits until the ball comes back
down. This is the main difference between how the agent and a human would play, as a human
probably would follow the ball with its vision when it bounces on the top of the brick wall.

When the agent is playing Pong it usually keeps its focus-of-attention on the right side of the screen
tracking the movements of the paddle and the ball. The agent tends to follow the ball slightly to
the left with its focus-of-attention after a return but the focal area is very rarely moved all the
way to the left side. The paddle of the opponent is thus almost never present within the focal
area. This is however not needed as the agent knows how the opponent will return the ball based
on the ball’s trajectory. When training, the agent quickly learns how to score. Hitting the ball a
certain way (from the correct angle and with the correct speed) will always result in a point as the
opponent will not be able to return the ball. The agent usually learns a few different variations of
this shot and simply uses those shots over and over during a match. This approach to the game
almost always results in a 21 - 0 win. It should also be noted that after the agent has scored the
ball is reinitialized in the center in a deterministic way which leads to a situation where the ball
will always end up in the lower right corner. Because of this the agent tends to keep its focus-of-
attention in the lower right corner, as seen in the heat map in Figure 32b. This is quite similar to
how a human would play Pong. A human would, however, probably look at the opponent when it
is hitting the ball. Also, the agent can hit the ball in the correct way to score with much higher
precision than a human could making the agent a better player.

As mentioned before, the agent usually keeps its focus-of-attention centered when playing Beam
Rider. The agent tries to make sure to keep the top pixels of the space-ship within the focal
area to be able to track its movements. The agent also tends to move its focus-of-attention down
to the space-ship when the Sector Sentinel appears and multiple projectiles are shot towards the
player. The focal area is probably moved to make it easier to avoid all these projectiles. Further,
the agent has some non-optimal behaviors. Firstly, the agent tends to shoot all its torpedoes in
the beginning of the game, and secondly, the agent usually tries to shoot enemies with the laser
that cannot be destroyed. The first non-optimal behavior is probably due to the long length of a
sector. The agent needs to be very long-sighted in order to wait until the end of a sector before
using the torpedoes. The second non-optimal behavior could partly be because the agent cannot
tell the enemies apart with the low resolution and partly be because there is no harm in shooting
the invulnerable enemies if the agent still avoids being hit by the enemy. To summarize, the agent
plays the game quite similar to how a human player would and positions its focus-of-attention
where most human players would look. A human player would however have an easier time with
saving the torpedoes until they are actually needed.
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9 Conclusions
In this thesis the A3C-LSTM network was extended with a focus-of-attention mechanism and
trained on three different Atari 2600 games. An agent was required to both learn to control
its movements and its focus-of-attention. Rectangular vision windows with constant resolution,
decreasing resolution and with peripheral vision were used. In general, the introduction of the
focus-of-attention task slowed down the training process. The drop in performance is probably
due to the larger action-spaces and the larger state-spaces of the untrained FoA models. In Pong
there are however signs that once the agent learns to control its focus-of-attention the state-space
can effectively be reduced leading to a speed-up of the training process.

The A3C-LSTM with focus-of-attention was shown to perform near-optimally on the Atari games
Pong and Breakout with a 50 × 50 constant resolution vision window. It struggled more on the
visually challenging game Beam Rider but the performance was improving steadily, although slowly.
By introducing a 70× 70 constant vision window with lower resolution is could be shown that the
size of the vision window is more important than the resolution of the input state. High resolution
pixel-information is not that much more valuable than lower resolution pixel-information and lower
resolution pixel-information is much better than no information at all. The larger vision window
with lower resolution is using 1225 pixels worth of information and is performing better than the
smaller vision window with high resolution that is using 2500 pixels worth of information.

Using a decreasing resolution vision window, which still uses a focal area of size 70 × 70 and
almost uses the same amount of pixel-information but with varying resolution did not speed up
performance further. The higher resolution closest to the focal point does not make up for the
loss of information related to the lower resolution far from the focal point. The difference between
a 40 × 40 resolution and a 20 × 20 resolution seems to be more significant than the difference
between a 80 × 80 resolution and a 40 × 40 resolution. The decreasing resolution vision window
does, however, perform better than the small constant window. The addition of the extra low
resolution area does, in other words, improve the performance in a significant way. Again, it would
seem like the size of the vision window is more important than having a high resolution.

The addition of the peripheral vision adds very little pixel-information to the model but affects
the performance quite a lot. When the peripheral is added to the two vision windows the perfor-
mance is improved for Breakout and Pong. In both these cases the peripheral seems to provide
important information and the resulting model has the best overall performance on these games.
The peripheral can probably be used to keep track of the opponent’s paddle in Pong and on the
location of the remaining bricks in Breakout. The same improvement can not be seen in Beam
Rider. This is probably due to the fact that the agent keeps its focus-of-attention centered while
playing Beam Rider, making the peripheral add only unimportant information at the edges of the
screen.

In summary, a large focal area is more important than the use of high resolution. With a larger
focal area the agent barely has to move its focus-of-attention and can instead focus on positioning
the focal point in a good spot. The heat maps provided in the Results section reflect the most
important areas of the screen when playing a specific game. This information could in principle
be used to highlight important parts and to filter out information of no importance with hopes of
reducing the state-space and speeding up the training process.
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A Appendix

A.1 Network Architecture
The overview of the A3C-LSTM with focus-of-attention, first presented in the section Focus-of-
Attention, can be seen below:

Figure 33: Overview of the architecture of the A3C-LSTM algorithm with focus-of-attention.
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As the convolutional torso includes many important details that are not present in the figure above,
a more detailed illustration of the convolutional torso is provided below:

Figure 34: Detailed view of the convolutional torso of the A3C-LSTM algorithm with focus-of-
attention.
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A visualization of how a focus-of-attention input is created can be found below:

Figure 35: Overview of how a focus-of-attention input is created.
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A.2 Pixel-information
When calculating the amount of pixel-information that the peripheral vision adds some low res-
olution pixels are partially covered by the focal area. Two example calculations can be found
below. Note that the blue and the red areas are calculated separately and then added together
and multiplied with 2.

Figure 36: Example calculation of pixel-information for peripheral.

Figure 37: Example calculation of pixel-information for peripheral.
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A.3 Hyperparameters

Table 3: Hyperparameters used in the project.

Hyperparameter Value
Atari pre-processing

Frame size 80× 80
Gray-scale Yes

Cropped images Yes
Normalized images Yes

Frame skip 4
Max-pool screens Yes

Frame stack No
Initial no-operations [0, 30]

Clip rewards to {−1, 0,+1} Yes
Loss of life terminal state Yes

Fire on reset Yes
Number of actions Game specific

Training
Learning rate α 1.0 · 10−4

Optimizer Shared Adam (AMSGrad)
Action-learner threads 32

Max number of steps, tmax 20
Discount factor, γ 0.99
GAE parameter, λ 0.92
Entropy term, β 0.01
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Deep Reinforcement Learning with Active Vision
on Atari Environments

Robin Göransson
Lunds Tekniska Högskola

Simulating the visual system of a deep reinforcement
learning agent in different ways on Atari games
When training an agent on Atari games not all information on the screen is relevant.
In this thesis the agent is tasked with controlling an area of interest that effectively
can be used to exclude irrelevant pixels. Different types of interest areas are proposed,
some of which perform well with limited information.

In reinforcement learning an agent is tasked with
taking actions in such a way that some rewards
are maximized. A reinforcement learning agent
learns through trial and error; if the agent per-
forms well it receives a positive reward and if the
agent performs badly it receives a negative re-
ward. In deep reinforcement learning these ideas
have been combined with deep learning and neu-
ral networks. This combination allows reinforce-
ment learning to be used on larger environments
and on more complex problems, making rein-
forcement learning more useful and a more pop-
ular choice for solving problems.

When it comes to evaluating the performance
of deep reinforcement learning agents different
Atari 2600 games are often used with the goal
of learning to play the game. These games are
useful as the problem solving ability of an agent
can be tested quite easily on them. The Atari
games are, however, fully observable: all the in-
formation on the screen is available to the agent
at all times. A problem with this is that not all
this information is relevant to the agent. In an
attempt to exclude irrelevant pixels, the agent
was in this thesis given a small region of interest
(ROI) which could be moved across the screen.
With this the agent had to learn where too look
at the same time as it had to learn how to play
the game.

Throughout the thesis the agent’s "visual sys-
tem" for controlling the region of interest was
simulated in different ways. First, the ROI was
created using a simple rectangle containing pixels
of one chosen resolution. The pixels outside this
rectangle were simply replaced with zeroes. By
using ROIs of different sizes and different resolu-
tions it could be shown that a larger ROI with
lower resolution was preferable to a smaller ROI
with a higher resolution. The agent’s field of view
is, in other words, more important than the res-
olution.

Next, a new ROI was created by letting the res-
olution decrease as the distance to the center of
the ROI increased. This type of ROI is inspired
by the human visual system. Keeping the size
of the ROI fixed while the resolution in the cen-
ter was increased and the resolution towards the
edges was decreased, did not, in general, improve
performance. The increased resolution towards
the center was probably not enough to make up
for the lowered resolution towards the edges of
the ROI. It was, however, clear that the low res-
olution towards the edges did provide important
information to the agent.

A final addition to the models used in the thesis
was peripheral vision. This addition is also in-
spired by the human visual system. The agent’s
peripheral vision was simulated using a very low
resolution background which added very little in-
formation to the model. When using peripheral
vision, information from the whole screen is used,
even though the information given by the pe-
ripheral is too blurry to make out details. The
very low resolution of the peripheral is, however,
enough to track movements and detect changes
on the screen. This is made clear by the fact that
the addition of the peripheral, in general, signif-
icantly improved the performance in the games.

Throughout the thesis it has been shown that an
agent can perform well while controlling its ROI
and also that it is possible to reduce the amount
of information available to the agent quite a lot
without hurting the performance. The successful
agents from this thesis could possibly be modi-
fied to work on more complex real-world environ-
ments, where the use of a visual system is needed.
The different ROIs using a reduced amount of in-
formation could also be useful in situations where
there are limits to bandwidth or something sim-
ilar.
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