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Abstract

The past decade has seen a great interest in the development of metal halide perovskite
materials for use in photo-optical devices, due to the excellent photo-optical properties of
these materials. The primary limitation to industrial adoption, and the subject of much
research, is the susceptibility of these materials to degradation from exposure to various
factors such as air, heat and moisture. Growing confined, vertical nanowire arrays of
CsPbBr3, a metal halide perovskite, has proven very effective in increasing resistivity to
such degradation. In this project a method for in situ studies of such arrays of 170 nm
diameter wires using X-ray diffraction is detailed. Measurements were also carried out
on complete samples for comparison with the in situ sample. The crystal growth of the
nanowires was found to be relatively quick process, and the crystal structure exhibited
some preferential alignment early into the growth, although not to the extent observed
in the complete samples. The crystal phase of the in situ-samples was the same as that
of the complete sample, and corresponds well to calculated powder diffraction patterns of
the orthorhombic Pnmb phase. The time resolution and data quality was limited by the
in-house X-ray source, but the use of a more powerful source of X-ray radiation would
allow for more detailed analyses of the phenomena studied as part of this project.
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Abbreviations

• MHP - metal halide perovskite

• NW - nanowire

• DMSO - dimethyl sulfoxide

• AAO - anodised aluminium oxide

• SEM - scanning electron microscope

• PL - photo-luminescence

• XRD - X-ray diffraction
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1 Introduction

The last decade has seen a surge in the development of metal halide perovskite (MHP)
materials, propelled largely by the promising photo-optical properties exhibited by them,
making these materials suitable candidates for a wide variety of practical applications,
ranging from photo-voltaic cells to laser devices. [1] Their photo-optical properties in-
clude a low density of midgap trap states, low nonradiative recombination rate, a high
absorption coefficient, long carrier lifetime and highly efficient photo-luminescence. [2] An
obstacle to reliable practical applications and thus wider industrial adoption, however, is
their weakness to degradation as a result of exposure to moisture (and other polar sol-
vents), light, heat and oxygen, leading to unwanted phase transitions. This susceptibility
is owed to the soft ionic nature of such all-inorganic perovskites. [3]

In order to combat this issue, lead-halide perovskites have been grown in vertically
confined arrays, producing micrometer-long nanowires (NW) which have been reported
as having a much improved resistance to degradation from exposure to air, light and
X-rays. This is owed to the shielding effects of the anodic aluminium oxide (AAO) mem-
branes in which the wires are grown, and as a result the arrays showed neither any
significant decrease in photo-luminescence nor any signs of degradation when studied us-
ing X-ray diffraction. There exists then an impetus for further studying these arrays and
the crystallisation processes at play. [1], [4]

One of the most fundamental techniques for characterising crystal structures is that
of X-ray diffraction (XRD), an invaluable method for structural determinations in fields
ranging from solid state physics to structural biology. [5] XRD provides researchers with
the ability to analyse a wide range of properties, including crystal size, shape, preferred
orientations and internal strains or stresses of the crystal, as well as surface structures
and the effects of varying temperatures on solids. [6] XRD is thus a clear candidate for
studying these nanowire arrays and their growth.

The purpose of this project is thus to use XRD to perform in situ studies of CsPbBr3
nanowire arrays. The goal is to utilise an in-house X-ray source to measure both the
growth and the structure of CsPbBr3 nanowire arrays, and to link these results to previous
research and theory in order to provide insights into the growth process.

2 Theory

2.1 Crystal Structure, and Miller indices

A crystalline material is a solid material in which atoms are ordered in periodic, repeating
patterns (in three dimensions). Mathematically we can describe crystals as lattices, where
the locations of atoms make up the corresponding lattice points. These lattices are then
divided into unit cells, constructed from the spatial distances (a, b and c) and the angles
(α, β, γ) between the lattice points. A unit cell is then the smallest repeating unit which
may be constructed out of these parameters for a given structure.
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Drawing a coordinate system using these parameters above, and placing the origin in a
corner of the unit cell, allows for the definition of vectors from the origin to intersecting
points. Using the reciprocal points of these vectors as the parameters (h, k, l) we arrive
at the convention of Miller indices, used to denote crystal planes in the lattice. [7]

2.1.1 Bravais lattice and the reciprocal lattice

The Bravais lattice is a mathematical object which may be used to represent a crystal
structure using the parameters of the unit cell as described above, with the vectors a1,
a2 and a3 pointing from the origin to the nearest lattice points. The Bravais lattice R is
then defined as

R = ma1 + na2 + oa3 (1)

where m n and o are integers. The reciprocal lattice G for a given Bravais lattice R is
then defined by the equation

G ·R = 2πl (2)

where l is an integer. G may then be written as the sum of the three terms

G = m′b1 + n′b2 + o′b3 (3)

where the vectors b1, b2 and b3 can be defined explicitly as [5]:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a1 · (a2 × a3)
, b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (4)

2.1.2 Cubic and orthorhombic crystal structure

Two simple cases of unit cells which may be described by a Bravais lattice is those of the
cubic and orthorhombic crystal structures. In the former, we have equal lattice distances
in all three directions (a = b = c) and only right angles between them (α = β = γ = 90◦).
In the orthorhombic structure the same condition is applied to the angles as in cubic
structures, but there are no equal spatial distances (a ̸= b ̸= c). [7]
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Figure 1: A) Typical cubic crystal structure B) Typical orthorhombic crystal structure

2.2 Crystal Growth and Nucleation Theory

While a description of crystal structures alone may suffice for studies limited to studying
materials as they are, studying the growth of crystals requires some background informa-
tion on how crystals are formed and grown. This occurs in two primary stages, nucleation,
where the first crystal structures arise, and crystal growth, which is the stage in which
these crystal nuclei begin to grow and form the larger crystal structure.

A condition for crystal nucleation and growth is supersaturation. A supersaturated
solution is one in which the concentration of the solute is greater than the saturation
(i.e. the equilibrium concentration), and is the fundamental driving force of crystallisa-
tion. Supersaturated solutions are metastable however, and will not necessarily begin to
crystallise spontaneously, although this metastability decreases as the supersatuturation
increases. In a supersaturated solution molecules begin to associate and form aggregates,
unstable clusters of concentration fluctuations which dissolve by themselves. If the size of
such a cluster reaches a critical size, however, it will not dissolving but instead begin to
grow, causing nucleation to occur. This critical size is dependent on the degree of super-
saturation, and decreases as supersaturation increases. As such, supersaturation becomes
increasingly unstable, and the region between the beginning of supersaturation, and the
point at which it becomes too unstable is known as the metastable zone, which is where
all crystallisation operations occur. [8] For increasing supersaturation, nucleation theory
predicts an exponential increase in nucleation rate with increasing supersaturation. [7]

The nucleation is as stated the first of what is often considered to be the two stages
of crystallisation, the second being the aforementioned crystal growth. Considering the
growth of a specific crystal face it becomes possible to understand why crystals grow
layer by layer. A molecule dissolved in the supersaturated solution must be absorbed
somewhere on the crystal structure, and the most energetically favourable positions are
the ones which offer the most neighbouring molecules to connect to. In the case illustrated
in fig.2 the most favourable sites are thus, in order, III, II and I. [7]
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Figure 2: Possible sites for molecule absorption during crystal growth.

2.2.1 Solution Evaporation Growth

One technique for growing crystals is solution evaporation growth, wherein supersatura-
tion is achieved via the evaporation of the solvent in a solution containing the crystal
precursor. This allows for the control of the growth rate through the evaporation rate,
and for maintaining the supersaturation necessary for crystal growth. It also ensures that
the solution will always contain a reserve of precursor substances during evaporation. The
downsides to this technique includes the concentration of impurities increasing as the sol-
vent volume decreases, as well as increasing supersaturation during constant evaporation
causing spurious nucleation, particularly in the miniscus or minsici of the solvent body.
[9]

2.3 Perovskites

Perovskite materials make up a class of materials with the general formula ABX3 which
are ordered in the perovskite structure. The term perovskite as it refers to crystalline
materials with this structure should not be confused with their namesake which is the
calcium titanium oxide mineral of the same name, although this mineral is ordered in the
same structure. The centre of the body is occupied by the A cation, which is surrounded
by BX6 octahedra, where the B cations occupy the centres of the octahedra (see fig.3). [10]
In this description the location of the A cation is treated as the origin, with its location
being the 1b sites with coordinates (0,0,0), B cations at 1a sites (½, ½, ½) and X at the 3c
sites (½, ½, 0); (½, 0, ½); (0, ½, ½). The cations may also be displaced, and can as a result
to give rise to e.g. cubic, tetragonal and orthorombic structures (phases). [11]
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Figure 3: The typical ABX3 structure. Courtesy of Chen et al. (2018) [12]

2.3.1 Metal Halide Perovskites

One of the most prominent recent developments in perovskite materials has been the
development of metal halide perovskites (MHPs). In these materials the A cation is
a monovalent cation, for example formamidinium (FA+), methylammonium (MA+) or
caesium (Cs+), while the B cation is a divalent metal such as lead (Pb2+) or tin (Sn2+).
The X site is occupied by a halide such as bromide (Br−) or iodide (I−). [13]

In contrast with the currently predominant inorganic optoelectronic devices, which
require complex and resource intensive manufacturing methods, MHPs can be manu-
factured using low-cost methods such as solution processing. [13] Furthermore MHP
materials exhibit favourable properties for applications in optoelectronic devices, such as
a low trap-state density [14] and associated long carrier diffusion lengths, making them
highly suitable for use in photovoltaic cells. [15], [16] High photo-luminescence-efficiency
[2] as well as tunable band-gaps contributes further to their suitability for use in devices.
[1] They also benefit from an intrinsic tolerance to defects, as these are typically either
very shallow, or located within the valence/conduction bands. [17]

The soft ionic nature of such inorganic perovskites are however a cause for significant
instabilities, leading to degradation as a result of exposure to air, light, heat and moisture.
[3] Stability is improved somewhat by the avoidance of methylammonium as a cation,
owing to the intrinsic instability of MA-based hybrid halide perovskites. Inorganic halide
perovskites, using for example caesium as the A cation, are instead more stable. These
also lack organic hygroscopic cations, and as such degradation through hydration becomes
less frequent. Nevertheless they still suffer degradation through decomposition, oxidation
and polymorphic transition. [17]

2.3.2 Vertically Aligned CsPbBr3 nanowire arrays

One method of significantly improving the resistance of caesium-lead halide perovskites
against degradation has been the growth of vertically aligned CsPbBr3 nanowire (NW)
arrays. In this instance 50 µl of a precursor solution containing CsBr, PbBr2 and dimethyl
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sulfoxide (DMSO) was applied to a 100 µm thick anodised aluminium oxide (AAO) plate,
containing nm-scale pores. The solution was then spin-coated before being placed on a
hotplate set to 70◦C.

Using this method the pores are filled completely with the precursor solution through
spin coating, after which the nanowires are grown using solution evaporation, and exhibit
single crystal growth as indicated by the faceted top of the wires when studied under
a scanning electron microscope (SEM). The length of the wires was determined to be
tunable through varying the amount of precursor solution applied to the AAO-plate. [1]
The crystal structure of the CsPbBr3 material could also be controlled via choosing AAO-
plates with different pore sizes, with the CsPbBr3 adopting a cubic structure when grown
in pores with a diameter of 20nm or smaller. For greater pore diameters (>40 nm) the
orthorhombic structure was instead observed. X-ray diffraction measurements showing a
single (002)-peak in the former case and a split (004)/(220)-peak in the second was used
to discriminate between the two.

Figure 4: SEM image of a CsPbBr3 NW array with 170 nm diameter pores. Image
courtesy of Dr. Zhaojun Zhang

Comparative measurements between freshly grown samples and samples stored in air
for 4 months showed no significant decrease in PL intensity. Repeated XRD measure-
ments showed no diffraction peaks corresponding to degradation products. Furthermore
tests on the resistivity of the NW arrays to X-ray radiation showed no decrease in scin-
tillation following irradiation, and an increase in scintillation was noted instead. The
improved stability of these NW arrays as opposed to e.g. thin MHP-films is ascribed to
the encapsulation effect of the AAO. [1]

In later developments these NW arrays have been grown using a modified method,
wherein a precursor solution consisting of 0.4M CsPbBr3 dissolved in DMSO, yielding
pure-phase CsPbBr3. A 50 µm thick AAO membrane (purchased from Topmembranes
Technology Ltd., with diameters of 25mm and 13mm), with the nanopores open at both
ends, is then placed on top of the solution, allowing capillary forces to fill the pores with
the precursor solution. After being left for one minute to ensure the pores being filled the
slides were moved to a hotplate set to 70◦. [4]
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2.4 X-ray Scattering and Diffraction

2.4.1 Bragg Theory

X-ray diffraction is one of the most important tools for determining crystal structures.
Since X-rays interact weakly with matter we may use the kinematic approximation, i.e.
that X-rays are restricted to either single scattering or not interacting at all. Furthermore
the X-ray source is assumed to be placed far away from the sample to be studied, such
that the X-rays can be considered plane waves. This is then the basis for the Bragg theory
of diffraction, as first formulated in 1912.

In this treatment we consider plane waves of X-rays incident on crystal planes with
some incidence angle 90◦ − θ. In this case there will be constructive interference given
that the difference in distance traversed by X-rays reflected from one layer compared with
those reflected from the next corresponds to an integer multiple of the X-rays wavelength
λ. This gives rise to the Bragg condition, or Bragg’s Law, for X-ray scattering

nλ = 2d sin θ (5)

where d is the spacing between the crystal planes which give rise to the diffraction. By
the geometry of this problem, if Bragg’s law holds for one pair of layers, it must hold for all
layers with equal spacing, each contributing to the constructive interference pattern. This
then allows for the identification of different phases, provided that the spacing between
lattice points is known. This is an admittedly simplistic treatment, yet not necessarily an
inaccurate one, as Bragg’s law is a specific case of more general X-ray diffraction theory.

Figure 5: The geometry of Bragg diffraction.

2.4.2 General Diffraction Theory

In this more general approach we consider the physical mechanism behind the scattering
of the X-rays, namely the induction of oscillations in the electrons orbiting an atom,
oscillations which will inherit the frequency of the incoming X-ray radiation, and which
will lead to the emission of X-rays, giving rise to an interference pattern. In this case
the scattering is not simply photons impinging off on atoms, but is due to the electrons
surrounding them, and as such the scattered intensity will be dependent on the electron
density ρ(r) in the material. However, since most electrons are (relatively) located very
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close to the atoms one can still relate this to the lattice points based on the positions of
the atoms.

Assuming both the X-ray source and the detector is located sufficiently far away to
allow us to consider the incoming and scattered EM-waves to be plane waves, and for an
incoming wavevector k and scattered wavevector k′ (with K = k′ − k), the intensity I
observed will be proportional to ρ(r) over the crystal volume V via the expression

I(K)α

∣∣∣∣∫
V

ρ(r) exp −iK·rdV

∣∣∣∣2 . (6)

The equation (2) can then be reformulated by replacing the electron density with a
Fourier series over the reciprocal lattice, resulting in a lattice-periodic electron density
ρ(r) =

∑
G ρG exp −iG·r yielding the expression

I(K)α

∣∣∣∣∣∑
G

∫
V

ρG exp i(G−K)·rdV

∣∣∣∣∣
2

. (7)

For large crystals the crests and troughs of the wave will cancel and the integrals will
be very small, with the exception of the cases when the Laue condition

K = k′ − k = G (8)

is fulfilled, which is then the condition for observing constructive interference from
scattered X-rays.

Applying this to the case of Bragg diffraction it becomes clear that it. For a vector
with three components the Laue condition can be viewed as three separate conditions,
two of which are satisfied due to the geometry of Bragg diffraction. The condition is then

k⊥ − k′
⊥ = 2k⊥ = 2

2π

λ
sin θ = G ⊥ (9)

where G⊥ is a vector of the reciprocal lattice, perpendicular to the crystal planes
studied.[5]

2.4.3 Diffraction in the cubic and orthogonal CsPbBr3 phases.

Of particular interest for the characterisation of CsPbBr3 is, as mentioned, the diffraction
peak of the (0,0,2) crystal plane in the Pm-3m cubic phase, and the split peaks stemming
from diffraction in the (0,0,4)/(2,2,0) planes in the orthorhombic Pnmb phase. [1]
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Figure 6: A): The (0,0,4) and (0,0,1) planes of a cubic structure. B): The (1,1,0) and
(2,2,0) planes of an orthorhombic crystal structure.

The unit cell of the cubic Pm-3m has the dimensions a = b = c = 5.871 Å, and the
orthogonal Pnmb unit cell has the dimensions a = 8.207 Å, b = 8.255 Å and c = 11.759
Å. [1]

2.4.4 GIWAXS

A method which has proven suitable for in situ studies of perovskite films is Grazing-
Incidence Wide-Angle X-ray Scattering (GIWAXS). GIWAXS as a technique differs from
other types of scattering primarily when it comes to the geometry of the scattering. In
GIWAXS the sample is illuminated by a beam of X-ray light with a very small (grazing)
incidence angle. One significant advantage of this technique is that it allows for control
over the probing depth, as the energy of the X-ray beam in use determines the amount of
material penetrated by the beam. Another feature, albeit one which is not exclusive to
GIWAXS, is the use of 2D detectors, allowing for the characterisation of highly ordered
structures thanks to the ability to observe in both the in-plane and out-of-plane directions.
[18]
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3 Method

3.0.1 Equipment, Laboratory set up and calibration

The experimental setup consists of a Pilatus CdTe 300k X-ray detector, situated opposite
of a 17.45kev Genix 3D X-ray source. Between these two pieces of equipment is a stand
for mounting samples and other equpment, fitted with remotely controlled servo motors
allowing for movement in seven axes. Mounted on the stand is a hotplate, which is used
to drive the CsPbBr3 NW growth.

Figure 7: Lab setup showing the equipment used for the purpose of this project.

Figure 8: Geometry of the laboratory set-up.
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The angles µ between the sample and γ between the sample and detector are each
controlled by a separate servo, and are used to control the incidence angle between the
beam and the sample and the position of the detector.

In order to relate the pixels of the detectors to real-world positions, in terms of the angle
2θ and the azimuthal angles along diffraction rings a calibration using lanthanum hexa-
boride (LaB6) as a calibrant is performed by performing a 1 minute XRD-measurement on
a sample of LaB6. This measurement is then used in conjunction with the pyFAI (Fast Az-
imuthal Integration) python library, which includes a program which uses the diffraction
pattern of a known calibrant to relate the detector pixels to real-world positions.

Theoretical values for the diffraction pattern of the CsPbBr3 Pnmb phase was calculated
using the Cambridge Crystallographic Data Centre’s Mercury software (version 4.1.0) for
an X-ray energy of 17.45 keV. [20]

3.1 Experimental Process

3.1.1 Measurements on fully grown samples

A complete sample of CsPbBr3-nanowires were initially studied using the experimental
setup described above. In this case a series of measurements were performed with 5 minute
exposure times for a range of incidence angles µ ranging from 0− 11◦ and γ ranging from
8− (−3)◦, with a measurement performed every 0.1◦ The resulting detector images were
then analysed using the pyFAI (Fast Azimuthal Integration) python library [21] in both
one dimension, integrating azimuthally for specific 2θ values, and in two dimension, taking
into account both the 2θ-values and azimuthal position of diffraction peaks. A followup
measurement was taken at µ = 7◦ and γ = 1◦.

3.1.2 In-Situ Growth Measurements

CsPbBr3 NW-arrays with a pore diameter of (170nm) are grown via the method detailed
above and in [4]. 10 µl of the precursor solution, consisting of 0.3M CsPbBr3 in solution
using DMSO as a solvent, is applied to a thin glass substrate, located atop the hotplate
heated up to the growth temperature of 70◦C. Following this a piece of AAO-plate is
placed upon the drop of precursor solution, and once this is done the room in which the
experiment is to take place in is vacated, and the shutter of the X-ray source is opened
and the measurements begin. For this experiment the angles µ = 7◦ and γ = 1◦ were set
and maintained throughout the duration of the experiment. A camera was also used to
film the growth experiments.

The measurement consisted of an initial series of 720 scans (each with an exposure time
of 5 seconds) starting approximately 30 seconds following the application of the precursor
solution to the substrate, and then followed by a series of one minute long scans over the
course of three hours. These images were used alongside a calibration measurement taken
immediately before the specific in-situ measurement analysed.
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Data analysis were performed using pyFAI, which was used to produce both one-
dimensional (looking only at 2θ-values) and two-dimensional (looking at both 2θ-values
and azimuhtal angles) analyses of the data, which was subsequently plotted.

4 Results

4.1 Measurements on complete NW Samples

Figure 9: Left: Detector image showing the diffraction pattern of the finished sample, with
diffraction rings with lower 2θ-values towards the bottom of the image. Right: Zoomed
in view of the detector image of the (0,0,4)/(2,2,0) split peak.

Fig.9 shows the detector image from initial XRD measurement performed on a complete
CsPbBr3 NW sample with a 170 nm pore diameter, and clearly shows diffraction rings,
with the rings being ordered from the bottom to the top by their corresponding 2θ-value,
with increasing values towards to top of the image. Fig.9 also shows a high degree of
azimuthal alignment with some 65.0% of the intensity being concentrated in the arc span-
ning the azimuthal angles 80◦ ≤ χ ≥ 100◦ along the diffraction ring of the (0,0,4)/(2,2,0)
planes (where 90◦ corresponds to the direction point directly up in fig.9). The measure-
ments also show a split in the (0,0,4)/(2,2,0) peaks. This split was more visible when
plotting the intensity as a function of the 2θ-value in fig.10.

As can be seen in fig.10, the measured diffraction pattern matches the calculated pattern
for CsPbBr3 powder obtained from the Mercury software, with both the major (1,1,2) and
split (0,0,4)/(2,2,0) peaks, and the minor peaks at 2θ = 12◦ and 2θ = 13◦ mathing. The
measurement also matches the results from XRD-measurements performed on similair
NW arrays with pore diameters of 160 nm and 170 nm, as performed by Zhang et al.
(2021,2022) in their papers. [1],[4]
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Figure 10: Top: Calculated diffraction pattern for the Pnmb phase of CsPbBr3 powder.
Middle: Diffraction pattern of the finished sample. Bottom: Zoomed in view of the
(0,0,4)/(2,2,0) split peak (the left and middle peak respectively).
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Figure 11: a) AAO plate im-
mediately after having been
placed on the precursor solu-
tion. b) Initial Growth be-
ginning from the edges, 2
minutes and 25 seconds from
the start of the growth ex-
periment. c) The sample ap-
proximately 18 minutes after
the start of the experiment.
d) Another sample the night
after a growth example

4.2 In situ Growth Measurements

4.2.1 Crystal Nucleation and Growth

Preceding the measurements of in situ growth, films were shot of growth experiments,
producing the stills shown in fig.11. In this film the growth begins approximately 2
minutes and 25 seconds after the AAO membrane is placed atop the glass substrate, and
lasts for roughly 1 minute and 15 seconds. The in situ measurements performed on the
growing NW arrays show a rapid transition from the precursor stage to the saturated state,
visualised as the sudden appearance of the diffraction rings at 2θ = 9.7◦ and 2θ = 13.8◦

in fig.12, emerging shortly after frame 15 of the measurement, corresponding to 1 minute
and 15 seconds into the measurement.
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Figure 12: Top image: Intensity growth over time, showing the nucleation and crystal
growth. Bottom image: Emergence of the observed diffraction peaks around frame 15.

This growth is shown in greater detail when looking at the growth in intensity in the
2θ-intervals 9.6 = 9.9◦ and 2θ-intervalls 9.6 = 9.9◦. From the top subfigure in fig.12 it’s
shown that intensity begins to increase after the tenth frame, approximately 80 seconds
after the beginning of the XRD-measurement. This growth last until roughly frame 25,
corresponding to 1.25 minutes of growth ending at 2 minutes and 5 seconds into the
measurement. Snapshots of the growth of another sample is also shown in fig.11.

This results fits well with available knowledge on nucleation and crystal growth theory,
as well as the solution evaporation technique for crystal growth. The ’dormant’ period
encompassing the first 1.5 minutes is then likely the period during which concentrations,
beginning at below thermodynamical equilibrium, increase and enter the supersaturated
zone. As it does so the nucleation rate increases exponentially, until nucleation begins to
occur followed by plane-wise crystal growth, proceeding quite rapidly as more solution is
evaporated away, maintaining supersaturation until no solvent remains and all crystalli-
sation is complete. It also matches the description of crystallisation of thin films provided
by Qin M, Chan P F, Lu X, (2021) [18]
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4.2.2 Characterisation of in situ Nanowires

Characterising the freshly grown NW arrays is possible through analysing both the diffracted
intensity as a function of the 2θ-value and the alignment of the structures as seen through
the azimuthal distribution of the diffracted intensity. As visible from fig.13 the freshly
grown sample exhibits the split (0,0,4)/(2,2,0)-diffraction peaks at 2θ ≈ 13.8◦, which are
characteristic of the orthorhombic Pnmb CsPbBr3 phase. The split itself corresponds well
to the split visible in fig.10, and the split is also visible when studying the 2D nature of
the diffraction visible in fig.15b. This split, as well as the noticeable azimuthal alignment
of the diffraction peaks is also visible early on, and can be observed from the 24-36th
frames and onwards, as can be seen in fig.14b. Compared to the complete sample how-
ever only 37.4% of the intensity is contained in the arc spanning the azimuthal angles
80◦ ≤ χ ≥ 100◦ along the (0,0,4)/(2,2,0) diffraction ring.

It is notable that, while present, the vertical alignment is significantly less prominent
than in the fully grown samples. The cause of this is unknown, but it could be speculated
to emerge as a result of the modified growing method. In the method involving the spin-
coating of AAO-plates with only one open end it was concluded that nanowires were the
result of single crystal growth. In the case of the modified method used in this experiment
it is not unthinkable that lack of a delay to allow capillary forces to fill the pores before
placing the sample on the hotplate contribute to less uniform crystal growth. It is also
not unthinkable that having both ends open allow for excessive nucleation in the minisci
of the pores as supersaturation increases during the evaporation of the solvent.

The in situ measurement seems to be vulnerable to noise, likely due the relatively low
power of the in-house X-ray source makes the measurements vulnerable to noise, e.g.
from cosmic rays and Compton scattering of the X-ray beam against atoms in the air.
This vulnerability is especially noticeable in the top figure of fig.12, with two large and
otherwise inexplicable peaks in measured intensity.

Figure 13: Diffraction pattern of the in situ sample, measured during frames 120-132
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(a) (b)

(c) (d)

Figure 14: a/b) 2D XRD Measurements showing azimuthal orientation of diffraction
patterns. c/d) XRD Diffraction peaks measured during the same time periods.
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(a) (b)

Figure 15: 2D XRD Measurements showing azimuthal alignment of diffraction patterns
in a) the complete sample, and b) the in situ sample.

5 Conclusions

The promising photo-optical properties of metal-halide perovskites, with CsPbBr3 being
one of these materials, make them promising candidates for use in a variety of impor-
tant industrial applications, but their adoption is thus far hampered by an instability to
degradation resulting from exposure to air, moisture heat and light. A method which
significantly increases resistance to such degradation has been the growing of CsPbBr3
nanowire arrays enclosed in AAO membranes, leading to much improved stability in air,
and under exposure to light and X-rays.

X-ray diffraction using an in-house X-ray source was shown to be a functional method
for analysing the crystal growth and structure of these NW arrays, although limited in
resolution w.r.t. time and sensitive to light and noise, a limitation remediable through the
use of more powerful X-ray sources such as a synchrotron. Despite this it was possible to
identify that the wires grow relatively quickly, with crystal growth lasting only for about
one and a half minute, matching both theoretical descriptions and precious research on
lead-halide perovskite growth. The wires are also appear to adopt an orthorhombic crystal
structure without undergoing phase-transitions. The wires grown in situ displayed were
noticeably less oriented when compared to the older sample, and while the source of
this discrepancy is not known with certainty, both the experimental method causing less
uniform deposition of precursor solution in the pores, and the membranes used causing
superfluous nucleation are plausible explanations.
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6 Outlook

This project has arrived at a viable method for performing in situ analyses of perovskite
nanowire arrays using an in-house X-ray source. This method can be used to study both
the crystal growth in terms of its onset and duration, as well as structural properties such
as preferential alignment in structures thanks to the the use of a 2D X-ray detector. The
major limiting factor of this method however is the in-house X-ray source, which, although
being a relatively accessible implement, does lead to sensitivity to noise originating from
e.g. cosmic rays, as well as lower limits on the time resolution of the measurements. The
use of more powerful X-ray sources, such as a synchrotron, could allow for more detailed
studies, particularly of the fairly rapid nucleation and crystal growth process, shedding
more light on the factors affecting these processes.
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A Code used in data analysis

The following pieces of Python computer code were used, in the form of Jupyter Note-
books, to analyse and plot data obtained in the XRD measurements.

A.0.1 Finished Sample

import time

import shutil, os

from silx.resources import ExternalResources

import pyFAI, fabio

import glob

# clean-up files from previous run:

for result in (’integrated.edf’, "integrated.dat"):

if os.path.exists(result):

os.unlink(result)

path = os.path.abspath("[path to data folder]")

files = glob.glob(path + ’/*.dat’)

import numpy as np

i = -1

data_list = []

for dfile in files:

i += 1

data = np.loadtxt(dfile, dtype=float)

print("entry ", i, " read:")

print(data)

print(data.shape)

data_list.append(data)

data_array = np.asarray(data_list)

print(data_array)

print(data_array.shape)

import matplotlib.pyplot as plt

from matplotlib.colors import BoundaryNorm

from matplotlib.ticker import MaxNLocator

import numpy as np

import matplotlib as mpl

from matplotlib.pyplot import subplots

plt.rcParams[’text.usetex’] = True

Y = data_array[0, 0:, 1]

X = data_array[0, 0:, 0]

fig, ax = plt.subplots(figsize=(10,6))

ax.set_title(r"XRD Measurements of D170 NW array at $\mu=7^{\circ}$",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",
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fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

plt.plot(X,Y)

Y = data_array[0, 0:, 1]

X = data_array[0, 0:, 0]

fig, ax = plt.subplots(figsize=(10,6))

ax.set_xlim(12.5,14.5)

ax.set_title(r"XRD Measurements of D170 NW array at $\mu=7^{\circ}$",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

plt.plot(X,Y)

all_images = glob.glob(path + ’/*.tif’)

ai = pyFAI.load("[path to calibration .poni file]")

cakedata_list = []

I_list = []

tth_list = []

chi_list = []

for one_image in all_images:

fimg = fabio.open(one_image)

dest = os.path.splitext(one_image)[0] + "_cake.edf"

cake1 = ai.integrate2d_ng(fimg.data,

500, 360,

unit="2th_deg",

filename=dest)

cake = fabio.open(dest)

cakedata_list.append(cake.data)

I, tth, chi = cake1

print(I.shape)

print(tth.shape)

print(chi.shape)

I_list.append(I)

tth_list.append(tth)

chi_list.append(chi)

cake_alldata = glob.glob(path + ’/*_cake.edf’)

cakedata_array = np.asarray(cakedata_list)

Idata_array = np.asarray(I_list)

tthdata_array = np.asarray(tth_list)

chidata_array = np.asarray(chi_list)

from pyFAI.gui import jupyter

fig, ax = subplots(1, figsize=(10,8))

I_plot = I

tth_plot = tth

chi_plot = chi

cmap = plt.cm.inferno
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levels = MaxNLocator(nbins=15).tick_values(0,I_plot.max()*.04)

norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)

ax.pcolormesh(tth_plot, chi_plot, I_plot, cmap=cmap, norm=norm)

ax.set_xlim(9.5,14.75)

ax.set_ylim(50,130)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_title(r"2D XRD-measurement for $\mu = 7^{\circ}$",

fontsize = 24, color = ’k’)

fig.savefig(’NewFinnishedSample2DScan30MinutesIn.png’)

x = tth

b1 = np.where(13<x)

b2 = np.where(x<14)

B = np.intersect1d(b1,b2)

y = chi

d1 = np.where(80<y)

d2 = np.where(y<100)

D = np.intersect1d(d1,d2)

Total_intensity = 0

for k in B:

Total_intensity = Total_intensity + np.sum(I[0:,k])

#print(I[0:,k])

Sum_intensity = 0

for k in B:

for i in D:

Sum_intensity = Sum_intensity + I[i,k]

#print(I[i,k])

print(Total_intensity)

print(Sum_intensity)

print(Sum_intensity/Total_intensity)

A.1 In situ sample

import time

import shutil, os

from silx.resources import ExternalResources

import pyFAI, fabio

import glob

t0 = time.perf_counter()

os.listdir()

notebook_path = os.path.abspath("Notebook.ipynb")

print(notebook_path)

path = os.path.abspath("[path to data folder]")

files = glob.glob(path + ’/*.dat’)
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oldcake_alldata = glob.glob(path + ’/*cake.dat’)

for result in (oldcake_alldata):

print("hi")

print(result)

os.remove(result)

print("FileDeleted")

print(oldcake_alldata)

import numpy as np

i = -1

data_list = []

for dfile in files:

i += 1

data = np.loadtxt(dfile, dtype=float)

data_list.append(data)

data_array = np.asarray(data_list)

import matplotlib.pyplot as plt

from matplotlib.colors import BoundaryNorm

from matplotlib.ticker import MaxNLocator

import numpy as np

import matplotlib as mpl

from matplotlib.pyplot import subplots

plt.rcParams[’text.usetex’] = True

Ycoord_array = data_array[0, 0:, 0]

Xcoord_array = np.arange(0,720,1)

Xcoord_array = Xcoord_array

color_array = data_array[0:, 0:, 1]

plot_array = color_array.transpose()

plot_array = plot_array[:-1, :-1]

levels = MaxNLocator(nbins=15).tick_values(plot_array.min(), 0.3)

cmap = plt.cm.inferno

norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)

fig, ax = subplots(1, figsize=(15,5))

ax.pcolormesh(Xcoord_array, Ycoord_array, plot_array, cmap=cmap, norm=norm)

ax.set_title(r"In Situ Measurements of D170 NW array",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"Frames (5s/frame)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_xlim(0,120)

xt = np.arange(0,120,5)

ax.set_xticks(xt)

fig.savefig(’TimeResFig1.png’)

all_images = glob.glob(path + ’/*.tif’)

ai = pyFAI.load("[path to calibration .poni file]")

cakedata_list = []
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I_list = []

tth_list = []

chi_list = []

for one_image in all_images:

fimg = fabio.open(one_image)

dest = os.path.splitext(one_image)[0] + "_cake.edf"

cake1 = ai.integrate2d_ng(fimg.data,

500, 360,

unit="2th_deg",

filename=dest)

cake = fabio.open(dest)

cakedata_list.append(cake.data)

I, tth, chi = cake1

I_list.append(I)

tth_list.append(tth)

chi_list.append(chi)

cake_alldata = glob.glob(path + ’/*_cake.edf’)

cakedata_array = np.asarray(cakedata_list)

Idata_array = np.asarray(I_list)

tthdata_array = np.asarray(tth_list)

chidata_array = np.asarray(chi_list)

from pyFAI.gui import jupyter

I_plot0 = Idata_array[12]

tth_plot0 = tthdata_array[12]

chi_plot0 = chidata_array[12]

steps = 1

for i in range(13, 24):

I_plot0 = I_plot0 + Idata_array[i]

steps += 1

I_plot1 = Idata_array[24]

tth_plot1 = tthdata_array[24]

chi_plot1 = chidata_array[24]

steps = 1

for i in range(25, 36):

I_plot1 = I_plot1 + Idata_array[i]

steps += 1

I_plot2 = Idata_array[36]

tth_plot2 = tthdata_array[36]

chi_plot2 = chidata_array[36]

steps = 1

for i in range(37, 48):

I_plot2 = I_plot2 + Idata_array[i]

steps += 1

I_plot3 = Idata_array[48]

tth_plot3 = tthdata_array[48]

chi_plot3 = chidata_array[48]

steps = 1

for i in range(49, 60):

I_plot3 = I_plot3 + Idata_array[i]

steps += 1
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I_plot4 = Idata_array[60]

tth_plot4 = tthdata_array[60]

chi_plot4 = chidata_array[60]

steps = 1

for i in range(61, 72):

I_plot4 = I_plot4 + Idata_array[i]

steps += 1

I_plot5 = Idata_array[72]

tth_plot5 = tthdata_array[72]

chi_plot5 = chidata_array[72]

steps = 1

for i in range(73, 84):

I_plot5 = I_plot5 + Idata_array[i]

steps += 1

levels0 = MaxNLocator(nbins=15).tick_values(0,5)

print(I_plot0.min(),I_plot0.max())

norm0 = BoundaryNorm(levels0, ncolors=cmap.N, clip=True)

levels1 = MaxNLocator(nbins=15).tick_values(0,5)

print(I_plot1.min(),I_plot1.max())

norm1 = BoundaryNorm(levels1, ncolors=cmap.N, clip=True)

levels2 = MaxNLocator(nbins=15).tick_values(0,5)

print(I_plot2.min(),I_plot2.max())

norm2 = BoundaryNorm(levels2, ncolors=cmap.N, clip=True)

levels3 = MaxNLocator(nbins=15).tick_values(0,5)

print(I_plot3.min(),I_plot3.max())

norm3 = BoundaryNorm(levels3, ncolors=cmap.N, clip=True)

fig1 = plt.figure(figsize = (10,10))

plt.pcolormesh(tth_plot0, chi_plot0, I_plot0, cmap=cmap, norm=norm0)

plt.xlim(9,14.35)

plt.ylim(55,125)

plt.xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.title(r"2D XRD-measurement during frames 12-24",

fontsize = 24, color = ’k’)

plt.savefig(’2DScan12-24.png’)

fig2 = plt.figure(figsize = (10,10))

plt.pcolormesh(tth_plot1, chi_plot1, I_plot1, cmap=cmap, norm=norm1)

plt.xlim(9,14.35)

plt.ylim(55,125)

plt.xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",
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fontsize = 24, color = ’k’)

plt.title(r"2D XRD-measurement during frames 24-36",

fontsize = 24, color = ’k’)

plt.savefig(’2DScan24-36.png’)

fig3 = plt.figure(figsize = (10,10))

plt.pcolormesh(tth_plot2, chi_plot2, I_plot2, cmap=cmap, norm=norm2)

plt.xlim(9,14.35)

plt.ylim(55,125)

plt.xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.title(r"2D XRD-measurement during frames 36-48",

fontsize = 24, color = ’k’)

plt.savefig(’2DScan36-48.png’)

fig4 = plt.figure(figsize = (10,10))

plt.pcolormesh(tth_plot3, chi_plot3, I_plot3, cmap=cmap, norm=norm3)

plt.xlim(9,14.35)

plt.ylim(55,125)

plt.xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

plt.title(r"2D XRD-measurement during frames 48-60",

fontsize = 24, color = ’k’)

plt.savefig(’2DScan48-60.png’)

fig, ax = subplots(1, figsize=(10,8))

I_plot = Idata_array[360]

tth_plot = tthdata_array[360]

chi_plot = chidata_array[360]

steps = 1

for i in range(361, 420):

I_plot = I_plot + Idata_array[i]

steps += 1

print(steps)

levels = MaxNLocator(nbins=15).tick_values(0,0.25*I_plot0.max())

print(I_plot.min(),I_plot.max()*1)

norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)

ax.pcolormesh(tth_plot, chi_plot, I_plot, cmap=cmap, norm=norm)

ax.set_xlim(9.5,14.1)

ax.set_ylim(50,130)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Azimuthal angle $\chi$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_title(r"2D XRD-measurement during frames 360-420",

fontsize = 24, color = ’k’)

fig.savefig(’5MinLong2DScan30MinutesIn.png’)

x = tth_plot

b1 = np.where(13<x)

b2 = np.where(x<14)

B = np.intersect1d(b1,b2)
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y = chi_plot

d1 = np.where(80<y)

d2 = np.where(y<100)

D = np.intersect1d(d1,d2)

Total_intensity = 0

for k in B:

Total_intensity = Total_intensity + np.sum(I_plot[0:,k])

Sum_intensity = 0

for k in B:

for i in D:

Sum_intensity = Sum_intensity + I_plot[i,k]

#print(I[i,k])

print(Total_intensity)

print(Sum_intensity)

print(Sum_intensity/Total_intensity)

fig, ax = subplots(1, figsize=(15,5))

X1D=data_array[120,0:,0]

Y1D=data_array[120,0:,1]

steps = 1

for i in range(121, 132):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 120-136",

fontsize = 20, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 20, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 20, color = ’k’)

ax.set_ylim(0,1.5)

fig.savefig(’XRDPlot120-132.png’)

x = data_array[120,0:,0]

a1 = np.where(9.6<x)

a2 = np.where(x<9.9)

A = np.intersect1d(a1,a2)

b1 = np.where(13<x)

b2 = np.where(x<15)

B = np.intersect1d(b1,b2)

C = np.concatenate((A,B))

for i in range(0, 720):

print("New Scan",i)

for k in C:

sum_intensity = sum_intensity + data_array[i,k,1]

fig, ax = subplots(1, figsize=(15,5))

X1D_2 = np.arange(0,120,1)

Y1D_2 = []

Sum_2th=np.sum(X1D_2)

steps = 0

for i in range(0, 120):

for k in C:
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sum_intensity = sum_intensity + data_array[i,k,1]

Y1D_2.append(sum_intensity)

sum_intensity = 0

steps += 1

ax.plot(X1D_2,Y1D_2)

ax.set_xlim(0,120)

ax.set_ylim(6.75,8.125)

xticks=np.arange(0,120,5)

ax.set_xticks(xticks)

ax.set_xlabel(r"Frames (5s/frame)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_title(r"In situ intensity over time",

fontsize = 24, color = ’k’)

fig.savefig(’IntensityGrowth1.png’)

fig, ax = subplots(1, figsize=(8,5))

X1D=data_array[12,0:,0]

Y1D=data_array[12,0:,1]

steps = 1

for i in range(13, 24):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 12-24",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_ylim(0,2)

ax.set_xlim(9,14.5)

fig.savefig(’EarlyXRDPlot1.png’)

fig, ax = subplots(1, figsize=(8,5))

X1D=data_array[24,0:,0]

Y1D=data_array[24,0:,1]

steps = 1

for i in range(25, 36):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 24-36",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_ylim(0,2)

ax.set_xlim(9,14.5)

fig.savefig(’EarlyXRDPlot2.png’)

fig, ax = subplots(1, figsize=(10,5))

X1D=data_array[36,0:,0]
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Y1D=data_array[36,0:,1]

steps = 1

for i in range(37, 48):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 36-48",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_ylim(0,2)

ax.set_xlim(8,15)

fig.savefig(’EarlyXRDPlot3.png’)

fig, ax = subplots(1, figsize=(15,5))

X1D=data_array[48,0:,0]

Y1D=data_array[48,0:,1]

steps = 1

for i in range(49, 60):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 48-60",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_ylim(0,2.5)

fig.savefig(’EarlyXRDPlot4.png’)

fig, ax = subplots(1, figsize=(15,5))

X1D=data_array[0,0:,0]

Y1D=data_array[0,0:,1]

steps = 1

for i in range(1, 12):

Y1D = Y1D + data_array[i,0:,1]

steps += 1

print(steps)

ax.plot(X1D,Y1D)

ax.set_title(r"In Situ XRD measurement: frames 0-12",

fontsize = 24, color = ’k’)

ax.set_xlabel(r"2$\theta$ ($^{\circ}$)",

fontsize = 24, color = ’k’)

ax.set_ylabel(r"Intensity (a.u.)",

fontsize = 24, color = ’k’)

ax.set_ylim(0,2.5)

fig.savefig(’EarlyXRDPlot4.png’)
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