
MASTER’S THESIS 2022

”First return, then explore"
Adapted and Evaluated for
Dynamic Tasks
Nicolas Petrisi, Fredrik Sjöström

ISSN 1650-2884
LU-CS-EX: 2022-49

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-49

”First return, then explore" Adapted and
Evaluated for Dynamic Tasks

"First return, then explore" anpassad och
utvärderad för dynamiska uppgifter

Nicolas Petrisi, Fredrik Sjöström

”First return, then explore" Adapted and
Evaluated for Dynamic Tasks

(Adaptations for Dynamic Starting Positions in a Maze

Environment)

Nicolas Petrisi
ni1753pe-s@student.lu.se

Fredrik Sjöström
fr8272sj-s@student.lu.se

July 8, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Volker Krueger, volker.krueger@cs.lth.se
Hampus Åström, hampus.astrom@cs.lth.se

Examiner: Elin A. Topp, elin_anna.topp@cs.lth.se

mailto:ni1753pe-s@student.lu.se
mailto:fr8272sj-s@student.lu.se
mailto:volker.krueger@cs.lth.se
mailto:hampus.astrom@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

In this thesis, we build upon the policy-based Go-Explore algorithm. It uses a
special cell concept to link multiple states as a single cell and utilizes trajectories
and self-imitation learning to achieve state-of-the-art performance. However,
Go-Explore has limitations for dynamic starting positions. By changing how the
algorithm defines the cell representation of its environment and how trajectories
are represented, Go-Explore is adapted to work on dynamic tasks with the aim
to make the algorithm even more applicable in other domains, such as robotics.

When trying to solve a maze with random starting positions, the newly adapted
version performs more than seven times better than the original version, man-
aging to reach the goal of the maze over 98% of the time. This shows that the
adaptations enhance the performance of Go-Explore for dynamic starting po-
sitions which in turn opens a whole new class of problems for Go-Explore to
tackle.

The code is available at: https://github.com/NicolasPetrisi/go-explore

Keywords: Go-Explore, exploration, maze, machine learning, reinforcement learning,
Procgen

https://github.com/NicolasPetrisi/go-explore

2

Acknowledgements

We, Nicolas Petrisi and Fredrik Sjöström, would like to thank Hampus Åström and Volker
Krueger for support and discussion sessions as supervisors during the length of the entire
project with additional thanks to Volker for supplying hardware well needed. We would also
like to thank LTH for supplying this thesis with a location to work and additional hardware.

3

4

Contents

1 Introduction 7
1.1 Introduction . 7
1.2 Research Questions and Goals . 8
1.3 Methodology . 9
1.4 Contribution Summary . 9
1.5 Distribution of work . 9
1.6 Outline of Report . 9

2 Background 11
2.1 Terminology . 11

2.1.1 Episode . 11
2.1.2 Domain Knowledge . 11
2.1.3 Policy . 12
2.1.4 Exploration Strategy . 12

2.2 Go-Explore . 12
2.2.1 Robustified Go-Explore . 13
2.2.2 Policy-based Go-Explore . 15

2.3 Procgen . 17
2.4 Related Work . 17

3 Approach 19
3.1 Dynamic Task . 19
3.2 Problems for Go-Explore . 19

3.2.1 Cell Representation . 20
3.2.2 Trajectories . 20

3.3 Adaptations . 22
3.3.1 Dynamic Cells . 22
3.3.2 On the Fly Trajectories . 24
3.3.3 Other Structural Changes to Go-Explore 25

5

CONTENTS

4 Results 27
4.1 Evaluation . 27

4.1.1 Parameter Setups . 28
4.1.2 Experiments . 28

4.2 Results . 29
4.2.1 Standard Deviation . 30
4.2.2 Exploration Strategies . 31
4.2.3 Starting Positions . 33
4.2.4 Original vs Adapted Go-Explore 34
4.2.5 Scaling with the Environment . 36

5 Discussion 39
5.1 Standard Deviation . 39
5.2 Exploration Strategies . 39
5.3 Starting Positions . 40
5.4 Original vs Adapted Go-Explore . 41
5.5 Scaling with the Environment . 42

6 Outlooks and Conclusions 45
6.1 Outlooks . 45
6.2 Conclusion . 45

References 47

Appendix A Mazes 51

Appendix B Implementation Details 53
B.1 Return Policy . 53

6

Chapter 1

Introduction

In this initial chapter, the context of the work is introduced in section 1.1, followed by the
research questions and goals in section 1.2, methodology in section 1.3, contribution summary
1.4 distribution of work 1.5, and finally an outline of the report 1.6

1.1 Introduction
Reinforcement Learning (RL) is an interesting subfield of Machine Learning (ML) in which
an agent interacts with an environment and gets rewards depending on what actions are per-
formed in which states. The final goal for the agent is to maximize the sum of these rewards
by training a policy that chooses the best action to take depending on the environment’s cur-
rent state. RL is used in a broad field with numerous application possibilities, from vehicle
routing [1] to effective control systems of liquid level in tanks [2], games [3], and more.

In the domain of games, the collection of Atari games provided by OpenAI Gym [4]
has a new state-of-the-art (SOTA) algorithm on most of its games that is called robustified
Go-Explore [5]. A second, more RL-oriented version, called policy-based Go-Explore [6],
also beat SOTA on the two notorious hard-exploration Atari games Pitfall and Montezuma’s
Revenge. The OpenAI Gym contains an environment for, amongst other things, a collection
of Atari games, of which a list of the games can be found in [7]. An Atari game is a pixelated
game generally in 2D typically made in the 1980s where the game can be everything from
exploring in a maze-like environment while avoiding enemies [8] to racing games [9], shooter
games [10], and more.

When the article that presented Go-Explore [6] was written, the gym contained a collec-
tion of 55 Atari games where it scored higher than previous SOTA in 85.5% of the games as
well as above human performance in all of them. These results are interesting to more than
just the gaming world, as learning to beat games can be seen as an evaluation of how well the
algorithm can learn different skills, something that can be transferred to other areas. Go-
Explore is also tested in a robot simulator and proves to yield good results when trained to

7

1. Introduction

put a cup from a fixed location into a shelf, even if the shelf had a latched door that needs to
be opened first [6], proving that the algorithm can be applied to more areas than just games.

However, the Atari games are often deterministic, which does not map well to the dy-
namic real world. To reduce this drawback, no-ops and sticky actions, which are explained in
section 2.2, are recommended to be added to the environment [11] to make it more stochas-
tic. Even with these additions present, the structure of each episode is still similar and the
states for games using transition screens between rooms and levels, such as Montezuma’s Re-
venge [8] and Pitfall [12], are still nearly identical. Further, the path to the goal in the Atari
games is always in broad terms the same between every episode since neither the start nor
goal changes, given that there is a goal location such as in an exploration game. Even with
sticky actions present, the overall path is still the same, it is just impossible to predict an
exact sequence of actions. The robotics simulation on which Go-Explore is tested also suf-
fers from non-dynamic starting positions as it resets to the same starting position on every
episode which is not true for many real-world cases.

In this thesis, we present a task that is more dynamic than the ones Go-Explore is pre-
viously tested on and introduce new adaptations for Go-Explore to be better suited for this
task. We evaluate how well Go-Explore solves this dynamic task with the adaptations present,
while also comparing it to how well it manages the task without them.

1.2 Research Questions and Goals
The main purpose of this thesis is to answer the following question: How can Go-Explore
be adapted to perform better for a dynamic task? More specifically, performing a task using
random starting positions. The task used to evaluate Go-explore in this thesis is the task
of solving a maze where the start position is random for every attempt. The performance
is measured by the success rate of solving the maze as well as how fast it does so. To fully
answer this question, a set of sub-questions are defined below and are answered throughout
this paper.

1. How do Go-Explore "off-the-shelf" and our adaptation of Go-Explore perform against
each other in an environment with dynamic starting positions?

2. How do training time and performance scale against the size of the environment?

3. How do different exploration strategies affect training time and performance?

4. How can a good representation of the environment be defined when a predefined rep-
resentation does not fit?

In addition to answering the questions above, the goals set for the project to complete
are the following:

• Modify the Go-Explore algorithm to work with dynamic starting positions.

• Provide a working, well-documented code, for future use.

• Evaluate the adapted version of the code on Maze from the Procgen benchmark by
OpenAI by modifying Procgen to use dynamic starting positions. Further, edit and
optimize the code for the chosen game type.

8

1.3 Methodology

1.3 Methodology
The methodology used in this thesis is to take an artifact, Go-Explore, modify it to fit a
dynamic task, and evaluate the performance through experiments.

To answer the questions and achieve the goals presented in section 1.2, the policy-based
version of Go-Explore, published in "First return, then explore" [6], is modified iteratively
and adapted to the environment of Maze. Through training multiple agents on different
setups in the chosen environment, the performance of the resulting program is evaluated.
This evaluation is based on the average number of successful episodes where the maze is
solved when starting on random positions as well as the average number of steps required.
This is then compared against the same metric for "off-the-shelf" policy-based Go-Explore.

1.4 Contribution Summary
This thesis contributes to the scientific community with the following three items.

• Give data about how well Go-Explore performs in the maze environment with dynamic
starting positions to help determine the usefulness of the algorithm for different cases.

• Expand Go-Explore to handle different cases to make it possible to use for more dy-
namic tasks, for instance in robotics.

• Providing a working and well-documented code for future work to expand upon. Link
to our GitHub repository: https://github.com/NicolasPetrisi/go-explore

1.5 Distribution of work
Much of the code has been done with the practice of pair programming. Some areas that
were focused on by a single person however are:

Fredrik took upon the responsibility of creating an initialization script to ease the instal-
lation process. He also had more focus on the modifications regarding Procgen as well as a
lengthy attempt of getting the GPU to process the application. In the report, he had more
responsibility for the result section.

Nicolas took upon the responsibility of creating the script to execute the program with,
adapting the parameters of the program, most of the logic and functionality of on the fly
trajectories as well as the Dynamic cells that are explained in section 3.3. In the report, he
had more responsibility in the approach section.

1.6 Outline of Report
This thesis starts with chapter 1 which contains an introduction to the thesis, a brief problem
description, the research questions, the methodology used, and a contribution statement. It
is followed by chapter 2 where the terminology used in this report is defined and the two
versions of Go-Explore are described. It also introduces the Procgen environment, which is

9

https://github.com/NicolasPetrisi/go-explore

1. Introduction

used as the base for the dynamic task in this thesis, and lastly, related work is mentioned
in this chapter. After that follows chapter 3, which introduces the dynamic task used to
evaluate Go-explore and more thoroughly goes through some problems with Go-Explore for
the dynamic task and solutions to them. Chapter 4 describes how the experiments are set
up and run as well as the results of them. The results are discussed in chapter 5 and finally,
chapter 6 discusses some future research possibilities and concludes the report.

10

Chapter 2

Background

In this chapter, the terminology used in this report is described in section 2.1. Then, Go-
Explore and its two different versions are introduced in section 2.2, where the policy-based
version of Go-Explore is the one being used in this thesis. Then, the Procgen environment
used in training and evaluation is introduced in section 2.3. Finally, related work is mentioned
in section 2.4.

2.1 Terminology
Description of the terms used that are necessary to understand the report are presented in
this section.

2.1.1 Episode
An episode is all the states, actions, and rewards in sequence from a start state to an end state.
For example, if playing a game, all states, actions, and rewards in sequence from the start of
the game until the game ends belong to the same episode.

2.1.2 Domain Knowledge
Domain knowledge is information about the state of the game that is not directly available
to the player such as which room number the agent is currently in, the discretized x and y
position of the agent, in which rooms held items were found, etc. Some, such as the agent’s
position, is information that is still presented to the player but in another way, like seeing
the character on the screen instead of as discretized x and y coordinates.

11

2. Background

2.1.3 Policy
A policy π is a function that takes the state of the environment and outputs the probabilities
for taking different actions as seen in equation 2.1 where A is the action space and S is the
state space. The goal is to find an optimal policy that maximizes the total reward i.e., for
every state the optimal policy outputs the action that leads to the highest total reward.

π(a, s) = P[A = a|S = s] (2.1)

A policy can also be used to reach specific goals in an environment and is then called a
goal-conditioned policy. For this, a tuple of a goal you want to reach and the current state is
used as input to the goal-conditioned policy function instead as seen in equation 2.2 where
A is the action space, S is the state space and G is the goal space. Here, the goal is to find
an optimal policy that maximizes the total reward while at the same time navigating to the
provided goal state.

π(a, (s, g)) = P[A = a|S = s,G = g] (2.2)

2.1.4 Exploration Strategy
Policy-based Go-Explore has two phases: first, a return phase and then an exploration phase,
both of which are explained later in section 2.2.2. During the exploration phase of the al-
gorithm, a choice is made between performing random exploration or policy exploration
as described below. Note that during either type of exploration, an exploration target, as
explained in more detail in section 2.2.2, is selected to explore towards.

Random Exploration
If random exploration is chosen during the exploration phase, the agent explores using uni-
formly distributed random actions by overwriting the action chosen by the policy whilst
keeping the goal of reaching the chosen exploration target.

Policy Exploration
If policy exploration is chosen during the exploration phase, the agent follows the goal-
conditioned policy to try to reach the chosen exploration target.

2.2 Go-Explore
Go-Explore (published as “First return, then explore” [6]) is a family of algorithms that saves
interesting states in an archive, returns to them, and explores from there [6] using a combina-
tion of RL and tree search. This is meant to solve two problems occurring during exploration
in RL: detachment and derailment. Detachment is when the algorithm loses track of previ-
ously visited interesting states to explore from, and derailment is when the exploring part of
the algorithm prevents it from returning to previously visited states [6].

12

2.2 Go-Explore

Go-Explore is tested on OpenAI’s implementation of the Atari Learning Environments
(ALE) [6], where ALE is a collection of old games for the Atari 2600, a gaming console made
in 1977 by Atari, Inc., which has numerous games in different genres such as puzzle games,
shooters, sports, and more [13]. The games are less complex than most games produced today
in terms of graphics, controls, and general complexity but can still provide a challenge [13].
OpenAI’s implementation contains, at the time of Go-Explore’s creation, 55 games in which
Go-Explore outperforms the state of the art in all the hard-exploration games [6]. Notably,
it is the first to receive a higher score than the best human in the game Pitfall. Previous
SOTA algorithms do not manage to score a single point in this game. It achieves these results
through efficient exploration, by remembering interesting states found in the environment
and exploring from them. This technique solves both derailment and detachment, which as
described in the previous paragraph, other RL algorithms have problems with.

However, these games are deterministic [11], therefore an agent can memorize a sequence
of actions that solve the game well instead of learning a broader skill. To combat this, two
stochastic additions are added: no-ops and sticky actions. No-ops means that the agent does
nothing for a random number of frames at the beginning of an episode, causing the envi-
ronment to move and be different depending on the number of frames waited, resulting in
slightly different starting states. Sticky actions try to mimic the limitation of human preci-
sion and give a 25% chance of every step to ignore the action presented by the agent and do
the previous one instead. This makes the agent perform more like a human who can by acci-
dent go a little too far to the side than intended, making an exact series of actions required
to solve a level impossible to predict and therefore forcing the agent to learn a more robust
policy that can handle these missteps.

Two versions of Go-Explore have been made [6]. The first version is divided into two
parts, an exploration part and a robustification part. This version has the requirement of
states being restorable and is in this thesis called "robustified Go-Explore" and is described
in section 2.2.1 for the sake of completeness. The second version, which is the version used in
this thesis, is built upon the robustified version but uses a return policy that eliminates the
requirement of states being restorable as well as the need for the robustification step. This
version is called "policy-based Go-Explore" and is more flexible for changes in the environ-
ment and is described more in section 2.2.2.

2.2.1 Robustified Go-Explore
Robustified Go-Explore is the most efficient variant as it takes the least amount of time to
train but has the requirement that visited states must be restorable, e.g., a simulator that re-
sets to a selected state is needed. The algorithm has two major parts, the first part is centered
around exploring and the second is a robustification step where the best trajectories found
in the exploration step are used to find a robust policy for the agent [6].

The exploration phase can be seen in figure 2.1. A promising state is first probabilistically
selected from the archive based on its weight. The weight of a state (or cell, as explained
later in this section) is based on the number of actions performed in the state where fewer
actions mean a more promising state. Then, the simulator is reset to that particular state
and from this state, the method explores using random actions for a fixed number of steps or
until the episode terminates such as when winning the game, dying, or running out of time.
When done exploring, all new states found while exploring are added to the archive, and the

13

2. Background

Figure 2.1: The Idea behind Go-Explore. It finds trajectories by per-
forming steps a) to e) iteratively and uses the best ones in the robus-
tification step to train a policy. See section 2.2.1 for details.

algorithm repeats. The exploration phase makes use of a cell concept and trajectories, which
are described in detail in the paragraphs below.

In large environments, the number of states can become too high to keep track of effi-
ciently. To solve this, a state-to-cell mapping is used where similar states are grouped into
cells, and, instead of saving all states, only the best state for every cell is saved, i.e., a single cell
represents a collection of states. Two techniques for this cell mapping are presented in [6].
The first technique downscales the game image and maps all states with the same downscaled
game image to the same cell. The second technique makes use of domain knowledge and maps
all states with the same domain knowledge to the same cell. Using domain knowledge for the
cells is game-specific but shows to yield better scores [6].

As the algorithm explores the environment it keeps the path of cells it has moved through
in memory, which is referred to as the trajectory. As it reaches different cells it adds the
information of the trajectory to the cell if the current trajectory is better than the stored one
in the cell. Values being compared are, among other things, the score obtained so far and the
length of the trajectory, where shorter is better. In addition to this trajectory, a full trajectory
is also saved which contains not only the path of cells, but also every action taken, reward
received, and states observed during the entire trajectory.

When the exploration phase is done, the highest-scoring full trajectories are picked, and
the algorithm moves on to the robustification phase. To train a policy for the agent from

14

2.2 Go-Explore

these trajectories a technique called Learning from demonstration (LfD) is used. LfD uses
trajectories and tries to find a policy that approximately follows these trajectories and thereby
gives an agent with a good policy [14]. This entire process is possible by saving every action
taken, reward received, observation, and state for each step in the full trajectory so they can
be replayed as they were for the network in every detail.

This version is not being used in this thesis, but it is the foundation that policy-based
Go-Explore expands upon, which is described in the section below.

2.2.2 Policy-based Go-Explore
Instead of assuming that states are restorable, as in robustified Go-Explore in section 2.2.1,
a goal-conditioned policy can be trained to navigate back to a given cell [6]. The goal-
conditioned policy is implemented as a neural network, similar, but not identical, to the
one presented in figure B.1 in appendix B.1. This makes the returning part more expensive
since a policy must now be trained and used instead of simply restoring the simulator to the
state. However, the domain of problems applicable expands to tasks where restoring a cer-
tain state is impossible or misleading, such as when randomness makes it nearly impossible
to return to a specific state by stepping in the environment.

Policy-based Go-Explore as presented in [6] is implemented using domain knowledge as
the cell representation.

First Return
For policy-based Go-Explore, the algorithm is slightly different from the robustified version.
First, the agent attempts to return to a previously visited cell by using the policy learned so
far and navigating there while following a previously found trajectory instead of restoring to
the specific state. The goal cell is probabilistically chosen based on the weights of the cells,
where the weight of a cell approximates how well the cell and its surroundings are explored
and is calculated according to equation 2.3 where Csteps is the number of actions taken in the
cell.

weight =
1

1 + 0.5Csteps
(2.3)

The algorithm then extracts the trajectory from the chosen cell and attempts to follow
it. This is done by feeding the next cell in the trajectory to the goal-conditioned policy as
the goal which in turn should output actions that lead to the given cell, leading the agent
towards the return goal, cell by cell.

When following a trajectory, the agent gets a reward of 1 every time it successfully reaches
the next cell in the trajectory and an additional 2 for the final cell. In comparison, the agent
gets a reward equal to the score gained clipped to -2 to 2 from the environment. These are
the driving factors that make the agent learn to follow trajectories and what it wants to seek
out or avoid in the environment.

If it successfully reaches the cell chosen as the return target, the algorithm continues to
the exploration phase.

15

2. Background

Then Explore
In the exploration phase, the algorithm chooses one out of two exploration strategies: policy
exploration or random exploration, as introduced in section 2.1, determined by a predefined
probability. The agent then executes the selected exploration strategy for a set number of
steps or until the environment terminates, whichever happens first. The goal-conditioned
policy is trained during the exploration phase as well where the exploration target, which is
described more below, is set as the goal. Even if the actions taken during random exploration
are overwritten with a random one, the policy is then still trained as if it had chosen that
random action as output.

During either type of exploration, a cell category of "unknown neighboring cell", "neigh-
boring cell" or "random cell" is chosen based on a set of probabilities as seen below in table
2.1, as presented in [6]. "Unknown neighboring cell" includes any cells that are neighboring
the current cell concerning its x and y coordinates and does not already exist in the archive,
i.e., it has not been found yet. "Neighboring cell" includes any known or unknown cells that
are neighboring the current cell concerning its x and y coordinates. "Random cell" includes
any potential cell anywhere in the environment, including both known cells as well as states
not yet discovered.

Table 2.1: The probability distributions when choosing a category
for the exploration target during the exploration phase. See page 16
for details.

Choice Probability
Unknown neighboring cell 0.1
Neighboring cell 0.15
Random cell 0.75

From the randomly chosen category, a random cell is chosen as the exploration target
based on its weights the same way as a return target is chosen, by using equation 2.3. If
there are no valid cells to choose from in the chosen category, such as the current cell has no
unknown neighbors when "unknown neighboring cell" is chosen, the choice of category falls
back to the next in order of appearance in table 3.1 from top to bottom to guarantee that the
chosen category has at least one valid cell to choose as the exploration target.

The chosen exploration target is fed to the policy as it attempts to reach this cell. This
differs from the return phase where the next cell in the trajectory leading up to the target is
fed to the policy; during exploration, there are no sub-goals to follow to the final target. If the
agent reaches this exploration target before the end of the episode, another target is chosen
in the same way, repeating until the episode is terminated by the environment or after a set
number of steps. After the episode is complete, the environment resets to the starting state
and the algorithm selects a new return goal as before.

Policy exploration can improve exploration efficiency as it can learn how to overcome
obstacles when returning and use this experience when exploring as well. Hence it can make
it easier to get past an obstacle that is similar to one encountered before compared to only
taking random actions when trying to get past it every time. It has been shown that policy
exploration can explore better than random exploration in different environments, according
to previous experiments [6].

16

2.3 Procgen

The robustification step that comes after the exploration phase in robustified Go-Explore
is not needed in this version as the agent already learns a policy during the return and ex-
ploration steps. A similar technique named Self Imitation Learning (SIL) is however still
applied in parallel during training to enhance the learning phase. With SIL, a full trajectory,
as described in section 2.2.1, is chosen probabilistically from the archive just like in step (a)
in figure 2.1. The chosen trajectory is then replayed by the policy (without stepping in the
environment) to train on following it using SIL and in principle robustifying the trajectory.

With the policy-based version of Go-Explore, the agent can explore directly in a dynamic
context and potentially manage things not explored in the experiments of the article "First
return, then explore" [6], such as Atari-like games in dynamic environments or tasks. This
further expands the domain of applicable tasks for Go-Explore. There are however still lim-
itations to the algorithm that prevent this, some of which can be solved using the approach
presented in section 3.3. Expanding policy-based Go-Explore for dynamic contexts is sug-
gested for future research by Ecoffet et al. [6] and is therefore the foundation upon which
this thesis is built.

2.3 Procgen
In this thesis, a modified version of the Procgen environment is used. Procgen, which is de-
veloped by OpenAI[15], is an Atari-inspired game framework with procedurally generated
levels for 16 different games. The game levels are random, making memorization infeasible
as a solution. Instead, the agent is forced to learn the appropriate strategy associated with
the game in question. The framework is designed for training reinforcement learning agents
and is built upon OpenAI’s gym [16]. The high diversity of levels within the different games
maximizes the need for policy generalization. Fast evaluation of the game environments pro-
vides a possibility to train an agent with great speed, and with a tunable difficulty of the game
levels from easy to hard, the computational power required can be adapted to the available
resources.

Of the 16 games available in the Procgen suite, one is called "Maze" and is chosen as the
game to test Go-Explore on. In Maze, the agent acts the role of a mouse in a maze trying to
find its way to the cheese before the limit of 500 steps is reached. The game ends either when
the cheese is found, or the 500 steps are exhausted. See appendix A for images of the game.
The agent always starts at the bottom left corner of a new random maze when starting a new
game, but this is modified to a random starting position in the same maze in this thesis as
explained later in section 3.2.

2.4 Related Work
At the time of writing, we found no published work that expands directly upon policy-based
Go-Explore. Policy-based Go-Explore is first published in 2020 in "First return, then explore"
[6], this is not to be confused with "Go-Explore: a New Approach for Hard-Exploration
Problems" [5] from 2019 which only introduces robustified Go-Explore.

There are, however, some papers that criticize "First return, then explore" by Ecoffet et
al. J. Weng accuses "First return, then explore" of post-selection, training multiple networks

17

2. Background

and only presenting the best one [17], [18]. J. Weng also accuses "First return, then explore"
of lack of transparency [18].

H. Xu mentions the long training time and hardware requirements of Go-Explore and
criticizes that it cannot handle the game Pitfall without game-specific domain knowledge
[19]. The author also questions Go-Explore’s usability outside of deterministic environments,
something this thesis aims to explore if this can be remedied.

With these critiques in mind, Go-Explore is still deemed interesting enough to proceed
with as the foundation of this thesis.

Additionally, T. Zhang et al. solve the same problem that Go-Explore aims to solve using a
similar algorithm called BeBold [20]. BeBold aims to solve the same task by exploring beyond
the boundary of explored regions. The agent only receives rewards from the algorithm itself,
i.e., intrinsic rewards, when it pushes this boundary forward, hence motivating exploration.
This results in the explored boundary being pushed uniformly as opposed to Go-Explore.

But in initial tests for BeBold on Montezuma’s Revenge, the algorithm converges to a
score between 10.000 and 13.000 at 2e9 steps compared to Go-Explore with a score of ap-
proximately 20.000 to 40.000 and still increasing after 2e7 steps [6]. Note that these are only
initial results for BeBold but give an insight into the potential difference in performance
between the two algorithms. However, it should be noted that the paper is a preprint and
viewed with that in mind.

18

Chapter 3

Approach

In the following chapter, the environment with dynamic starting positions used for evalua-
tion is presented in section 3.1 and core problems that prevent Go-Explore from being used
with dynamic starting positions are addressed in section 3.2. Finally, our larger changes to
the code and our solutions for the problem addressed are presented in section 3.3, where
Dynamic cells and on the fly trajectories are explained.

3.1 Dynamic Task
The environment used to evaluate Go-Explore is a modified version of the Procgen game
Maze, described in section 2.3. The game logic is the same as described in section 2.3 where
the goal is for the agent to navigate through a maze and reach the cheese within 500 steps
and the game ends when either the cheese is found, or the 500 steps are exhausted. However,
after our alterations, instead of having a fixed starting position and different mazes, different
starting positions and a fixed maze is instead used. This results in a fixed environment, but
a dynamic task of finding the path to the cheese as it will be different in every attempt. This
makes returning to previously visited states possible, as is required by Go-Explore, but along
different paths. Three different mazes are used in this thesis and are illustrated in appendix
A.

3.2 Problems for Go-Explore
To train on the environment presented in section 3.1 there exists two major problems for Go-
Explore. The cell representation described in 2.2.1 has problems with the narrow corridors of
the environment, and the trajectories described in 2.2 only work when starting in the same
starting position. The problems are further described in sections 3.2.1 and 3.2.2, respectively.

19

3. Approach

3.2.1 Cell Representation
Go-Explore uses a system of cells, as described in section 2.2.1 where several similar states
map to a single cell by a cell mapping, reducing the amount of data needed to be stored. For
this report, we say that states belonging to a cell are similar if the agent can reach all states
within the cell without leaving said cell.

Two techniques to create a cell mapping are proposed in [6]: downsampling images or
using domain knowledge, as mentioned in section 2.2. Policy-based Go-Explore is created by
Ecoffet et al. only using the domain knowledge solution, where the relevant domain knowl-
edge present for the maze environment is only the discretized x and y position of the agent.
In the original code, the discretized position is found by putting a grid on the screen and
letting all states that are in the same box in this grid belong to the same cell as can be seen
in figure 3.1a.

Problems arise when dividing the screen into a grid, as selecting the size of the cells is
problematic; choosing too small cells, going from one cell to the next in a trajectory is now
trivial and the number of cells would be close to the number of states, but too large causes
the same cell to represent vastly different states in the environment as can be seen in figure
3.1. If the mouse would be in the bottom left, bottom right, or top of the green cell centered
in figure 3.1b, the states would be mapped to the same cell even though neither is similar as
seen in figure 3.1a. This contradicts the assumption of states in the same cell being similar
according to the definition presented earlier in this section. A solution to this problem is
introduced in section 3.3.1.

(a) (b)

Figure 3.1: Example of a problematic cell representation when using
a too wide grid for grid-based cells. See section 3.2.1 for details.

3.2.2 Trajectories
A further limitation of Go-Explore that must be solved is the requirement of a fixed starting
position that comes with the deterministic nature of the Atari suite ALE always starting in
the same position. As a result, Go-Explore is written in a way that assumes that the starting

20

3.2 Problems for Go-Explore

position for the agent is always the same for every episode which causes every trajectory to
begin from the same position.

As an example, given the initial starting position ’A’, if the agent later starts at point
’B’, the instructions will be faulty since they assume the agent is at position ’A’ which makes
the trajectory wrong, misleading, or in some cases even impossible to follow to get to the
destination. An example of this can be seen in figure 3.2.

(a) (b)

Figure 3.2: The limitations of the original trajectories. If the agent
starts as in figure 3.2a the green trajectory helps reach the goal, but
if it starts as in figure 3.2b, the trajectory does not help the agent to
reach the goal. See section 3.2.2 for details.

Simply training the agent on multiple different starting locations in a series does not
show promising results as the agent seems to forget the previous starting locations as they
change.

Training the agent on random starting positions is not feasible either, because when the
agent is training it will find a path to the goal cell of the maze, i.e., the cell that contains the
cheese, from one position and save this path as the trajectory leading there. Then, once it
finds a path from another location, the previous path will be overwritten if the new location
is initially closer than the previous and the resulting trajectory is, in turn, shorter, just like
in figure 3.2b. As the only state with reward from the environment in the maze is the goal
state at the cheese, the only metric for the trajectories that matters is their length when
comparing against each other. This causes the trajectories leading to any cell to constantly
switch between vastly different trajectories until they converge to trajectories that through
random chance start at the position exactly next to the cell they go to, since no other path will
ever be able to be shorter than this. This will effectively render the trajectories useless and in
many cases even cause them to work against the agent rather than assisting when providing
a path to follow in the wrong direction relative to the agent’s position. One is thus forced to
use a fixed starting position for Go-Explore trajectories.

To fix this limitation, the concept of On The Fly (OTF) trajectories is created as described
in section 3.3.2.

21

3. Approach

3.3 Adaptations
In response to the problems formulated in section 3.2, we introduce the concepts of Dynamic
cells and on the fly trajectories (OTF-trajectories) as described in sections 3.3.1 and 3.3.2.
Additionally, the code of policy-based Go-Explore is further adapted to fit the environment
of Procgen and to be able to handle these two new additions to the code as described in
section 3.3.3.

The version of the algorithm that uses Dynamic cells and OTF-trajectories is referred to
as adapted Go-Explore in the rest of this report, while the version of the algorithm that does
not make use of them is referred to as the original Go-Explore.

3.3.1 Dynamic Cells
An approach to solving the cell-size problem presented in section 3.2.1 is to first start with
a small grid that only allows a single state in each square of the grid. Then, for every state,
find which states are reachable from that state and vice versa with no intermediate states. If
one state can directly reach another, they are said to be neighbors in that direction. After
every neighbor has been found, neighboring state are then merged to form cells given that
the neighboring status goes both ways, i.e. (A → B) as well as (B → A). Note that in the
case of the game Maze, neighbor status in one direction is assumed to imply neighbor status
in the other direction as well, but this is not necessarily true for other environments. Cells
created this way are called "Dynamic cells" in this report and when states have been mapped
to Dynamic cells the first time, the same strategy can be applied again where neighboring
Dynamic cells now merge with other Dynamic cells. The process can be repeated until the
cells are of a desired maximum size. This cell representation allows larger cells where all states
within the same cell are similar and close to each other.

An example of Dynamic cells can be seen in figure 3.3 which is compared to the original
problematic cell representation in figure 3.1. In figure 3.3a, the small squares represent the
states the agent can be in, and all squares that share color and are connected represent a single
Dynamic cell. In this thesis, the max size of the Dynamic cells is set to 10, meaning a single
Dynamic cell may not be larger than a total of 10 states merged. The states belonging to
the problematic cell highlighted in figure 3.1b belong, with Dynamic cells, to three different
cells, as seen in figure 3.3b where the corresponding area is marked with a black square. This
is a better cell division since the states belonging to the same cell in figure 3.1 are not similar
according to the definition given in section 3.2.1, but the Dynamic cells fulfill this criterion.

22

3.3 Adaptations

(a) (b)

Figure 3.3: An example of cells in the same maze as in figure 3.1 when
using Dynamic cells instead. See section 3.3.1 for details.

During the cell selection process in the exploration phase, the cell categories presented in
table 2.1 and discussed in its corresponding section 2.2.2 are slightly changed. This is because
it is no longer possible to find a neighbor to a dynamic cell by simply adding ±1 to the
coordinates since they have irregular shapes, as can be seen in figure 3.3. This prevents us
from selecting unknown neighboring states in an efficient way.

Instead, during either type of exploration, a cell category of "neighboring cell", "random
known cell", "random cell" or "goal cell" is chosen based on a set of probabilities as seen below
in table 3.1. "Neighboring cell" includes any known neighbor to the current cell. "Random
known cell" includes any cell that has been saved in the archive. "Random cell" includes any
potential cell, including both known cells and states not yet discovered. Finally, the "Goal
cell" category includes only the cell which contains the goal of the environment.

Table 3.1: The probability distributions when choosing a category
for the exploration target during the exploration phase. See section
3.3.1 for details.

Choice Probability
Neighboring cell 0.5
Random known cell 0.2
Random cell 0.2
Goal cell 0.1

The probabilities in table 3.1 above are changed to these values and categories to em-
phasize on learning how to navigate between the cells to compensate for SIL not working,
as is explained later in section 3.3.2, whilst still exploring for new paths and states in the
environment.

If there are no valid cells to choose from in the chosen category the choice of category
falls back to "random cell" to guarantee that there is at least one valid cell to choose as the
exploration target.

23

3. Approach

This can happen if the current cell does not have any known neighbors when the "neigh-
boring cell" category is chosen, or the goal cell of the environment has not been found when
the "goal cell" category is chosen. It is worth noting that for the Maze environment, "random
cell" is chosen among all states in the maze that is not a wall segment. This means that the
cell/state chosen will always be valid. This is done by looking at the color coding for wall
segments in the frames from the observation of the environment.

3.3.2 On the Fly Trajectories
Policy-based Go-Explore creates trajectories to follow when returning to an interesting state
and when performing SIL training, as explained in section 2.2.2. A trajectory is a sequence
of cells to traverse through to get to the chosen target. For Go-Explore, the starting cell
is always assumed to be the same cell across every trajectory, i.e., the cell containing the
starting state for the environment. Trajectories are compared against each other regarding,
amongst many other things, the length of the trajectory, to only save the best trajectories
found. These trajectories are then used to navigate with, and as explained in section 2.2.1, the
corresponding full trajectories are used to perform SIL with. But as this does not work when
different starting locations are being used, two options are identified:

(a) No longer rely on saving the trajectories and instead create new ones on the fly.

(b) Take both the end cell as well as the starting cell into account when selecting a trajectory
to be able to differentiate between different starting positions.

Of these two, option (a) is chosen since it is deemed easier to implement given the state
of the code and as option (b) would increase the number of trajectories saved from N to N2,
which we want to avoid as it would be very memory inefficient.

Instead of saving trajectories, neighbors to cells are saved when moving from one cell
to another. This enables a breadth-first search across the neighbors of the cells saved in the
archive to find a trajectory of cells on the fly to a specific target when starting a return se-
quence. This results in On The Fly (OTF) trajectories that can replace the original trajectories
of Go-Explore without the limitation of requiring a fixed starting position.

A problem can arise where there is no path of connected neighboring cells to the chosen
target, such that the breadth-first is unable to find a path. This is a problem that only occurs
with dynamic starting positions. To handle this case, a new target among the cells found in
the search is probabilistically chosen instead as the new return target and an OTF-trajectory
to this cell is created.

However, OTF-trajectories are not compatible with SIL, as explained in 2.2.2, at the time
of writing since SIL requires well-performing full trajectories, as explained in section 2.2.1,
to be saved for it to replay for the network to train on, and OTF-trajectories do not save any
trajectories. If trajectories are saved, an evaluation metric is needed to evaluate the trajectory
such that only the best performing trajectories are saved as is done in the original Go-Explore.
This could allow SIL to function together with OTF-trajectories and implementing it would
be interesting research for future work.

24

3.3 Adaptations

3.3.3 Other Structural Changes to Go-Explore
To have policy-based Go-Explore work with the environment of Procgen, some alterations
are made. A cell representation using domain knowledge that matches the structure of Proc-
gen is thus created. Some adaptations are required to the structure of the program that uses
this cell representation to have the program match the new environment, such as frame size
dimensions and other parameters. This results in, among other things, the network as de-
scribed in more detail in appendix B.1.

The rewards given to the policy during training presented in section 2.2.2 are also modi-
fied since reaching the goal of the maze gives a high game reward but also ends the episode.
To make the agent keener on returning rather than just greedily reaching the cheese, the re-
ward for getting to the next goal in the trajectory is changed to 3 from the previous 1 and the
reward for reaching the final goal in the trajectory is increased to 6 from 3. The reward from
the game when reaching the cheese is still clipped to 2.

To create the Dynamic cells of the desired size quickly, if no new cell is found for a fixed
amount of time during the first million frames that the algorithm discovers, the program
starts to merge the current cells into larger Dynamic cells. In addition to this, the program
performs a set number of merges equally distributed across the planned training time, to give
cells found after the first million frames a chance to be merged into other cells. These merges
only occur during training.

Finally, to have OTF-trajectories work with the program, extensive alterations are made
to the program to isolate the old version of the trajectories, as well as the SIL, from the
algorithm. Then, the old trajectories and the SIL can essentially be turned on and off as
wished and enable the use of OTF-trajectories.

25

3. Approach

26

Chapter 4

Evaluation and Results

This chapter describes the results of this thesis. It starts with a description of how the evalu-
ations are performed, together with the parameter setups and metrics used during testing, in
section 4.1. The experiments and corresponding results of the four tests performed are then
presented in section 4.2.

4.1 Evaluation
Testing is performed on the modified maze environment presented in section 3.1, where three
different mazes, illustrated in appendix A, are used. When training the models, the starting
position is random each episode unless otherwise stated and the agent selects cells to return
to with the weight equation (equation 2.3) presented in section 2.2.2. The number of frames
the models train on depends on the size of the maze, where models that train on the small,
medium and large maze trains for 1e7, 2e7, and 2.5e7 frames, respectively.

When testing the trained models, the policy is frozen, meaning that it does not try to
improve. The agent starts at a different starting position in every episode and selects the
cell with the highest reward as the return target, i.e., the cheese. The starting positions are
derived from a random function with the same seed in every run so that every test is done
on the same sequence of random starting positions. The tests are played for 500 episodes for
every setup.

Four measurements are used to evaluate the agents, two are measured during training and
two are measured during testing. During training of the agents, the two measurements used
are return success: the fraction of successful returns to a target cell, and exploration success:
the fraction of successful exploration i.e., how often it reaches the exploration target in the
exploration phase. During testing of the agents, the two measurements used are success rate:
the fraction of episodes where the goal of the maze is reached, and mean length: the mean
length of all episodes where an episode plays for a maximum of 500 steps, as explained in

27

4. Results

section 3.1. The three mazes that are used in training and testing are visualized in appendix
A, figure A.1 and are referred to as the small, medium, and large maze.

4.1.1 Parameter Setups
To answer the research questions as well as the main question proposed in section 1.2, differ-
ent setups of hyperparameters are used during training as listed below. Note that SIL is not
present in any setup except for the "Original Go-Explore" because of the reasons explained
in section 3.3.2.

• Random Exploration: This setup is trained on random starting positions using only
random exploration during the exploration phase. It uses Dynamic cells with max size
of 10 and OTF-trajectories.

• Policy Exploration: This setup is trained on random starting positions using only pol-
icy exploration during the exploration phase. It uses Dynamic cells with max size of 10
and OTF-trajectories.

• Mixed Exploration: This setup is trained on random starting positions using a proba-
bility distribution of 2/3 for policy exploration and 1/3 for random exploration during
the exploration phase. It uses Dynamic cells with max size of 10 and OTF-trajectories.

• Original Go-Explore: This setup is trained on fixed starting positions without ma-
jor changes to the original code from "First return, then explore" [6], with no OTF-
trajectories or Dynamic cells, and is using a probability distribution of 2/3 for policy
exploration and 1/3 for random exploration during the exploration phase.

• Control: This is an untrained agent that takes uniformly distributed random actions.

4.1.2 Experiments
Five different experiments are performed to answer the research questions presented in sec-
tion 1.2. The measurements used in the evaluation are return success, exploration success,
success rate and mean length, which are all explained in section 4.1.

The first experiment examines the variance of the results acquired. This is performed to
check the legitimacy of the results found in this thesis and it is done by training the same
setup, policy exploration, three times on the small maze and examining the standard devi-
ation of the return success, success rate and mean length for the three runs. The results are
presented in section 4.2.1.

The second experiment examines what effect the choice of exploration strategy has on
training time and performance. This is to find which type of exploration to use for the up-
coming experiments as well as answer the third research question, "How do different explo-
ration strategies affect training time and performance?", presented in section 1.2. To do this,
three different setups with different exploration strategies: policy, random, and mixed ex-
ploration as listed in section 4.1.1, are trained on the small maze, and tested together with a
control setup. The training is evaluated based on the return success and the testing is eval-
uated based on the success rate and mean length metrics. The results can be seen in section
4.2.2

28

4.2 Results

The third experiment compares the training time and performance when training on
fixed and dynamic starting positions. This experiment is performed to provide insight to the
importance of the training type used, fixed or dynamic position, when the goal is to solve a
dynamic task. To do this, two instances of the policy exploration setup are trained on the
small maze, one where the starting position is fixed and one where it varies. The training time
and test performance is evaluated with the same metrics as the second experiment with the
addition of exploration success also being measured during training. The results are shown
in section 4.2.3.

The fourth experiment compares the original code of policy-based Go-Explore with no
major changes against the adapted version created by us with the new features Dynamic cells
and OTF-trajectories. This is done to see how the adaptations to the code have changed
the performance of the algorithm when dynamic starting positions are used during testing
and provide answers to research questions one and four, "How do Go-Explore "off-the-shelf"
and our adaption of Go-Explore perform against each other in an environment with dynamic
starting positions?" and "How can a good representation of the environment be defined when
a predefined representation does not fit?", presented in section 1.2. To do this, one instance of
the original version of Go-Explore and one of the adapted version of Go-Explore are trained
on the medium maze. Here, the original Go-Explore is trained on a fixed starting position
as is required, as explained in section 3.3, and the adapted version is trained on dynamic
starting positions. The same metrics are used as in the second experiment: return success is
used to evaluate the training and success rate and mean length metrics are used to evaluate
the testing. These results are presented in section 4.2.4.

The fifth and final experiment looks at how the training time of the adapted version of
Go-Explore scales against the size of the environment. This is done as a check to see how the
resulting program scales against larger tasks and answer the second research question, "How
do training time and performance scale against the size of the environment?", presented in
section 1.2. To do this, the same setup of Policy Exploration is trained on the small, medium,
and large maze, respectively. The training time is evaluated based on the return success and
exploration success during training and the performance is tested, together with a control,
on the success rate during testing. Metrics used for evaluating the training are return success
and exploration success, and the metric used for evaluating the testing is the success rate,
but the mean length metric is not used as it is not easily comparable between the runs when
the environments are of different sizes. The results from this final experiment can be seen in
section 4.2.5.

4.2 Results
The results of the experiments described in section 4.1.2 are presented in this section. The
return success and exploration success metrics are presented as graphs to show how they vary
during training while the success rate and mean episode length metrics are presented in tables
as it is only the final value of the test phase that is of interest.

29

4. Results

4.2.1 Standard Deviation
To check the reliability of the results in this thesis, a stability experiment is performed by
training three agents under the same conditions. The mean and standard deviation from
these three is then calculated and presented in table 4.1 and plotted in figure 4.1.

Deviations of the data during training across all setups and across every experiment are
assumed to follow a similar pattern as observed in figure 4.1. Each of the three agents performs
very similarly up to 2e6 frames from where two of the three agents approach 1.0 in return
success. The third stops improving at 0.8 in return success after 2e6 frames up until the point
of 7e6 frames where it approaches 1.0 like the others. The data in said figure is presented to
give an estimate of the spread of the data in the experiments throughout this thesis to indicate
how accurate the results might be.

Figure 4.1: The standard deviation of the return success. Moving
average (200 frames) of return success over training time measured
in frames for three different agents trained using the Policy Explo-
ration setup. The shaded area contains one standard deviation from
the mean. The dotted lines are the three training sequences, and the
solid line is their mean. See section 4.2.1 for details.

30

4.2 Results

Table 4.1: Standard deviation of the test metrics. Mean and Stan-
dard Deviation of the success rate and mean length for three runs of
Policy Exploration on the small maze. See section 4.2.1 for details.

Measurement Mean Standard Deviation
Success Rate 0.985 0.0462
Mean Length 28.0 5.46

4.2.2 Exploration Strategies
To examine how different exploration strategies affect performance, Random Exploration,
Policy Exploration, and Mixed Exploration are tested on the small maze. In addition, a con-
trol setup is also tested, as this is the "base case" for the maze, i.e., how well an agent can solve
the maze through only random actions. The return success for the training can be seen in fig-
ure 4.2 which shows similar training performance for all setups. The test scores for all trained
setups are similar, with success rates ranging from 0.980 to 0.988 and mean length from 27.2
to 36.7, see table 4.2 for details. The control shows worse performance with a success rate of
0.250 and a mean length of 400.

Figure 4.2: Return success for different exploration strategies. Mov-
ing average (200 frames) of return success over training time mea-
sured in frames for the small maze’s Policy Exploration, Random
Exploration, and Mixed Exploration. See section 4.2.2 for details.

31

4. Results

Table 4.2: Test results for different exploration strategies. The suc-
cess rate and mean length for different exploration distributions on
the small maze. See section 4.2.2 for details.

Setup Success Rate Mean Length

Policy Exploration 0.988 30.0
Random Exploration 0.984 27.2
Mixed Exploration 0.980 36.7
Control 0.250 400

32

4.2 Results

4.2.3 Starting Positions
To test how training on a dynamic starting position and training on a fixed starting position
compares against each other, two setups of Policy Explorations are trained on the small maze:
one with a fixed starting position and one with dynamic starting positions. During training,
Fixed Position scores a higher return success faster than Dynamic Position but a lower ex-
ploration success as seen in figures 4.3 and 4.4, respectively. During testing, however, Fixed
Position shows a substantially worse success rate and mean length than Dynamic Position,
but better than the control run, as seen in table 4.3.

Fixed Position reaches 1.0 in return success much faster than Dynamic Position. However,
this agent only needs to learn to navigate from one position to every other position in the
maze (N paths), while training with a dynamic position the agent must learn how to navigate
from every position in the maze to every other position (N2 paths). Table 4.3 shows that the
simpler problem Fixed Position faces does not teach the agent enough to handle the problem
with random starting positions during testing.

Figure 4.3: Return success for Fixed and Dynamic starting positions.
Moving average (200 frames) of return success over training time
measured in frames for Policy Exploration trained with either fixed
or dynamic position. See section 4.2.3 for details.

33

4. Results

Figure 4.4: Exploration success for Fixed and Dynamic starting posi-
tions. Moving average (200 frames) of exploration success over train-
ing time measured in frames for Policy Exploration trained with ei-
ther fixed or dynamic position. See section 4.2.3 for details.

Table 4.3: Test results for Fixed and Dynamic starting positions. The
success rate and mean length for Policy Exploration trained with
fixed and dynamic starting positions on the small maze. See section
4.2.3 for details.

Setup Success Rate Mean Length

Dynamic Position 0.988 30.0
Fixed Position 0.370 354
Control 0.250 400

4.2.4 Original vs Adapted Go-Explore
To see how the changes presented in this paper compare to the original version, two setups are
trained: Original Go-Explore and Policy Exploration, where Policy Exploration implements
the adaptations presented in section 3.3. The Go-Explore setup has small cells to guarantee
that all cells are similar, and the original trajectories are used instead of OTF-trajectories.
This forces the setup to be trained on a fixed starting position but allows the usage of SIL.

34

4.2 Results

During training, the return success of Original Go-Explore is similar to Policy Exploration
but has a lower return success rate at a higher number of frames, as seen in figure 4.5.

When testing, Policy Exploration outperforms Original Go-Explore with a success rate of
0.982 and a mean length of 36.9 compared to Original Go-Explore’s success rate of 0.134 and
mean length of 428. This falls in line with the results presented in section 4.2.4 as Original
Go-Explore is trained on a fixed starting position as mentioned in section 4.1.

The dips in the return success for Original Go-Explore are hypothesized to be when the
algorithm explores down a corridor for a while, but then switches to another corridor; switch-
ing to a not-as-explored part of the maze which causes the success rate to dip. Policy Explo-
ration on the other hand is training on random starting positions and is constantly presented
with new corridors, giving it a more even increase in success rate.

A control run is again tested, and it performs worse than both the other setups with
success rate of 0.090 and mean length of 475, see table 4.4 for the full results.

Figure 4.5: Return success for the original and adapted version of
Go-Explore. Moving average (200 frames) of return success over
training time measured in frames for Policy Exploration and Origi-
nal Go-Explore on the medium maze. See section 4.2.4 for details.

35

4. Results

Table 4.4: Test results for the original and adapted version of Go-
Explore. The results on the medium maze regarding the success and
the length mean of the episodes for Original Go-Explore and Policy
Exploration on the medium maze. See section 4.2.4 for details.

Setup Success Rate Mean Length

Policy Exploration 0.982 36.9
Original Go-Explore 0.134 428
Control 0.090 475

4.2.5 Scaling with the Environment
To examine how Go-Explore performs with different environment sizes, the Policy Explo-
ration setup is trained on a small, medium, and large maze. The number of frames computed
during training for different environments is decided depending on the size of the environ-
ments and how the training graphs look but is also held back by the time available for this
thesis. The setup trained for 1e7 frames for the small maze, 2e7 for the medium, and 2.5e7 for
the large. The return success difference between the small and medium maze is visible, but
very small between the medium and large maze, see figure 4.6a. The exploration success is
highest for the small maze and has a similar difference between the small and medium maze
as between the medium and large mazes, see figure4.6b.

During the testing, the setup scores a high value in the success rate for all the mazes with
0.988, 0.982, and 0.940 for the small, medium, and large mazes, respectively, much higher
than the corresponding control runs. See table 4.5 for the full results.

(a) (b)

Figure 4.6: Return and exploration success for different environ-
ment sizes. Moving average (200 frames) of return success in figure
4.6a and exploration success in figure 4.6b over training time mea-
sured in frames for Policy exploration on a small, medium, and large
maze. See section 4.2.5 for details.

36

4.2 Results

Table 4.5: Test results for different environment sizes. The success
rate for reaching the goal of the maze for Policy Exploration setup
and the control setup, on the small, medium, and large maze. See
section 4.2.5 for details.

Setup Success Rate

Small maze 0.988
Control small maze 0.250
Medium maze 0.982
Control medium maze 0.090
Large maze 0.940
Control Large maze 0.092

37

4. Results

38

Chapter 5

Discussion

The following sections discuss and analyze the results from the experiments presented in
chapter 4, where each section corresponds to the experiment with the same name.

5.1 Standard Deviation
From the results shown in figure 4.1 and table 4.1 in section 4.2.1, the standard deviation
of the return success is moderate in the middle section of the training but otherwise small
and the standard deviation of the success rate and mean length metrics are small. This gives
an indication of how much the results can vary between individual runs. By knowing this
approximated variation of the results, it is possible to give a fairer analysis of the results
during the following sections.

All other evaluations are assumed to have a somewhat similar variance in the results if
tested multiple times as the results in section 4.2.1.

5.2 Exploration Strategies
When comparing different exploration strategies; Policy Exploration, Mixed Exploration,
and Random Exploration all perform similarly in the tests with only minor differences in the
success rate and mean length metrics. Policy Exploration reaches the highest success rate of
0.988, while Random Exploration and Mixed Exploration are close to the same results with
0.984 and 0.980 in success rate. All these setups score substantially higher than the control
run that has a much lower success rate of 0.250, as seen in table 4.2.

When training with Random Exploration, the agent manages to solve the maze with fewer
steps, on average 27.23 steps per attempt, compared to Policy Exploration which need 30.0
steps on average during the evaluation. This means that even though training with Policy
Exploration gives a slightly higher success rate, training with Random Exploration makes

39

5. Discussion

the agent solve the maze slightly faster. These are only minor differences and fall within the
approximated standard deviation according to table 4.1.

From the training graphs in figure 4.2, small differences can be seen, such as Policy and
Mixed Exploration getting close to 1.0 in success rate with fewer frames compared to Ran-
dom Exploration. This points to Policy and Mixed Exploration learning faster than Random
Exploration, but these differences are minor, and no certain conclusions can be drawn from
them as it might be by chance. Especially when taking the approximated standard devia-
tion seen in figure 4.1 into account. This indicates that the choice of exploration strategy
does not seem to significantly affect the performance in the small maze environment. But it
has been shown in previous tests [6] that policy exploration can explore better than random
exploration, as described in section 2.2.2.

One possible reason why Policy Exploration or Mixed Exploration does not outperform
Random Exploration in this experiment might be that the maze environment does not have
any recurring obstacles the agent must learn to overcome, such as enemies moving around in
the environment or hazards one must navigate around. In such scenarios, Policy Exploration
should, in speculation, outperform Random Exploration since it can learn how to overcome
the obstacle and then apply the learned solution, instead of getting past it by taking random
steps every time. But as the maze environment does not have these obstacles, random actions
are sufficient to explore the entire environment while it would probably be less efficient in
games like Montezuma’s Revenge.

5.3 Starting Positions
Two different types of starting positions are examined in the "Starting Positions" experiment,
where the Policy Exploration setup is trained in two ways. One agent is trained using a
fixed starting position across every episode, while the other is trained with a random starting
position every episode. The result shows quite different results during training as opposed to
testing. Fixed Position approaches 1.0 in return success much faster than Dynamic Position,
as can be seen in figure 4.3. It takes Fixed Position about 1e6 frames compared to 5e6 to
come close to 1.0 return success. During testing, however, Fixed Position has a success rate
of 0.370, Dynamic Position 0.988, and control 0.250, as seen in table 4.3. This indicates that
for an agent to be able to handle random starting positions it must be trained from different
starting positions, as expected.

A possible reason why Policy Exploration trained on a fixed position performs worse
than when trained on dynamic positions is that it has learned to get to all cells/states in the
maze from the starting position reliably, as seen in the return success in figure 4.3, but not
from the other positions as evident from the test results in table 4.3. Then during the testing
when the agent starts at different starting positions, the success rate seems to depend on
where in the maze the agent starts. If the agent starts close enough to the goal of the maze
so that random steps can take it there, or if it starts somewhere along the path between the
starting position used in training and the goal, videos observed during testing suggest that it
has a better chance of succeeding. Whenever it does not start close to the trained position,
however, the agent seems to end up getting stuck or completely lost which causes the success
rate during testing to become very low in comparison to the same setup trained on random
starting positions.

40

5.4 Original vs Adapted Go-Explore

As seen in figure 4.3, Fixed Position gets a high return rate very quickly. This is most
likely because it is an easier problem to return to cells from one starting position compared
to returning to cells from multiple starting positions; every new starting position puts the
agent in a state where it must learn a path anew. In theory, an agent trained on a fixed
position should be able to learn to navigate the entire maze from every direction since it
returns everywhere in the maze and then explores everywhere. This part, however, is a much
harder problem for the agent to solve. This is not reflected by the return success graph but
instead in the exploration success graph as seen in figure 4.4, where the exploration success
is higher for the setup using random starting positions. This can be explained through the
return phase in which the network is being fed sub-goals; a cell-by-cell trajectory towards
the return target. During exploration, however, it is only being fed the final target with no
cell-by-cell guidance as explained in section Then Explore on page 16.

The reason for this difference is that you do not want to guide the agent towards the
exploration target along a known path, the purpose of the exploration is to find paths and
states we do not already know about. Then when starting at random positions and returning
anywhere in the maze, the agent will get a guiding trajectory to the target during the return
phase from every direction, making it easier to learn paths in both directions. When starting
at a fixed location, however, the agent will only get the cell-by-cell guidance on the path from
one direction to a location, but not the other. It will have to find the other direction without
guidance in the exploration phase, making it a much harder task. This can explain why the
evaluation of Fixed Position is much lower compared to Dynamic Position during testing in
table 4.3 even though they seem equally good in their return success during training in figure
4.3.

5.4 Original vs Adapted Go-Explore
In the "Original vs Adapted Go-Explore" experiment, a 0.982 success rate is achieved using
dynamic cells and OTF-trajectories for the Policy Exploration setup compared to Original
Go-Explore which got a 0.134 success rate, as seen in table 4.4. As expected, it is in concor-
dance with the results from the experiment "Different Starting Position" 4.2.3 as Original
Go-Explore requires a fixed starting position during training. The results show that dynamic
cells and OTF-trajectories work well in environments with dynamic starting positions and
is a viable solution when a cell representation is difficult to define statically. The size of a
Dynamic cell is in this thesis fixed to a max size of 10 states, as is visualized and explained in
the example with figure 3.3 in section 3.3.1. This is to guarantee that a Dynamic cell would
not become too large as this would reduce the homogeneity within the cells, even if they still
would fulfill the definition of "similar" presented earlier in section 3.2.1.

Finding the right size of the cells can be crucial though; small cells imply more memory
usage, longer trajectories, and more precise return instructions which can lead to a general
policy not being learned. However, with too large cells the trajectories give very little help
and traversing one cell to the next becomes a sparse problem in itself which is difficult to
teach an agent to reliably solve. As such, investigating Dynamic cells without a fixed max
size could be of interest in future research. The merging criteria could contain something on
how well the agent can traverse the cells and merge two neighboring cells when both are easy
for the agent to navigate within and between. This would reduce the difficulty spike from

41

5. Discussion

the sparse reward problem that large cells would otherwise present while also reducing the
memory usage and trajectory lengths by reducing the number of cells.

Further, when the merging should occur might be important to specify to maximize per-
formance. Here, the results show that merging after a certain number of frames or iterations
works fine in an environment like Maze where all states are discovered quickly. However,
in an environment where new states are continuously discovered, even after a longer period,
merging may need to be performed more adaptively when new states are found rather than
at fixed intervals.

5.5 Scaling with the Environment
For the three different mazes, the results of the Policy Exploration setup can be seen in table
4.5, where the success rate for the small, medium, and large mazes are 0.988, 0.982, and
0.940, respectively. The results point towards the algorithm being able to reasonably scale
to larger tasks given enough time to train. From graph 4.6a, it is seen that the small maze’s
return success seems to steadily increase until it reaches near a 1.0 return success, at about
5e6 computed frames. The medium and large maze, however, both also increase linearly for
a certain number of frames and then stop improving after reaching roughly 0.8 in return
success. For the medium maze this happens at around 1e7 frames and for the large a little
later, at about 1.2e7 frames.

A possible explanation for them both not reaching 1.0 can be that they learn to return
to most of the cells, but for some cells that are hard to return to, the agent figures it receives
a higher mean reward if it goes to the goal of the maze which it almost always succeeds in,
rather than trying and possibly failing to get to the return target even though it receives a
higher reward from it. Although finding the goal of the maze is not bad, ignoring the return
target is not optimal, as a robust goal-conditioned policy is wanted. An agent that can return
to every cell and find the target reliably is better than an agent that can only return to the
goal reliably. For example, if the goal of the maze switched location, the agent that can return
to every cell can handle this by simply changing the cell to return to, while an agent that is
only good at returning to the previous goal location needs to be trained anew.

There are some ways to improve the chances of learning a more robust policy and avoid
this problem, such as lowering the reward of the goal of the maze compared to the rewards
for reaching the next cell in the trajectory or moving the goal location dynamically, but these
fall outside of the scope of this thesis. It is also possible that, given more time, the models will
eventually learn to return to every cell and gain a near 1.0 return success, as can be observed
occurring for Random Exploration in figure 4.2 after 6e6 frames. Letting the agent train until
it might reach this point is however too resource intensive for this thesis.

Interestingly, as seen in figure 4.6a, the return success for the medium and large mazes
are very similar throughout training even though the large maze has more than 2.0 times the
medium maze’s states with 337 states as seen in figure A.1c in appendix, compared to 161
states as seen in figure A.1b. The difference in return success between the medium and small
maze through training is however clearly visible even though the medium maze is less than
1.7 times larger with 161 states compared to 97 states as seen in figure A.1a.

This pattern can also be observed in their exploration success in figure 4.6b where it is
not as apparent, which can be explained by the exploration becoming harder the larger the

42

5.5 Scaling with the Environment

environment. Since the larger the environment, the longer the agent will potentially have
to navigate without the cell-by-cell guidance during the exploration phase, as discussed in
section 5.3.

The return and exploration success patterns discussed above might indicate that the
training time, depending on environment size, could have a logarithmic or similar slow in-
crease between the different maze sizes. This shows promising scalability for the algorithm;
however, more tests are needed to confirm this.

As further speculation, another explanation for medium and large being vastly different
from the small maze in figure 4.6a is that Policy Exploration on the small maze handles every
cell as a special case and does not learn a broader skill. For the medium and large mazes with
more cells, the agent instead learns a more generic skill that can be applied to most cells;
this is possibly a more difficult feat, which would explain the uneven differences between the
different maze sizes. This is, however, nothing that can be confirmed with only three data
points.

43

5. Discussion

44

Chapter 6

Outlooks and Conclusions

This final chapter presents the outlooks for this thesis in section 6.1 and then wraps it together
with a conclusion in section 6.2.

6.1 Outlooks
The adapted algorithm in this thesis is tested on relatively small environments. Testing it on a
larger, or even "endless", environment with dynamic starting positions is an interesting future
work, as this would check how it performs on a more complex dynamic task where efficient
exploration is important. For larger environments, however, SIL might be needed. It should
be possible to implement it together with OTF-trajectories given a function to compare the
performance of trajectories with different starting positions against one another. Addition-
ally, the hypothesis of policy exploration being more useful than random exploration in larger
and more complex environments can be examined.

Another interesting area to examine is how the algorithm performs when introducing
more dynamic elements, e.g., moving goals or other entities moving around in the environ-
ment.

Finally, testing the adapted Go-Explore in a robot simulator would also be an interesting
area for future work. The adapted version shows promising results with dynamic starting
positions in the maze game, which indicates that it may work well for a robot for a similar
dynamic task, but this needs to be examined further to be confirmed.

6.2 Conclusion
In a maze environment with dynamic starting positions, the adaptations "Dynamic cells"
and "OTF-trajectories" to the Go-Explore algorithm that we introduce in this thesis makes
it perform significantly better than the original version with a success rate of 0.982 for the

45

6. Outlooks and Conclusions

adapted version of Go-Explore compared to 0.134 for the original version of Go-Explore.
These additions to Go-Explore enhance its ability to work with dynamic starting positions
according to the results.

The training time and performance of the adapted Go-Explore seem to scale in one of
two ways; either the training time scales logarithmically or similar to the size of the maze
environment, or the time scaling is even lower, but more data is needed to confirm either
hypothesis.

When training on the small maze environment using different distributions of explo-
ration strategies, close to no difference between the different setups could be seen, especially
when taking the standard deviation observed for one of the setups into account. In more
complex environments containing reoccurring obstacles, however, policy exploration can be
more effective according to previous studies [6].

Finally, for an environment where a cell representation of a predefined size can be ei-
ther misleading or inefficient, dynamic cells have shown to work well together with OTF-
trajectories, with a test score more than seven times better than the original Go-Explore on
a task with dynamic starting positions.

In conclusion, the additions of Dynamic cells and OTF-trajectories make the algorithm
Go-Explore from the article "First return, then explore" by Ecoffet et. al. [6] able to handle
dynamic starting positions in a maze environment.

46

References

[1] Rafael Basso, Balázs Kulcsár, Ivan Sanchez-Diaz, and Xiaobo Qu. Dynamic stochastic
electric vehicle routing with safe reinforcement learning. Transportation Research Part E:
Logistics and Transportation Review, 157:102496, 2022.

[2] David Mathew Jones and S. Kanagalakshmi. Data driven control of interacting two tank
hybrid system using deep reinforcement learning. 2021 IEEE 6th International Conference
on Computing, Communication and Automation (ICCCA), pages 297–303, 2021.

[3] Ikumi Kodaka and Fumiaki Saitoh. A study on application of curriculum learning in
deep reinforcement learning : Action acquisition in shooting game ai as example. 2021
IEEE 12th International Workshop on Computational Intelligence and Applications (IWCIA),
pages 1–6, 2021.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[5] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-
explore: a new approach for hard-exploration problems, 2019.

[6] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First
return, then explore. Nature, 590(7847):580–586, 2021.

[7] OpenAI. Atari gym. https://www.gymlibrary.ml/environments/atari/. (accessed:
22.05.2022).

[8] Parker Brothers. Montezuma’s revenge. https://www.retrogames.cz/play_124-
Atari2600.php. (accessed: 13.05.2022).

[9] Activision. Enduro. https://www.retrogames.cz/play_028-Atari2600.php?language=EN.
(accessed: 23.05.2022).

[10] Taito. Space invaders. https://www.retrogames.cz/play_016-Atari2600.php. (accessed:
23.05.2022).

47

REFERENCES

[11] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J.
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment: Evalu-
ation protocols and open problems for general agents. CoRR, abs/1709.06009, 2017.

[12] Activision. Pitfall! https://www.retrogames.cz/play_029-Atari2600.php. (accessed:
13.05.2022).

[13] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[14] Stefan Schaal. Learning from demonstration. In M.C. Mozer, M. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing Systems, volume 9. MIT Press, 1996.

[15] OpenAI. Procgen benchmark. https://openai.com/blog/procgen-benchmark/. (ac-
cessed: 28.01.2022).

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[17] Juyang Weng. Post-selections in ai papers in nature since 2015 and the appropriate
protocol, 2021.

[18] Juyang Weng. Post-selections in ai and how to avoid them, 2021.

[19] Haitao Xu. Intrinsic reward driven exploration for deep reinforcement learning. PhD thesis,
University of Otago, 2021.

[20] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez,
and Yuandong Tian. Bebold: Exploration beyond the boundary of explored regions.
arXiv preprint arXiv:2012.08621, 2020.

48

Appendices

49

Appendix A

Mazes

(a) The small maze, level 137 in Procgen.

51

A. Mazes

(b) The medium maze, level 118 in Procgen.

(c) The large maze, level 100 in Procgen.

Figure A.1: The mazes of Procgen game "maze" used in the experi-
ments. To traverse the maze the agent (the mouse) can go up, down,
left, or right. When the agent reaches the cheese, it gains a score of
10 and terminates the episode. If the agent does not find the cheese
in 500 steps the episode also terminates but with a reward of 0.

52

Appendix B

Implementation Details

B.1 Return Policy
The return policy in this adapted version of Go-Explore is implemented using a neural net-
work consisting of a Convolutional Neural Network (CNN) that processes the image from
the screen and three fully connected layers that take the output of the CNN together with
a target representation to produce the policy and value for the given state and goal. The
network is the same as proposed in "First return, then explore" [6] except for a few minor
changes.

In "First return, then explore", the last four frames are sent as input to the CNN. It is
assumed that the original version of Go-Explore takes the last four frames as input because
they only act every fourth frame. This does not apply to this thesis as it is desired to take a
step at every frame, hence only the latest frame is used as input. The image resolution also
differs where the article uses frames with a resolution of 105x80, but, since the Procgen screen
is a square, a resolution of 128x128 is used instead. Finally, the target representation also uses
fewer parameters than the target representation used in the original Go-Explore.

These changes create a lot more nodes in CNN layers due to the larger image but the
input nodes from the target representation are a little fewer, overall increasing the number
of trainable nodes from 9.7 e6 to 18.9 e6. See figure B.1 for full details of the network.

The network, as introduced in "First return, then explore", has a way to counteract cases
where the agent can get stuck. For example, if the action from the policy is moving into a
wall, the next state would be the same and therefore the next action could be to move into
the same wall again and so forth. Go-Explore uses an entropy term just before the softmax
activation for the policy in the final layer, see figure B.1, to work against this during train-
ing. This entropy term makes the policy more and more likely to take another action than
it otherwise would the larger it grows, which hopefully breaks cycles of looping actions. The
entropy is increasing constantly during the return phase, very slowly at first and then increas-
ing in speed, and resets in both speed and acceleration once the next cell in the trajectory is

53

B. Implementation Details

Figure B.1: The policy network, an adapted image from the arti-
cle of Ecoffet et al [6] to match the network used in this adapted
version of Go-Explore. The input St is the RGB channels from the
game frame, rescaled to a size of 128x128. The input goes through
a CNN of three layers with the intermediate states C1, C2, and C3,
and is finally flattened to a 1-dimensional array. This array is con-
catenated with the cell representation of the target, gt , which is fully
connected to the state FC2. FC2 is again fully connected to a GRU
module (Gated recurrent module, similar to a LTSM), the policy ac-
tivation and value-function activation layer. The GRU also has a
fully connected layer to both the policy and value-function activa-
tion which are softmax activation layers and produces a policy head
π(a|s) and value head V (S) respectively

reached. During the exploration phase, however, the increase starts after 50 steps, resetting
upon reaching the exploration target. Note that the entropy has no effect during random
exploration as the actions taken are already random. The entropy term is on during training
but off during testing to let the network have full control during tests.

54

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-16

EXAMENSARBETE ”First return, then explore" Adapted and Evaluated for Dynamic Environments
STUDENTER Nicolas Petrisi, Fredrik Sjöström
HANDLEDARE Hampus Åström (LTH), Volker Krueger (LTH)
EXAMINATOR Elin A. Topp (LTH)

Go-Explore anpassad för dynamiska
miljöer

POPULÄRVETENSKAPLIG SAMMANFATTNING Nicolas Petrisi, Fredrik Sjöström

Genom förbättringar på den toppmoderna algoritmen Go-Explore fungerar den nu för
dynamiska miljöer med mer än sju gånger bättre resultat. Dynamiska celler och "On
The Fly"- (OTF) vägar ger Go-Explore förmågan att kunna navigera genom en labyrint
med slumpade startpositioner, vilket den inte kunnat göra förr.

Go-Explore är en toppmodern algoritm inom
förstärkningsinlärning gjord för att effektivt ut-
forska miljöer. Den visar enastående resultat när
den spelar Atari-spel såsom Montezuma’s Revenge
och Pitfall och i en robotsimulator klarar den att
placera objekt i hyllor även när några av hyllorna
har en hasp.

När Go-Explore-agenten navigerar genom
miljön sparar den undan platserna den hittar i
olika "celler". Alla tillstånd som är lika varandra,
såsom att de är nära varandra på skärmen i en
2D-miljö, sägs tillhöra samma cell. Detta gör
att en cell representerar flera olika tillstånd. När
agenten utforskar och går genom dessa sparar
den undan vägen den gått för att komma ihåg
hur den har kommit fram till de olika cellerna.

Men problemet med Go-Explore är att den är
byggd för att alltid börja och sluta på samma po-
sition, vilket inte alltid är verklighetstroget. När
man flyttar på antingen start- eller slut-positionen
fungerar inte längre algoritmen då vägarna som al-
goritmen sparar undan alltid antar att den börjar
på samma position. Vidare så kan man inte heller
anta att bara för att två platser på skärmen är
nära varandra så behöver platserna i sig inte vara
lika, vilket antas i orginalversionen. Att vara på
ena eller andra sidan av en vägg i en labyrint kan

ha enorm betydelse för om man är nära att lösa
labyrinten eller inte, som man kan se i figuren där
det röda rutnätet delar upp miljön i sina celler.

Två stora ändringar i algoritmen är gjorda för
att anpassa den till dynamiska miljöer. Närlig-
gande celler slås ihop under körning vilket gör att
de kan användas i områden där det är svårt att
definiera bra celler av större storlek innan agenten
undersökt området. Och istället för att komma
ihåg exakt vilka celler agenten ska gå igenom
för att komma till sitt mål så skapas OTF-vägar
genom att kolla på vilka celler som är grannar för
att bygga vägar som kan gå till målet oavsett var
man startar.

Med ändringarna lyckas den anpassade Go-
Explore lösa labyrinter av olika storlekar med
slumpade startpositioner mer än sju gånger oftare
än Go-Explore utan ändringarna.

	Introduction
	Introduction
	Research Questions and Goals
	Methodology
	Contribution Summary
	Distribution of work
	Outline of Report

	Background
	Terminology
	Episode
	Domain Knowledge
	Policy
	Exploration Strategy

	Go-Explore
	Robustified Go-Explore
	Policy-based Go-Explore

	Procgen
	Related Work

	Approach
	Dynamic Task
	Problems for Go-Explore
	Cell Representation
	Trajectories

	Adaptations
	Dynamic Cells
	On the Fly Trajectories
	Other Structural Changes to Go-Explore

	Results
	Evaluation
	Parameter Setups
	Experiments

	Results
	Standard Deviation
	Exploration Strategies
	Starting Positions
	Original vs Adapted Go-Explore
	Scaling with the Environment

	Discussion
	Standard Deviation
	Exploration Strategies
	Starting Positions
	Original vs Adapted Go-Explore
	Scaling with the Environment

	Outlooks and Conclusions
	Outlooks
	Conclusion

	References
	Appendix Mazes
	Appendix Implementation Details
	Return Policy

