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Summary 

The aim of this master thesis is to implement a previously modeled chromatographic adsorption 

process from MatLab into the Modelon Impact, a simulation software. Modelon Impact is using 

Modelica as language syntax that is useful for creating a large system of interconnected models 

that has the potential to work in different configurations. The model is successfully imple-

mented and done in a step-wise manner. The comparison between the two simulations are near 

flawless, but some variations can be seen as load time of the column increases. While not con-

clusively deduced, the problem most likely lies in how the two different solvers work. 

Another aim is to use the functionality of Modelica and create different models in order to create 

a more accurate setup seen during laborative trials. These models range from the column and 

pump that have previously been modeled in the original MatLab code to controllers, valves and 

tubing that reflect real experimental setups. The interconnectivity between models are success-

ful, but due to variable overlap some setups had to be altered in order to complete the simula-

tions. 

While Impact has proved to be more than capable to simulate chromatographic processes and 

handle user-created sub-models, there is still room for investigation of it as a tool for finding 

parameters or handling more complex models. 

  



 



 

Sammanfattning 

Syftet med denna masteruppsats är att implementera en tidigare modellerad kromatografisk ad-

sorptionsprocess från MatLab till Modelon Impact, en simuleringsmjukvara. Modelon Impact 

använder sig av Modelica som syntax som i sin tur är användbart för skapandet av stora system 

av sammankopplade modeller som kan fungera i olika konfigurationer. Implementeringen är 

lyckad och gjord stegvis under projektet. Jämförelse mellan de två modellerna är nästan perfekt 

men mindre variationer kan observeras vid höga laddningstider av kolonnen. Medan det inte är 

helt fastställt ligger troligtvis skillnaden i resultat i hur de olika lösarna fungerar. 

Ett annat syfte är att använda Modelicas funktionalitet och skapa olika modeller för att skapa 

ett mer rättvist system som återspeglar laborativa försök. Dessa modeller sträcker sig från ko-

lonn och pump som redan var modellerade i MatLab till kontroller, ventiler och rör för att ef-

terlikna verkligheten. Sammankopplingen mellan alla modeller är överlag lyckad, men på grund 

av variabelöverlapp behövdes några system justeras för att fullständigt kunna simuleras. 

Medan Impact har visat sig vara mer är kapabel för att simulera kromatografiska processer och 

hantera självskapade modeller finns det fortfarande utrymma för vidare arbete som ett verktyg 

för parameteranpassning eller hantering av mer komplexa modeller 

  



 

  



 

Popular scientific summary 

Modeling and simulation of a chromatographic process in Modelon Impact 

by Oliver Thelander 

Modelon Impact is a powerful modeling and simulation software primarily used in the en-

ergy, automotive and aerospace industry. Would it be equally useful in the simulation of 

chromatographic processes compared to conventional tools? 

Adsorption chromatography and the simulation of it is one of the many focuses at the depart-

ment of chemical engineering at Lund University. During adsorption chromatography, a col-

umn filled with small porous beads, called the stationary phase, is loaded with a feed containing 

adsorbing components, called the mobile phase. The components in the feed adsorb onto the 

stationary phase and are eluted with a rising salt concentration fed through the column, resulting 

in a separation between the components based on their binding strength. 

This process is currently modeled and simulated in MatLab and Python, but this thesis aims to 

model the same process in Modelon Impact, a simulation software using the language Modelica. 

A feature of Modelon Impact that will be examined is the creation, connection and reuse of 

models, where models can be linked together in a visually accessible environment. And finally, 

is there a future use case of Modelon Impact for chromatographic processes. 

The model implementation and the possibility to create and link many models to mimic a la-

boratory setup were both successful. While the simulation was near flawless between the old 

simulations and the new in Modelon Impact, there arose some small differences that were more 

pronounced at high parameter values regarding column load time and starting salt concentra-

tion. This variation might have been a result of how the internal solvers work for each simula-

tion environment, ode15s in MatLab and CVode in Modelon Impact.  

Both models show similar simulation times between 1-5 seconds where Modelon Impact was 

consistently longer than MatLab. While this looks bad for Modelon Impact, MatLab requires 

sparse matrices that would otherwise drastically increase simulation time. Modelon Impact does 

not require these sparse matrices at all. The discretization size is also a factor for simulation 

time. While kept relatively low in this thesis, this is also something that increase more for 

MatLab than for Modelon Impact as a result of Modelon Impact only have to compile the model 

once, and if changes that do not affect the compiled structure is done to Modelon Impact then 

the simulation can be done in more rapid successions. 

Modelon Impact has shown to be more than capable to model and simulate chromatographic 

processes but discovery within the software is not done. The software has experimentation mode 

where parameters can be temporarily changed and allow for parameter sweeps, the inStream 

operator that handles flow-specific variables and evolved models that might otherwise drasti-

cally increase simulation time in other programming environments. 

 

  



 

  



 

Populärvetenskaplig sammanfattning 

Modellering och simulering av kromatografisk separation i Modelon Impact 

av Oliver Thelander 

Modelon Impact är ett kraftfullt modellerings- och simularingsmjukvara främst använd 

inom energi-, bil- och luftfartsindustrin. Skulle den kunna vara lika användbart för simule-

ring av kromatografiska processer jämfört med konventionella metoder? 

Adsorptionskromatografi och simulering därav är ett av de många fokus på kemitekniska in-

stitutionen vid Lunds Universitet. Vid adsorptionskromatografi används en kolonn fylld med 

små porösa kulor, kallat den stationära fasen, som laddas med en ingående ström innehållande 

adsorberande komponenter, kallat den mobila fasen. Komponenterna i strömmen adsorberas på 

den stationära fasen och är därefter eluerad med en ökande ingående saltkoncentration genom 

kolonnen som resulterar i en separation mellan komponenterna baserat på bindningsstyrkor.  

Denna process modelleras och simuleras för tillfället i MatLab och Python, men denna uppsats 

mål är att modellera samma process i Modelon Impact, en simuleringsmjukvara i språket Mo-

delica. En funktion hos Modelon Impact som ska undersökas är skapandet, sammankopplandet 

och återanvändandet av modeller, där modeller kan kopplas samman i en visuellt lättillgänglig 

miljö. Slutligen, finns det framtida användningsområden för Modelon Impact gällande kro-

matografiska processer? 

Modellimplementeringen och möjligheten att skapa och koppla samman flera modeller för att 

efterlikna en laboratorieuppställning var båda lyckade. Medan simuleringen var näst intill per-

fekt mellan den gamla simuleringen i MatLab och nya simuleringen i Modelon Impact uppstod 

små skillnader som blev tydligare vid höga parametervärden för laddningstid och startsaltkon-

centrationen. Denna skillnad kan ha varit ett resultat av hur de interna lösarna fungerar för re-

spektive simuleringsmiljö, ode15s i MatLab och CVode i Modelon Impact. 

Båda modellerna uppvisar snarlika simuleringstider mellan 1-5 sekunder där Modelon Impact 

var konsekvent långsammare än MatLab. Medan detta kan framstå som dåligt för Modelon 

Impact behöver MatLab använda sig av sparsamma matriser som i övriga fall skulle drastiskt 

öka simuleringstiden. Modelon Impact behöver inte dessa sparsamma matriser överhuvudtaget. 

Diskretiseringsstorleken är också en faktor för simuleringstiden. Medan den är lågt satt under 

denna uppsats är det något som påverkar MatLab mer än Modelon Impact som ett resultat av 

att Modelon Impact endast kompilera modellen en gång och så länge den kompilerade struk-

turen inte förändras kan Modelon Impact simulera snabbare mellan försöken. 

Modelon Impact har visat sig vara mer än kapabel att modellera och simulera kromatografiska 

processer men funktionaliteterna i mjukvaran är inte alla funna än. Mjukvaran har experimen-

tation mode där parametrar kan temporärt förändras och tillåta parametersvepningar, inStream-

operatorn som hanterar flödesspecifika variabler och mer utvecklade modeller som annars dras-

tiskt ökar simuleringstid i andra programmeringsmiljöer.  
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1 Introduction 

Purification processes are important across the chemical, medical and food industries; a product 

with a high purity and low on contaminants often fetch a higher price and, more importantly, 

be allowed to be used in other processes. Throughout the years, many purification processes 

have been developed. From varieties of centrifugation techniques to chromatography and fil-

tration techniques. One chromatography method, adsorption chromatography, is a common tool 

in purification where a column filled with a stationary phase is used. 

While purification processes are important tools, they are also often expensive to use. The tools 

in-and-of-themselves are expensive to produce and might be prone to break or the feed solution 

is already difficult to produce leaving no economical room for a wasted batch. To minimize 

cost and maximize product yield, simulation is a safe tool to use before real purification is 

carried out. Simulating a process can help evaluate and optimize it before scaling up. This in-

cludes the physical parameters of the system such as size, operating parameters such as tem-

perature and flow and chemical parameters such as a product’s adsorption capacity. Further-

more, simulations are quick and easy to repeat and the time for changing a parameter or simulate 

the system that would otherwise take hours of real time can be done in a manner of seconds. 

Simulation of purification processes can be done in a variety of digital environments. While the 

possibility lies in many places, some are more suitable than others. This thesis implements a 

model previously modeled and simulated in MatLab and Python. While both MatLab and Py-

thon work they both also require the use of sparse matrices to keep simulation time low. 

Modelon Impact is a simulation software using the programming language Modelica, both cre-

ated with model simulations in mind.[1]  

1.1 Aim 

The aim is to create several models that were previously one model script MatLab in Modelon 

Impact. These models will strive to be as general as possible to be reused in different configu-

rations such as single column, recirculation and double column. Possibilities, usefulness and 

performance of Modelon Impact will also be discussed. 
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2 Background 

2.1 Adsorption chromatography 

Adsorption chromatography is a widely used separation technique where a mobile phase con-

taining soluble molecules is separated by passing through a column containing a stationary 

phase in which the soluble molecules bind to the stationary phase. The bound molecules are 

later released using an eluent with a higher binding power as a mobile phase, resulting in a more 

purified solution if phases, eluent, etc. are correctly chosen for the task. The eluent is fed 

through the column after the solute feed has been loaded onto the column and afterwards acts 

as a carrier stream, increasing the eluent concentration over time in order to elute all solubles.[3] 

2.2 Experimental setup 

 

Figure 1: Simplified view of the experimental setup. 

A view of the experimental setup is shown in figure 1. Sample is being pumped through the 

injection valve through the column valve and into the column where it loads the column for a 

certain amount of column volumes. A stream of a mixture between buffer A and B is then 

pumped the same way and elutes the components in the column, which are passed through a 

UV detector, outlet valve and depending on the UV detection to either the waste or the fraction 

that is being collected. The pumps and valves are controlled with a computer and run a prede-

termined set of instructions with each run. The resulting chromatogram of the concentration 

profiles is sent back to the computer from the UV detector. 
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2.3 The simulated model 

The model that is aimed to be implemented has already been done in both MatLab and Python 

as a sub-project of the advanced course Process Simulation at Lund University. The previously 

implemented model is similar to figure 1 with some notable exceptions: only within the con-

fines of the column is simulated and thus all other parts are baked into the model and reduced 

as much as possible such as no volume outside of the column. The previous model implemen-

tation will here on out only be referred to as the MatLab model. 

2.3.1 FVMtools 

To simulate the column, it must be discretized which were done with FVMtools, implemented 

by the department of chemical engineering at Lund University. FVM stands for Finite Volume 

Method, and FVMtools is a script that produce a discretization based on some input parameters: 

first order derivative approximation, second order derivative approximation and boundary ap-

proximations. 

2.4 Modelica 

Modelica is an object-based programming language where the programmer can create reusable 

models for use in larger complex physical systems. Models have connectors that enable input 

and output signals between the model components, often creating a larger block diagram of a 

system, for example an electrical circuit. The model components are written using Modelica 

syntax with an equation-based description. Time is a built-in variable and all variables are a 

function of this inherent variable. Modelica has several keyword operators built into it and der() 

is one which is the time derivative that takes advantage of the built-in time variable.[4] 

2.5 Modelon Impact 

Modelon Impact is a system simulation software created by Modelon in Lund, Sweden and is 

an evolution of the previous project JModelica. It uses the Modelica programming standard as 

syntax and is a browser-based cloud-native software where users can easily create models, sim-

ulate systems and share workspaces with others for more accessible collaborations. Modelon 

also provides a vast library of ready-to-use models, however non except interface connectors 

and real number signal models were used in this project as the library lacked models relating to 

concentration flows. [1] 
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2.5.1 Workspace 

 

Figure 2: Overview of the Modelon Impact interface 

The Impact workspace consists mainly of three parts (see figure 2): the workspace itself (mid-

dle), the library (left) and the model properties (right). In the workspace area one can either 

enter the current sub-model and code its structure, for example how the pump should work, or 

one can connect sub-models together by dragging them from the library onto the workspace 

and then click and drag the mouse cursor to connect models. The library contains both user-

created models and pre-made models by Modelon. The right side shows the properties of the 

currently selected model. This includes declared parameters, constants and variables that can 

easily be changed without going into the model code. This also makes models reusable as 

changing a value in a large connected model won’t change the code of the original sub-model. 

[2] 

2.5.2 Modes 

Impact can be further changed into different modes (see top middle in figure 2): model, exper-

imentation, and results. In model mode, see figure 3, one can change the code freely but needs 

to be recompiled after change. In experimentation mode, see figure 4, one can change parame-

ters without changing the model itself that could be useful for making a parameter sweep. Ex-

perimentation mode is also used to set the experiment time, the solver used, and tolerance used. 

Result mode, see figure 5, stores the simulation data for the current set of parameters and ex-

periment time. The resulting input and output of each sub-model over time is easily accessible 

by dragging and dropping the interesting component of the system. [2]  

The model is run by pressing the large ‘play’-button in the center right of the workspace. This 

starts the simulation, and is compiled if it is the first time, otherwise not. If the simulation is 

unsuccessful, you get an error message and the result up until failure is saved, for example if a 

physical value goes to infinity midway through the simulation time. If successful, the browser 

automatically changes to the results tab and the new results. [2] 
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Figure 3: View of a model in model mode. The 

parameters can be changed and would result in 

a change in the code. The orange dots indicates 

that a change would require a recompilation. 

Figure 4: View of a model in experimentation 

mode. Changing a parameter is saved as a 

separate experiment set without changing 

the model code. For each experiment set sev-

eral global parameters can be set such as 

time, interval size, solver type and tolerance. 

If left blank default values are used. 

Figure 5: View of a model in results 

mode. The compilation and simula-

tion log can be accessed here along 

with the resulting output for each 

variable and parameter in the model 

as a function of time. The output re-

sults can easily be dragged and 

dropped onto the workspace canvas 

for resulting graphs, exemplified 

several times later in this report. 
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2.5.3 Impact scripting 

 

Figure 6: Editing of model code for a UV detector in Modelon Impact. 

Each sub-model consists of two parts: the declaration section and equation section. In the dec-

laration section parts can be added that are necessary for the model. This can include parame-

ters, variables, inputs or outputs. One must define the type of parameters or variables, for ex-

ample if they are integers, reals, Booleans of strings. Variables are not given any value since 

they vary with the built-in variable time. Parameters must be given a value in the model, but 

can be changed in experiment mode without changing the original model. The equation section 

contains the equations used in the model, for example variables changing with the input signal 

or time. This section also assigns variable values to outputs if required. [2] In figure 6 a simple 

UV detector is modeled. Rows 2 and 3 declare the input and output of the model (a concentra-

tion inlet and outlet). The detector uses Beer-Lambert's law and thus the variable absorbance 

for each component is declared on rows 5-8, the light path length b as a parameter on row 10, 

the absorptivity for each component as parameters on rows 12-15, a variable array for storing 

all the absorbances on row 17 and a single-value variable for all absorbances on row 18. The 

equation section starts after row 20 with absorbance equations for each component on rows 21-

24, the assignment of the outflow concentrations on row 26, the detector values on row 27 and 

the summation of all absorbances on row 29. The model ends with annotation containing infor-

mation of the graphical representation layout in the workspace view. 
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2.5.4 Model connections 

A feature of Modelica, and thus Impact, is the usage of connectors where two models can be 

connected graphically with a simple connect-equation. This allows information between two or 

more models to be linked, leaving models more generalized and hopefully graphically easier to 

interpret.[4]  

2.5.5 Solvers 

For both Impact and previous implementations of the model, large systems of differential equa-

tions are required to be solved and thus solvers that are constructed for these purposes are used. 

In the MatLab model the ode15s solver is used which is a stiff multistep variable-step variable 

order ordinary differential equation solver based on the numerical differentiation formulas. In 

Modelon Impact the default CVode solver is used which is a stiff and non-stiff multistep vari-

able-step variable order ordinary differential equation solver. Both solvers include the back-

wards differentiation formulas. CVode have a default relative tolerance of 1e-6 and ode15s is 

using a set relative tolerance of 1e-6. [5][6] 

3 Material and method 

3.1 The target model 

This project is based on a project from the course Process Simulation, KETN01, at Lund Uni-

versity, where a simulation of a porous packed bed adsorption chromatography column was 

done. This was previously done in MatLab, but has since moved to Python. All reference data 

used is the same from this previous sub-project and found in Appendix A. The complete old 

model code from MatLab can be found in appendix B. 

The model is a heterogeneous porous packed bed model with adsorption. The component bal-

ance for each soluble component in the mobile phase is: 

 
𝜕𝑐𝑖

𝜕𝑡
= 𝐷𝑎𝑥

𝜕2𝑐𝑖

𝜕𝑧2 −
𝑣

𝜀

𝜕𝑐𝑖

𝜕𝑧
−

1−𝜀𝑐

𝜀
𝑟𝑖 (1) 

Where  𝐷𝑎𝑥 =
𝐿∗𝐷𝑝

𝑃𝑒𝑐
  (2) 

and  𝜀 = 𝜀𝑐 + (1 − 𝜀𝑐)𝜀𝑝   (3) 

The component balance for each soluble component in the stationary phase is:  

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑟𝑖  (4) 

For active sites occupied and available the Langmuir general competitive adsorption was used: 

 𝑟𝑖 = 𝑘𝑘𝑖𝑛,𝑖(𝐻𝑖 ∗ 𝑐𝑖 (1 − ∑
𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 ) − 𝑞𝑖 (5) 

With Henry’s modified equation  𝐻𝑖 = 𝐻0,𝑖 ∗ 𝑐𝑠,𝑗
−𝛽𝑖 (6) 

The boundary conditions with Dirichlet at the inlet and von Neumann at the outlet and thus:  
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 𝑐𝑖(𝑡 ≤ 0, 𝐿) = 𝑐𝑖,𝑖𝑛  (7) 

 𝑐𝑖(𝑡 > 0, 𝐿) = 0   (8) 

 
𝜕𝑐(𝑡,𝐿)

𝜕𝑧
=

𝜕𝑐𝑠(𝑡,𝐿)

𝜕𝑧
= 0 (9) 

The initial values are:  

 𝑐𝑖(0, 𝑧) = 0 (10) 

 𝑞𝑖(0, 𝑧) = 0 (11) 

 𝑐𝑠(0, 𝑧) = 𝑐𝐵𝑢𝑓𝑓𝑒𝑟 𝐴 (12) 

The column must be discretized for the solvers before running the simulations. The discretiza-

tion was derived from FVMtools, and similar to earlier simulation in MatLab a 2-point back-

wards approximation was used for the first derivative and a 3-point central approximation for 

the second derivative in equation 1. The discretizations and their derivation is found in Appen-

dix C. 

3.1.1 Assumptions 

The following assumptions are made to make the equations used and simulations more man-

ageable: 

• The mobile phase is incompressible and has both constant density and velocity. 

• Salt does not adsorb or desorb onto the column. 

• Convection only occurs in the inlet flow direction. 

• Dispersion occurs in all directions. 

• The mobile phase can only occupy the pores in the particles and the column void. 

• Constant temperature that results in constant 𝐷𝑎𝑥. 

3.2 Model implementation 

Since MatLab is different from Modelica syntax, the implementation of the model is done in a 

step-wise manner. With each successful implementation and simulation, complexity is added 

until a complete model is implemented. CVode is used as a solver in Impact and a relative 

tolerance of 1e-6. While Impact simulates in seconds by default, this is converted into column 

volumes, CV, and used as timescale. 

3.2.1 Small simplified tank series 

The first step into Modelon Impact and implementing the model would be thought of as a small 

tank series instead of a discretization of a column. The following component balance over each 

tank is: 

 𝐴𝑐𝑘 = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝑃𝑟𝑜𝑑 (13) 

 
𝜕𝑉𝑐

𝜕𝑡
= 𝐹𝑐0 − 𝐹𝑐𝑖 + 𝑉𝑖𝑟𝑖,𝑉 (14) 

 
𝜕𝑐

𝜕𝑡
=

𝐹

𝑉
(𝑐𝑖−1 − 𝑐𝑖) +

1−𝜀

𝜀
𝑟𝑖 (15) 
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𝜕𝑞

𝜕𝑡
= 𝑟𝑖 = 𝑘𝑘𝑖𝑛 (𝐻 ∗ 𝑐 (1 −

𝑞𝑖

𝑞𝑚𝑎𝑥
) − 𝑞𝑖) (16) 

The amount of tanks (partitions) is kept low at four. Only one component in the feed stream 

will be simulated as a short pulse of 1 g/L for 0.25 CV. Other relevant data that was used is 

found in Appendix A where the sole component is component A. Simulation time is 5 CV. 

Henry’s constant, contrary to equation 6, is kept constant since no salt is included yet. 

3.2.2 Addition of salt gradient and system phases 

The second step of implementation is the addition of salt as a separate component. Since the 

assumption is that salt neither absorb nor desorb onto the stationary phase, 𝑟𝑠 = 0, makes the 

corresponding component balance simplified, see equation 15. With salt added to the model, 

Henry’s modified equation, equation 6, is included in the code. The amount of partitions N is 

increased to 50. 

The salt requires two buffer solutions at 0.05 and 0.25 g/L in which a gradient will be con-

structed. The system will be split into four phases: a load phase where the feed is fed into the 

column, a short wash phase where a low salt concentration flows and start to wash out the 

adsorbed component, a gradient phase where the salt concentration gradually increases over 

time and a final phase where the max buffer concentration flush out the remaining component 

in the column. These phases dictate the inlet flow to the column with sample feed only happen-

ing in the beginning and is followed by a constant salt flow. The salt concentration inlet and 

gradient are dictated with if-equations similar to the MatLab code, see Appendix B. 

3.2.3 Multiple components, discretization and improved model implementation 

To inch further towards the complete model implementation, multiple components are added. 

The data for each component used are found in Appendix A and all the equations 1-12 is being 

implemented. As for discretization a 3-point central approximation is used for both the first and 

second order derivative. The number of partitions are further increased to 100. 

3.2.4 Further improving discretization and final implementation 

As a result of the implementation in 3.2.3, oscillations of values were detected at the front of 

the concentration curves and thus was decided to change to a 2-point backwards approximation 

for the first order derivative. This adjustment finalized the implementation of the MatLab 

model. 

3.3 Model comparison 

With a complete model implementation, both will be simulated using the same values as found 

in appendix A. The models will be compared against each other and against a real experimental 

run, however the internal comparison between models is the focus. Three comparisons will be 

done, using different load times and initial buffer concentration for the salt gradient. For the 

MatLab model, a tic and toc function will be added at the start and end of the script to produce 

a simulation time. Three simulations for each MatLab simulation are made to make an average.  

3.4 Model separation 

With Impact being a tool for reusable models in a larger system structure, the complete model 

implementation will be separated in a similar step-wise manner to smaller individual sub-mod-

els. The two parts that are in the complete model are the pump and the column. 
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3.4.1 Pump and inlet feeds 

The code calculating the salt gradient that were added in 3.2.2 will be separated into a pump 

model. This will also contain all the code for the different phases and feed fractions of each 

component. To more resemble the setup in figure 1, three real input signals representing feed 

sample and buffers are added as separate models. The pump model will thus have three input 

signals and one output vector containing the concentrations of each component. The column 

model is adjusted to accommodate for the input vector containing the concentrations. 

3.5 Addition of model elements 

To mimic the physical model in figure 1, additional models were made. These include a mixing 

tank, a UV detector, tubing, valves and disentangled system data. The system data are models 

that control the pump or valves that would otherwise be tied to a computer, and component and 

feed data that is specific for the experiment. 

3.5.1 Mixing, tubing and detector 

A mixing tank model is created to separate the calculation of the feed fractions. The information 

containing the feed fraction data is further separated into a data box that will be connected to 

the mixing model. 

Since tubes connect all the parts in figure 1, a general tubing model is created to facilitate the 

transport between each other model. They would only count as long empty space and the con-

centration profiles are greatly simplified to: 

 
𝜕𝑐𝑖

𝜕𝑡
= −

𝑣

𝑒

𝜕𝑐𝑖

𝜕𝑧
= −

𝑣

𝑒

2𝑐𝑖−2𝑐𝑖−1

2ℎ
 (17) 

The first order approximation is 2-point backwards and the discretization size for the tubes is 

kept low at N=10. 

A simple detector model is added using Beer-Lambert's law to calculate the absorbance of each 

component. An additional variable is added where all the absorbance profiles are added together 

to produce a more accurate chromatogram. 

3.5.2 Valves and control systems 

Valves and disentangled control system are created last to set up for more configurability. The 

valves will be simple models with input vectors and output vectors that change with if-equations 

controlled by the control systems.  

The control systems do not contain any equations but only the control parameters that will be 

used by other models throughout the system. They are all disassociated from all other models 

but can be connected using dot-notation. The pump controls contain the phase times and salt 

gradient information. The valve controls contain valve position timings. Flow system contains 

the flow throughout the system. Feed composition contains the feed fractions. Component data 

contains the parameters used in the column and the absorptivity in the detector. 

3.6 Setup variations 

With all the parts in figure 1 created as separate models, different setups are now made availa-

ble. 
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3.6.1 Recirculation 

During recirculation a pooled sample of the first column passthrough is looped around and back 

to the column. The valve switching would be based of a test simulation and observing the chro-

matogram from the UV detector for a suitable time interval. 

With the pooled sample separated, a new model named delay_pool_sample is added in which 

the user can define if the recirculated flow shall be unchanged, and thus separated going into 

the column again, or well mixed, going into the column as a pulse similar to the first feed 

injection. A system of integrators is added to determine the new fractions in the pooled sample 

and have to be manually added into delay_pool_sample. 

To reduce the number of models in the workspace additional code is added to the pump to 

produce a second gradient during the recirculation. The if-equation determining the salt con-

centration gets additional conditions to determine when the recirculation occurs and corre-

sponding control parameters are added to the pump controller. 

3.6.2 Two columns 

As a result of the recirculation configuration the two-column system looks incredibly similar. 

The second column has changed internal parameters using the data from another sub-project, 

see Appendix D. With the results from 3.6.1, the system of integrators was deemed superfluous 

and removed to improve simulation time. 

4 Results 

4.1 Small simplified tank series 

 

Figure 7: The concentration profile of each of the four tanks over time. A concentration pulse 

is simulated in the first tank and is dispersed over time in the tank series. 

 

Figure 8: Code describing the general balance over a tank. 
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The first complete step-wise simulation was a tank series with four tanks and only a single 

component. The small concentration pulse can be seen in figure 7 as an early spike in line c[1] 

and then declines over time. Likewise, one can see that with each tank, the concentration tends 

to reach its highest peak early and then decline over time. This gives an indication of a success-

ful first implementation. Simulation code for a general tank is seen in figure 8. 

4.2 Addition of salt gradient and system phases 

 

Figure 9: Concentration profile over time in five different partitions in the simulation series: 

1st, 10th, 20th, 40th and 50th partition. 

 

 

Figure 10: The salt concentration profile over time in five different partitions in the simulation 

series: 1st, 10th, 20th, 40th and 50th partition. 
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Figure 11: Part of code for simulating the concentration profiles in tanks 2 to N. 

 

Figure 12: The code for simulating the salt gradient. 

Looking at figure 9 and 10, the breakthrough curves for the simulated component and salt con-

centrations is different parts of the column and behave as expected. The phases of the salt gra-

dient can be seen best at the line marked cS[1] and the expected dispersion of the curve is seen 

over time and between each partition. Part of the code for simulation is seen in figure 11 and 

12. The component balances are still simplified in their structure but the salt gradient is fully 

implemented at this step compared to MatLab code in appendix B. 

4.3 Multiple components, discretization and improved model implementa-

tion 

 

Figure 13: The concentration profiles over time for the salt and four components at the outlet 

of the column. 
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Figure 14: Part of code for simulating the concentration profiles in tanks 2 to N-1. 

In this step the model was further implemented with the diffusion, convection and adsorption 

terms, a discretization of the first and second order derivative was introduced and multiple 

(four) components in the feed. While figure 13 looks promising, the use of a 3-point central 

approximation for the first order derivative as seen in figure 14, shows oscillations at the curve 

fronts, especially visible on the salt concentration curve around 52 CV in figure 13. The com-

ponent separations are clearly visible and separated as expected based on previous simulations 

in MatLab. 

4.4 Further improving discretization and final implementation 

 

Figure 15: The concentration profiles over time for the salt and four components at the outlet 

of the column.  
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Figure 16: Code for the first partition in the column. Only showing the salt and one component. 

 

Figure 17: Code for the second to (N-1)th partition of the column. Only showing the salt and 

one component. 

 

Figure 18: Code for the final partition of the column. Only showing the salt and one component. 

The final implementation was a changed discretization to the 2-point backwards approximation 

for the first order derivative and removed the previously seen oscillations, compare figure 13 

and 15. The equation code for salt and one component are seen in figures 16-18, showing the 

first partition (inlet of the column), a general mid partition (middle of the column) and the Nth 

partition (outlet of the column). The result is now an identical implementation of the MatLab 

model into Impact. 
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4.5 Identical simulations in MatLab and Impact 

 

Figure 19.1: Comparison graph between experimental data, Impact model and MatLab model 

showing both the salt concentration and the cumulative concentration of the individual compo-

nent concentrations. 

 

Figure 19.2: Zoomed in part of figure 19.1 highlighting a difference between simulations. 



17 

 

 

Figure 20.1: Comparison graph between experimental data, Impact model and MatLab model 

showing both the salt concentration and the cumulative concentration of the individual compo-

nent concentrations 

 

Figure 20.2: Zoomed in part of figure 20.1 highlighting a difference between simulations. 
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Figure 21.1: Comparison graph between experimental data, Impact model and MatLab model 

showing both the salt concentration and the cumulative concentration of the individual compo-

nent concentrations 

 

Figure 21.2: Zoomed in part of figure 21.1 highlighting a difference between simulations. 

With the model implementation into Impact complete, identical simulations between Impact 

and MatLab could be done. In figures 19.1, 20.1 and 21.1, three different scenarios were run 

with varying load times of gradients: one with low load time and gradient percentage, one with 

low load time and high gradient percentage and one with high load time and low gradient per-

centage. Both Impact and MatLab were close to the experimental data, but since the component 

parameters are technically unknown the results are expectedly different.  

  



19 

 

Table 4: Simulation time in seconds for each environment and their corresponding load time 

and gradient percentage.  

Simulation Low load 

Low gradient 

Low load 

High gradient 

High load 

Low gradient 

1 (MatLab) 0.9606 s 0.9870 s 1.3454 s 

2 (MatLab) 0.9470 s 1.2232 s 2.7928 s 

3 (MatLab) 0.9279 s 1.6772 s 2.7429 s 

Impact 2.9075 s 2.7529 s 4.8418 s 

 

The simulations times for the results in figures 19.1, 20.1 and 21.1 are found in table 1. Impact 

had a longer simulation time during all tests but were consistently around the same time (not 

shown) while MatLab exhibit a larger interval of required time, especially at high load.   

There are some visual differences between the two simulated models that are highlighted in 

figures 19.2, 20.2 and 21.2. Both simulations are most of the time incredibly accurate between 

each other but at large changes in the concentration derivatives and the higher the feed load is 

where the largest change can be observed, as seen in figure 21.2. Both models use a variable 

step size solver, with Impact resulting in 506 steps and 2523 steps in MatLab for the simulation 

in figure 21.1. Forcing the Impact solver to take close to as many steps at MatLab did not change 

the results. 

4.6 Separation of pump into a new model and connection 

 

Figure 22: Schematics for the first model separation, separating the pump, buffer and sample 

from the rest of the model. The concentration profiles for salt and components at the column 

outlet are simulated and are identical to figure 15. 

The first step of separating the model was lifting out “the pump code” into its own model. A 

vector output connector on the pump model was added that would contain the salt concentration 

and the feed concentrations. A corresponding vector input connector on the remainder of the 

model was added and the code was changed to adhere to the new model structure. To further 

generalize the new pump model, three real value input connectors were added to correspond to 

the bottle containing the sample feed and the two different buffers. These were in turn connected 

to single real output blocks and connected to the pump. The complete system and with a simu-

lation result is shown in figure 22. The simulation produced an identical result to that of the 

unseparated model as previously seen in figure 15. 
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4.7 Addition of mixing, tubing and detector 

 

Figure 23: Schematics over a more generalized system. Mixing tank, a separate composition 

data box containing feed fractions, a tube for liquid transportation and a UV detector are con-

structed and connected using vector connectors. The concentration profiles for salt and com-

ponents at the column outlet are simulated and seen on the right. 

The mixing tank, data box, tube and UV detector models were implemented smoothly and were 

all connected using Modelicas vector connectors as shown in figure 23. The simulation contin-

ued to work as intended, with a slight change in the behavior of the concentration profiles. This 

was expected because of the added tubing which dispersed the flow slightly before entering the 

column simulation in whole_model. The composition data box worked as intended, but with the 

added vector connector the model were not as generalized as it could further be and were later 

solved in 4.8. 
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4.8 Addition of valves and separate control systems 

 

Figure 24: Schematics for a fully separated model with the inclusion of separate controllers, 

tubing, detector and valves. A concentration profile for all components in the column outflow 

is also pictured.  

This final model schematics shown in figure 24 resembles the one shown in figure 1 with a few 

differences: the inlet valve is part of the pump model and the column flow does not go back 

into the column valve. The first difference was deemed mathematically simpler and thus kept 

pump and injection valve as one model. The second difference could have been connected back 

to the column valve, but deemed redundant since the flow would be led towards the detector 

anyways. 

The control systems were all disentangled from the other models that now used dot-notation to 

import the parameters used throughout the system. This improved the useability of the system 

as parameter were kept at intuitive places. While the simulation is continuedly successful, the 

increasing amount of tubing in the model start to become more evident with the widening of 

peaks and longer time for the breakthrough curve peak to be reached.  



22 

 

4.9 Recirculation 

 

Figure 25: Schematics over the recirculation model. A pooled sample is separated at ‘valve3’ 

and fed back to ‘valve’. Depending if the recirculated flow would be fully mixed or as separated 

as the outflow ‘valve3’, an additional model ‘delay_pool_sample’ is introduced. Alongside the 

integrators and the model ‘new_feed_composition’ the outflow from ‘delay_pool_sample’ can 

be determined. A separate column for recirculation is used due to simulation difficulties. 
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Figure 26: The recirculated pooled sample before recirculating into the column again. One is 

the unmixed pool sample directly from the first column and one is a well-mixed feed pulse. 

 

Figure 27: The recirculated pooled sample after recirculating into the column again. One is 

the unmixed pool sample directly from the first column and one is a well-mixed feed pulse, 

yielding identical results. 

With the introduction of recirculation some modifications had to be made. At outlet valve 

valve3 in figure 25, there is a change of flows depending on the pooling of the feed. The valve 

can either be set to switch flow paths depending on time instructions or a UV cutoff. Because 

UV would indiscriminate between the different component and thus unhelpful for pooling of a 
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certain sample, the time instructions were used. The times for pooling were determined by run-

ning the setup once, look at the chromatogram and decide the start and stop times from there. 

To verify that a well-mixed pooled stream would matter or not, an additional system were cre-

ated. These consisted of integrators that would calculate the fraction of each component in the 

pooled stream and stored in the new model new_feed_composition, as seen at the bottom of 

figure 25. Another new model, delay_pool_sample were also created to test this new system 

that would use either the unmodified pooled stream or create a new stream based on the frac-

tions in new_feed_composition. The looped stream was also delayed to ensure the first run-

through of the column is complete. The unchanged and the well-mixed recircled streams in the 

inlet of the second (recirculation) column can be seen in figure 26 and the outlet streams in 

figure 27. In figure 26, the profiles are very different, but as seen in figure 27 this new system 

added nothing but extra manual work. 

Because Modelica and Impact does not tolerate variable overlap, the recirculated stream had to 

be fed through a separate column. All the parameters between the column models were kept the 

same to resemble a recirculation model. 

4.10 Two columns 

 

Figure 28: Schematics for a two column setup. 
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Figure 29: The concentration profiles over time for the salt and four components at the outlet 

of the first column.  

 

Figure 30: The pooled partition flowing out from valve3 (or ov) based on the profiles in the UV 

detector between 25 and 42.5 CV. 
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Figure 31: The concentration profiles over time for the four components at the outlet of the 

second column. Since the pool almost exclusively contained to components, component A and 

D are almost zero. 

The two column schematic is similar to the recirculation as seen in figure 28. The de-

lay_pool_sample model, new_feed_composition model with its surrounding integrators proved 

to be useless and removed. Because the tube model had been shown to work as intended, the 

amount were reduced to one in this system to makes is more legible. 

The second column used slightly different parameters and were based on another sub-projects 

data found in Appendix D. The first column produced the concentration profiles in figure 29 

and were pooled between 25 and 42.5 CV as seen in figure 30. The pooled stream was led 

through the second column and produced the separation seen in figure 31. While the stop time 

for pooling could have been chosen earlier for no component B in the stream, that would have 

resulted in loss of component C. A new pool can now be chosen between 60 and 93 CV for 

almost no loss of component C. 

5 Discussion 

The implementation had its ups and down. While the step-wise implementation was a wise 

choice there arose some confusions regarding simulation time. The previous project in MatLab 

simulated time in CV, which in contrast was done in seconds by default with Impacts built-in 

time variable. This had to be converted into CV each time an equation was based on time. This, 

in turn, revealed previously unnoticed errors in the MatLab model, where some parameters 

were expressed in time but had yet to be converted into CV. These errors and complications 

came to light after the full implementation had been done in results 4.4. When the comparison 

between the two models were done there were still differences and the hunt for errors began. 

The correct implementation is the only visible in Results 4.5 and the code were retroactively 

changed in previous Impact models to accurately reflect a correct simulation. 
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The simulation in MatLab and Impact are both near identical as can be seen in figures under 

Results 4.5, but there were some slight differences when zoomed in. These differences became 

more pronounced at high load times or with a high salt derivative. A possible solution could be 

the differences between the step-size between the solvers and the amount of steps taken. 

MatLab took between 2000-5000 steps for its simulation while Impact only took around 500 

steps. 

The experimental data were much different from the simulations, but no larger meaning should 

be considered here. The data provided for the sub-projects in Process Simulation are only ap-

proximative and mostly illustrative for the purposes of the exercise. 

A big hurdle was the solution to the recirculation implementation. Looping back a pooled sam-

ple proved difficult since the pooled sample returned back to the original loop before the first 

pass-through had finished. I found the easiest solution to be the addition of an identical column 

next to the original, one taking the first separation and the other taking the pooled sample. At 

first, a second pump had to be installed in order to generate a new gradient for the second 

column but eventually the pump was modified to accommodate for a recirculating feed. This 

solution with two columns meant that recirculation and two columns were more or less the same 

only that the second columns parameters were changed between the setups. A possible solution 

might have been to further develop the delay_pool_sample model and make the column model 

wait for the delayed sample to enter. 

One aspiration was to make the amount of components in the feed as general as possible, uti-

lizing arrays to better store variables and parameters. Two things were detrimental to this suc-

cess. First were the vector connectors in Impact. The thought was to have an array generated 

based on parameter input (however many components were in the feed) and send the arrays 

throughout the system. This would result in many other arrays being required to be created, 

most of which would be empty. Second was the requirement to define many more components 

in advance. Since the parameters surrounding the components are predetermined that would 

require them to be defined in the code and unless they were used they would not be anything 

more than superfluous code. Both problems could surely be solved with time, but that might 

have made the code more illegible. 

Modelon Impact is a powerful tool more than capable to simulate chromatographic processes. 

While this has been a relatively simple model implementation with a couple of components the 

perks of simulation is not obvious. The simulation time between MatLab and Impact were in 

most cases in favor of MatLab with around 1-3 second instead of Impacts 2-5 seconds. But this 

hinges on the use of sparse matrices in MatLab, which without would skyrocket the simulation 

time. Impact flattens the model and reduces superfluous code for simulating. What could prove 

beneficial is an increasing complexity of the model without the assumptions that might add 

many other differential equations for both systems and simulation time. 

There are still untapped aspects of Modelica there were not attempted during this thesis project. 

One such aspect is the inStream operator that is designed to numerically describe quantities 

carried by matter flow. While the simulation might have been improved with a proper imple-

mentation of in the inStream operator, the simulation between the old code and this new imple-

mentation might become so different it would have been difficult to decern which simulation is 

preferred. If the aim of the thesis would have been to most accurately simulate a real concen-

tration profile then inStream might have been a better option. This would probably also require 

less assumptions and use more complex domain equations. 
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The experiment mode is something that was rarely used during this thesis project. Since the 

mode is better tailored to test different parameters without changing the model code, it would 

be better suited for making parameter sweeps and find the best curve fit. 

6 Conclusion 

The overall implementation of the MatLab model into Impact went well. Some retroactive cor-

rections had to be implemented into the MatLab code, discovered by simulating the two models 

and comparing them side by side. While the simulations are not exactly the same as evident in 

figures 19.2, 20.2 and 21.2, the majority of the curve is spot on and works without using sparse 

matrices. The separation of the model had varying results, working well in the end but have to 

accommodate for many different cases. Problem with reuse of column during recirculation 

make some cases maybe redundant, since it looks identical to the two-column setup, but as long 

as the parameters are correct then it does not really matter if one or two column models are 

simulated. Impact is indeed capable of chromatographic simulations and still have potential for 

further development, both by aspiring master thesis student and Modelon themselves that could 

implement an available library to all. 

  



29 

 

7 References 

1. Modelon, What is Modelon Impact, (2022), accessed 2022-06-13 at:  

<https://help.modelon.com/latest/home/what_is_modelon_impact/> 

2. Modelon, Modelon Impact overview, (2022), accessed 2022-06-13 at:  

<https://help.modelon.com/latest/application_overview/application_overview_long/> 

3. Harrison R. Todd P. Rudge S. Petrides D., BIOSEPARATIONS SCIENCE AND ENGI-

NEERING, second edition, (2015), pp. 245-247 

4. Modelica Association (2021), Modelica® – A Unified Object-Oriented Language for 

Systems Modeling Language Specification, accessed 2022-06-13 at:  

<https://modelica.org/documents/MLS.pdf> 

5. MathWorks Help Center, Ode15s, accessed 2022-06-13 at:  

<https://se.mathworks.com/help/matlab/ref/ode15s.html?s_tid=doc_ta> 

6. Andersson C. Führer C. Åkesson J., Assimulo: A unified framework for ODE solvers, 

(2015), accessed 2022-06-13 at <https://jmodelica.org/assimulo/ODE_CVode.html> 

 

  

https://help.modelon.com/latest/home/what_is_modelon_impact/
https://help.modelon.com/latest/application_overview/application_overview_long/
https://modelica.org/documents/MLS.pdf


30 

 

8 Appendix 

8.1 Appendix A – Data from case study 2A 
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8.2 Appendix B – MatLab code 
p.Bstart = 0.1;          %   0, 0.1, 0.2, 0.3, 0.4, 0.5   vid tstart=0.5 
tstart = -2.0;           %-0.5,  -1,  -2,  -5,  -10       vid Bstart=0.1 
p.time.Wash = 1; 
p.time.GradL = 50; 
p.time.Grad = p.time.GradL + p.time.Wash; 
p.col.Flow =30/60;         %CV/min 

 
%mesh and derivative approximation 
N = 100; 
A1type = '2pb'; 
A2type = '3pc'; 

 
%Component data    
p.qmax = 70; 

 
%Data enligt angivelse 2A 
p.A.H0 = 0.6e-4;  
p.A.beta = 4.37;  
p.A.kkin = 300/60/p.col.Flow;    
p.B.H0 = 8.5e-4; 
p.B.beta = 5.17; 
p.B.kkin = 75/60/p.col.Flow; 
p.C.H0 = 2.97e-4; 
p.C.beta = 5.14; 
p.C.kkin = 90/60/p.col.Flow; 
p.D.H0 = 9e-4; 
p.D.beta = 5.93; 
p.D.kkin = 42/60/p.col.Flow; 

 
%Packing parameters 
p.pack.ec = 0.45;                                
p.pack.ep = 0.57;                                
p.pack.Pe = 0.5;                                 
p.e = p.pack.ec + (1-p.pack.ec)*p.pack.ep;       

 
%exp conditions - pH 8 
p.col.BufferA = 0.05;   
p.col.BufferB = 0.25;  
p.col.FeedDil = 0.05;   

 
%Feed composition 
p.col.FeedPep = 5;    
p.FeedCompA = 0.299; 
p.FeedCompB = 0.535; 
p.FeedCompC = 0.061; 
p.FeedCompD = 0.105; 

 
p.col.L = 10e-2;              
p.col.v = 5e-2/p.col.Flow;         
p.col.dp = 30e-6;  

 
p.Dax = p.col.v * p.col.dp / p.pack.Pe; 
h = p.col.L/N; 
p.k_lut = 0.5/50 * 1.0; 
p.lang = (1-p.pack.ec)/p.e; 
p.FeA = p.col.v/p.e; 

 
T_pre_matris = toc(T_start) 

 
%Matriser 
[A1,A1f]=FVMdisc1st(N,h,A1type,'sparse');       
[A2,A2f]=FVMdisc2nd(N,h,A2type,'sparse');     
[B1,B0]=FVMdiscBV(N,h,[0 1],[1 -1; 0 0],'sparse'); 

 
%Tot-matriser 
AT = p.Dax*(A2 + A2f*B1) - p.FeA*(A1+A1f*B1); 
BT = p.Dax*A2f*B0 - p.FeA*A1f*B0; 

 
%Sparse Jacobian 
S = FVM_Jpattern(@(t,y) colmodel(t,y,N,p,AT,BT),9*N); 
option = odeset('JPattern',S,'reltol',1e-6); 

 
%Initial values 
yinit = [0.05*ones(N,1);zeros(8*N,1)]; 
tend = p.time.Grad + 5; 
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tspan = [tstart 56]; 

 
T_pre_solve = toc(T_start) 

 
% Solve 
[t,y] = ode15s(@ (t,y) colmodel(t,y,N,p,AT,BT),tspan,yinit,option); 
function dydt = colmodel(t,y,N,p,AT,BT) 
% Inputs 
cS = y(1:N); 
cA = y(N+(1:N)); 
cB = y(2*N+(1:N)); 
cC = y(3*N+(1:N)); 
cD = y(4*N+(1:N)); 
qA = y(5*N+(1:N)); 
qB = y(6*N+(1:N)); 
qC = y(7*N+(1:N)); 
qD = y(8*N+(1:N)); 

 
%Salt gradient 
if t < 0 
    s = p.col.FeedDil; 
    C = p.col.FeedPep; 
elseif t < p.time.Wash 
    s = p.col.BufferA; 
    C = 0; 
elseif t < p.time.Grad 
    k = (t-1)*p.k_lut + p.Bstart; 
    s = k*p.col.BufferB + (1-k)*p.col.BufferA; 
    C = 0; 
else 
    s = p.col.BufferB; 
    C = 0; 
end 
%Salt profile 
dcS = AT*cS+BT*s; 

 
%Concentration for each compound 
CAin = C * p.FeedCompA; %g/L 
CBin = C * p.FeedCompB; %g/L 
CCin = C * p.FeedCompC; %g/L 
CDin = C * p.FeedCompD; %g/L 

 
%Henry! 
HA = p.A.H0 * cS.^(-p.A.beta); 
HB = p.B.H0 * cS.^(-p.B.beta); 
HC = p.C.H0 * cS.^(-p.C.beta); 
HD = p.D.H0 * cS.^(-p.D.beta); 

 
%Rates 
qterm = (1-(qA+qB+qC+qD)./p.qmax); 
rA = p.A.kkin *(HA.*cA.*qterm-qA); 
rB = p.B.kkin *(HB.*cB.*qterm-qB); 
rC = p.C.kkin *(HC.*cC.*qterm-qC); 
rD = p.D.kkin *(HD.*cD.*qterm-qD); 

 

% Derivatives 
dcA = AT*cA+BT*CAin - p.lang * rA; 
dcB = AT*cB+BT*CBin - p.lang * rB; 
dcC = AT*cC+BT*CCin - p.lang * rC; 
dcD = AT*cD+BT*CDin - p.lang * rD; 

 
% Output 
dydt = [dcS;dcA;dcB;dcC;dcD;rA;rB;rC;rD]; 
end 
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8.3 Appendix C – Discretization 

2-point-backward approximation for the first derivative: 
𝑑𝑐

𝑑𝑧
=

𝑐𝑖−𝑐𝑖−1

ℎ
 

3-point-central approximation for the second derivative: 
𝜕2𝑐

𝜕𝑧2 =
𝑐𝑖+1−2𝑐𝑖+𝑐𝑖−1

ℎ2  

8.3.1 First partition 

𝑐|𝑧=0 = 𝑐𝑖𝑛 

𝑐0 + 𝑐1

2
= 𝑐𝑖𝑛 ⟺ 𝑐0 = 2𝑐𝑖𝑛 − 𝑐1 

𝑑𝑐1

𝑑𝑧
=

𝑐1 − 𝑐0

ℎ
=

𝑐1 − (2𝑐𝑖𝑛 − 𝑐1)

ℎ
=

2𝑐1 − 2𝑐𝑖𝑛

ℎ
 

𝜕2𝑐1

𝜕𝑧2
=

𝑐2 − 2𝑐1 + 𝑐0

ℎ2
=

𝑐2 − 2𝑐1 + (2𝑐𝑖𝑛 − 𝑐1)

ℎ2
=

𝑐2 − 3𝑐1 + 2𝑐𝑖𝑛

ℎ2
 

Thus… 

𝜕𝑐𝑠,1

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑠,2 − 3𝑐𝑠,1 + 2𝑐𝑠,𝑖𝑛)

ℎ2
−

𝑣

𝜀

(2𝑐𝑠,1 − 2𝑐𝑠,𝑖𝑛)

ℎ
  

𝜕𝑐𝑖,1

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑖,2 − 3𝑐𝑖,1 + 2𝑐𝑖,𝑖𝑛)

ℎ2
−

𝑣

𝜀

(2𝑐𝑖,1 − 2𝑐𝑖,𝑖𝑛)

ℎ
−

1 − 𝜀𝑐

𝜀
𝑟𝑖,1 

8.3.2 2 - Nth-1 partition 

𝜕𝑐𝑠,𝑗

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑠,𝑗+1 − 2𝑐𝑠,𝑗 + 𝑐𝑠,𝑗−1)

ℎ2
−

𝑣

𝜀

(𝑐𝑠,𝑗 − 𝑐𝑠,𝑗−1)

ℎ
  

𝜕𝑐𝑖,𝑗

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑖,𝑗+1 − 2𝑐𝑖,𝑗 + 𝑐𝑖,𝑗−1)

ℎ2
−

𝑣

𝜀

(𝑐𝑖,𝑗 − 𝑐𝑖,𝑗−1)

ℎ
−

1 − 𝜀𝑐

𝜀
𝑟𝑖,𝑗 

8.3.3 Last partition 

𝑐|𝑧>𝐿 = 𝑐𝑁 

𝜕2𝑐𝑁

𝜕𝑧2
=

𝑐𝑁+1 − 2𝑐𝑁 + 𝑐𝑁−1

ℎ2
=

𝑐𝑁 − 2𝑐𝑁 + 𝑐𝑁−1

ℎ2
=

𝑐𝑁−1 − 𝑐𝑁

ℎ2
 

Thus… 

𝜕𝑐𝑠,𝑁

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑠,𝑁−1 − 𝑐𝑠,𝑁)

ℎ2
−

𝑣

𝜀

(𝑐𝑠,𝑁 − 𝑐𝑠,𝑁−1)

ℎ
  

𝜕𝑐𝑖,𝑁

𝜕𝑡
= 𝐷𝑎𝑥

(𝑐𝑖,𝑁−1 − 𝑐𝑖,𝑁)

ℎ2
−

𝑣

𝜀

(𝑐𝑖,𝑁 − 𝑐𝑖,𝑁−1)

ℎ
−

1 − 𝜀𝑐

𝜀
𝑟𝑖,𝑁 
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8.4 Appendix D – Data from case study 2B 

 

 

 

 


