
MASTER’S THESIS 2022

Investigating Hybrid
Approaches for Name
Matching of Points of Interest
Lucy Albinsson, Tove Sölve

ISSN 1650-2884
LU-CS-EX: 2022-45

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-45

Investigating Hybrid Approaches for Name
Matching of Points of Interest

Undersökning av hybrida metoder för
namnbaserad matching av intressepunkter

Lucy Albinsson, Tove Sölve

Investigating Hybrid Approaches for Name
Matching of Points of Interest

Lucy Albinsson
lu2767al-s@student.lu.se

Tove Sölve
to5185so-s@student.lu.se

July 6, 2022

Master’s thesis work carried out at AFRY.

Supervisors: Hampus Londögård, hampus.londogard@afry.com
Dennis Medved, dennis.medved@med.lu.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:lu2767al-s@student.lu.se
mailto:to5185so-s@student.lu.se
mailto:hampus.londogard@afry.com
mailto:dennis.medved@med.lu.se
mailto:jacek.malec@cs.lth.se

Abstract

Determining whether or not two Points of Interest are the same entity can be
a difficult task due to inconsistent information between different data sources.
This can cause problems such as duplicated or removed Points of Interest in
map services. This thesis investigates hybrid approaches for matching Points of
Interest based on their names and coordinates. We present hybrid approaches
based on state-of-the-art similarity functions, semantics and machine learning.
The highest performance was achieved using a random forest classifier with fea-
tures based on hybrid similarity functions, with an F1-score of 0.986 and error
reduction of 67% compared to state-of-the-art approaches.

Keywords: name matching, hybrid similarity functions, points of interest, algorithms,
semantics, word embeddings, machine learning

2

Acknowledgements

We would like to thank Dennis Medved for continuously answering all our questions re-
garding the thesis in general and guidance when needed. We would like to thank Hampus
Londögård for feedback and knowledge in the field. We would also like thank AFRY for
giving us the opportunity to write our thesis with them. We would especially like to thank
the IT Solutions department in Malmö for being supportive during our time at AFRY. Last
but not least, we would like to thank everyone who provided valuable feedback on the thesis
work and report.

3

4

Contents

1 Introduction 9
1.1 Background . 9
1.2 Purpose . 10
1.3 Problem Formulation . 10

1.3.1 Research questions . 10
1.4 Related Work . 11
1.5 Outline . 11
1.6 Work Distribution . 12

2 Theory 13
2.1 Similarity Functions . 13

2.1.1 Character-based Similarity Functions 13
2.1.2 Token-based Similarity Functions 15

2.2 Text Pre-processing . 17
2.2.1 Stop Word Removal . 17
2.2.2 Stemming . 17

2.3 Tokenization . 17
2.3.1 Byte-pair Encoding Tokenization 18
2.3.2 WordPiece . 18

2.4 Machine Learning . 18
2.4.1 Cross-validation . 19
2.4.2 Decision Trees . 19
2.4.3 Ensemble Learning of Decision Trees 20
2.4.4 Artificial Neural Networks . 21
2.4.5 Shapley Values . 22

2.5 Word Embeddings . 22
2.5.1 Bag-of-words . 23
2.5.2 TFIDF . 24
2.5.3 SoftTFIDF . 25
2.5.4 GloVe . 25

5

CONTENTS

2.5.5 BERT . 26
2.5.6 SBERT . 26

2.6 Evaluation Metrics . 26
2.6.1 Confusion Matrix . 26
2.6.2 Precision and Recall . 27
2.6.3 F1-score . 28
2.6.4 Matthew’s Correlation Coefficient 28

3 Approach 29
3.1 CRISP-DM . 29
3.2 Data Understanding . 30

3.2.1 Data Sets . 30
3.2.2 Data Collection . 31
3.2.3 Data Analysis . 32

3.3 Data Preparation . 32
3.3.1 Data Cleaning and Formatting . 32
3.3.2 Labeling . 33

3.4 Modeling . 34
3.5 Evaluation . 34
3.6 Tools . 35

3.6.1 NLTK . 35
3.6.2 Unidecode . 36
3.6.3 Scikit-learn . 36
3.6.4 BPEmb . 36
3.6.5 Hugging Face . 36
3.6.6 SHAP . 36
3.6.7 XGBoost . 37

4 Implementation 39
4.1 Baseline . 39
4.2 Hybrid Similarity Functions . 40

4.2.1 Text Pre-processing . 40
4.2.2 TFIDF . 41
4.2.3 SoftTFIDF . 41
4.2.4 RestrictedSoftTFIDF . 42

4.3 Semantic Similarity Approaches . 42
4.3.1 Pre-trained Word Embeddings . 43
4.3.2 SemanticSoftTFIDF . 43

4.4 Machine Learning Approaches . 44
4.4.1 Machine Learning Using Similarity Functions 45
4.4.2 Machine Learning With Additional Features 46

5 Results 49
5.1 Baseline . 49
5.2 Hybrid Similarity Functions . 51

5.2.1 TFIDF . 52
5.2.2 SoftTFIDF . 52

6

CONTENTS

5.2.3 RestrictedSoftTFIDF . 53
5.3 Semantic Similarity Approaches . 54

5.3.1 Pre-trained Word Embeddings . 54
5.3.2 SemanticSoftTFIDF . 56

5.4 Machine Learning Approaches . 57
5.4.1 Machine Learning Using Similarity Functions 57
5.4.2 Machine Learning With Additional Features 60

5.5 Examples of Classifications . 64
5.6 Error Reduction . 66

6 Discussion 67
6.1 Baseline . 67
6.2 Hybrid Similarity Functions . 68

6.2.1 Analysis of Results . 68
6.2.2 Thresholds . 69
6.2.3 Text Pre-processing . 69
6.2.4 Finding Approximate Tokens . 70
6.2.5 Weighting Words . 70
6.2.6 Weighting Words by Location . 71

6.3 Semantic Similarity Approaches . 71
6.3.1 Analysis of Results . 71
6.3.2 Embeddings and Context . 72
6.3.3 Semantics . 73

6.4 Machine Learning Approaches . 73
6.4.1 Analysis of Results . 73
6.4.2 Thresholds . 75
6.4.3 Feature Importance . 75
6.4.4 Optimization . 76

6.5 Evaluation Methods . 76
6.6 Limitations . 77

7 Conclusions 79

8 Future work 81
8.1 Weighted Words . 81
8.2 Categorization of POIs . 81
8.3 Fine-tuning Embeddings . 82
8.4 Optimization . 82

References 83

7

CONTENTS

8

Chapter 1

Introduction

This chapter gives an introduction to the problem investigated in the thesis. Initially, the
background to the problem is introduced, followed by the purpose and problem formulation.
Finally, related work, outline and work distribution is presented.

1.1 Background
Map services have become essential to everyday life. Maps require large amounts of geograph-
ical data to provide necessary functionalities such as searching for locations and navigating
a city. It is not uncommon that the data is collected from multiple data sources. Since there
is no guarantee of a unique identifier between data sources it can be difficult to determine
how these overlap. Crowdsourced data is increasing in popularity, leading to problems such
as inconsistent naming, incorrect data and diverging information. For example, in Open-
StreetMap (OSM), a crowdsourced database containing geographical data, volunteers can
contribute with limited regulation, leading to variations in site names, addresses, coordinates
and other information. A specific location that is of interest on a map such as a restaurant,
shop, library, tourist attraction or gas station, is referred to as a Point of Interest (POI). POIs
are good examples of data that can be inconsistent. For example, "Fin’s" and "Fins Sushi &
Grill" represent the same POI, even though the names differ. Without a unique identifier, the
information to determine similarity between POIs is limited and sometimes only the names
are available, reducing it to a name matching task.

Name matching can be described as the task of determining if multiple text strings repre-
sent the same entity such as a person or a location. Strings can have two aspects of similarity:
lexical and semantic. Lexical similarity is the similarity with respect to characters and words,
while semantic similarity refers to similarity in terms of meaning. State-of-the-art similarity
functions used for string matching typically use variants of lexical similarity.

Challenges in name matching tasks have been investigated in several NLP communities
with varying results. There are several difficulties that need to be handled, such as words be-

9

1. Introduction

ing placed in different order or that an added word changes the meaning of the name. Among
the state-of-the-art similarity functions, no single algorithm has proven to be favorable in all
name matching tasks and none of them seem to solve all difficulties.

In traditional Natural Language Processing (NLP), textual context is essential for determin-
ing similarity. Due to the lack of context in names, there is a need for further exploration
and this thesis aims to investigate POI name matching with limited context.

1.2 Purpose
The purpose of the thesis is to contribute to the work of identifying matching and non-
matching POI entities from different geographical data sources, using string comparison
algorithms. The aim is to avoid duplicated POIs as well as distinguish between closely lo-
cated POIs with similar names. Hopefully, the work can also be of interest for other data
integration tasks where string comparison algorithms with limited context are used.

1.3 Problem Formulation
The thesis aims to investigate approaches for determining whether or not two POIs from
different data sources are the same entity, which can be seen as a classification problem. The
goal is to correctly classify if two closely located POIs are the same entity or not, only based
on their names and coordinates. We refer to this as POI name matching. The thesis focuses
on POIs located in North America with names primarily in English, as there is plenty of
previous work for texts in English as well as NLP tools provided specifically for the English
language. The thesis mainly focuses on hybrid approaches based on string comparison algo-
rithms. We begin by investigating state-of-the-art similarity functions to see how these can
be improved when combined in hybrid similarity functions. We continue by investigating
how semantic similarity and machine learning can be used to improve the performance of
hybrid approaches.

1.3.1 Research questions
The thesis aims to answer the following research questions:

1. How can hybrid approaches improve performance of state-of-the-art similarity func-
tions for POI name matching?

2. How can semantic similarity be used to improve the performance of hybrid approaches
for POI name matching?

3. How can machine learning be used to improve performance of hybrid approaches for
POI name matching?

10

1.4 Related Work

1.4 Related Work

Jiří Kysela [1] investigated string comparison algorithms with the aim to identify the best
algorithm for POI name matching. Kysela compared state-of-the-art algorithms which con-
sider two types of lexical similarity functions: character-based and token-based similarity func-
tions. Kysela’s results showed that the token-based cosine similarity achieved the best results
for name matching of POIs. Even though Kysela’s work did not include hybrid similarity
functions specifically, it did investigate several state-of-the-art similarity functions that are
used in the hybrid approaches in this thesis. The results are of particular interest for the
thesis as it evaluated the similarity functions specifically on POI name matching.

Cohen et al. [2] investigate how character-based, token-based and hybrid similarity func-
tions can be used for general string comparison. The hybrid similarity functions compared
are recursive matching scheme, suggested by Monge and Elkan [3] and SoftTFIDF, suggested by
the authors themselves. The SoftTFIDF is based on a combination of cosine similarity and
Jaro-Winkler similarity. The evaluation was done on several data sets with various content.
The results showed that cosine similarity performed the best among the token-based simi-
larity functions and no single character-based function could be concluded as the most suc-
cessful as these performed well on different tasks. The SoftTFIDF algorithm performed the
best among the hybrid similarity functions, but also among all similarity functions evaluated.
The authors emphasized that the performance of the algorithms is task dependent, meaning
that no single similarity function is the most successful for all tasks. Even though Cohen et
al. investigated string matching in general, the promising results using hybrid approaches
rather than individual similarity functions indicate these might provide good performance
for the purpose of POI name matching as well.

Santos et al. [4] investigated state-of-the-art similarity functions for matching names of
toponyms, i.e. names of geographical places such as cities, islands etc. Their findings showed
relatively small differences in performance among the algorithms and they suggested that
achieving good results require careful tuning of the thresholds. They examined supervised
machine learning for combining multiple similarity metrics and for avoiding manual tuning
of thresholds. The results showed that ensembles of decision trees significantly outperform
the individual similarity functions. Even though Santos et al. focused on matching names of
toponyms and not POIs, the results are of interest when investigating the machine learning
approaches in this thesis.

1.5 Outline

We begin by introducing the theory necessary for understanding the work in the thesis. We
then describe the methods, data and tools used for approaching the problem, followed by
explaining the implementation of the approaches. Furthermore, we present the results from
evaluating the approaches followed by a discussion of these. Finally, we conclude the work
done in the thesis by answering the research questions and suggesting future work.

11

1. Introduction

1.6 Work Distribution
All work in this thesis has been completed in full collaboration between the authors.

12

Chapter 2

Theory

This chapter introduces the theory needed for understanding the work in the thesis. Funda-
mental concepts as similarity functions, text pre-processing and tokenization are described,
followed by presenting theory related to machine learning, word embeddings and evaluation
metrics.

2.1 Similarity Functions
There are many well-known algorithms for quantifying similarity between texts. These are
referred to as similarity functions. These can be categorized into character-based similarity func-
tions and token-based similarity functions, which will be described further in the following sec-
tions. The two types use different techniques which come with advantages and disadvantages
[5, 6].

2.1.1 Character-based Similarity Functions
Character-based similarity functions use the structure of the characters in the strings to quan-
tify similarity. These functions effectively capture typographical errors, but have problems
with other types of errors, such as variations of word order in the strings [5]. As an exam-
ple, consider the two strings "Florida Orthopedic Clinic" and "Orthopaedic Clinic Florida"
which according to character-based similarity have a low similarity due to the word order,
even though the strings are very similar. Even so, character-based similarity functions have
shown promising results for string matching tasks [1]. Three state-of-the-art character-based
similarity functions are described in the following sections.

13

2. Theory

Levenshtein Similarity
Levenshtein similarity is a character-based similarity function. It is based on Levenshtein dis-
tance, which counts the number of operations necessary to transform one text string into
another. There are three types of operations: insertion, deletion and substitution, all of equal
cost. The Levenshtein distance is defined in formula 2.1 [1, 6].

lev_dists1,s2(i, j) =

max(i, j) i f min(i, j) = 0

min

levs1,s2(i − 1, j) + 1
levs1,s2(i, j − 1) + 1
levs1,s2(i − 1, j − 1) + 1(s1i ̸=s2 j)

otherwise.
(2.1)

where:

s1 is the first string,

s2 is the second string,

i is the index of a character in s1,

j is the index of a character in s2.

Levenshtein similarity can be calculated using Levenshtein distance as defined in formula
2.2 [7].

lev_sims1,s2(i, j) = 1 −
lev_dists1,s2(i, j)
max_len(s1, s2)

(2.2)

where:

s1 is the first string,

s2 is the second string,

i is the index of a character in s1,

j is the index of a character in s2.

Jaro Similarity
The idea behind Jaro similarity is to identify common characters between two text strings.
The characters are considered common if they appear at the same position in both strings.
If the characters appear in both strings but not at the same position, they are considered a
transposition. Jaro similarity function is defined in formula 2.3 [1, 5, 8].

jaro(s1, s2) = 1 −
1
3
∗

(
c
|s1|
+

c
|s2|
+

c + t
c

)
(2.3)

where:

s1 is the first string,

14

2.1 Similarity Functions

s2 is the second string,

c is the number of common characters in s1 and s2,

t is the number of transpositions required to transform s1 to s2,

|s1| is the total number of characters in s1,

|s2| is the total number of characters in s2.

Jaro-Winkler Similarity
Jaro-Winkler similarity is a variant of Jaro similarity. Based on the assumption that the be-
ginning of a string is often more relevant for determining similarity, Jaro-Winkler assigns
higher weights to common characters in the prefixes. In Jaro-Winkler, a prefix is considered
to consist of maximum four characters. Jaro-Winkler similarity is defined in formula 2.4 [1, 8].

jaro_winkler(s1, s2) = jaro(s1, s2) +
s

10
∗ (1 − jaro(s1, s2)) (2.4)

while valid for 0 ≤ s ≤ 4, where:

s1 is the first string,

s2 is the second string,

|s1| is the total number of characters in s1,

|s2| is the total number of characters in s2,

s is the number of common characters in the string prefixes.

2.1.2 Token-based Similarity Functions
Token-based similarity functions use token sets of the strings to determine similarity [6, 9]. A
token is a sub-sequence of characters in a string. The token sets can be generated differently
depending on the tokenization method applied, which will be further described in section 2.3.
Set operations such as intersect [9, 10] are used to calculate the similarity between the token
sets. Two strings have a high similarity if their token sets have a large overlap, regard of the
length of the individual tokens. [6, 10].

A disadvantage of token-based similarity functions is that they only consider exact matches
of tokens. If the strings contain inconsistencies and typographical errors, their tokens will
also contain these errors and therefore not be considered matching tokens. For example,
consider the two strings "Florida Orthopedic Clinic" and "Orthopaedic Clinic Florida". The
strings can be tokenized respectively into the token sets {"Florida", "Orthopedic", "Clinic"}
and {"Orthopaedic", "Clinic", "Florida"}. The tokens "Orthopedic" and "Orthopaedic" will not
be considered matching tokens and the similarity between the strings will therefore be rela-
tively low, even though the strings are in fact very similar [6, 9].

Token-based similarity functions are not sensitive to the positions of tokens in the string,
since the order of the tokens is neglected in the token sets [6, 9]. Consider again the example

15

2. Theory

with the two strings "Florida Orthopedic Clinic" and "Orthopaedic Clinic Florida". The to-
ken “Florida” will be considered matching between the sets, regardless of the position in the
strings.

Two token-based similarity functions that are considered state-of-the-art for string com-
parison [1, 6] are presented in the following sections.

Jaccard Similarity
The Jaccard similarity between two text strings is calculated as the size of the intersection
of their token sets divided by the size of the union of their token sets [6, 11]. Non-matching
tokens are ignored when comparing the token sets [1]. Jaccard similarity is defined in formula
2.5 [6].

jaccard(s1, s2) = 1 −
|T1 ∩ T2|

|T1 ∪ T2|
= 1 −

|T1 ∩ T2|

|T1| + |T2| − |T1 ∩ T2|
(2.5)

s1 is the first string,

s2 is the second string,

T1 is the token set of s1,

T2 is the token set of s2.

Cosine Similarity
Cosine similarity is used to compute the similarity between two vectors. To use cosine sim-
ilarity as a token-based similarity function on strings, the tokens need to be represented as
numerical vectors. A vector representing a string could for example be created using word
embeddings, which will be further described in section 2.5. The cosine similarity is defined as
the angle between two vectors, which is their dot product divided by the product of their
size [1]. Cosine similarity is defined in formula 2.6 [1].

cosine(s1, s2) = cos θ =
A · B
|A||B|

=

∑n
i=0 AiBi√∑n

i=0 A2
i

√∑n
i=0 B2

i

(2.6)

s1 is the first string,

s2 is the second string,

A is the vector representation of the tokens in s1,

B is the vector representation of the tokens in s2.

16

2.2 Text Pre-processing

2.2 Text Pre-processing
Text pre-processing is an important step for improving performance in NLP tasks. It involves
structuring and cleaning text and is often done as a preparation before performing the main
task.

Lower-casing, i.e. converting all characters to lower case, and noise-removal, i.e. removing
special characters, are two simple steps that are commonly used in pre-processing, in order to
achieve better results [12]. There are several techniques used for text pre-processing. The fol-
lowing sections present two of the most important techniques; stop word removal and stemming
[12, 13].

2.2.1 Stop Word Removal
Words can contribute unequally to the meaning of a text. Words that do not contribute much
to the meaning and occur frequently are referred to as stop words. These can be removed
to avoid negative impact on the context. What words to consider as stop words can vary
depending on the context. However, there are some words that are considered stop words in
the general context, for example "and", "or" and "the" [14].

2.2.2 Stemming
It is not unusual that words in a text are not written in its root form. For example, the words
"waited" and "waiting" are both variants of the root word "wait". Considering these words as
the same can be favourable for interpreting the meaning of a text. Stemming is the process of
converting variants of words into their root form to have a common representation [12, 14].

Stemming can be performed using different algorithms. The most common is the Porter
algorithm [15], which is a rule-based algorithm that works well for the English language. The
Snowball stemmer, also known as Porter2, is based on Porter with slightly different rules and
minor improvements [12].

2.3 Tokenization
Tokenization is the procedure of splitting pieces of texts, such as documents, sentences or
words, into shorter sequences of characters, referred to as tokens. Depending on the used
tokenization method, a token could for example be a sequence of words, subwords or charac-
ters [16]. The technique behind tokenization is to use one or more delimiters to define where
to split the text string. A simple tokenization method is whitespace tokenization, i.e. splitting
the text using the whitespace character as delimiter to create tokens from each word in a
text. A more advanced method is subword tokenization, where the words are split into shorter
tokens [17]. The following sections present two types of subword tokenizations.

17

2. Theory

2.3.1 Byte-pair Encoding Tokenization
A widely used subword tokenization is a technique based on the data compression algorithm
Byte-Pair Encoding (BPE) by Gage [18]. The idea behind the tokenization technique is to break
down the text to characters and iteratively merge commonly used sequences into symbols.
Starting off with all characters individually as symbols, in each iteration, the most frequent
symbol pair is replaced with the combination of the merged symbols, i.e. a merge operation.
There are two stopping criteria when applying BPE, the maximum number of iterations and
the vocabulary size, which is the sum of the number of merge operations and the number
of characters in the original vocabulary [19]. A small vocabulary size will result in fewer
merge operations and shorter tokens such as unigrams, bigrams and trigrams, while a large
vocabulary size will create tokens representing more frequent words. The advantage of using
a small vocabulary size is that less data is needed to learn the tokenization, but it will also
be less likely to be merged into meaningful tokens. In contrast, a large vocabulary size is
more likely to result in tokens representing frequent words, with the down side of requiring
a larger amount of data to learn from [20].

2.3.2 WordPiece
WordPiece tokenization is a subword tokenization which, similar to BPE, builds a vocabulary
by iteratively adding combinations of characters or sequences. The difference from BPE is
that WordPiece adds the combination that maximizes the likelihood of the training data once
added, instead of the most frequent one [21].

2.4 Machine Learning
Machine learning is a field of computer science that teaches systems how to learn and improve
by experience, rather than being explicitly programmed. In the context of machine learning,
experience refers to information or data. The idea is for a system to repetitively learn from
the data and build a model that is able to find patterns and make accurate predictions for
various tasks. The data used to train the model is central for the learning process and often
a large amount of data is required for good results [22].

There are three main machine learning paradigms; supervised learning, unsupervised learn-
ing and reinforcement learning. Supervised machine learning refers to learning from data that
is labeled as the correct or incorrect outcome. In unsupervised machine learning, no labeled
data is used in training. Instead, the model learns by identifying patterns and correlations
within the provided data and groups similar data, referred to as clustering, with no knowledge
of what it represents. Reinforcement learning uses an environment with parameters defining
beneficial and non-beneficial activity, making it more controlled than unsupervised learning
but still without labeled data [22].

Ideally, a model should learn from training data and based on this be able to perform well
on unseen data. If the model is too closely aligned with the training data, it will perform well
on this data specifically but not in general. This is referred to as overfitting and has a negative
impact on performance of the models on new data [23].

18

2.4 Machine Learning

2.4.1 Cross-validation
For supervised machine learning, cross-validation can help prevent the problem of overfitting
and be used for hyperparameter tuning. Often in machine learning, the data is split into
training and testing data. The cross-validation is performed on the training data by splitting
it into smaller sets, referred to as folds. For a k-fold cross-validation the model is trained k
times, using k-1 folds for training and leaving one of the folds out for validation. For each
model trained, a different fold is used for validation. The procedure is illustrated in the
Figure 2.1. Cross-validation can be computationally expensive. However, it does not waste
too much data in the training process, which is an advantage when there are relatively few
samples in the data set [24].

Stratified k-fold cross-validation is an extension of the cross-validation technique, mean-
ing that the percentage of samples of each target class in each set are the same as in the
complete set. This is especially useful when working with imbalanced data [24].

Figure 2.1: Cross-validation used on the training data [24].

2.4.2 Decision Trees
The supervised machine learning method decision trees can be used for both classification and
regression tasks. The model learns simple decision rules from the features throughout the
training. Decision trees have a tree-like structure, with internal nodes and decision nodes,
the leaves. At each internal node, a decision is made according to a decision rule. The rule
is usually a condition based on feature variables in the training data. The leaves are assigned
one of the classes [25].

When training the trees, the algorithm needs a criterion to calculate the information gain,
the information needed to decide how to split a node. This criterion measures the quality of a
split. The measure used as criterion is often Gini index or entropy which are often similar [26].

19

2. Theory

The tree is constructed by splitting the training data according to the best split iteratively
until all data points are correctly classified or a stopping criterion is reached. A stopping
criterion could for example be the depth of the tree [25].

A disadvantage with decision trees is that the model can be sensitive to small variations
in the training data. This problem can be solved using ensembles of trees [25].

2.4.3 Ensemble Learning of Decision Trees
General ensemble methods combine a number of models to make better predictions than a
single model. Compared to a single decision tree, ensemble decision trees combine several
decision trees and tend to be less data sensitive and more flexible. The method has shown
successful results for a large variety of problems [25]. Bagging and boosting are two ensemble
decision tree techniques. Bagging trains several models separately in parallel. Boosting, on
the other hand, trains the models sequentially, where each model learns from the previous
one. Since the trees are sequentially connected, the training of boosted trees can be slow [25].

Random Forest
Random forest is an ensemble learning method based on the bagging technique, that can be
used for both classification and regression tasks. A random forest model consists of a collec-
tion of decision trees. Each decision tree predicts independently and the final class is selected
by the majority of predicted classes from all decision trees. Using a collection of trees pre-
vents an overfitted model and performs better in terms of accuracy. There are two aspects of
randomness in random forests; each tree is trained from a bootstrap sample and the feature
selection when growing the tree is also random [27]. The structure of a random forest model
can be seen in Figure 2.2.

Figure 2.2: The random forest architecture [28].

20

2.4 Machine Learning

Gradient Boosted Trees

Gradient boosted trees is an ensemble learning method based on the boosting technique in com-
bination with gradient descent, a mathematical iterative optimization algorithm for finding a
local minimum of a differential function. The idea of is to combine and improve weak learn-
ers to create a strong learner. A visualization of the gradient boosted trees architecture can be
seen in Figure 2.3. The training is performed iteratively where the misclassified observations
are assigned new weights in each iteration. The goal is to reduce the error in each iteration.
The weights are calculated using a loss function, which can differ depending on task [25].

Figure 2.3: The gradient boosted trees architecture [29].

2.4.4 Artificial Neural Networks
Artificial neural networks (ANNs) are inspired by the structure and processes in a biological
brain. The main building blocks of a neural network are referred to as neurons, which are
simply learning units. A neuron takes an input, applies some logic to it and outputs a result.
An ANN is a collection of neurons organized in different layers, where the output from one
layer is passed as the input to another. A type of ANN where the information is flowing
forward in the network is often referred to as feed-forward networks [30].

The layers in ANNs often apply different logic to the input. The number of layers in
the ANN defines the depth, hence using networks with several layers is referred to as deep
learning. The last layer in the network is referred to as the output layer since it is the only layer
that provides the desired output, while the other layers are referred to as hidden layers. The
width of the model corresponds to the dimensionality of the hidden layers [30].

A neural network is trained by feeding the network with data and successively adjusting
weights to match the desired outcome, hence it is a supervised learning technique. To be able
to adjust the weights properly, a loss function is used to determine how good the predictions
are. The goal with the adjustment is to minimize the loss function, which is often done
using an optimizer. Often, a gradient based optimizer using back-propagation is used. The
back-propagation algorithm computes the gradient of the loss function with respect to each
weight in the network [30].

21

2. Theory

Multilayer Perceptron
A multilayer perceptron (MLP) is a type of feed-forward ANN. It is a fully connected multilayer
neural network where the weight adjustments in the training process is performed using
back-propagation. MLP has one or more hidden layers and can be used for both classification
and regression tasks [31].

Attention
In artificial neural networks, attention is a technique that mimics cognitive attention of neu-
ral networks. The mechanism aims to emphasize the important parts of the input data while
diminishing less important parts. The importance is determined using gradient descent. The
attention mechanism considers a part of the input sequence in relation to the rest of the se-
quence and can be context-dependent [32].

Transformers
In the paper "Attention Is All You Need" by Vaswani et al. [32], the transformer architec-
ture is proposed, which is a machine learning architecture that uses attention. The original
transformer model uses an encoder-decoder-based architecture consisting of encoding and
decoding layers with feed-forward neural networks and multiple attention heads. The atten-
tion heads iteratively weighs relevant parts of the input using attention. Transformers are
designed to handle sequential input data and have in recent years become widely used for
NLP-tasks [32]. Figure 2.4 illustrates the transformer architecture.

2.4.5 Shapley Values
The Shapley value is used in cooperative game theory to predict outcomes. For a coalition
of cooperating players, the Shapley values provide information about how much each player
contributes to a final outcome of a game [33].

Lundberg and Lee [34] proposed the SHapley Additive exPlanations (SHAP) value as a uni-
fied framework for interpreting machine learning predictions using Shapley values. For each
feature in a machine learning model, a SHAP value is assigned for a particular prediction.
The SHAP value for a given feature can be defined as the average marginal contribution to
the outcome, across all permutations [34].

2.5 Word Embeddings
A word embedding is a real-value vector representation of a text, that encodes its properties.
The complexity of a word embedding can vary depending on the embedding dimension.
Word embeddings are commonly used in NLP tasks [35].

Some word embeddings have the fascinating feature that for words with similar meaning
in terms of semantic, lexical and contextual properties, their representations are closer in
the vector space [35]. This can be illustrated observing simple vector operations, such as the
classic example "king"-"man"+"woman". The operation between these results in a vector very

22

2.5 Word Embeddings

Figure 2.4: The transformer architecture [32].

similar to the vector for the word "queen", illustrating that it captures a gender relationship
between the words, as showed in Figure 2.5.

Traditionally, word embeddings have been generated by considering the words statistical
properties, such as occurrences and frequency. More modern techniques involve using neural
networks to train word embeddings. This enhances the ability of capturing semantic meaning
of words in the embeddings, however, tend to require more contextual information and large
amounts of data for training.

Tokenization is often used when creating word embeddings. A common problem is that
pre-trained embeddings are not able to handle out-of-vocabulary words, i.e. words not in-
cluded when training and therefore with no embedding. To solve this problem, subword
tokenizations, such as BPE and WordPiece, are useful as they can be used as a part of the
training. In this way, out-of-vocabulary words can be split into subwords that were seen dur-
ing training [37]. The following sections introduces a couple of commonly used techniques
to represent text as vectors.

2.5.1 Bag-of-words
The Bag-of-words (BoW) algorithm is used to represent a text document, for example a se-
quence of words or sentences, as a "bag", i.e. multiset, of its words. The word embedding of
the BoW contains the frequency with which each word in the bag occurs in the document,
neglecting word order [38].

23

2. Theory

Figure 2.5: An example illustrating the relationship between word
embeddings for the words "king" and "queen" [36].

2.5.2 TFIDF
The term frequency inverse document frequency (TFIDF) algorithm is used for converting a text
document into a vector in some multi-dimensional space. For each term in a document, the
algorithm compares its inverse document frequency (IDF), i.e. the total number of documents
divided by the number of documents where the term occurs, with its term frequency (TF), i.e.
the frequency of the term in the document [39, 40].

The calculation of the term frequency can vary due to different ways of normalizing the
frequency, for example by dividing the term frequency with the number of terms in the in-
tended document. The original, non-normalized, term frequency is defined in formula 2.7
[40].

TF(t, d) = Number of occurrences of t in d (2.7)

Where:

t is the term in the text document,

d is the text document.

The idea of the inverse document frequency is to assign a lower weight to terms that
occur often, while assigning higher weights to less common terms. This gives infrequent
words bigger impact on the IDF value in the TFIDF vector, which is beneficial for example
when comparing strings [39]. The IDF value is defined in formula 2.8.

IDF(t,D) =
N

|{d ∈ D : t ∈ d}|
(2.8)

Where:

t is the term in the text document,

d is the text document,

24

2.5 Word Embeddings

D is the corpus of text documents,

N is the total number of text documents in the corpus.

The TFIDF value for a term is calculated by multiplying the term’s TF value with its IDF
value, as defined in formula 2.9.

TFIDF(t, d,D) = TF(t, d) ∗ IDF(t,D) (2.9)

t is the term in the text document,

d is the text document,

D is the corpus of text documents.

Applying the TFIDF algorithm to a string results in a vector containing the TFIDF values
for all terms in the string. Tokenization, described in section 2.3, is applied to each document
to obtain the terms for which to calculate TFIDF values. The length of each TFIDF vector in
a corpus is equivalent to the number of terms in the entire corpus [39].

Cosine similarity can be used to compute the similarity between the TFIDF vectors of
two strings, as described in section 2.1.2. A higher cosine similarity score indicates that the
strings are more similar. Additionally, if the overlapping terms are more rare in the corpus,
the score increases even more [41].

2.5.3 SoftTFIDF
Cohen et al. [2] defined the SoftTFIDF algorithm, which is a less strict version of TFIDF [11].
The idea was to make similar terms count as the same. This way, misspellings or variants
of words can be considered the same, which would increase the frequencies of those words.
SoftTFIDF combines TFIDF with a character-based similarity function, to not only find
exact terms, but also lexically similar terms. The character-based function is used with a
threshold, which defines how similar the terms must be, to be considered the same [2].

2.5.4 GloVe
Global Vectors (GloVe) is an unsupervised learning algorithm for generating word embed-
dings, developed by Stanford in 2014 [42]. GloVe is trained on statistics of aggregated global
word-to-word co-occurrences from a corpus, meaning that the embeddings will consider how
frequent words co-occur with each other in the given corpus [42]. It is often used to find
relations between words, such as synonyms. However, it is not effective in identifying ho-
mographs, i.e. words with the same spelling but different meanings [43]. GloVe is available
as pre-trained models based on a pre-defined corpus of text, which introduces the risk of
out-of-vocabulary tokens [44].

25

2. Theory

2.5.5 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a deep learning model devel-
oped by Google in 2018 [45]. It is based on the transformer architecture described in section
2.4.4 and is used in a range of NLP applications. BERT only uses the encoder-part of the
transformer architecture, meaning it uses attention and feed-forward layers, but not recur-
rent connections [45]. It is bidirectional, meaning it learns both from left to right and right to
left context in all layers. BERT is pre-trained using a combination of masked language model-
ing (MLM) and next sentence prediction (NSP) to learn an inner representation of the English
language. It is trained on a large collection of unpublished books and Wikipedia [46]. BERT
uses WordPiece tokenization, which is described in section 2.3.2.

Compared to traditional unidirectional models, BERT has shown a major improvement
for understanding context. This makes it effective in identifying homographs and distin-
guishes these as multiple vectors even though the spelling is identical [47].

A limitation of BERT is that its structure makes it difficult to derive sentence embed-
dings, i.e. embeddings on sentence level instead of word level. This can be bypassed by
inputting single sentences through BERT and averaging the outputs of the word embeddings
to sentence embeddings [48].

2.5.6 SBERT
Sentence-BERT (SBERT) is a modification of the BERT model for generating sentence em-
beddings. It uses a pre-trained BERT model fine-tuned with Siamese and triplet network
architectures and natural language inference (NLI) data. SBERT has proven to out-perform
state-of-the-art sentence embeddings on benchmark tasks [48].

2.6 Evaluation Metrics
To compare and evaluate the results of the classification algorithms, the evaluation metric
precision, recall, F1-score and Matthew’s correlation coefficient (MCC) can be used. The results
can also be visualized using a confusion matrix. The metrics and the confusion matrix are
further described in the following sections.

2.6.1 Confusion Matrix
A confusion matrix, also known as an error matrix [49], is a matrix used to summarize and
visualize the performance of a classification algorithm [50].

Each column in the matrix represents the instances in the predicted class while each row
represents instances in the actual class. The cells show the overlap of predicted and actual
classes, which makes it easy to identify the number of correct and incorrect classifications for
each class. The values in the cells are used in different constellations when calculating preci-
sion, recall, F1-score or MCC [51]. An example of a confusion matrix for binary classification
can be seen in Figure 2.6.

26

2.6 Evaluation Metrics

Figure 2.6: An example of a confusion matrix.

TNn’

n

FP

p Tot

TN+FP

FNp’

Tot TN+FN

TP FN+TP

FP+TP

Actual
Label

Predicted Label

The cells in the matrix represent:

TP - the number of true positives,

TN - the number of true negatives,

FP - the number of false positives,

FN - the number of false negatives,

n′ - the number of actual negatives,

p′ - the number of actual positives,

n - the number of predicted negatives,

p - the number of predicted positives.

2.6.2 Precision and Recall
Precision and recall are two evaluation metrics that are often used together since they both
measure relevance, but in slightly different ways. Precision is the relation between relevant
instances, i.e. the instances that are supposed to be positive and the retrieved instances, i.e.
the instances that were predicted positive, and recall is the fraction of relevant instances that
were retrieved [52]. Precision is defined in formula 2.10 and recall is defined in formula 2.11
[52].

Precision =
TP

TP + FP
(2.10)

Recall =
TP

TP + FN
(2.11)

Whether high precision, high recall or a balance is preferred when determining if a result
is good or not is context-dependent [53].

27

2. Theory

2.6.3 F1-score
F1-score is the harmonic mean of precision and recall and is often used as a measure in clas-
sification problems. F1-score is defined in formula 2.12 [52].

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.12)

F1-score is considered the standard indication of a classifiers performance in general,
since it is based on equal contribution on both precision and recall. It is widely-used when
comparing the quality of a classifier as it is easy to interpret and emphasizes the positive class,
which is often of interest [52].

2.6.4 Matthew’s Correlation Coefficient
The Matthew’s Correlation Coefficient (MCC), in statistics known as the phi coefficient [54],
is a balanced measure of the quality of binary classification. It takes true and false positives
and negatives into account and is useful when evaluating imbalanced data, meaning that the
number of instances in the classes are very unequal [55]. It returns a value between -1 and +1,
where +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse
prediction [55]. MCC is generally regarded as being one of the best measures of describing
the confusion matrix [54]. MCC can be computed using formula 2.13 [54].

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.13)

28

Chapter 3

Approach

This chapter describes the methodology used when investigating approaches for POI name
matching. The CRISP-DM process used for the thesis work is introduced, followed by pre-
senting the structure of the work according to the process. Additionally, the tools used in
the work are presented.

3.1 CRISP-DM
The thesis work was carried out according to the Cross-Industry Standard Process for Data Min-
ing (CRISP-DM) process, which is a structured approach commonly used in data science
projects [56]. The CRISP-DM process is divided into six correlating phases, as illustrated in
Figure 3.1. The phases are described below.

1. Business understanding: Understanding the client’s objectives, requirements and ex-
pectations from the project.

2. Data understanding: Identifying, collecting and analyzing data to gain an understand-
ing on how to accomplish the project goal.

3. Data preparation: Preparing the data for the modeling phase, involving cleaning and
formatting.

4. Modeling: Building and assessing various models, for example algorithms and ap-
proaches. This phase is often done iteratively until the best model(s) is determined.

5. Evaluation: Broader evaluation of how well the model(s) meets the project goals.

6. Deployment: Deploying the model(s) for customers to access, including monitoring
and maintenance.

29

3. Approach

Figure 3.1: The CRISP-DM process, describing the life cycle as six
phases with arrows indicating the most important dependencies be-
tween phases [57].

The phase of business understanding (1) which corresponds understanding the purpose
of the task. This was described in Chapter 1. The phase of deployment (6) has been left out
as it is out of the scope of this thesis. The work was carried out only according to phases 2-5.

3.2 Data Understanding
This section covers the phase of data understanding, according to the CRISP-DM process. It
describes the collection and analysis of the data sets used in the work.

3.2.1 Data Sets
To address the problem of POI name matching, it was essential to find good data to work
with. In order to find POIs that could potentially be the same, we needed to select data
from different sources with a sufficient overlap, with respect to geographical areas and POIs.
In line with the scope of the thesis, we investigated options of data sets containing English
POIs. Several data sets containing geographical data from North America with POI names
primarily in English were collected from four sources: OpenStreetMap (OSM) [58], Yelp
[59], Data.gov [60] and Open Data Portal [61]. These sources are further introduced in the
following sections.

OpenStreetMap
OpenStreetMap (OSM) is a project supported by the OpenStreetMap Foundation. The idea
is to make geographical data available through crowdsourcing [58]. This leads to a huge num-
ber of contributions and the quality of the data can vary a lot, leading to problems such as
incorrect or incomplete data. Data for different regions are available from their download

30

3.2 Data Understanding

web site [62]. For this thesis data from the regions Florida, North Carolina, Massachusetts
and British Columbia was used.

Yelp
Yelp provides a platform with local business information together with reviews and other
services. For this thesis we used the "Yelp Academic Business" data set [63] covering North
America. The idea is to make it easy for customers to get information and get in contact with
businesses. Just as for OSM, the data is crowdsourced [59].

Data.gov
Data.gov is run by the U.S. government and provides data sets with federal, state and local
government information [60]. For the work in this thesis, we have used the data set "Com-
munity Points of Interest" [64], which consists of information about community centers, fire,
police and EMS stations, hospitals, libraries, schools and post offices in Cary, North Carolina
[65].

City of Vancouver Open Data Portal
The City of Vancouver provides public data, such as tables, maps and charts, about the city
through Open Data Portal [61]. The three data sets called "Cultural Spaces" [66], "Schools"
[67] and "Libraries" [68] have been used in the thesis.

3.2.2 Data Collection
The data sets collected for the thesis contain a huge amount of data, some covering all of
North America and some only certain regions. To achieve a sufficient overlap between the
data sets, we limited the data to specific parts of North America. When selecting the specific
areas, we strived for a balance between different types of POIs and between urban and rural
areas. Unfortunately, for rural areas, we found little overlap in data. Since the rural areas
are not as dense and do not contain as many businesses as urban areas, the data sets do not
contain much data in these areas. Therefore, urban areas were chosen of which two were
central city areas and two were suburbs. We decided to collect data from several different
areas in North America to ensure overlap and variety in POIs. The geographical areas used
in this work are specified in Table 3.1.

Table 3.1: The geographical areas selected used in the thesis.

Region Coordinates (Lat, Lon) Geographical Setting
Boston 42.366625 to 42.349203, -71.068092 to -71.055022 City Central
Vancouver 49.258694 to 49.204954, -123.128227 to -123.025537 City Central
Orlando 28.616707 to 28.567949, -81.405150 to -81.315333 Suburban
Cary 35.859603 to 35.655800, -78.902602 to -78.701696 Suburban

31

3. Approach

3.2.3 Data Analysis
To make the data from the different data sets compatible for the work, we investigated their
structure to understand how they could be used. When looking at names of POIs to deter-
mine whether they are the same entity, we assumed that they were located relatively close to
one another in order to be considered a match. Therefore, the minimum requirement for a
data point to be considered a useful POI is to have a name and a position, in terms of latitude
and longitude coordinates. The coordinates are required for reducing potential matches to
POIs only located within a certain distance from each other.

3.3 Data Preparation
This section covers the phase of data preparation according to the CRISP-DM process, in-
cluding cleaning and formatting of the collected data. It also describes how we structured
and labeled pairs from the collected data sets in order to evaluate the classification of our
approaches.

3.3.1 Data Cleaning and Formatting
Clean and valid data is required in order to evaluate the various approaches used for POI
name matching. To obtain valid data to be used on testing, we have manually labeled data
from the areas in North America specified in Table 3.1.

Due to the slightly different characteristics of the data sets the data needed to be refor-
matted before merging. The goal was to create a data set of POI pairs representing potential
matches of POIs. The pairs consisted of one POI from the OSM data set, since this had the
most data points and would therefore generate the largest overlap, and one POI from one of
the other data sets.

The data from OSM contains three types of components: nodes, ways and relations. Only
node components were considered as these were the only components containing coordinates
for one position. From these, only nodes containing a name tag were kept. Since Yelp contains
data of businesses, all containing coordinates and names, all data points were considered to
be POIs and therefore kept. All data in the Data.gov data set as well as in the data sets from
Open Data Portal are POIs with coordinates and names and therefore all of these were kept.

The most essential attributes from the data sets were the name of the POI and its coor-
dinates, latitude and longitude. Other attributes such as timestamp, version, review count
etc. were dropped since these were not necessary for the task. Other information, such as
category, could possibly be useful for determining if two POIs are the same. As mentioned
earlier, the use of crowdsourced data introduces the risk of incorrections and incompletions,
meaning that it would require identifying the correct and matching category for each POI.
While it might be beneficial for the task, it would make it more complex and is out of the
scope of this project.

Based on the assumption that matching POIs are likely to be closely located to each other,
we only consider potential matches to be POIs within a certain distance. When using crowd-
sourced data, we cannot ensure that the coordinates are identical for the POIs between data
sets, however, we chose a distance to allow for some incorrections of position. The selection

32

3.3 Data Preparation

of distance was based on wanting to identify as many matching POIs as possible, while keep-
ing the number of non-matching POIs relatively low, to avoid having a too imbalanced data
set. After some exploration we concluded that 0.0002 degrees in both latitude and longi-
tude was suitable for the task. This corresponds to approximately 25 meters. With a larger
distance than 0.0002 degrees we did not observe many more matches, while the number of
non-matching pairs increased significantly, making the data set more imbalanced. On the
other hand, when using a distance smaller than 0.0002 we observed that too many matching
POIs were filtered out.

We filtered the data sets to contain only the information we were interested in for each
pair of POIs: the name, longitude and latitude of the POI from OSM, the name, longitude
and latitude of the POI from the other data set.

3.3.2 Labeling
To evaluate the approaches on the data, we first needed to define whether or not the POIs
in a pair refer to the same entity. This was done by labeling the pairs as matches or non-
matches. The POIs were paired and labeled by implementing a basic labeling script. The
script first created pairs of POIs by calculating the distance between POIs from different
data sets. The pairs with a distance less than 0.0002 degrees were kept. The pairs were then
manually labeled based on the information provided in the names. The following labels were
used:

• 0 - no match

• 1 - match

• 2 - difficult to determine

• 3 - not a POI

The result of a labeled pair of POI names consisted of their names in the different sources,
their coordinates, distance from each other and the label. An example of a labeled pair is as
follows:

["Starbucks", "Haymarket", 42.3573, -71.0582, 42.3572, -71.0582, 7.8187, 0]

After labeling the data, all pairs with label 3 were removed, since they do not address the
problem of POI name matching. Since the pairs with label 2 could not be determined as a
match or not, even by a human, there was no way to evaluate whether or not an algorithm
could classify it correctly. Therefore, the 46 pairs with label 2 were removed from the data
set.

The remaining pairs were used for the experiments in this thesis. In total, the used data
set consisted of 5,567 pairs. Out of these, 4,721 were non-matches and 846 were matches of
which 504 were exact matches. An exact match is where the names of the POIs are lexically
identical. Table 3.2 gives an overview of the labeled data used in the work. Figure 3.2 illustrate
the distribution of matches and non-matches in the data set.

33

3. Approach

Table 3.2: Overview of the labeled data used in the thesis.

Region Data Sets
Number of
Pairs

Number of
Matches

Number of
Exact Matches

Boston OSM, Yelp 2,478 274 166
Vancouver OSM, Yelp 2,718 491 295
Vancouver OSM, Open Data Portal 30 4 1
Orlando OSM, Yelp 332 71 39
Cary OSM, Data.gov 9 6 3
Total: 5,567 846 504

Figure 3.2: The distribution of matches and non-matches in the la-
beled data set.

3.4 Modeling
This section covers the modeling phase in the CRISP-DM process. The phase consisted of
iteratively implementing and assessing algorithms and approaches used to investigate the
research questions of the thesis. The phase was divided into four major parts; the first aim-
ing to establish a baseline, the second aiming to investigate hybrid similarity functions, the
third aiming to investigate improvements using semantic similarity and the fourth aiming
to investigate machine learning using similarity functions. Since the modeling phase is com-
prehensive, the implementations in each of the four parts are presented and described in
Chapter 4.

3.5 Evaluation
This section covers the evaluation phase in the CRISP-DM process and describes how the
performance of the approaches in the modeling phase have been evaluated.

To determine how well our approaches perform for matching POIs, we evaluated all of
our approaches, except the last part using machine learning, with two variants of the labeled

34

3.6 Tools

data set, as presented in section 3.3: one containing the entire data set and one containing
only the pairs with non-exact names, which we refer to as the reduced data set. The pur-
pose of testing the approaches on the first data set was to see how the approaches perform
on data that represents reality. The purpose of using the second data set was to see how the
approaches perform specifically on non-trivial tasks, which is where the state-of-the-art algo-
rithms often fail. We made no evaluation of the machine learning approaches on the second
data set. The reason for this was to maximize the number of data points when training the
models.

In order to compare the approaches, we first needed to define how to measure good per-
formance for the task. Since the goal of the approaches is to classify the data set as similarly as
possible to what we as humans would, we compared the predictions to the labels in the data
set. The quality of the predictions was evaluated using the metrics precision, recall, F1-score
and MCC. Since F1-score is regarded as the standard for evaluating classifiers, we primarily
used this to compare the results. Furthermore, confusion matrices were used to obtain addi-
tional information about the performance. Above this, the results were evaluated by manu-
ally analyzing the classified pairs, to identify strengths and weaknesses of the approaches and
mitigate these. Along with the results we show examples of how the approaches managed to
classify pairs of POIs.

To answer the research questions regarding how the approaches improve performance of
the task, we compared the results to state-of-the-art algorithms. To do this, we established a
baseline to which we compared the approaches using the above-mentioned metrics. We also
measured the error reduction rate compared to the baseline. This measure shows the amount
of errors that was not managed by the baseline, but managed by the algorithms. The error
reduction rate was investigated for the best performing approach in each phase of the work.

Several algorithms used in this work return a similarity score instead of a direct classifi-
cation. All scores were normalized to values between 0 and 1, where 0 is completely different
and 1 is completely similar. In order to classify the pairs, a threshold is needed to convert the
score to a prediction. Depending on the thresholds selected, the predictions can differ which
makes the selection of thresholds difficult. We used a simple grid search to find the optimal
thresholds for the different algorithms. Since all scores were normalized to values 0 and 1,
we used an interval of 0.05 between the thresholds in the grid search for all values between
0 and 1.

3.6 Tools
This section introduces the software tools used throughout the thesis and describes in which
parts they were implemented.

3.6.1 NLTK
Natural Language Toolkit (NLTK) [69] is an open-source platform providing several libraries
for NLP-related tasks such as tokenization, classification and stemming.

In this work, we use the nltk.metrics.distance module for computing the Jaro, Jaro-Winkler,
Levenshtein and Jaccard similarity functions. The module nltk.stem.snowball is used for stem-
ming of words when text pre-processing. We also use the nltk.corpus package, from where we

35

3. Approach

use a collection of English stop words used for stop word removal when text pre-processing.

3.6.2 Unidecode
Unidecode [70] is a Python module for transforming text strings to ASCII representations.
The module is used for text pre-processing in the work.

3.6.3 Scikit-learn
Scikit-learn [71] is a widely used machine learning library for Python, that provides various
tools for machine learning and statistical modeling.

Scikit-learn’s sklearn.metrics.pairwise submodule is used for calculating cosine similarity
between word embeddings. The classifiers RandomForestClassifier and MLPClassifier from the
library are used when evaluating supervised machine learning approaches. Additionally,
Scikit-learn is used for calculating all evaluation metrics and for applying cross-validation
in the machine learning approaches.

3.6.4 BPEmb
BPEmb [20] is a library containing pre-trained subword embeddings in several different lan-
guages. The embeddings in the library are GloVe implementations trained on Wikipedia
articles using BPE tokenization [20]. The BPEmb library contains word embeddings trained
with different vocabulary sizes and embedding dimensions.

We use BPEmb’s pre-trained embedding for English to embed POI names and tokens in
the hybrid algorithms. From now on, we refer to the English embedding from BPEmb as
BPEmb.

3.6.5 Hugging Face
Hugging Face [72] provides Python-based open-source libraries for transformer architectures,
mainly focusing on NLP tasks. It contains a wide range of tools and models based on widely
used architectures, such as BERT and SBERT.

From Hugging Face’s Transformers library, we use the pre-trained BERT model bert-base-
uncased [73] and from the Sentence Transformers library, we use the pre-trained SBERT model
all-mpnet-base-v2 [74]. The models are used to embed POI names.

3.6.6 SHAP
SHAP [75] is a Python library providing tools for interpreting the predictions of machine
learning models using Shapley values.

SHAP is used in the machine learning approaches to compute and interpret the feature
importance for the predictions.

36

3.6 Tools

3.6.7 XGBoost
XGBoost [76] is an open-source library for machine learning algorithms using gradient boost-
ing techniques.

The XGBClassifier is an optimized implementation of scikit-learn’s gradient boosted tree
classification, which we use when evaluating supervised machine learning approaches.

37

3. Approach

38

Chapter 4

Implementation

This chapter covers the modeling phase in the CRISP-DM process and describes the imple-
mentation of the approaches investigated in the thesis. Implementations and evaluations
have been done iteratively to thoroughly address the research questions. The following sec-
tions represent the four major parts of the modeling phase: establishment of the baseline,
investigation of hybrid similarity functions, investigation of improvements using semantic
similarity and investigation of machine learning approaches using similarity functions. The
three latter directly corresponds to each of the research questions. Furthermore, the imple-
mentations in the different parts are closely related, since the evaluations can affect decisions
made in the following implementations.

4.1 Baseline
To be able to evaluate if the performance of the approaches investigated in the thesis im-
proved compared to state-of-the-art similarity functions, a baseline was established. Simi-
larity functions have been used in previous work to solve various name matching tasks. How-
ever, no single algorithm has proved to perform the best for all task domains. When defining
the baseline, we needed to evaluate which state-of-the-art similarity function were suitable
for POI name matching. The similarity functions were evaluated on the data sets described in
section 3.3.2 so that we could select the best performing similarity functions as the baseline.

The character-based similarity functions evaluated were Levenshtein similarity, Jaro sim-
ilarity and Jaro-Winkler similarity. All of these were implemented using the
nltk.metrics.distance module from NLTK. No text pre-processing was done before applying
the algorithms.

The token-based similarity functions evaluated were Jaccard similarity and cosine simi-
larity. Jaccard similarity was implemented using the nltk.metrics.distance module from NLTK.
The cosine similarity was implemented by creating a BoW vector for each POI name in the
pairs and then calculating the cosine similarity between the vectors using the

39

4. Implementation

sklearn.metrics.pairwise submodule from scikit-learn. For the token-based similarity functions
the POI names were tokenized using whitespace tokenization and no pre-processing was
done.

As will be presented further in the result section 5.1, the evaluation of the five state-of-
the-art algorithms showed that Jaro-Winkler performed best among character-based simi-
larity functions and cosine similarity performed the best among the token-based similarity
functions. Therefore these two were established as the baseline. As these proved to be the best
performing similarity functions these were used in several of the following implementations.

4.2 Hybrid Similarity Functions
This section describes the implementations for investigating how hybrid approaches can im-
prove performance for POI name matching, corresponding to research question 1. An im-
portant aspect when investigating hybrid similarity functions is to understand the similarity
functions can be combined to compensate for each other’s weaknesses, which has been sug-
gestion in previous work.

The implementations of hybrid approaches described in this section are SoftTFIDF and
RestrictedSoftTFIDF. They are both based on the TFIDF algorithm and therefore TFIDF was
implemented as a first step. Even though TFIDF is a non-hybrid approach, it was evaluated
for comparison with SoftTFIDF and RestrictedSoftTFIDF.

The implementation of text pre-processing as well as each approach is described further
in the following sections. All experiments in these sections were performed on both variants
of data set; the entire data set and the reduced data set. Each variant was also performed with
and without text pre-processing, to be able to determine if this affected the performance.

4.2.1 Text Pre-processing
For the baseline the POI names were tokenized using whitespace tokenization, but no text
pre-processing was done. Suffixes, variants of words, different usage of special characters and
other noise are examples of difficulties that lexical similarity functions do not perform well
on. This issue was addressed by using pre-processing together with whitespace tokenization,
before calculating any similarity.

The following techniques were used in the text pre-processing, in the given order:

1. Lower-casing.

2. Noise removal. This was done by transforming all special characters into ASCII rep-
resentation, using the Unidecode Python module, and removing the remaining char-
acters that were not letters or numbers.

3. Whitespace tokenization.

4. Stop word removal. This was done using a collection of English stop words from the
NLTK library. All stop words with a length less than or equal to three was removed
from the tokenized names. The same noise removal as described above, was done on
the stop word collection before applying it to the tokenized POI names.

40

4.2 Hybrid Similarity Functions

5. Stemming. This was done using NLTK’s nltk.stem.snowball module for English.

The text pre-processing in the thesis from now on refers to the process consisting of these
steps. As an example, applying the pre-processing to the name "17◦C Bubble Tea & Dessert
Café" will result in the token set {"17degc", "bubble", "tea", "dessert", "cafe"}.

4.2.2 TFIDF
From manually analyzing the baseline evaluation we identified a pattern, that common business-
related words, such as "café", "restaurant" and "shop" were being used inconsistently among
the POI names. We found that this made it difficult for the lexical similarity functions. In
many of the names business-related words were places in the end of the name, while in oth-
ers they were not included at all. For example, "Anthem" and "Anthem Kitchen & Bar" are
names of the same POI, the latter with the additional business-related words "Kitchen" and
"Bar". Both Jaro-Winkler and cosine similarity achieved low scores for these types of pairs.
To address this problem, we investigated how assigning weights to certain tokens could im-
prove the performance. For example, assigning a larger weight to the word "Anthem" could
make it more important than "Kitchen" and "Bar", leading to higher similarity between the
names. Since the TFIDF algorithm is used to assign weights to tokens that occur frequently
in a given corpus, we investigated how TFIDF could be used for handling common business-
related words in the POI names.

We implemented the TFIDF algorithm described in section 2.5.2. The corpus used in the
algorithm was created by extracting all tokens from all POI names in the given data set. The
vectors created from the TFIDF values are dependent on the corpus and will have low values
for tokens occurring frequently. The similarity between the POI names was calculated by
using cosine similarity between the TFIDF vectors.

4.2.3 SoftTFIDF
From analyzing the performance of the TFIDF implementation, we found that the algorithm
could not handle variants of similar parts of the names. Instead, it considered these parts as
completely different tokens. To solve this a variant of the SoftTFIDF algorithm inspired by
Cohen et al. [2] was implemented. The main idea of the Cohen et al.’s algorithm was to use
a character-based function to determine if two similar tokens can be considered the same,
when calculating TFIDF values in the TFIDF algorithm. This could make the algorithm more
robust for variants of words while still weighting words by occurrence.

Our implementation of the SoftTFIDF algorithm is a hybrid between TFIDF with cosine
similarity and a character-based similarity function. Similar to Cohen et al.’s implementa-
tion, we chose Jaro-Winkler as the character-based similarity function, since the baseline
indicated that it performs well on POI name matching. While Cohen used a set threshold
of 0.90 for the Jaro-Winkler similarity score, we evaluated our implementation using several
thresholds.

The corpus used in SoftTFIDF is created the same way as for TFIDF. For each POI pair,
each token from the first name is compared with each token from the second name. The
Jaro-Winkler similarity score is calculated for each token combination. After considering all

41

4. Implementation

combinations for a token, only the token combination with the highest Jaro-Winkler simi-
larity score, that is also above the defined similarity threshold, is stored in a similarity map
as a one-to-one relation. The tokens in the similarity map are considered the same when cal-
culating frequencies for the TFIDF values. The frequency for a token in the similarity map
is the sum of the token’s own frequency and the similar token’s frequency. This resulted in
a lower TFIDF value for the token in the SoftTFIDF vector. Finally, the similarity between
the POI names was calculated using cosine similarity between their SoftTFIDF vectors.

4.2.4 RestrictedSoftTFIDF
From manually analyzing the performance of the TFIDF and SoftTFIDF, we could see an im-
provement for names where the impact of common business-related words was low. Words
such as "restaurant" received a lower similarity score and was therefore considered less im-
portant. For example, the algorithm was able to correctly determine "Mooo..." and "Mooo
Restaurant" as a match. A problem that was identified was that the algorithms were not able
to determine what parts of the name to consider important for other cases than business-
related words. Deciding what words that are important in a name can be difficult since it is
context-dependent, meaning it can be important in some cases but not in others. We could
especially identify this pattern for geographical names, such as names of cities or neighbor-
hoods. An example of this is the POIs "Cary" and "Cary Train Station", both located in the
Cary area. Both the SoftTFIDF and the TFIDF incorrectly classified these as matching, see
the results in Table 5.15, since the tokens "train" and "station" are more common in the cor-
pus and therefore are considered less important. In this context the geographical area "Cary"
should not be considered more important than the rest of the tokens.

Based on this observation we restricted the corpus by the geographical area. The idea was
that tokens with geographical meaning occurs more often in names of POIs located in the
area, and therefore would have less impact on POIs in that area. For example, the token "Cary"
would be less important when occurring in POIs names in the Cary area. We decided to create
the corpus with all the POIs that are less or equal to 0.0002 degrees, which is approximately 25
meters, from one of the POIs in the pair we are considering. With this technique, the corpus
was created from a significantly less amount of POIs compared to the corpus in TFIDF and
SoftTFIDF, which changes the token weights significantly.

4.3 Semantic Similarity Approaches
This section describes the implementations for investigating how semantic similarity can be
used to improve performance of hybrid approaches for POI name matching, corresponding
to research question 2.

A disadvantage with the lexical similarity functions is their lack of ability to capture the
meaning of the words. For example, when comparing the POI names "Pine House Bread &
Cake shop" and "Pine House Bakery", the last part of the names, "Bread & Cake Shop" and
"Bakery" are semantically similar. Both character-based and token-based similarity functions,
and therefore also SoftTFIDF, would achieve a low similarity score for the example. The aim
of this part of the thesis is to identify and compare the semantic similarity between the POIs
in order to add an aspect to the previous presented hybrid approaches.

42

4.3 Semantic Similarity Approaches

As described in section 2.5, there are several learned word embeddings aiming to cap-
ture the semantic similarity between pieces of text. To begin with, we investigated how
pre-trained word embeddings used with cosine similarity performed for POI name match-
ing. Then we integrated the word embeddings into the SoftTFIDF implementation as this
performed the best in earlier evaluations, presented in the Results section 5.2.

The implementation of the approaches using semantic similarity is described further in
the following sections. All experiments in this section were performed on both variants of
data sets; the entire data set and the reduced data set.

4.3.1 Pre-trained Word Embeddings
We investigated how well pre-trained word embeddings could capture semantic similarity
between the POI names, since the structure of names can differ from more standard sen-
tences or short texts. Training a word embedding requires large amounts of data, more than
was feasible to collected for the work. To evaluate the performance, we used three pre-trained
word embeddings; BPEmb, BERT and SBERT. The word embeddings create vector represen-
tations of the names by considering the words both lexically and semantically. To calculate
the similarity between the embedded vectors, cosine similarity was used.

The names of the POIs were input as raw data meaning no pre-processing or tokenization
was used, since the embeddings contain their own tokenization. For BERT the BertTokenizer
from Hugging Face was used. SBERT and BPEmb need no additional tokenization since it is
a part of the actual models.

BPEmb can be used with different vocabulary sizes and embedding dimensions. To find
the most suitable hyperparameters for the task, we compared the results when using various
hyperparameters. The comparison was done using only English models. We observed that the
vocabulary size of 50.000 and embedding dimension of 300 had the highest performance and
therefore these were used in the following implementations. The BERT and SBERT models
used were provided from Hugging Face.

4.3.2 SemanticSoftTFIDF
When comparing the results between the SoftTFIDF algorithm and the pre-trained word
embeddings with cosine similarity, we observed that they each failed on different types of
pairs. The word embeddings seemed to better handle POI names specifically containing
words with similar semantic meaning, while not performing as well in general for other cases.
In contrast, the SoftTFIDF performed well in general, however did not manage to recognize
semantic similar words. For example, the non-matching pair "Cary" and "Cary Train Station"
was incorrectly classified as a match by SoftTFIDF, but correctly classified as a non-match
by SBERT and BPEmb, see results in Table 5.14 and Table 5.15.

To mitigate this issue we investigated a hybrid that could both identify these semantic
similarities while still not failing in the general cases, by combining hybrid similarity func-
tions with semantics. We implemented a hybrid consisting of SoftTFIDF and various pre-
trained word embeddings, which we refer to as SemanticSoftTFIDF. The idea of the hybrid
was that the pre-trained word embedding would improve SoftTFIDF by identifying seman-
tically similar tokens.

43

4. Implementation

The SemanticSoftTFIDF algorithm is an extension of SoftTFIDF. While SoftTFIDF only
calculates the Jaro-Winkler similarity between tokens, SemanticSoftTFIDF calculates both
the Jaro-Winkler similarity as well as the cosine similarity between the tokens’ word em-
beddings to determine which tokens are similar enough to add to the similarity map. This
allows for tokens being considered similar either by lexical similarity, for tokens with high
Jaro-Winkler similarity scores, or by semantic similarity, for tokens with high cosine similar-
ity score between their word embeddings. For the implementation of SemanticSoftTFIDF,
we evaluated the algorithm using each of the pre-trained word embeddings in combination
with the SoftTFIDF. The pre-trained word embeddings implemented are BPEmb, BERT and
SBERT, used together with cosine similarity, as described in section 4.3.1.

Pre-trained word embeddings are meant to be used on entire text strings. However, the
nature of the TFIDF algorithm requires tokenization. Since earlier results for the SoftTFIDF
algorithm, see section 5.2.2, indicated better results using pre-processing, this was also done
for SemanticSoftTFIDF. This means that SemanticSoftTFIDF measures the semantic simi-
larity between tokens instead of the entire POI names.

4.4 Machine Learning Approaches
This sections describes the implementations for investigating how machine learning can be
used to improve performance of hybrid approaches for POI name matching, corresponding
to research question 3. The implementations were inspired by Santos et al. [4] and used
scores from multiple similarity functions as input to machine learning models. The purpose
was to combine different hybrid similarity functions to benefit from their different types of
advantages. It also allowed us to avoid manual tuning of thresholds.

For example, the non-matching pair "Bao Bakery" and "Bamboo Café", is more likely to be
classified correctly by algorithms considering lexical similarity but not semantic similarity,
since the words "Bakery" and "Café" have a high semantic similarity but low lexical similarity.
In contrast, algorithms considering semantic similarity but not lexical similarity are more
likely to incorrectly consider these as a match. The idea of using various similarity functions
as input to the models was to address issues where different algorithms considered different
aspects of similarity, by classifying the pairs based on several similarity functions instead of
only a single similarity function.

The investigation of machine learning approaches consisted of two parts. First we inves-
tigated machine learning approaches using only similarity functions. Then we investigated
how the models were affected when using additional features that were more closely related
to the raw data of the POIs. All of the similarity functions used in the machine learning
approaches are evaluated and explained in detail previously in the work.

The machine learning models were evaluated by splitting the entire data set into train-
ing (80%) and test (20%) data. The split was seeded to make the results from the models
comparable with each other. To select the hyperparameters for the models, stratified 5-fold
cross-validation was used on the training data. The models were then trained on all training
data, using the most suitable hyperparameters for each model, and evaluated on the test data.
To make the machine learning results comparable to the earlier algorithms, we also trained
and evaluated the approaches according to Santos et al.’s k-fold cross-validation methodol-
ogy. We performed a stratified 5-fold cross-validation on the entire data set to get an average

44

4.4 Machine Learning Approaches

of each evaluation metric by letting all pairs be used as test data at some point in the folds.
This method was performed for best performing variants when evaluated on the test set.

Additionally, we analyzed the feature importance for these to evaluate the level of impor-
tance of the similarity functions in the variants for the models’ predictions. This was done
by calculating and plotting the SHAP values of the models.

We evaluated three machine learning models: random forest, gradient boosted trees and
a multilayer perceptron. We used scikit-learn’s implementation of random forest and XG-
Boost’s implementation of gradient boosted trees. The models have 300 and 100 trees re-
spectively. For the random forest classifier, entropy was chosen as the splitting criterion.
Additionally, we used scikit-learn’s implementation of a MLP-classifier for a neural network.
The neural network used in the experiments consisted of four layers with 100, 50, 30 and 20
neurons each.

Unlike the other approaches investigated in the thesis, the machine learning approaches
were only evaluated using the entire data set and not the reduced data set, to maximize the
data for training the models and to have data that is a good representation of reality.

4.4.1 Machine Learning Using Similarity Functions

For the machine learning approaches only using similarity functions as input we created
several variants of feature vectors consisting of different combinations of similarity functions
evaluated earlier in this work. The selection of variants aimed to include similarity functions
with different strengths that were observed in earlier experiments. The evaluated variants of
similarity functions used as feature inputs are presented in Table 4.1.

Variant 1 was selected to see how well the models would perform on the same informa-
tion as the baseline. Variants 2 and 3 were selected to have input from the baseline, a word
embedding and a hybrid algorithm. For these variants BPEmb was selected as this performed
best in earlier evaluations. SoftTFIDF and SemanticSoftTFIDF were selected as these were
the two hybrids performing best in earlier evaluations, with the latter considering seman-
tics. Variant 4 consisted of all similarity functions investigated in the work, to find out if
the models would benefit from having as much information as possible even if some of them,
for example the state-of-the-art similarity functions, showed poor performance on the task.
Variant 5 was selected to see if the models could benefit from only using one variant of the
SemanticSoftTFIDF as these showed very similar performance.

The scores were computed for all the pairs in the training data. For SoftTFIDF, Restrict-
edSoftTFIDF and SemanticSoftTFIDF, the thresholds for the inner Jaro-Winkler similarity
and the cosine similarity of the word embeddings needed to be defined before calculating
the similarity scores input to the models. Therefore we used the thresholds that achieved the
highest performance in the earlier evaluations. The corpora used in TFIDF, SoftTFIDF and
SemanticSoftTFIDF were calculated using all data points to make the weighting scheme as
representative as possible.

45

4. Implementation

Table 4.1: Feature variants 1-5 containing the feature inputs as indi-
cated with "X".

Feature input 1 2 3 4 5
Cosine X X X X X
Jaro-Winkler X X X X X
Levenshtein X X
Jaccard X X
Jaro X X
TFIDF X X
SoftTFIDF
(Jaro-Winkler threshold: 0.85) X X X

RestrictedSoftTFIDF
(Jaro-Winkler threshold: 0.90) X X

SBERT X X
BERT X X
BPEmb X X X X
SemanticSoftTFIDF with SBERT
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.75) X X X

SemanticSoftTFIDF with BERT
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.95) X

SemanticSoftTFIDF with BPEmb
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.70) X

4.4.2 Machine Learning With Additional Features

For the second machine learning approach we evaluated how information closely coupled to
the raw data of the POI names could have an impact on the performance in machine learning
models, in combination with the similarity functions.

The additional features evaluated were the distance in meters between the POIs in each
pair, as well as the ratio between the number of tokens in the POI names in each pair. For
both of the additional features selected, the idea was to use information closely related to
the raw data of the POIs’ names and coordinates. This information is different to what is
considered in the similarity functions, but could still be relevant. It could be useful for a
human to make a decision and for that reason the model could also benefit from it. For
example, a matching pair would ideally be more likely to have a shorter distance than a non-
match. The two additional features were added separately to the best performing variant
from the previous evaluation, which proved to be variant 5, as presented in section 5.4.1. The
evaluated variants of similarity functions used as feature inputs are presented in Table 4.2.

46

4.4 Machine Learning Approaches

Table 4.2: Feature variants 6-7 containing the feature inputs as in-
dicated with "X".

Feature input 6 7
Cosine X X
Jaro-Winkler X X
Levenshtein X X
Jaccard X X
Jaro X X
TFIDF X X
SoftTFIDF
(Jaro-Winkler threshold: 0.85) X X

RestrictedSoftTFIDF
(Jaro-Winkler threshold: 0.90) X X

SBERT X X
BERT X X
BPEmb X X
SemanticSoftTFIDF with SBERT
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.75) X X

SemanticSoftTFIDF with BERT
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.95) X X

SemanticSoftTFIDF with BPEmb
(Jaro-Winkler threshold: 0.85, embedding threshold: 0.70) X X

Distance X
Token-length ratio X

47

4. Implementation

48

Chapter 5

Results

This chapter presents the results of the implemented approaches according to the evaluation
described in section 3.5. While all approaches have been evaluated using different thresholds
according to the grid search method, only the results for the threshold(s) resulting in the
highest F1-score is presented for each approach, unless stated otherwise.

5.1 Baseline

This section presents the results used when establishing the baseline. Table 5.1 shows the
evaluation metrics for each of the similarity functions investigated when establishing the
baseline, for the entire data set. Jaro-Winkler similarity with a threshold of 0.80 achieved
the highest F1-score, 0.957, among the character-based similarity functions, but also among
all similarity functions. Cosine similarity with a threshold of 0.40 achieved the highest F1-
score, 0.930, among the token-based similarity functions. Table 5.2 shows the evaluation
metrics for each similarity function performed on the reduced data set. Jaro-Winkler with
the threshold 0.80 and cosine with the threshold 0.40 achieved the highest F1-scores here as
well with 0.893 and 0.827, respectively. Therefore, Jaro-Winkler and cosine were established
as the baseline. The F1-scores for Jaro-Winkler and cosine for all thresholds in the grid search,
on the entire data set, is presented in Figure 5.1. Corresponding F1-scores for the reduced
data set are presented in Figure 5.3. Figure 5.2 shows the confusion matrices for the baseline,
using the thresholds resulting in the highest F1-scores respectively, for the entire data set.
Corresponding confusion matrices for the reduced data set are shown in Figure 5.4.

49

5. Results

Table 5.1: Evaluation metrics for the investigated similarity func-
tions for establishing a baseline using the entire data set.

(a) Character-based similarity functions.

Similarity Function Threshold Precision Recall F1 MCC
Levenshtein 0.45 0.926 0.863 0.894 0.876
Jaro 0.70 0.950 0.957 0.954 0.945
Jaro-Winkler 0.80 0.964 0.950 0.957 0.950

(b) Token-based similarity functions.

Similarity Function Threshold Precision Recall F1 MCC
Jaccard 0.25 0.930 0.927 0.928 0.916
Cosine 0.40 0.931 0.929 0.930 0.918

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Threshold

F 1
-s

co
re

(a) Jaro-Winkler similarity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Threshold

F 1
-s

co
re

(b) Cosine similarity.

Figure 5.1: F1-scores for the baseline similarity functions for all in-
vestigated thresholds using the entire data set.

4691n’

n

30

p Tot

4721

42p’

Tot 4733

804 846

834

Actual
Label

Predicted Label

(a) Jaro-Winkler similarity.

4663n’

n

58

p Tot

4721

60p’

Tot 4723

786 846

844

Actual
Label

Predicted Label

(b) Cosine similarity.

Figure 5.2: Confusion matrices for the baseline similarity functions
using the entire data set.

50

5.2 Hybrid Similarity Functions

Table 5.2: Evaluation metrics for the investigated similarity func-
tions using the reduced data set.

(a) Character-based similarity functions.

Similarity Function Threshold Precision Recall F1 MCC
Levenshtein 0.35 0.683 0.781 0.728 0.709
Jaro 0.70 0.877 0.895 0.886 0.877
Jaro-Winkler 0.80 0.909 0.877 0.893 0.885

(b) Token-based similarity functions.

Similarity Function Threshold Precision Recall F1 MCC
Jaccard 0.25 0.826 0.819 0.822 0.806
Cosine 0.40 0.829 0.825 0.827 0.814

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Threshold

F 1
-s

co
re

(a) Jaro-Winkler similarity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Threshold

F 1
-s

co
re

(b) Cosine similarity.

Figure 5.3: F1-scores for the baseline similarity functions for all in-
vestigated thresholds using the reduced data set.

4691n’

n

30

p Tot

4721

42p’

Tot 4733

300 342

330

Actual
Label

Predicted Label

(a) Jaro-Winkler similarity.

4663n’

n

58

p Tot

4721

60p’

Tot 4723

282 342

340

Actual
Label

Predicted Label

(b) Cosine similarity.

Figure 5.4: Confusion matrices for the baseline similarity functions
using the reduced data set.

5.2 Hybrid Similarity Functions
This section presents the results used when evaluating how hybrid approaches can improve
the performance in POI name matching, for which the implementations are described in

51

5. Results

section 4.2.

5.2.1 TFIDF
Table 5.3 shows the evaluation metrics for the TFIDF implementation applied on both vari-
ants of the data set. The highest score was achieved using text pre-processing, resulting in an
F1-score of 0.968 with the threshold 0.50 for the entire data set and 0.924 with the threshold
0.45 for the reduced data set. Figure 5.5 shows the confusion matrices for the TFIDF on both
variants of the data set, using pre-processing.

Table 5.3: Evaluation metrics for TFIDF with and without text pre-
processing.

(a) The entire data set.

Text
Pre-processing

Cosine
Threshold Precision Recall F1 MCC

Without 0.40 0.966 0.915 0.940 0.930
With 0.50 0.975 0.962 0.968 0.963

(b) The reduced data set.

Text
Pre-processing

Cosine
Threshold Precision Recall F1 MCC

Without 0.35 0.891 0.810 0.848 0.839
With 0.45 0.926 0.921 0.924 0.918

4700n’

n

21

p Tot

4721

32p’

Tot 4732

814 846

835

Actual
Label

Predicted Label

(a) The entire data set.

4696n’

n

25

p Tot

4721

27p’

Tot 4723

315 342

340

Actual
Label

Predicted Label

(b) The reduced data set.

Figure 5.5: Confusion matrices for TFIDF with text pre-processing
for both variants of the data set.

5.2.2 SoftTFIDF
Table 5.4 shows the evaluation metrics for the SoftTFIDF implementation applied on both
variants of the data set. The best results were achieved using text pre-processing, resulting
in an F1-score of 0.976 on the entire data set and 0.939 on the reduced data set. Both used a
Jaro-Winkler threshold of 0.85 and cosine threshold of 0.40. Figure 5.6 shows the confusion
matrices for SoftTFIDF on both variants of the data set using pre-processing.

52

5.2 Hybrid Similarity Functions

Table 5.4: Evaluation metrics for SoftTFIDF with and without text
pre-processing.

(a) The entire data set.

Text
Pre-processing

Jaro-Winkler
Threshold

Cosine
Threshold Precision Recall F1 MCC

Without 0.80 0.40 0.967 0.954 0.961 0.954
With 0.85 0.40 0.974 0.978 0.976 0.971

(b) The reduced data set.

Text
Pre-processing

Jaro-Winkler
Threshold

Cosine
Threshold Precision Recall F1 MCC

Without 0.80 0.35 0.913 0.889 0.901 0.894
With 0.85 0.40 0.936 0.941 0.939 0.934

4699n’

n

22

p Tot

4721

19p’

Tot 4732

827 846

835

Actual
Label

Predicted Label

(a) The entire data set.

4699n’

n

22

p Tot

4721

20p’

Tot 4719

322 342

344

Actual
Label

Predicted Label

(b) The reduced data set.

Figure 5.6: Confusion matrices for SoftTFIDF with text pre-
processing for both data set variants.

5.2.3 RestrictedSoftTFIDF
Table 5.5 shows the evaluation metrics for the RestrictedSoftTFIDF implementation on both
variants of the data set. The best performance was achieved with text pre-processing, result-
ing in an F1-score of 0.969 with a Jaro-Winkler threshold of 0.95 and a cosine threshold of
0.25 for the entire data set. For the reduced data set the highest F1-score, 0.913, was achieved
with a Jaro-Winkler threshold of 0.90 and a cosine threshold of 0.25. Figure 5.7 shows the
confusion matrices for the RestrictedSoftTFIDF on both variants of the data set using pre-
processing.

53

5. Results

Table 5.5: Evaluation metrics for RestrictedSoftTFIDF with and
without text pre-processing.

(a) The entire data set.

Text
Pre-processing

Jaro-Winkler
Threshold

Cosine
Threshold Precision Recall F1 MCC

Without 0.90 0.25 0.967 0.927 0.946 0.937
With 0.95 0.25 0.982 0.957 0.969 0.964

(b) The reduced data set.

Text
Pre-processing

Jaro-Winkler
Threshold

Cosine
Threshold Precision Recall F1 MCC

Without 0.90 0.25 0.912 0.819 0.863 0.855
With 0.90 0.25 0.920 0.906 0.913 0.907

4706n’

n

15

p Tot

4721

36p’

Tot 4742

810 846

825

Actual
Label

Predicted Label

(a) The entire data set.

4694n’

n

27

p Tot

4721

32p’

Tot 4726

310 342

337

Actual
Label

Predicted Label

(b) The reduced data set.

Figure 5.7: Confusion matrices for RestrictedSoftTFIDF with text
pre-processing for both data set variants.

5.3 Semantic Similarity Approaches
This section presents the results used when evaluating how semantic similarity can improve
hybrid similarity functions, for which the implementations are described in section 4.3.

5.3.1 Pre-trained Word Embeddings
Table 5.6 shows the evaluation metrics of the pre-trained word embedding implementations
with cosine similarity, using both variants of the data set. The highest score was achieved
using BPEmb with a threshold of 0.60, resulting in an F1-score of 0.947 for the entire data set
and 0.869 for the latter. The F1-scores when using a variation of hyperparameters for BPEmb
with a cosine threshold of 0.60, are presented in Table 5.7. The results show that the highest
F1-score was achieved using a model with 300 embedding dimensions and a vocabulary size
of 50,000.

54

5.3 Semantic Similarity Approaches

Table 5.6: Evaluation metrics for pre-trained word embeddings with
cosine similarity.

(a) The entire data set

Word
Embedding

Cosine
Threshold Precision Recall F1 MCC

BPEmb 0.60 0.950 0.944 0.947 0.938
BERT 0.80 0.957 0.832 0.890 0.875
SBERT 0.65 0.943 0.934 0.938 0.927

(b) The reduced data set.

Word
Embedding

Cosine
Threshold Precision Recall F1 MCC

BPEmb 0.60 0.875 0.863 0.869 0.860
BERT 0.80 0.862 0.585 0.697 0.694
SBERT 0.65 0.856 0.836 0.846 0.835

Table 5.7: F1-scores for BPEmb with a cosine similarity threshold of
0.60, using different hyperparameters using the entire data set.

Embedding
Dimension

25 100 300
3000 0.541 0.792 0.930Vocabulary

Size 10,000 0.688 0.864 0.946
50,000 0.778 0.920 0.947

200,000 0.731 0.906 0.937

The confusion matrices in Figure 5.8 and Figure 5.9 show the number of correctly and
incorrectly classified pairs for each embedding respectively, for both variants of the data set.

4679n’

n

42

p Tot

4721

47p

Tot 4726

799 846

841

Actual
Label

Predicted Label

(a) BPEmb.

4689n’

n

32

p Tot

4721

142p

Tot 4831

704 846

736

Actual
Label

Predicted Label

(b) BERT.

4673n’

n

48

p Tot

4721

56p’

Tot 4729

790 846

838

Actual
Label

Predicted Label

(c) SBERT.

Figure 5.8: Confusion matrices for the pre-trained word embed-
dings using the entire data set.

55

5. Results

4679n’

n

42

p Tot

4721

47p’

Tot 4716

295 342

337

Actual
Label

Predicted Label

(a) BPEmb.

4689n’

n

32

p Tot

4721

142p’

Tot 4831

200 342

232

Actual
Label

Predicted Label

(b) BERT.

4673n’

n

48

p Tot

4721

56p’

Tot 4729

286 342

334

Actual
Label

Predicted Label

(c) SBERT.

Figure 5.9: Confusion matrices for the pre-trained word embed-
dings using the reduced data set.

5.3.2 SemanticSoftTFIDF
Table 5.8 show the evaluation metrics for the SemanticSoftTFIDF algorithm for both variants
of the data set. For both variants of data sets, the versions with BERT and SBERT achieved
the same and the highest F1-scores, 0.977 for the entire data set and 0.942 for the reduced
data set. The thresholds used for BERT with both data set variants were a cosine threshold of
0.40, Jaro-Winkler threshold of 0.85 and cosine threshold of 0.95 for the word embeddings.
The thresholds used for SBERT with both data set variants were a cosine threshold of 0.40,
Jaro-Winkler threshold of 0.85 and cosine threshold of 0.75 for the word embeddings. The
confusion matrices in Figure 5.10 and Figure 5.11 show the number of correctly and incor-
rectly classified pairs for each embedding respectively, for both variants of the data set.

Table 5.8: Evaluation metrics for SemanticSoftTFIDF.

(a) Evaluation metrics using the entire data set.

Cosine
Threshold

Jaro-Winkler
Threshold

Embedding
Threshold Embedding Precision Recall F1 MCC

0.40 0.85 0.70 BPEmb 0.973 0.980 0.976 0.972
0.40 0.85 0.95 BERT 0.974 0.980 0.977 0.973
0.40 0.85 0.75 SBERT 0.974 0.980 0.977 0.973

(b) Evaluation metrics using the reduced data set.

Cosine
Threshold

Jaro-Winkler
Threshold

Embedding
Threshold Embedding Precision Recall F1 MCC

0.40 0.85 0.70 BPEmb 0.934 0.947 0.940 0.936
0.40 0.85 0.95 BERT 0.936 0.947 0.942 0.938
0.40 0.85 0.75 SBERT 0.936 0.947 0.942 0.938

56

5.4 Machine Learning Approaches

4698n’

n

23

p Tot

4721

17p

Tot 4715

829 846

852

Actual
Label

Predicted Label

(a) SemanticSoftTFIDF with BPEmb.

4699n’

n

22

p Tot

4721

17p

Tot 4716

829 846

851

Actual
Label

Predicted Label

(b) SemanticSoftTFIDF with BERT.

4699n’

n

22

p Tot

4721

17p’

Tot 4716

829 846

851

Actual
Label

Predicted Label

(c) SemanticSoftTFIDF with SBERT.

Figure 5.10: Confusion matrices for SemanticSoftTFIDF with the
pre-trained word embeddings using the entire data set.

4698n’

n

23

p Tot

4721

18p’

Tot 4716

324 342

347

Actual
Label

Predicted Label

(a) SemanticSoftTFIDF with BPEmb.

4699n’

n

22

p Tot

4721

18p’

Tot 4717

324 342

346

Actual
Label

Predicted Label

(b) SemanticSoftTFIDF with BERT.

4699n’

n

22

p Tot

4721

18p’

Tot 4717

324 342

346

Actual
Label

Predicted Label

(c) SemanticSoftTFIDF with SBERT.

Figure 5.11: Confusion matrices for SemanticSoftTFIDF with the
pre-trained word embeddings using the reduced data set.

5.4 Machine Learning Approaches
This section presents the results of the evaluation metrics when investigating how machine
learning can improve hybrid approaches, for which the implementations are described in
section 4.4.

5.4.1 Machine Learning Using Similarity Functions
This section presents the results for the machine learning models using only similarity func-
tions as input. The results are presented using the hyperparameters chosen to achieve the
best results for each model. Table 5.9 shows evaluation metrics for random forest, gradient
boosted trees and the MLP-classifier. The highest F1-score, 0.988, was obtained using the gra-
dient boosted tree classifier with the similarity functions in variant 5. Figure 5.12 shows the
feature importance for the classifiers for variant 5. The most important similarity function
for all classifiers was one of the hybrid approaches. Table 5.10 shows the average evaluation
metrics for the classifiers when using cross-validation on variant 5. The highest results were
achieved with the random forest classifier and the gradient boosted tree classifier, with an
F1-score of 0.984. Figure 5.13 shows the confusion matrices for the classifiers’ averages when
using cross-validation on the features in variant 5.

57

5. Results

Table 5.9: Evaluation metrics for the models.

(a) Random forest.

Variant Precision Recall F1 MCC
1 0.948 0.957 0.953 0.944
2 0.986 0.981 0.984 0.981
3 0.986 0.981 0.984 0.981
4 0.991 0.977 0.984 0.981
5 0.991 0.977 0.984 0.981

(b) Gradient boosted trees.

Variant Precision Recall F1 MCC
1 0.962 0.958 0.960 0.953
2 0.986 0.981 0.984 0.981
3 0.981 0.977 0.979 0.975
4 0.991 0.977 0.986 0.981
5 0.991 0.986 0.988 0.986

(c) MLP-classifier.

Variant Precision Recall F1 MCC
1 0.948 0.962 0.955 0.947
2 0.991 0.972 0.981 0.978
3 0.986 0.972 0.979 0.975
4 0.995 0.972 0.984 0.981
5 0.995 0.972 0.984 0.981

58

5.4 Machine Learning Approaches

0 1 2 3 4 5 6
·10−2

Cosine
Jaccard

BERT
Levenshtein

Jaro
SBERT

Jaro-Winkler
BPEmb

RestrictedSoftTFIDF
TFIDF

SoftTFIDF
SemanticSoftTFIDF

SHAP value

(a) Random forest.

0 1 2 3 4 5 6 7 8 9
·10−2

BERT
Jaccard
Cosine

Levenshtein
Jaro

SoftTFIDF
Jaro-Winkler

BPEmb
TFIDF
SBERT

RestrictedSoftTFIDF
SemanticSoftTFIDF

SHAP value

(b) Gradient boosted trees.

0 1 2 3 4 5 6 7 8
·10−2

TFIDF
BERT

Levenshtein
Jaro

Jaccard
SoftTFIDF

Jaro-Winkler
Cosine
SBERT

SemanticSoftTFIDF
BPEmb

RestrictedSoftTFIDF

SHAP value

(c) MLP-classifier.

Figure 5.12: Feature importance for the models with the similarity
functions in variant 5.

59

5. Results

Table 5.10: Average evaluation metrics using cross-validation with
variant 5.

Classifier
Average
Precision

Average
Recall

Average
F1

Average
MC

Random forest 0.988 0.981 0.984 0.982
Gradient boosted trees 0.984 0.979 0.981 0.978
MLP-classifier 0.989 0.977 0.983 0.980

4705n’

n

16

p Tot

4721

10p’

Tot 4715

836 846

852

Actual
Label

Predicted Label

(a) Random forest.

4703n’

n

18

p Tot

4721

13p’

Tot 4716

833 846

851

Actual
Label

Predicted Label

(b) Gradient boosted trees.

4702n’

n

19

p Tot

4721

9p’

Tot 4711

837 846

856

Actual
Label

Predicted Label

(c) MLP-classifier.

Figure 5.13: Confusion matrices for cross-validation of the models
with feature vector variant 5.

5.4.2 Machine Learning With Additional Features
This section presents the results for the machine learning approaches with additional fea-
tures. Table 5.11 shows the evaluation metrics for the models applied on feature variants 6
and 7. All classifiers achieved F1-score of 0.981 for variant 6. The gradient boosted tree and
MLP achieved the highest F1-score of 0.986 for variant 7. Figure 5.14 shows the feature impor-
tance of the features for the classifiers for variant 7. Just as for the variant without additional
features, the most important feature for all classifiers was one of the hybrid approaches. The
feature importance of the token length was quite low, although the results show a minor
positive impact on the classifiers. Table 5.13 shows the average evaluation metrics for the
classifiers when using cross-validation on variant 7. The highest result was achieved with the
random forest classifier, with an F1-score of 0.986. Figure 5.15 shows the confusion matrices
for the classifiers averages when using cross-validation on feature variant 7.

60

5.4 Machine Learning Approaches

Table 5.11: Evaluation metrics for the models on variants 6 and 7.

(a) Random forest.

Variant Precision Recall F1 MCC
6 0.991 0.972 0.981 0.978
7 0.991 0.977 0.984 0.981

(b) Gradient boosted trees.

Variant Precision Recall F1 MCC
6 0.986 0.977 0.981 0.978
7 0.996 0.981 0.986 0.983

(c) MLP-classifier.

Variant Precision Recall F1 MCC
6 0.991 0.972 0.981 0.978
7 0.995 0.977 0.986 0.983

61

5. Results

0 1 2 3 4 5 6
·10−2

TokenRatio
Jaccard

BERT
Cosine

Levenshtein
Jaro-Winkler

Jaro
SBERT
BPEmb
TFIDF

RestrictedSoftTFIDF
SoftTFIDF

SemanticSoftTFIDF

SHAP value

(a) Random forest.

0 1 2 3 4 5 6 7 8 9
·10−2

BERT
TokenRatio
Levenshtein

Cosine
Jaccard

Jaro
SoftTFIDF

BPEmb
SBERT
TFIDF

Jaro-Winkler
RestrictedSoftTFIDF
SemanticSoftTFIDF

SHAP value

(b) Gradient boosted trees.

0 1 2 3 4 5 6 7 8 9
·10−2

Jaro
BERT

Levenshtein
TokenRatio

TFIDF
SoftTFIDF

Jaro-Winkler
SBERT
Jaccard
Cosine

SemanticSoftTFIDF
BPEmb

RestrictedSoftTFIDF

SHAP value

(c) MLP-classifier.

Figure 5.14: Feature importance for the models with the similarity
functions in variant 7.

62

5.4 Machine Learning Approaches

Table 5.12: Average evaluation metrics for cross-validation of the
classifiers using feature variant 7.

Classifier
Average
Precision

Average
Recall

Average
F1

Average
MC

Random forest 0.990 0.981 0.986 0.983
Gradient boosted trees 0.984 0.983 0.983 0.980
MLP-classifier 0.992 0.976 0.984 0.981

Table 5.13: Average evaluation metrics for cross-validation of the
classifiers using feature variant 7.

Classifier
Average
Precision

Average
Recall

Average
F1

Average
MC

Random forest 0.990 0.981 0.986 0.983
Gradient boosted trees 0.984 0.983 0.983 0.980
MLP-classifier 0.992 0.976 0.984 0.981

4705n’

n

16

p Tot

4721

8p’

Tot 4713

838 846

854

Actual
Label

Predicted Label

(a) Random forest.

4707n’

n

14

p Tot

4721

14p’

Tot 4721

832 846

846

Actual
Label

Predicted Label

(b) Gradient boosted trees.

4701n’

n

20

p Tot

4721

7p’

Tot 4708

839 846

859

Actual
Label

Predicted Label

(c) MLP-classifier.

Figure 5.15: Confusion matrices for cross-validation of the models
with feature variant 7.

63

5. Results

5.5 Examples of Classifications
Tables 5.14 and 5.15 show how the algorithms investigated in this thesis classify several exam-
ple pairs of POIs. All examples are taken from the data set used in the evaluation. The table
shows the algorithms’ performance when using the best thresholds and parameters, accord-
ing to the results presented earlier in this chapter. The algorithms compared in the table,
with corresponding indices, are:

1. Jaro-Winkler similarity

2. Cosine similarity

3. TFIDF

4. SoftTFIDF

5. RestrictedSoftTFIDF

6. BPEmb with cosine similarity

7. SBERT with cosine similarity

8. BERT with cosine similarity

9. SemanticSoftTFIDF using BPEmb

10. SemanticSoftTFIDF using SBERT

11. SemanticSoftTFIDF using BERT

12. Random forest classifier for feature variant 7

13. Gradient boosted trees for feature variant 7

14. MLP-classifier for feature variant 7

Table 5.14 contains examples of matching pairs. The checkmark, ✓, indicates the algo-
rithms that correctly classified the pair as a match and the X indicates the algorithms that
incorrectly classified the pair. Table 5.15 contains examples of non-matching pairs and the
checkmark indicates the algorithms that correctly classified the pair as a non-match and the
X indicates the algorithms that incorrectly classified the pair.

64

5.5 Examples of Classifications

Table 5.14: Examples of classifications on matching POI pairs for
the algorithms.

Names 1 2 3 4 5 6 7 8 9 10 11 12 13 14
HI Boston
Hostelling International X X X X X X X X X X X X X X

Spagnulos
La Famiglia Spagnuolo’s X X X ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓

Fin’s
Fins Sushi and Grill X X ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓

Boston Beer Works
BEERWORKS No. 3 Canal X X X ✓ X X X X ✓ ✓ ✓ X X X

Pro Optical
ProOptical Boston ✓ X X ✓ X X X X ✓ ✓ ✓ ✓ ✓ ✓

MIJA Cantina
Mija Cantina & Tequila Bar X X ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓

Penang Malaysian Cuisine
Penang ✓ ✓ ✓ X ✓ ✓ ✓ X X X X ✓ ✓ ✓

Mooo....
Mooo Restaurant X X ✓ ✓ ✓ ✓ X X ✓ ✓ ✓ ✓ ✓ ✓

TD Canada Trust
Td Bank Financial Group X X X X X ✓ ✓ X X X X X X ✓

Biercraft
Bier Craft Bistro ✓ X X ✓ X X ✓ X ✓ ✓ ✓ ✓ ✓ ✓

Bâtard
Batard Boulangerie X X ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓

Veggie Bowl
Veggiebowl ✓ X X X X ✓ ✓ ✓ X X X ✓ X ✓

Florida Hospital Cancer Institute
Cancer Institute of Florida X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ba-Le Deli & Bakery
Ba Le Sandwich Shop X X X ✓ X X ✓ X ✓ ✓ ✓ ✓ ✓ ✓

Qdoba
QDOBA Mexican Eats X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

65

5. Results

Table 5.15: Examples of classifications on non-matching POI pairs
for the algorithms.

Names 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Winter Park Historical Museum
Winter Park Farmers’ Market X X ✓ ✓ ✓ X X ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tufts Medical Center
Tufts Medical Center MBTA Station X X X X X X X X X X X X X X

Boston Common Coffee Co.
Boston Bean Stock Coffee X X ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓

Roche Bros.
Sabroso Taqueria ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓

Haymarket
Haymarket Center Garage X X X X ✓ X X ✓ X X X X X X

Sushi TonTon
Sushi Aria X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pho Long Restaurant
Pho Van X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Green Leaf Bubble Tea
Green Leaf Natural Food X X X X ✓ X ✓ X X X X X X X

Collingwood Neighbourhood School
(Bruce Annex)

Collingwood Neighbourhood School
X X X ✓ X X X X ✓ ✓ ✓ X X X

Champlain Mall
Champlain Square X X ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓

Green Thumb Theatre
Green Thumb Theatre for Young

People - Studio 1
X X X X X X X ✓ X X X ✓ ✓ X

Cary
Cary Train Station X X X X ✓ ✓ X ✓ X X X X X X

5.6 Error Reduction
Table 5.16 presents the error reduction achieved with the best performing approach from
each part of the thesis. The error reduction is calculated from the F1-score of 0.957, which
was the best result in the baseline. The largest error reduction was achieved by the random
forest model using feature variant 7, with an error reduction of 67% from the baseline.

Table 5.16: Error reduction from the baseline in percent.

Approach Error Reduction
SoftTFIDF 44%
SemanticSoftTFIDF (SBERT) 47%
Random Forest (feature variant 7) 67%

66

Chapter 6

Discussion

In this chapter we discuss the results presented in Chapter 5 and the evaluation of the ap-
proaches. Interesting findings and aspects that affected the results are analyzed. The first sec-
tion covers important aspects in the baseline. The following three sections discuss the results
for the hybrid approaches, improvements when using semantics and the machine learning
approaches. The evaluation methods and limitations of the work are also discussed.

6.1 Baseline
As presented in section 5.1, Jaro-Winkler similarity and cosine similarity achieved the highest
F1-scores, for character-based and token-based respectively among the investigated state-of-
the-art similarity functions. Therefore, these were established as the baseline for this project.
The F1-score for Jaro-Winkler similarity was 0.957, which can be considered high for a simi-
larity function that only considers lexical aspects. This can be interpreted in such a way that
considering lexical similarity can be beneficial for POI name matching.

Cosine similarity achieved an F1-score of 0.930, which was lower than Jaro-Winkler sim-
ilarity. Since cosine similarity is calculated between vectors, the score is highly dependent on
how the vectors are constructed. The vectors in the baseline were created using BoW. With
more complex information in the vectors, the performance of cosine similarity could possibly
have been higher, which is also what we found later in the work.

Another interesting aspect related to the two variants of data set is the relation between
the performance and the selected threshold, which is shown in Figure 5.1 and Figure 5.3. For
both Jaro-Winkler and cosine the F1-scores were in general lower for the same thresholds
when using the reduced data set compared to using the entire data set. For Jaro-Winkler
similarity, the trend was relatively similar for the two data set variants. More interesting is
the difference in trends for cosine similarity between the data set variants. For the reduced
data set the negative gradient was larger when the thresholds exceeded 0.5. The difference in
trends between the data sets is an indicator that the selection of thresholds is related to the

67

6. Discussion

characteristics of the data set.

6.2 Hybrid Similarity Functions
In this section we discuss the results presented in section 5.2, for evaluating how hybrid
approaches can improve performance of state-of-the-art similarity functions for POI name
matching.

6.2.1 Analysis of Results
In Table 5.3 it can be seen that the TFIDF algorithm achieved higher scores in all evaluation
metrics compared to the baseline. The highest F1-score for the TFIDF for the entire data set
was 0.968 and 0.924 for the reduced data set. The results show that without pre-processing,
TFIDF achieved an F1-score of 0.940 using the entire data set and 0.848 using the reduced
data set, which is an improvement from cosine similarity in the baseline with F1-scores of
0.930 and 0.827. This is interesting since these are both token-based similarity functions
using cosine similarity without any pre-processing. The difference is that in the baseline,
cosine similarity is computed for the names BoW vectors, compared to TFIDF vectors as in
this approach. This indicates that the TFIDF vectors provide more useful information about
the names than the BoW vectors, when determining the similarity.

The evaluation metrics for evaluating the SoftTFIDF algorithm, presented in Table 5.4,
show improved performance compared to both the baseline and TFIDF. The algorithm
achieved an F1-score of 0.976 on the entire data set with pre-processing, which is a slight
improvement from 0.968, achieved with TFIDF. This is not a major improvement, however,
looking at the results when using the reduced data set, the SoftTFIDF achieves an F1-score of
0.939 compared to 0.924 with TFIDF. This indicates that the SoftTFIDF does perform better
for the non-trivial cases, which is a positive find.

For the RestrictedSoftTFIDF the F1-scores of 0.969 and 0.913 were achieved using pre-
processing on the entire data set and the reduced data set, as shown in Table 5.3. When the
entire data set is used, the results show improvements from the TFIDF. For the reduced data
set there is a slight loss in performance, where the F1-score is decreased to 0.913 compared to
0.924. However, when not using pre-processing for this data set, RestrictedSoftTFIDF per-
forms better than TFIDF, with an F1-score of 0.863 compared to 0.848. The results indicate
that there is an improvement using RestrictedSoftTFIDF from TFIDF, however not an im-
provement from SoftTFIDF. Additionally, SoftTFIDF has a larger improvement from TFIDF.
This can be interpreted in such way that the "soft" part, implemented in both algorithms, is
the main reason for the improved performance from TFIDF. This indicates that considering
approximately similar tokens as matching has a positive impact on the performance of POI
matching.

It is interesting to understand why RestrictedSoftTFIDF performed worse than Soft-
TFIDF. This could partly be explained by the fact that the corpus used for calculating the
TFIDF values was much smaller than for the SoftTFIDF. Even though the corpus contained
more tokens that were important for the geographical location relative to the corpus size,
it also had the disadvantage of not being able to lower the importance of business-related
words, since they did not occur as frequently in the smaller corpus.

68

6.2 Hybrid Similarity Functions

An interesting observation from the results of the confusion matrices, see Figures 5.5, 5.6
and 5.7, is that when altering the data set used for each of the implementations, all values in
the confusion matrices were affected. This differs from what we saw in the baseline where
only the true positives were affected. This is due to the hybrid approaches using a corpus to
calculate and create the TFIDF vectors, which is based on the other POIs in the data set and
therefore introducing a dependency.

From the evaluation of the hybrid similarity functions investigated in this part of the
thesis, we found that the SoftTFIDF using pre-processing performed the best for POI name
matching.

6.2.2 Thresholds
We observed that the similarity thresholds achieving the best performance differed among
the hybrid similarity function, both when altering the pre-processing and the data set used.
The thresholds for cosine similarity in the algorithms are not directly comparable to the
thresholds for cosine similarity in the baseline. This is because the vectors contain differ-
ent information and therefore the similarity scores are calculated based on slightly different
information. It is however interesting that for the different data set variants within each
algorithm the thresholds differ. This indicates that the thresholds need to be tuned differ-
ently depending on the evaluated data, which supports the argument of not manually tuning
thresholds. The results also show that the thresholds are slightly higher when the data is pre-
processed, which is not surprising since there is less noise that could make the names more
different and therefore make the algorithm achieve higher similarity scores in general, even
for non-matches.

6.2.3 Text Pre-processing
We observed that for all algorithms evaluated for this part, the results show better perfor-
mance when text pre-processing is used. For TFIDF, the F1-score improved from 0.940 to
0.968 when using the entire data set, and from 0.848 to 0.924 when using the reduced data
set. Similarly, we observed that pre-processing improved the performance of the SoftTFIDF.
For the entire data set, the text pre-processing improved the F1-score from 0.961 to 0.976,
and for the reduced data set it improved from 0.901 to 0.939. Even for the RestrictedSoft-
TFIDF the text pre-processing shows improved performance, with the F1-score increasing
from 0.946 to 0.969, when using the entire data set, and increasing from 0.863 to 0.913 when
using the reduced data set. For all algorithms, these are rather large improvements in F1-
scores which indicates that pre-processing has a positive impact on the performance.

The reason why pre-processing improves the performance can be explained by the fact
that the data that is compared is cleaner. In the pre-processing procedure, described in sec-
tion 4.2.1, all noise is removed by for example lower-casing and removing special characters.
This eliminates small variations, insignificant to the meaning, between the names and there-
fore makes them more lexically similar. Based on the evaluations, we could see a clear indi-
cation that using pre-processing improved the performance for the hybrid approaches used
for POI name matching.

69

6. Discussion

6.2.4 Finding Approximate Tokens
A positive find when evaluating the results was that introducing the "soft" part of the hybrid
algorithms indicated that approximate tokens were successfully identified as identical to-
kens. This helped solve the problem of variants of tokens not being considered similar when
applying token-based similarity functions, such as calculating the TFIDF values. As an ex-
ample, consider the matching POIs "Spagnulos" and "La Famiglia Spagnuolo’s", in Table 5.14.
The pair was incorrectly classified by the baseline as well as TFIDF, but correctly classified by
SoftTFIDF and RestrictedSoftTFIDF. After pre-processing, these resulted in the token sets
{"spagnulos"} and {"la", "famiglia", "spagnuolos"}. Due to the variation of spelling in "spagnu-
los" and "spagnuolos", these were not counted as the same token when calculating the TFIDF
values and therefore the cosine similarity between the vectors was low. Introducing the Jaro-
Winkler in the hybrids to identify approximate tokens, as in SoftTFIDF and RestrictedSoft-
TFIDF, seemed to mitigate the problem. For these algorithms, the variants of "spagnulos" and
"spagnuolos" achieved a high Jaro-Winkler similarity and was therefore counted as the same
token when calculating the TFIDF values, resulting in vectors with higher similarity. The
observations indicate that using a character-based similarity function to find approximate
tokens has a positive impact on performance when combined with token-based similarity
functions.

6.2.5 Weighting Words
The idea behind using TFIDF was to investigate how weighting of tokens by occurrence could
make certain parts of the names more or less important. For the task of POI name matching,
we found that there is often a difference in how business-related words, for example "restau-
rant", were used. When evaluating the results, we saw that by assigning a lower weight to
these tokens when calculating their TFIDF values, they seemed to be less important when
determining the similarity between the vectors. Several examples of this can be seen in Table
5.14, such as the matching POI names "Mooo..." and "Mooo Restaurant" as well as "Bâtard"
and "Batard Boulangerie". The business-related words "Restaurant" and "Boulangerie" were
more likely to occur often for POI names, assigning them a lower TFIDF value. As a result,
the vectors’ similarity was determined mainly by the similarity between the tokens "Mooo..."
and "Mooo" as well as "Bâtard" and "Batard", with higher similarity scores. Similarly, Table
5.15 shows that the non-matching POI pair "Sushi TonTon" and "Sushi Aria" were correctly
classified by the TFIDF-based algorithms. Since "Sushi" was more frequently occurring in the
corpus than "TonTon" and "Aria", the fact that these are different from each other was more
important than the fact that "Sushi" was a common token. The similarity between the vec-
tors of the names was therefore determined mainly from the similarity between the tokens
"TonTon" and "Aria", which was low and therefore the pair is correctly classified. Another
benefit from using weights is that it helps solve the problem of differing numbers of tokens
between the names in a pair. Lowering the importance of the additional tokens can make the
POIs’ vectors more similar.

The above-mentioned cases were not correctly classified by the baseline, but correctly
classified by the hybrid approaches where TFIDF was introduced. The observations indicate
that weighting of tokens depending on their importance for the name can help improve per-
formance for POI name matching. For the case of POI names used in this work, we see that

70

6.3 Semantic Similarity Approaches

many POIs were businesses and therefore for this context, it was beneficial that business-
related words have less of an impact than the actual name of the business. Although, which
parts of the names to be considered more or less important for the name is highly context-
dependent and is correlated to the corpus used when calculating the TFIDF values. The selec-
tion of corpus and weighting scheme could be further adapted for the context and the task at
hand, and is something that could be further investigated for further improved performance
on specific contexts.

6.2.6 Weighting Words by Location
Another interesting find when analyzing the classifications, was that for some POI pairs Re-
strictedSoftTFIDF does fulfill the desired outcome of assigning a lower weight to location-
related words. For example, the pair "Haymarket" and "Haymarket Center Garage" are both
located in the Haymarket area. As can be seen in Table 5.15, none of the baseline, TFIDF and
SoftTFIDF were able to correctly classify the pair, while the RestrictedSoftTFIDF classified
it correctly. Similarly, the pair "Cary" and "Cary Train Station" in the Cary neighborhood,
was only classified correctly by the RestrictedSoftTFIDF and not by the baseline, TFIDF or
SoftTFIDF. This is an indication that the algorithm did in fact manage to solve this problem
to some extent. However, the results clearly show a poorer performance in general. As men-
tioned earlier, this was likely to be caused by the small corpus and lack of making business-
related words in POI names less important.

For this approach, we chose to consider the POIs in the surrounding area within a dis-
tance of 25 meters. Adjusting the area surrounding the POIs, from which the corpus is to
be created, could possibly improve the results and would be an interesting investigation. For
example, for POI pairs that are not located close to any other POI, which is common in rural
areas, choosing an area that is too small would introduce the risk of the corpus being created
only from that pair, meaning that the TFIDF weighting would not be very useful. Depending
on the location, the optimal size of the surrounding area to be considered in the corpus can
vary, which requires further exploration on how to select the areas for different POIs within
the same data set. For some POIs it would be interesting to create the corpus from the en-
tire city in which it is located, while for others, it would be more beneficial to only consider
POIs located in a neighborhood or street. There is potential to further investigate solutions
to this problem, for example by creating combinations of multiple corpora and then being
able to adjust the weights both according to the area, as in RestrictedSoftTFIDF, and the
business-related words in the entire corpus, as in SoftTFIDF.

6.3 Semantic Similarity Approaches
This section aims to discuss the results presented in section 5.3, evaluating how semantic
similarity can be used to improve performance of hybrid approaches for POI name matching.

6.3.1 Analysis of Results
Using pre-trained word embeddings together with cosine similarity did not show impressive
results. As seen in Table 5.6, BPEmb achieved the highest F1-scores among the embeddings,

71

6. Discussion

0.947 for the entire data set and 0.869 for the reduced data set. These scores were lower than
the scores achieved in the baseline with Jaro-Winkler. The scores were slightly higher than for
cosine similarity in the baseline, which once again highlights how cosine similarity depends
on the embeddings.

Table 5.7 presents the obtained F1-scores from alternating hyperparameters, embedding
dimension and vocabulary size, for BPEmb. We compared all possible combinations of hy-
perparameters provided by the BPEmb package for the English language. This shows varying
results, where a small vocabulary size in combination with a low dimensionality received an
F1-score of 0.541, which is much lower than any of the state-of-the-art similarity functions
performed during the process of establishing the baseline. The results indicate that a higher
dimensionality seems to work better for the task but implies more complexity.

Semantic similarity was also used in one of the implemented hybrids functions, namely
SemanticSoftTFIDF. The best F1-scores using SemanticSoftTFIDF was achieved with BERT
and SBERT, 0.977 for the entire data set and 0.942 for the reduced data set. These scores
are marginally higher than for SoftTFIDF. By looking at the SemanticSoftTFIDF confusion
matrices in Figure 5.10 and 5.11 and compare the classifications with the confusion matrices in
Figure 5.6, corresponding to the results of SoftTFIDF, we can see that only one or two false
negatives or positives differs between the matrices. This observation makes it difficult to
draw any conclusion about the impact of semantic similarity in the hybrid approaches. Also,
seeing that BPEmb achieved the highest F1-score among the pre-trained word embeddings
used with cosine, we expected it to be the best performing embedding in SemanticSoftTFIDF
as well. BERT’s result when used with cosine similarity was not impressive at all as it did
not even exceed the baseline. As seen for the SemanticSoftTFIDF results in Table 5.8, the
difference between the three word embeddings was minimal.

6.3.2 Embeddings and Context
Modern word embedding techniques are constructed to capture complex information about
the meaning of words. Usually, the context of the word is a major contributor to capture that
information. POI names are relatively short and due to the limited context, it is difficult to
capture useful contextual information. This certainly affected the performance of using the
pre-trained word embeddings in our approaches, especially in SemanticSoftTFIDF where
tokens in the names were embedded separately with even less contextual information.

The fact that the embedded tokens were pre-processed may also have had a negative effect
on the ability to capture contextual information as intended. This could be explained by the
fact that the embeddings can benefit from the usage of special characters or capital letters in
training to identify structure and meaning, and that this help is removed by pre-processing
the names.

Worth noting is that the pre-trained embeddings used in this work were not trained on
data specific for the task. Fine-tuning the model with POI data could possibly lead to the
embeddings containing more domain-specific information and in that way be more useful
for determining similarity between POIs. Even though this thesis covers POIs from North
America, there were several cases in the data set where the names were not in English or
where the names were made up. This made the task more complex since the pre-trained
word embeddings were all trained on texts in English. However, the latter mentioned issue
of made-up words would not be solved with training on other languages.

72

6.4 Machine Learning Approaches

6.3.3 Semantics
Since name matching tasks traditionally handle lexical similarity, the goal of using pre-trained
word embeddings in the thesis was to introduce another aspect, semantics, that could pos-
sibly help in the process of determining similarity. Even though using semantics did not
significantly improve the results, we could see an effect of the semantics when comparing
the incorrectly classified pairs of the TFIDF-based approaches with the approaches using
pre-trained word embeddings with cosine similarity.

POIs within a pair can imply different semantic meaning, even though they are the same
entity. Examples of this can be seen in Table 5.14 and 5.15. For the matching pair "Fin’s" and
"Fins Sushi and Grill", the semantic meaning of the entity changes from a name, in the first
POI name, to a business when adding "Sushi and Grill" in the second POI name. Another
example of a pair where the semantic meaning differs is the non-matching pair "Cary" and
"Cary Train Station", where the first refers to a geographical area and the second to a train
station within that same area. Because of the semantic differences between the POIs, both ex-
amples were classified as non-matching pairs when using pre-trained word embeddings with
cosine, which means that the embeddings seem to capture semantic meaning as expected.
This demonstrates the complex issue that semantic similarity can both be helpful and not
helpful, depending on the context. As discussed earlier, differing length of POIs in a pair is
a problem, which also seemed to be the case when semantics is considered. Mostly because
the additional words in one of the POIs can be important and change the semantic meaning,
which is only beneficial in some cases. However, it is not easy to determine those cases where
semantic similarity contributes to or complicates the task when little context is provided.

The way semantic similarity was added to SoftTFIDF in SemanticSoftTFIDF did not
seem to contribute to determining similarity. Although the inner character-based algorithm
together with the weighted frequency values seemed to be the important parts of the Seman-
ticSoftTFIDF, we cannot conclude semantic similarity as useless for the POI name matching.
As explained earlier, we could see cases where embeddings contribute to the classification by
capturing the semantic meaning. Since the embeddings are constructed using context to cre-
ate meaningful embeddings, it could perhaps be beneficial to embed the entire name at once
rather than token-wise and combine this with the hybrid approach instead.

6.4 Machine Learning Approaches
In this section we discuss the results presented in section 5.4, used to evaluate how machine
learning approaches can improve performance of similarity functions for POI name match-
ing. Since the machine learning approaches were only evaluated on the entire data set, in
order to maximize the amount in training, the analysis will only be based on this data set
variant and not compared with results obtained from using only the reduced data set in the
earlier approaches.

6.4.1 Analysis of Results
Table 5.9 presents the results of the machine learning models using various feature variants,
on the test data, i.e. data that was not seen during training of the models. It should be noted

73

6. Discussion

that for these results the models are trained on 80% of the entire data set and evaluated by
predicting the remaining data. This means that the evaluation metrics in the tables are not
directly comparable to the evaluation metrics presented for earlier approaches in this work.
It does however indicate that the models do perform well on unseen data, meaning they
perform well on general data for the task. Even though not evaluated on the exact same data
as the earlier approaches, the results also give an indication of how well the models perform
for POI name matching using various feature vectors. Since the data were seeded, the results
in Table 5.9 are all trained and tested on the same data, which make them directly comparable
to each other.

The results show that for feature variant 1, where only the baseline algorithms are used
in the feature vector, all three machine learning models perform poorly and have lower F1-
scores than the other feature variants. This is an indication that even with machine learning,
there is not enough valuable information only in the baseline for the models to determine the
similarity of the POIs correctly. For variant 3 we can see that F1-scores are slightly lower than
for variants 2, 4 and 5, for all three machine learning models. This is interesting as variant 3
includes the baseline, SoftTFIDF and the pre-trained word embedding BPEmb with cosine,
but, unlike variants 2, 4 and 5, variant 3 does not include a SemanticSoftTFIDF algorithm.
This indicates that the SemanticSoftTFIDF is important for the models’ predictions, which
is discussed further in section 6.4.3. For these variants, the three machine learning models
have similar F1-scores, but overall variant 5 achieved the highest F1-score of all models, the
highest being 0.988 with the gradient boosted trees classifier.

The results when adding the features of distance, variant 6, and token length ratio, variant
7, can be seen in Table 5.11. The results indicate that there is a slight increase in performance
for variant 7 compared to the results from the models’ predictions when not using these
additional features. For variant 6 there was a slight decrease for all three models. For variant
7, the random forest achieves the same F1-score of 0.984, gradient boosted trees a slightly
lower F1-score of 0.986 and the MLP-classifier a slightly higher F1-score of 0.986.

Since variants 5 and 7 performed the best, these were evaluated further using stratified 5-
fold cross-validation on the entire data set. Table 5.10 presents the average evaluation metrics
of the models on feature variant 5. This means that every pair has been used for both training
and validation in some part of the cross-validation. As mentioned earlier by Santos et al.’s [4],
this makes the results comparable to the earlier approaches since all data is evaluated. The
results show that the highest F1-score of 0.984 was achieved using random forest, which is
higher than all previous approaches in the work when evaluated on the entire data set. These
results show an improvement from the previous best performance of an F1-score of 0.977,
achieved by SemanticSoftTFIDF using SBERT and BERT, as can be seen in Table 5.8. The
similar scores among the models for the variants indicate that it is not of major importance
which of the models that is used, but more important which algorithms are included in the
feature vectors.

Table 5.13 presents the average evaluation metrics of the classifiers when using stratified 5-
fold cross-validation on the entire data set, on feature vector variant 7. The best performance
was achieved by the random forest model, with an F1-score of 0.986, which is slightly higher
than what the performance for variant 5.

The confusion matrices for the random forest classifier using feature vector variant 5, as
can be seen in Figure 5.13a, and feature vector variant 7, as can be seen in Figure 5.15a, only
differ by two less false negatives in feature vector variant 7. This is a minor improvement and

74

6.4 Machine Learning Approaches

there is little data from which to draw any conclusion, however the results indicate that the
random forest does seem to perform slightly better when adding the feature of token length
ratio.

6.4.2 Thresholds
The data fed to the machine learning models was the same data used in earlier approaches to
determine the similarity, namely different similarity functions. It is interesting to understand
why the machine learning models achieved higher results than the other approaches. This
could be explained by the fact that for all other approaches, thresholds were used in order
to classify the pairs based on the similarity scores, which made their performance highly
dependent on the defined threshold. This was not the case for the machine learning models
as no pre-defined thresholds were used for the classifications. Instead, the models based their
predictions on the raw similarity scores in the feature vectors. Santos et al. [4] suggested
that machine learning would improve performance by avoiding manual threshold tuning
and therefore avoid having an uncertainty in performance due to the threshold. This is also
what we observed from the results as we saw an improvement when not having pre-defined
thresholds.

An interesting consideration is that for several of the algorithms used to calculate the
similarity scores fed to the models, inner thresholds were defined as part of the algorithm.
This was the case in for example SemanticSoftTFIDF, where inner thresholds were used to
determine Jaro-Winkler similarity and semantic similarity from the pre-trained word em-
beddings. These inner thresholds were still manually defined even when used in the machine
learning models in order to obtain a similarity score.

It is interesting to consider the results when SemanticSoftTFIDF was not used in the
feature vector, but SoftTFIDF, Jaro-Winkler, cosine and BPEmb with cosine were used, cor-
responding to variant 3 in the results. For this variant, the models have been fed information
of semantic similarity, lexical similarity using the baseline functions and SoftTFIDF, which
was all the same information that SemanticSoftTFIDF was based on, but not combining
them with defined thresholds. The results show that this variant did not perform as well as
the variants where the SemanticSoftTFIDF was included. This is an interesting observation
as the algorithm consisted of more inner thresholds than the other algorithms.

6.4.3 Feature Importance
For the machine learning models evaluated, the results indicated that the selection of simi-
larity functions included in the feature vector was an important factor for the performance.
It is therefore interesting to consider the feature importance for the models, which was eval-
uated using SHAP values, shown in Figure 5.12 for variant 5 and Figure 5.14 for variant 7. The
figures show that for all three models, the hybrid approaches achieve highest SHAP values
compared to the other similarity functions in the feature vectors. This indicates that the hy-
brid approaches works well for the task and provides the models with valuable information.
What other algorithms had high SHAP values differed among the classifiers. Interesting to
note is that the state-of-the-art similarity functions Jaccard, cosine, Jaro and Levenshtein did
not obtain high feature importance in any of the models, while Jaro-Winkler had an average
feature importance in all of the models.

75

6. Discussion

None of the features in any of the models had negative SHAP values, meaning that none
of the features had a negative impact on the prediction. In relation to SemanticSoftTFIDF
using SBERT, the other SHAP values for the other algorithms were relatively even which
makes it difficult to draw any conclusions.

Interesting to note is that for feature variant 7, the token length ratio had a very low
feature importance. This indicated that adding the token length did not add a major value
to the prediction but did show a slight benefit over not being added.

6.4.4 Optimization
Even though it has not been included in the evaluation, it is interesting to consider the opti-
mization of the approaches. Machine learning models can require a lot of time and memory,
especially when increasing the amount of data. In these approaches, calculating the similarity
functions is time-consuming and requires memory. The evaluation shows an improvement
in performance using the machine learning approaches, however the improvement was not
significant. There is a trade-off between how important the slight increase in performance is
in relation to the time and memory required by the machine learning approaches. Depend-
ing on the scalability and objective of the POI name matching, it could be more relevant,
for example, to use the SemanticSoftTFIDF instead of the machine learning approach, as it
achieves high results but requires a lot less computations.

Feature importance could be used to further optimize the machine learning approaches
by removing the similarity functions in the feature vectors that have a low feature impor-
tance, as this would require less computations. For example, the results show that the differ-
ence between the models’ performance on feature vector variant 2, using only four features,
was not much worse than feature vector variant 7, which uses nearly all features. While the
performance is better with variant 7, it comes at a higher computational cost.

6.5 Evaluation Methods
The main metric used for evaluating the approaches was the F1-score, as this is considered
the standard metric for the performance of classifiers. Above the F1-score, the metrics pre-
cision, recall and MCC were presented. As these are highly correlated to the F1-score, for
most of the results of the approaches we observed that this was also the case. In general, the
approaches achieving high F1-scores also achieved high precision, recall and MCC. For some
results we found that it was not always the approach achieving the highest F1-score that also
achieved the highest precision and recall. However, for all approaches we saw that the ap-
proach achieving the highest F1-score also achieved the highest MCC. The highest MCC of
0.983 was achieved by the random forest classifier on variant 7, as can be seen in Table 5.13.
The machine learning approaches in general achieved high MCC scores. Furthermore, the Se-
manticSoftTFIDF achieved a MCC of 0.973 and SoftTFIDF achieved a MCC of 0.971. Since
MCC is an accurate metric for an imbalanced data set, it is a positive indication that the
approaches that achieved high F1-scores also achieved high MCC scores. This indicated that
the approaches perform well on the data set used in the work, as it was rather imbalanced.

The evaluation was done using two variants of the data set. In general, the relation be-
tween the results for the two data sets were quite constant. For the implementations achiev-

76

6.6 Limitations

ing high results on the entire data set, the results were also high for the reduced data set. This
was not surprising as exact pairs were easily correctly classified by all investigated approaches.

Depending on the objective of POI name matching, different metrics might be of more
interest than others. A common concern when using geographical data from multiple sources
is avoiding duplicates, it could therefore be of higher importance to minimize the number of
false negatives, and therefore high recall is to prefer.

An aspect observed when evaluating the results was that the closer the evaluation met-
rics were to a prediction of 1.0, the improvements made to the classification approaches
showed relatively small increases in the evaluation metrics. To more easily compare the im-
provements of the approaches compared to the baseline, we considered the percentage error
reduction. Table 5.16 shows improvement in terms of error reduction, where the machine
learning approach using random forest achieved the highest reduction of 67%.

Worth noting about the evaluation is the manual analysis of the classified pairs, that was
done by attempting to observe trends in what types of POIs were incorrectly classified. This
method gave good indications of issues for the classifiers. However, since the data set was
rather small and the number of trivial cases classified incorrectly was also rather small, it was
difficult to make any assumptions from the observations, since there was no way to determine
what was a trend and what was a coincidence.

6.6 Limitations
The data set used for evaluation is relatively small and it would have been beneficial to eval-
uate the algorithms on a larger data set. Especially when using machine learning, a large data
set for training is preferred. Another aspect of the data is the distribution of POI types.
Ideally, a broad representation of different types of POIs would be considered, with a dis-
tribution corresponding to the real world. Restaurants, shops and cafes might have been
over-represented as the Yelp data set mainly contains POI of businesses. For example, this
could affect the TFIDF-values by giving lower scores to words related to these types of POIs.

During the labeling process we encountered another limitation, namely pairs that were
not possible to determine as a match or non-match. These pairs were labeled as a separate
class and not used for the evaluation, which is unfortunate since they clearly highlight the
problem of the task. Nevertheless, it is a difficult evaluate a prediction without knowing the
correct answer.

As briefly mentioned earlier in this chapter, using frameworks based on the English lan-
guage can have varying results when working with POIs. The location of a POI does not
guarantee the language of the name. In this work, both the stop word collection and the
stemming library were based on English, which means that the usage of these tools did not
work as expected for non-English names. For example, with another language or additional
languages the word "La" in "La Famiglia Spagnuolo’s" could have been considered a stop word
and therefore removed.

77

6. Discussion

78

Chapter 7

Conclusions

To conclude the work done in this thesis, we aim to answer the three research questions stated
in section 1.3.1.

We found that hybrid approaches can improve performance for POI name matching com-
pared to state-of-the-art similarity functions. Combining similarity functions can compen-
sate for each other’s disadvantages by solving different parts of the task. More specifically,
our approaches demonstrated several techniques that have a positive impact on the perfor-
mance: pre-processing, matching approximate tokens and weighting parts of the POI name
improved the results.

We found that semantic similarity did not improve the performance of the hybrid ap-
proaches investigated in this thesis. The evaluation indicates that semantics can be identi-
fied, but the lack of context in the names and the fact that the word embeddings are not
suited for POI names makes it difficult to use for this task.

We found indications that machine learning can improve the performance by combining
multiple hybrid approaches and avoiding manual tuning of thresholds. Furthermore, the
evaluation of the machine learning approaches supports the conclusion that hybrids improve
the performance of state-of-the-art similarity functions.

Overall, the investigated approaches perform well for POI name matching, with the best
machine learning approach reducing the error by 67% compared to state-of-the-art similarity
functions. The evaluation indicates several techniques that could potentially be beneficial if
used in more favorable ways, for example the usage of semantics and composition of the
corpora, which can be further investigated.

79

7. Conclusions

80

Chapter 8

Future work

In this chapter we propose future improvements of the work done in the thesis.

8.1 Weighted Words
An issue we faced was determining which parts of the names were important when compar-
ing POIs. In the hybrid approaches we investigated how corpora can be used for weighting
tokens differently depending on their importance. We found that selecting a corpus based on
an area can have a positive impact for POIs located in that area, however making the corpus
too small has a negative impact on weighting other tokens. Selecting a large corpus based on
all POIs in the data set had a positive impact on weighting business-related tokens but does
not completely solve the problem of names having different numbers of tokens. Determining
What parts of the names are to be considered more or less important is highly context depen-
dent. How to select and combine corpora based on the context could be further investigated
to improve the performance when used in hybrid approaches. It could also be interesting to
investigate a deep learning approach to determine the importance of different parts of the
name.

8.2 Categorization of POIs
In this thesis, we evaluated similarity of POIs by using only their names and coordinates. It
would also be of interest to investigate an approach to categorize the POIs based on types such
as restaurants, parks, libraries etc., using machine learning. The categories could perhaps be
helpful for determining similarity.

81

8. Future work

8.3 Fine-tuning Embeddings
When investigating semantics in the hybrid approaches, existing pre-trained embeddings,
not trained on POIs or other geographical information, were used. However, it would be
interesting to evaluate the performance of a word embedding trained specifically for POI
name matching. By making the embeddings more suitable for POIs, they would be more
likely to handle task specific problems. Fine-tuned embeddings could possibly perform better
and improve the determination of semantics between POI pairs.

8.4 Optimization
For the scope of the thesis, we evaluate the performance of hybrid approaches for POI name
matching. In the evaluation of the performance, optimization such as time and memory
complexity is not considered. However, these aspects would be relevant when applying the
approaches on larger scale and could therefore be of interest to investigate further.

82

References

[1] J. Kysela, “A comparison of text string similarity algorithms for poi name harmonisa-
tion,” in International Conference on Articulated Motion and Deformable Objects. Springer,
2018, pp. 121–130.

[2] W. W. Cohen, P. Ravikumar, S. E. Fienberg et al., “A comparison of string distance met-
rics for name-matching tasks,” in IIWeb, vol. 3. Citeseer, 2003, pp. 73–78.

[3] A. Monge and C. Elkan, “An efficient domain-independent algorithm for detecting ap-
proximately duplicate database records.” Citeseer, 1997.

[4] R. Santos, P. Murrieta-Flores, and B. Martins, “Learning to combine multiple string
similarity metrics for effective toponym matching,” International journal of digital earth,
vol. 11, no. 9, pp. 913–938, 2018.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: A
survey,” IEEE Transactions on knowledge and data engineering, vol. 19, no. 1, pp. 1–16, 2006.

[6] J. Wang, G. Li, and J. Fe, “Fast-join: An efficient method for fuzzy token matching
based string similarity join,” in 2011 IEEE 27th International Conference on Data Engineering.
IEEE, 2011, pp. 458–469.

[7] S. Kulkarni, “Jaro winkler vs levenshtein distance,” Available at https:
//srinivas-kulkarni.medium.com/jaro-winkler-vs-levenshtein-distance-2eab21832fd6
(2022-06-12), Medium, March 2021.

[8] W. W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string metrics for match-
ing names and records,” in Kdd workshop on data cleaning and object consolidation, vol. 3,
2003, pp. 73–78.

[9] N. Gali, R. Mariescu-Istodor, and P. Fränti, “Similarity measures for title matching,” in
2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016, pp. 1548–
1553.

83

https://srinivas-kulkarni.medium.com/jaro-winkler-vs-levenshtein-distance-2eab21832fd6
https://srinivas-kulkarni.medium.com/jaro-winkler-vs-levenshtein-distance-2eab21832fd6

REFERENCES

[10] N. Augsten and M. H. Böhlen, “Similarity joins in relational database systems,” Synthesis
Lectures on Data Management, vol. 5, no. 5, pp. 1–124, 2013.

[11] T. El-Shishtawy, “A hybrid algorithm for matching arabic names,” arXiv preprint
arXiv:1309.5657, 2013.

[12] K. Ganesan, “All you need to know about text preprocessing for nlp and machine learn-
ing,” Available at http://www.blowinglotsofweirdstuffup.com/guide.html (2022-06-01),
KDuggets, April 2019.

[13] K. Jayakodi, M. Bandara, and D. Meedeniya, “An automatic classifier for exam ques-
tions with wordnet and cosine similarity,” in 2016 Moratuwa engineering research conference
(MERCon). IEEE, 2016, pp. 12–17.

[14] S. Kannan, V. Gurusamy, S. Vijayarani, J. Ilamathi, M. Nithya, S. Kannan, and V. Gu-
rusamy, “Preprocessing techniques for text mining,” International Journal of Computer
Science & Communication Networks, vol. 5, no. 1, pp. 7–16, 2014.

[15] D. M. Porter and R. Boulton, “Snowball,” Available at https://snowballstem.org/ (2022-
04-14), 2001-2002.

[16] G. Grefenstette, Tokenization. Dordrecht: Springer Netherlands, 1999, pp. 117–133.
[Online]. Available: https://doi.org/10.1007/978-94-015-9273-4_9

[17] C. Khanna, “Word, subword, and character-based tokenization:
Know the difference,” Available at https://towardsdatascience.com/
word-subword-and-character-based-tokenization-know-the-difference-ea0976b64e17
(2022-03-09), Towards Data Science, July 2021.

[18] P. Gage, “A new algorithm for data compression,” C Users Journal, vol. 12, no. 2, pp. 23–38,
1994.

[19] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with
subword units,” arXiv preprint arXiv:1508.07909, 2015.

[20] B. Heinzerling and M. Strube, “Bpemb: Tokenization-free pre-trained subword embed-
dings in 275 languages,” arXiv preprint arXiv:1710.02187, 2017.

[21] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[22] T. M. Mitchell et al., Machine learning. McGraw-hill New York, 1997.

[23] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM computing
surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995.

[24] “Cross-validation,” Available at https://scikit-learn.org/stable/modules/cross_
validation (2022-05-18), Scikit-learn.

[25] V. A. Dev and M. R. Eden, “Formation lithology classification using scalable gradient
boosted decision trees,” Computers & chemical engineering, vol. 128, pp. 392–404, 2019.

84

http://www.blowinglotsofweirdstuffup.com/guide.html
https://snowballstem.org/
https://doi.org/10.1007/978-94-015-9273-4_9
https://towardsdatascience.com/word-subword-and-character-based-tokenization-know-the-difference-ea0976b64e17
https://towardsdatascience.com/word-subword-and-character-based-tokenization-know-the-difference-ea0976b64e17
https://scikit-learn.org/stable/modules/cross_validation
https://scikit-learn.org/stable/modules/cross_validation

REFERENCES

[26] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, “Boosted decision
trees as an alternative to artificial neural networks for particle identification,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 543, no. 2-3, pp. 577–584, 2005.

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[28] A. Verma and V. Ranga, “On evaluation of network intrusion detection systems: Statis-
tical analysis of cidds-001 dataset using machine learning techniques,” Pertanika Journal
of Science & Technology, vol. 26, no. 3, pp. 1307–1332, 2018.

[29] S. Yildirim, “Gradient boosted decision trees-explained,” Available at https:
//towardsdatascience.com/gradient-boosted-decision-trees-explained-9259bd8205af
(2022-06-12), Feb 2020.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[31] H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. Janati Idrissi, “Multilayer perceptron:
Architecture optimization and training,” International Journal of Interactive Multimedia
and Artificial Intelligence, vol. 4, no. 1, pp. 26–30, 2016.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[33] A. E. Roth, The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University
Press, 1988.

[34] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
Advances in neural information processing systems, vol. 30, 2017.

[35] D. Jurafsky and J. Martin, “Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition.” Prentice Hall,
2000, vol. 2.

[36] “Embeddings: Translating to a lower-dimensional space,” Available at
https://developers.google.com/machine-learning/crash-course/embeddings/
translating-to-a-lower-dimensional-space (2022-06-12), Google Courses, Feb 2022.

[37] J. Zhao, S. Mudgal, and Y. Liang, “Generalizing word embeddings using bag of sub-
words,” arXiv preprint arXiv:1809.04259, 2018.

[38] P. Huilgol, “Quick introduction to bag-of-words (bow) and tf-idf for creat-
ing features from text,” Available at https://www.analyticsvidhya.com/blog/2020/
02/quick-introduction-bag-of-words-bow-tf-idf (2022-06-12), Analytics Vidhya, Feb
2020.

[39] S. Tata and J. M. Patel, “Estimating the selectivity of tf-idf based cosine similarity pred-
icates,” ACM Sigmod Record, vol. 36, no. 2, pp. 7–12, 2007.

85

https://towardsdatascience.com/gradient-boosted-decision-trees-explained-9259bd8205af
https://towardsdatascience.com/gradient-boosted-decision-trees-explained-9259bd8205af
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://www.analyticsvidhya.com/blog/2020/02/quick-introduction-bag-of-words-bow-tf-idf
https://www.analyticsvidhya.com/blog/2020/02/quick-introduction-bag-of-words-bow-tf-idf

REFERENCES

[40] C. S. Unnikrishnan, “How sklearn’s tfidfvectorizer calculates tf-idf
values,” Available at https://www.analyticsvidhya.com/blog/2021/11/
how-sklearns-tfidfvectorizer-calculates-tf-idf-values/ (2022-04-13), Analytics Vidhya,
Nov 2021.

[41] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine similarity to determine
similarity measure: Study case in online essay assessment,” in 2016 4th International Con-
ference on Cyber and IT Service Management. IEEE, 2016, pp. 1–6.

[42] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp.
1532–1543. [Online]. Available: http://www.aclweb.org/anthology/D14-1162

[43] P. Wenig, “Creation of sentence embeddings based on topical
word representations,” Available at https://towardsdatascience.com/
creation-of-sentence-embeddings-based-on-topical-word-representations-d325d50f99e
(2022-04-13), Towards Data Science, 01 2019.

[44] S. Theiler, “Basics of using pre-trained glove vectors in
python,” Available at https://medium.com/analytics-vidhya/
basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db (2022-04-13),
Medium, Sep 2019.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[46] “Bert overview,” Available at https://huggingface.co/docs/transformers/model_doc/
bert (2022-04-13), Hugging Face.

[47] L. McQuillan, “Word2vec vs bert,” Available at https://www.saltdatalabs.com/blog/
word2vec-vs-bert (2022-06-12), Salt Data Labs, Mar 2022.

[48] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2019. [Online].
Available: https://arxiv.org/abs/1908.10084

[49] “Confusion matrix,” Available at https://en.wikipedia.org/wiki/Confusion_matrix
(2022-03-09), Wikipedia, March 2022.

[50] A. Kulkarni, D. Chong, and F. A. Batarseh, “5 - foundations of data imbalance
and solutions for a data democracy,” in Data Democracy, F. A. Batarseh and
R. Yang, Eds. Academic Press, 2020, pp. 83–106. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128183663000058

[51] S. Narkhede, “Understanding confusion matrix,” Available at https:
//towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 (2022-
03-09), Towards Data Science, May 2018.

[52] J. Korstanje, “The f1 score,” Available at https://towardsdatascience.com/
the-f1-score-bec2bbc38aa6 (2022-03-09), Towards Data Science, August 2021.

86

https://www.analyticsvidhya.com/blog/2021/11/how-sklearns-tfidfvectorizer-calculates-tf-idf-values/
https://www.analyticsvidhya.com/blog/2021/11/how-sklearns-tfidfvectorizer-calculates-tf-idf-values/
http://www.aclweb.org/anthology/D14-1162
https://towardsdatascience.com/creation-of-sentence-embeddings-based-on-topical-word-representations-d325d50f99e
https://towardsdatascience.com/creation-of-sentence-embeddings-based-on-topical-word-representations-d325d50f99e
https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/bert
https://www.saltdatalabs.com/blog/word2vec-vs-bert
https://www.saltdatalabs.com/blog/word2vec-vs-bert
https://arxiv.org/abs/1908.10084
https://en.wikipedia.org/wiki/Confusion_matrix
https://www.sciencedirect.com/science/article/pii/B9780128183663000058
https://www.sciencedirect.com/science/article/pii/B9780128183663000058
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6

REFERENCES

[53] J. Wang, G. Li, J. X. Yu, and J. Feng, “Entity matching: How similar is similar,” Proceedings
of the VLDB Endowment, vol. 4, no. 10, pp. 622–633, 2011.

[54] “Phi coefficient,” Available at https://en.wikipedia.org/wiki/Phi_coefficient (2022-03-
09), Wikipedia, March 2022.

[55] “Matthew correlation coefficient,” Available at https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.matthews_corrcoef.htmlt (2022-03-09), Scikit-learn, March
2022.

[56] Z. Bosnjak, O. Grljevic, and S. Bošnjak, “Crisp-dm as a framework for discovering
knowledge in small and medium sized enterprises’ data,” 06 2009, pp. 509 – 514.

[57] “Crisp-dm process diagram,” Available at https://sv.wikipedia.org/wiki/Fil:CRISP-DM_
Process_Diagram.png (2022-04-04), Wikimedia Commons, April 2012.

[58] “Openstreetmap,” Available at https://www.openstreetmap.org/about (2022-03-09),
2022.

[59] “Yelp,” Avaialable at https://www.openstreetmap.org/about (2022-03-09), 2022.

[60] “data.gov,” https://data.gov/about/ (Accessed 2022-03-30), 2022.

[61] “City of vancouver data set,” Available at https://opendata.vancouver.ca/pages/home/
(2022-03-30), 2022.

[62] G. GmbH and O. Contributors, “Openstreetmap data extracts,” Available at https://
download.geofabrik.de/ (2022-02-16), 2018.

[63] Y. Inc., “Download yelp dataset,” Available at https://www.yelp.com/dataset/download
(2022-02-16, 2004–2022.

[64] Data.gov, “Community points of interest,” Available at https://catalog.data.gov/dataset/
community-points-of-interest (2022-03-25), 2022.

[65] “data.gov, community points of interest,” Available at https://catalog.data.gov/dataset/
community-points-of-interest (2022-03-30), 2022.

[66] C. of Vancouver, “Cultural spaces,” Available at https://opendata.vancouver.ca/explore/
dataset/cultural-spaces/information/?disjunctive.type&disjunctive.primary_use&
disjunctive.ownership (2022-03-25), 2019.

[67] ——, “Schools,” Available at https://opendata.vancouver.ca/explore/dataset/schools/
information/ (2022-03-25), 2019.

[68] ——, “Libraries,” Available at https://opendata.vancouver.ca/explore/dataset/libraries/
information/ (2022-03-25), 2019.

[69] “Nltk documentation,” Available at https://www.nltk.org/ (2022-04-27), NLTK Project.

[70] T. Šolc and S. M. Burke, “Unidecode project description,” Available at https://pypi.org/
project/Unidecode/ (2022-04-27).

87

https://en.wikipedia.org/wiki/Phi_coefficient
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.htmlt
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.htmlt
https://sv.wikipedia.org/wiki/Fil:CRISP-DM_Process_Diagram.png
https://sv.wikipedia.org/wiki/Fil:CRISP-DM_Process_Diagram.png
https://www.openstreetmap.org/about
https://www.openstreetmap.org/about
https://data.gov/about/
https://opendata.vancouver.ca/pages/home/
https://download.geofabrik.de/
https://download.geofabrik.de/
https://www.yelp.com/dataset/download
https://catalog.data.gov/dataset/community-points-of-interest
https://catalog.data.gov/dataset/community-points-of-interest
https://catalog.data.gov/dataset/community-points-of-interest
https://catalog.data.gov/dataset/community-points-of-interest
https://opendata.vancouver.ca/explore/dataset/cultural-spaces/information/?disjunctive.type&disjunctive.primary_use&disjunctive.ownership
https://opendata.vancouver.ca/explore/dataset/cultural-spaces/information/?disjunctive.type&disjunctive.primary_use&disjunctive.ownership
https://opendata.vancouver.ca/explore/dataset/cultural-spaces/information/?disjunctive.type&disjunctive.primary_use&disjunctive.ownership
https://opendata.vancouver.ca/explore/dataset/schools/information/
https://opendata.vancouver.ca/explore/dataset/schools/information/
https://opendata.vancouver.ca/explore/dataset/libraries/information/
https://opendata.vancouver.ca/explore/dataset/libraries/information/
https://www.nltk.org/
https://pypi.org/project/Unidecode/
https://pypi.org/project/Unidecode/

REFERENCES

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[72] “Hugging face,” Available at https://huggingface.co/ (2022-05-28), 2022.

[73] “Bert base model (uncased),” Available at https://huggingface.co/bert-base-uncased
(2022-05-18), Hugging Face.

[74] “all-mpnet-base-v2,” Available at https://huggingface.co/sentence-transformers/
all-mpnet-base-v2 (2022-05-18), Hugging Face.

[75] S. Lundberg, “Shap,” Available at https://shap.readthedocs.io/ (2022-05-30), 2018.

[76] “Xgboost,” Available at https://xgboost.ai/ (2022-05-18).

88

https://huggingface.co/
https://huggingface.co/bert-base-uncased
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://shap.readthedocs.io/
https://xgboost.ai/

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-20

EXAMENSARBETE Investigating Hybrid Approaches for Name Matching of Points of Interest
STUDENT Lucy Albinsson, Tove Sölve
HANDLEDARE Dennis Medved (LTH), Hampus Londögård (AFRY)
EXAMINATOR Jacek Malec (LTH)

Ser kartan dubbelt?

POPULÄRVETENSKAPLIG SAMMANFATTNING Lucy Albinsson, Tove Sölve

För att karttjänster ska vara pålitliga är det viktigt att kunna avgöra om två närlig-
gande intressepunkter med liknande namn är samma plats eller inte. Examensarbetet
undersöker metoder för att avgöra detta genom att titta på olika aspekter av likheter
mellan namnen.
Karttjänster har blivit en viktig del för att under-
lätta människors vardag. För att kartan ska vara
användbar och representera den verkliga världen
krävs det stora mängder geografisk information.
Därför används ofta flera olika källor och att kom-
binera dessa kan leda till utmaningar. Tänk dig
att du är på väg till universitetssjukhuset i Lund
och tar fram din karttjänst för att hitta till rätt
avdelning. Kartan visar två markörer som båda
verkar representera avdelningen du letar efter,
trots att de har något olika namn och ligger i olika
delar av byggnaden. Att karttjänsten visar dub-
bletter av en och samma plats, är ett av proble-
men som kan uppstå när information hämtas från
flera källor. Det finns ingen försäkran om att en
plats har samma namn och geografisk information
i olika databaser. Likaså är det svårt att avgöra
om två närliggande platser med liknande namn
faktiskt är olika, vilket gör det svårt att slå ihop
rätt information.

I vårt examensarbete har vi undersökt om det
går att avgöra om två närliggande platser är
samma eller inte utifrån deras namn och ge-
ografiska position. Vi undersöker två aspekter av
likhet mellan text, dels struktur och förekomst
av tecken och dels semantisk betydelse. Våra
metoder är baserade på kombinationer av tradi-

tionella algoritmer, vektorrepresentationer av se-
mantisk likhet och maskininlärning.

Resultaten visar att det är positivt att kombin-
era algoritmer då de kan täcka upp för varandras
brister. Dock visade det sig svårt att dra nytta av
den semantiska likhethet mellan namnen eftersom
att det ofta saknas sammanhang i namn. Mask-
ininlärningsmetoderna var baserade på flera av de
kombinerade algoritmerna och visade sig ge bäst
resultat. Överlag visade resultaten att det kan
vara positivt att kombinera metoder som tar hän-
syn till olika aspekter av likhet för att avgöra om
två intressepunkter representerar samma plats.

	Introduction
	Background
	Purpose
	Problem Formulation
	Research questions

	Related Work
	Outline
	Work Distribution

	Theory
	Similarity Functions
	Character-based Similarity Functions
	Token-based Similarity Functions

	Text Pre-processing
	Stop Word Removal
	Stemming

	Tokenization
	Byte-pair Encoding Tokenization
	WordPiece

	Machine Learning
	Cross-validation
	Decision Trees
	Ensemble Learning of Decision Trees
	Artificial Neural Networks
	Shapley Values

	Word Embeddings
	Bag-of-words
	TFIDF
	SoftTFIDF
	GloVe
	BERT
	SBERT

	Evaluation Metrics
	Confusion Matrix
	Precision and Recall
	F1-score
	Matthew's Correlation Coefficient

	Approach
	CRISP-DM
	Data Understanding
	Data Sets
	Data Collection
	Data Analysis

	Data Preparation
	Data Cleaning and Formatting
	Labeling

	Modeling
	Evaluation
	Tools
	NLTK
	Unidecode
	Scikit-learn
	BPEmb
	Hugging Face
	SHAP
	XGBoost

	Implementation
	Baseline
	Hybrid Similarity Functions
	Text Pre-processing
	TFIDF
	SoftTFIDF
	RestrictedSoftTFIDF

	Semantic Similarity Approaches
	Pre-trained Word Embeddings
	SemanticSoftTFIDF

	Machine Learning Approaches
	Machine Learning Using Similarity Functions
	Machine Learning With Additional Features

	Results
	Baseline
	Hybrid Similarity Functions
	TFIDF
	SoftTFIDF
	RestrictedSoftTFIDF

	Semantic Similarity Approaches
	Pre-trained Word Embeddings
	SemanticSoftTFIDF

	Machine Learning Approaches
	Machine Learning Using Similarity Functions
	Machine Learning With Additional Features

	Examples of Classifications
	Error Reduction

	Discussion
	Baseline
	Hybrid Similarity Functions
	Analysis of Results
	Thresholds
	Text Pre-processing
	Finding Approximate Tokens
	Weighting Words
	Weighting Words by Location

	Semantic Similarity Approaches
	Analysis of Results
	Embeddings and Context
	Semantics

	Machine Learning Approaches
	Analysis of Results
	Thresholds
	Feature Importance
	Optimization

	Evaluation Methods
	Limitations

	Conclusions
	Future work
	Weighted Words
	Categorization of POIs
	Fine-tuning Embeddings
	Optimization

	References
	Tom sida

