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Abstract 
Fermentation is a process that utilizes live microorganisms to produce different biological prod-
ucts such as enzymes. The oxygen mass transfer rate is often the limiting factor in aerobic 
fermentations and thereby an important process parameter. The initial aim of this MSc thesis 
was therefore to develop a soft sensor for the volumetric oxygen mass transfer coefficient, kLa, 
in order to monitor it online in real time. However, the oscillation in the kLa estimation had to 
be reduced to get smoother plots by first filtering the process data. The soft sensor was finished 
at an early stage and the scope of the thesis project was therefore expanded.  

Previous studies have shown that kLa is dependent on the viscosity of the fermentation broth 
and that higher viscosities leads to lower values of kLa. It was therefore of interest to monitor 
the viscosity online as well, and to explore if it would be possible to use the viscosity for im-
plementations of new control concepts. The thesis further explored the relationship between the 
kLa and the viscosity, and investigateted if it would be possible to describe the viscosity as a 
function of the kLa using rearranged empirical correlations. The viscosity estimation was vali-
dated versus offline measurements and new parameter sets for the correlation were also created 
and evaluated. The investigation resulted in another soft sensor which estimated the viscosity 
online with a standard deviation of 0.09 Pa s. It should be noted that the dataset generated in 
this thesis was not ideal for parameter estimation due to low variance in the process variables. 
It should therefore be possible to improve the estimation further, for example using previous 
datasets with larger variance in the process variables.  

The substrate is fed in pulses instead of a continuous stream since previous studies have shown 
that this reduces the viscosity. The third objective of the thesis was therefore to explore how 
the viscosity was influenced by the changes is paus time between the pulses, i.e., the cycle time, 
and whether it would be possible to base new control concepts on this relationship. The final 
objective was to see if it was possible to correlate biomass concentration with rheology param-
eters including viscosity to explore the possibility of estimating the biomass from online process 
data. Both of these objectives were investigated but did not yield promising results since no 
clear correlations could be observed in either case. The relationship between viscosity and cycle 
time therefore needs to be investigated further before implementation of new control concepts. 
Further investigation of the relationship between biomass and rheology parameters is also 
needed to get a better insight in the processes. This could result in relevant insight in how the 
rheology of a specific host organism and process is correlated to the biomass. It does however 
seem unlikely that a general correlation could be found for any host organism and process.  

 

 

 

 





VII 

Sammanfattning 

Fermentering är en process som nyttjar levande mikroorganismer för att producera olika biolo-
giska produkter som t.ex. enzymer. Överföringen av syre är ofta den begränsande faktorn vid 
aeroba fermentationer och är därmed en viktig processparameter. Det initiala syftet med det här 
examensarbetet var därför att utveckla en sk. soft senor för det volymetriska massöverförings-
talet för syre, kLa, för att på så sätt övervaka denna online i realtid. Oscillationen i kLa- estime-
ringen måste dock reduceras för att få jämnare grafer genom att först filtrera processdatan. Soft 
sensorn färdigställdes i ett tidigt skede och således vidgades examensarbetets omfattning. 

Tidigare studier har visat att kLa är beroende av fermenteringsvätskans viskositet och att högre 
viskositeter leder till lägre värden på kLa. Det var därför av intresse att även övervaka viskosi-
teten online och att undersöka ifall det skulle vara möjligt att använda viskositeten för imple-
menteringar av nya kontroll- koncept. Vidare så undersöktes sambandet mellan kLa och visko-
siteten och ifall det skulle vara möjligt att beskriva viskositeten som en funktion av kLa med 
hjälp av omvända empiriska korrelationer. Viskositetsuppskattningen validerades sedan mot 
offlinemätningar. Nya parameterar till viskositets- korrelationen skapades och utvärderades 
också. Undersökningen resulterade i ytterligare en soft sensor som uppskattade viskositeten 
online med en standardavvikelse på 0,09 Pa s. Det bör dock noteras att datan som genererades 
i detta examensarbete inte var perfekt att basera en parameteruppskattning på, eftersom det var 
låg varians i processvariablerna. Det borde därför vara möjligt att förbättra uppskattningen yt-
terligare, till exempel genom att använda tidigare genererad data med större varians i process-
variablerna. 

Substratet tillförs fermentringen i pulser istället för i en kontinuerlig ström eftersom tidigare 
studier visat att detta skulle minska viskositeten. Det tredje syftet med examensarbetet var där-
för att utforska hur viskositeten påverkas av paustiden mellan pulserna och om det skulle vara 
möjligt att basera nya kontrollkoncept på detta samband. Det slutliga målet var att se om det 
var möjligt att korrelera koncentrationen av biomassa med reologiparametrar inklusive visko-
sitet, för att undersöka möjligheten att uppskatta biomassan från onlinedata. Båda dessa mål 
undersöktes men gav inga lovande resultat eftersom inga tydliga korrelationer kunde observeras 
i något av fallen. Förhållandet mellan viskositeten och paustiden behöver därför undersökas 
ytterligare innan nya kontrollkoncept kan implementeras. Ytterligare utredning av sambandet 
mellan biomassa och reologiparametrar behöver också göras för att få en bättre insikt i proces-
serna. Detta skulle kunna resultera i relevanta insikter i hur reologin hos en specifik mikroorg-
anism och process är korrelerad till biomassan. Det verkar dock osannolikt att en generell kor-
relation skulle kunna hittas för godtycklig mikroorganism och process. 





IX 

Popular Science Summary 
What if you could calculate different important process parameters in real time using data that 
are already being generated. Then you would not need to install new expensive intruments or 
waste time on labwork. It would also enable implementation of new control concepts. This MSc 
thesis project produced two new functions that does just that. 

Enzymes are a part of the solution in the sustainable transition, but there are many different 
paramaters to account for in production. They are produced industrially by live microorganisms 
that are cultivated in large fermentation tanks, where they float around in a liquid with different 
nutrients etc. Microorganims need oxygen just as humans, and air is therefore sparged into the 
tanks. The oxygen is transported from the air, to the liquid, and then to the microorganisms. 
This transport is crucial for the productivity of the process. A function which estimates the 
oxygen transport in real time was therefore created using different process data, enabling online 
monitoring of this important process parameter.  

However, the oxygen transport is affected by the thickness of the liquid. It is, for example, more 
difficult to sparge air through syrup than through water. Since you want to increase oxygen 
transport to maximize productivity, you also want the liquid to be as thin as possible. However, 
it is very difficult to measure the thickness of a liquid in real time. Different models which were 
compared to experimental data was therefore created, resulting in a function that actually can 
estimate the thickness of a liquid containing microorganisms. This important process parameter 
can therefore also be monitored online. 

With these two new functions which estimate oxygen transport and liquid thickness, Novo-
zymes now have two new tools which they can use to get a better understanding of their pro-
cesses. However, more research is required before implementation of new control concepts. 





XI 

Populärvetenskaplig sammanfattning 
Tänk om man kunde räkna ut olika viktiga processparametrar i realtid med hjälp av data som 
ändå redan genererats. Då hade man sluppit installera dyra instrument eller ödsla en massa tid 
på att stå i labbet. Det hade också möjliggjort införandet av nya kontrollkoncept. Det här exa-
mensarbetet resulterade i två nya funktioner som gör just detta. 

Enzymer är en del av lösningen i den hållbara omställningen, men det finns många olika pa-
ramterar att ta hänsyn till i tillverkningen. De produceras industriellt av mikroorganismer som 
odlas i stora jäskärl, där de flyter runt i en vätska med bl.a. olika näringsämnen. Mikroorgan-
ismer behöver syre precis som vi människor och därför bubblas luft in i jäskärlen. Syret trans-
porteras då från luften till vätskan och sedan till mikroorganismerna. Den här transporten är helt 
avgörande för processens produktivitet. Det kontruerades därför en funktion som uppskattar 
syretransporten i realtid med hjälp av olika mätdata. På så vis kan man enkelt övervaka denna 
viktiga processparameter.  

Syretransporten påverkas dock av hur trögflytande vätskan är. Det går t.ex. sämre att bubbla 
luft genom sirap än genom vatten. Eftersom man vill öka syretransporten för att maximera pro-
duktiviteten vill man samtidigt att vätskan ska vara så tunn som möjligt. Det är dock väldigt 
svårt att mäta hur trögflytande en vätska är i realtid. Därför konstruerades det olika modeller 
som jämfördes med expermintella data, vilket sedan resulterade i en funktion som i realtid fak-
tiskt kan uppskatta hur trögflytande en vätska med mikroorganismer är. Således kan nu även 
denna viktiga processparameter enkelt övervakas.  

Med hjälp av dessa två funktioner som uppskattar syretransport och hur trögflytande en vätska 
är, har Novozymes nu två nya verktyg som de kan använda för att få en bättre förståelse för 
sina processer. Mer forskning krävs dock innan nya kontrollkoncept kan införas.  





XIII 

Nomenclature 
Roman letters 

a Gas-liquid interfacial area per liquid volume. [m2/m3] 

a, b, c, K Parameters for the kLa-viscosity correlations.  

C Parameter for the kLa correlation without viscosity.  

Di  Impeller diameter. [m] 

DT Tank diameter. [m] 

F(α, P, N – P) 
Fischer’s F distribution with uncertainty 1 – α, number 
of parameters P, and N – P degrees of freedom. 

 

Fair Air flow rate. [m3 s-1] 

Fnormal Air flow rate at normal pressure and temperature. [NL min-1] 

 Inlet air flow rate. [m3 h-1] 

 Outlet air flow rate. [m3 h-1] 

g The acceleration of gravity [m s-2] 

HO Henrys constant for oxygen in water. [Pa m3 mol-1] 

J Jacobian matrix.  

JO 
Overall molar flux of oxygen from the gas bubble to the 
bulk liquid. 

[mol h-1 m-2] 

JO,G Molar flux of oxygen through the gas layer.  [mol h-1 m-2] 

JO,L Molar flux of oxygen through the liquid layer.  [mol h-1 m-2] 

kb, kpl, khb 
Rheology consistency index for the Bingham, Power law 
and Herschel–Bulkley model, respectively.  

 

kG Mass transfer coefficient through the gas layer. [mol Pa-1 h-1 m2] 

KL 
Overall mass transfer coefficient from the gas bubble to 
the bulk liquid. 

[m h-1] 

kL Mass transfer coefficient through the liquid layer. [m h-1] 

kLa Volumetric oxygen mass transfer coefficient.  [h-1] 



XIV 

ks 
Metzner and Otto’s shear rate constant = 11 throughout 
the thesis.  

 

m The weight of the fermentation broth. [kg] 

M(x,pi) 
Model response at any variable vector x with parame-
ters pi. 

 

N Number of experimental measurements.  

Ni Number of impellers.  

npl, nhb 
Rheology flow behaviour index for the Power law and  
Herschel–Bulkley model, respectively.  

 

P Power consumption. [kW] 

P Number of parameters.  

P/V Specific power consumption. [kW m-3] 

pinit Initial total pressure in the fermentor. [Pa] 

pnormal Normal pressure. Assumed to equal 101325. [Pa] 

pO Partial pressure of oxygen in the bulk gas phase. [Pa] 

 Initial partial pressure of oxygen in the bulk gas phase. [Pa] 

 Partial pressure of oxygen in the inlet bulk gas phase. [Pa] 

 Partial pressure of oxygen in the outlet bulk gas phase. [Pa] 

R Ideal gas constant. Approximated to 8.3145. [J mol-1 K-1] 

T Temperature in Kelvin inside the fermentor. [K] 

Tnormal Normal temperature, assumed to equal 298. [K] 

 Inlet temperature of air flow in Kelvin. [K] 

 Inlet temperature of air flow in Kelvin. [K] 

ug Superficial gas velocity. [m s-1] 

V Fermentation broth volume. [m3] 

X Biomass concentration. [g/L] 

xO 
Fraction of oxygen in the inlet air. Assumed to equal 
0.2095. 

 



XV 

 

Greek letters 

α 
The likelihood that the true population parameter lies 
outside the condidence interval. For 95% confidence, α = 
0.05. 

 

α, β Parameters for the kLa correlation without viscosity. [Pa] 

 Shear rate. [s-1] 

 Metzner and Otto’s effective shear rate. [s-1] 

μ Dynamic viscosity. [Pa s] 

μapp Apparent dynamic viscosity. [Pa s] 

 Online probe dynamic viscosity.  

 Mean online probe dynamic viscosity.  

 Mean offline apparent dynamic viscosity. [Pa s] 

 Normalized and scaled online probe dynamic viscosity [Pa s] 

π Mathematical constant Pi  

ρbroth 
Density of the fermentation broth. Assumed to equal 
1050. 

[kg m-3] 

σ 
Residual mean square standard deviation based on N – P  
degrees of freedom 

 

σp 
The standard deviation errors on pi, calculated as the 
root of the pcov diagonal. 

 

τ Shear stress. [Pa] 

τb, τpl, τhb 
Shear stresses for the Bingham, Power law and Her-
schel–Bulkley model, respectively.  

[Pa] 

τeff 
Effective shear stress, calculated using the effective shear 
rate and appropriate rheology model. 

[Pa] 

τ0 Critical shear stress. [Pa] 

τ0,b, τ0, hb 
Critical shear stresses for the Bingham and Herschel–
Bulkley model, respectively.  

[Pa] 
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Abbrivations 

Correlation matrix for the parameter estimation  

CDW Cell dry weight. [g L-1] 

CWW Cell wet weight. [g L-1] 

DO Dissolved oxygen concentration in the bulk. [mol m-3] or [%] 

DO* Saturation concentration of dissolved oxygen corre-
sponding to the bulk gas phase. 

[mol m-3] 

Saturation concentration of dissolved oxygen corre-
sponding to the bulk gas phase in the bottom of the fer-
mentor at the inlet. 

[mol m-3] 

Saturation concentration of dissolved oxygen corre-
sponding to the bulk gas phase in the top of the fermen-
tor at the outlet. 

[mol m-3] 

Initial saturation concentration of dissolved oxygen cor-
responding to the bulk gas phase. Used as 100% refer-
ence. 

[mol m-3] 

Dissolved oxygen tension  

pcov 
The estimated covariance matrix generated using the 
curve_fit method from scipy 

 

OTR Volumetric oxygen transfer rate. [mol h-1 m-3]  

OUR Volumetric oxygen uptake rate. [mol h-1 m-3] 

trf Trust region reflective non-linear regression method.  
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1 Introduction 

1.1 Overview 
Enzymes are nature’s own catalysts, and they are at work everywhere. Novozymes A/S is the 
world’s largest producer of industrial enzymes, and they help companies develop more sustain-
able and environmentally friendly solutions. The Fermentation Pilot Plant in Bagsværd is a 
large facility responsible for process development for different microorganism strains entering 
production, where the goal is to develop and optimize the operating conditions for the specific 
strain and production site. Novozymes wishes to utilize models online during the process de-
velopment, to provide an opportunity to monitor parameters that cannot be measured online, 
i.e., soft sensors, and to allow for implementation of new control concepts. 

This MSc thesis explores the relationship between the volumetric oxygen mass transfer coeffi-
cient, kLa, and the viscosity of a fungal fermentation broth. Previous studies have shown that 
kLa is dependent on the geometry of the fermentor, the agitation intensity, the airflow but also 
the viscosity of the broth. The initial aim of the thesis was to implement a real time kLa calcu-
lation. This was achieved successfully in MATLAB at an early stage and the scope of the thesis 
was therefore expanded. Some of the fermentors have viscosity probes installed which measure 
viscosity online. However, these online probes are both expensive and sensitive to changes in 
agitator intensity, and they only show a relative viscosity. Today, Novozymes are only using 
the online measurements as an indication for the viscosity. This thesis explores the possibilities 
of implementing a soft sensor instead of online probes or offline measurements.  The idea for 
the soft sensor is to investigate if it is possible to take advantage of the correlation where kLa is 
dependent on viscosity and instead estimate the viscosity as a function of kLa, which could then 
be observed online throughout the fermentation. Different sets of fitting parameters, old and 
new, were compared to see which set gave the best estimation of the viscosity. It was also of 
interest to see what effect different feed cycle times, i.e., changes of the substrate feed pulse-
pause cycle times,  had on viscosity, biomass concentration and carbon effiency. Finally, the 
thesis explores if it is possible to estimate the biomass concentration using the rheological pa-
rameters or the estimated viscosity. 

1.2 Aims  
The thesis had four distinguishable aims: 

1. Create a soft sensor in python for the volumetric oxygen mass transfer coefficient, kLa. 
2. Estimate viscosity using empirical correlations from the literature and compare with 

offline measurements to evaluate if the estimation would be useful. Also explore the 
possibility of deriving new sets of parameters to improve the empirical correlation. If 
possible, create a soft sensor for the viscosity as well. 

3. Get a better understanding of the effect of substrate feed pulse-pause cycle time to lay 
the ground for future control concepts. 

4. Explore if it is possible to estimate biomass as a function of the rheology parameters or 
viscosity. 
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1.3 Outline and scope of the thesis 
This thesis was organized in the following way. 

Chapter 2 provides relevant background to oxygen mass transfer and viscosity so that the reader 
acquires sufficient knowledge. Most of the calculations are presented here as well. To keep the 
scope of the thesis at a manageable level, none of the statistics used were addressed in the 
background. Finally, the relationship between oxygen mass transfer and viscosity is established. 

Chapter 3 explores all the equipment used during this project. It also describes the experimental 
methods as well as how the different statistical methods are done. This chapter includes relevant 
statistics, for example that the curve_fit module from the Scipy package is used when perform-
ing non-linear regression analysis or how to calculate a confidence band. Calculations for the 
remaining variables in the different correlations not explored in the background are also in-
cluded in this chapter.  

Chapter 4 presents, compares and discusses the offline, online and estimated data. Plots are 
created to visualize the results and ease comprehension. Correlation matrices, confidence inter-
vals and confidence bands are also explored.  

Chapter 5 evaluates whether the four distinguishable aims were achieved or not. It also contains 
the final conclusions and recommendations for future work.  
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2 Background 

Fermentation is an industrial process which utilizes host cells to produce a product. The best 
known examples would be insulin production or ethanol in the production of beverages, but the 
possibilities are endless. Usually, the host cells are either bacteria or yeast, but fungi can also 
be used. Novozymes primarily produces industrial enzymes, and they are experts on fungal 
fermentations. There is a range of different fermentors available, but this thesis will only focus 
on aerated and agitated fermentors used in at Novozymes’s pilot plant in Bagsværd.  

2.1 General process description 
There are three main modes of operation for fermentors. The simplest is batch, where all the 
nutrients and the carbon source are added from the beginning. The fermentation then runs until 
the carbon source is depleted. The upsides are its simplicity and low risk of contamination due 
to the closed system. The disadvantages, on the other hand, are that it is inflexible, requiring 
long downtimes between the fermentations due to sterilization and not allowing for control of 
substrate concentration etc. To tackle the inflexibility of the batch operation mode, a continuous 
operation mode can be used instead. In this mode substrate is added and fermentation medium 
withdrawn throughout the fermentation. It allows for the implementation of different control 
concepts, and much lower down times, yielding higher productivity. However, continuous fer-
mentation is much more sensitive with regards to the operation settings as well as contamination 
(Villadsen et al., 2011). 

At Novozymes, fed-batch mode operation is used, since it tackles the disadvantages of batch 
and continuous operation. The process starts out as a batch, but at a given time, usually at a 
specific pH, the feeding is initialized. The fermentor is then controlled at a specific dissolved 
oxygen concentration, DO, setpoint profile. In reality, it is the dissolved oxygen tension, DOT, 
that is measured and used as control parameter, but it is just referred to as the dissolved oxygen 
concentration, DO, throughout this report. The fermentation is run at overpressure and with 
temperatures ranging from 30 to 40 ºC, depending on the process and microorganism used. 
Many variables are measured continuously, including pH, temperature, pressure, feed rate, nor-
mal air flow rate, agitation speed, agitation power consumption, OUR and CER. The process 
data is then filtered and stored into a database continuously, from where it can be retrieved as 
datapoints every 15 minutes. Different offline measurements are also stored in the database, for 
example the carbon efficiency which is the same thing as product yield per carbon source. The 
carbon efficiency is an especially good measurement when comparing the yield for different 
scales of fermentors, however, the specific calculations are not presented in this thesis on pur-
pose due to proprietary reasons. The database is accessible through the internal Novozymes 
network and it is the filtered process data that was used for all data analysis performed during 
this thesis project.  
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Batch No. 10 – Process Overview

Figure 2.1. A process overview for Batch No. 10, shown as an example. The DO is controlled by a
setpoint profile. OUR and CER are measured as soft sensors. The feed flow rate, OUR, CER and weight 
are shown as relative values on purpose due to proprietary reasons. The time units are removed on 
purpose as well, also due to proprietary reasons.

Another important parameter is the substrate feed pulse-pause cycle time, or cycle time for 
short. Instead of feeding the substrate with a constant flow, Novozymes implement a feeding
regime that feeds the substrate in pulses instead, where the cycle time is the time between the 
feed pulses. The main advantage of feeding the fermentation in pulses is that it supposedly 
reduces the viscosity (Wenger et al., 2002). It is not known for certain why the viscosity is 
reduced, but it may be that the fungi cells get stressed leading to a limited growth of hyphal 
elements. 

The investigations of this thesis are focused on the two filamentous fungi strains Aspergillus 
niger and Aspergillus oryzae. Due to growth of hyphal elements during fermentation, which 
tend to entangle leading to high viscosities, the oxygen mass transfer worsens. This is not ideal 
since the oxygen mass transfer is critical for the productivity (Albaek et al., 2011). However, 
even though filamentous fungi have issues with oxygen transfer, they are still suitable for in-
dustrial production due to an effective protein secretion machinery (Villadsen et al., 2011). 
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2.2 Mass transfer of oxygen 
In an aerated fermentation, air is sparged into the fermentation broth to provide oxygen for the 
microorganisms. The oxygen gas is then transferred into the liquid phase where it is consumed 
by the live microorganisms. The transport phenomena when a compound is transported from 
gas to liquid can be described using two film theory, which was introduced a century ago by 
(Whitman, 1923). The following derivation (Eq. (2.1) to (2.7)) is based on the derivation pre-
sented by (Villadsen et al., 2011). 

The molar fluxes JO,G and JO,L of oxygen through the gas and liquid layers, respectively, are 
calculated using the gas and liquid concentrations at the interface. Since these interface con-
centrations are difficult to measure, an overall flux JO of oxygen from the gas bubble to the bulk 
can be used instead, as described by Eq. (2.1), where KL is the overall mass transfer coefficient. 
 (DO* – DO) (2.1) 

DO* is the saturation concentration corresponding to the bulk gas phase and DO is the dissolved 
oxygen concentration in the bulk liquid. The saturation concentration can be described by 
Henry’s law using Eq. (2.2) , where HO and pO are Henry’s constant and the partial pressure in 
the bulk gas phase for oxygen, respectively.  
 DO*  (2.2) 

Since HO is temperature dependent, it can be calculated using the correlation from (Rettich et 
al., 2000)(Eq. (2.3)), where T is the temperature in K. The correlation is valid in temperatures 
ranging from 283.17 to 328.14 K and it is assumed that the solubility of oxygen in the fermen-
tation broth resembles that of water.  

 (2.3) 

A temperature between 30 and 40 ºC with 1 bar overpressure yields a HO in water of approxi-
mately 850 bar L/mol. At steady state, JO,G = JO,L = JO which gives Eq. (2.4), where kG and kL 
are mass transfer coefficients for the molar fluxes through the gas and liquid layers, respec-
tively. Since Henry’s constant for oxygen in water is large, it can be assumed that KL ≈ kL. 

  (2.4) 

The volumetric oxygen transfer rate, OTR, is the product of the overall flux JO and the gas-
liquid interfacial area per liquid volume, a (Eq. (2.5)). 
   (2.5) 

The interfacial area a is also difficult to calculate, which is why it is combined with kL to form 
the volumetric mass transfer coefficient kLa. This value is a measurement of the mass transfer 
of oxygen in a fermentation. Eq. (2.1) to (2.5) thus gives the commonly used expression Eq. 
(2.6). 
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  (2.6) 

A higher kLa value indicates a better mass transfer and thus a higher productivity. It is therefore 
a common measure of the productivity of a fermentation. In large fermentors, however, the 
saturation concentration differs through the fermentor due to the added pressure caused by a 
higher liquid column. To account for this, a logarithmic mean value for the oxygen mass trans-
fer driving force can be used instead (Eq. (2.7)).  

 
 (2.7) 

2.2.1 Experimental methods 
There are different ways to calculate the kLa value, and the choice is dependent on the utilities 
available. Today, most aerated fermentors, including the ones at Novozymes, are equipped with 
both probes for measuring the dissolved oxygen concentration in the broth and analysis tools 
that measure the composition of the exhaust gas. It is thereby possible to calculate the volumet-
ric oxygen transfer rate, OTR as Eq. (2.8)(Villadsen et al., 2011). 

 (2.8) 

R is the ideal gas constant, Fair is the air flow rate, T is the temperature in K and V is the broth 
volume. At steady state, the OTR is equal to the OUR, and kLa can therefore be calculated in 
real time using Eq. (2.8)  (Villadsen et al., 2011).  

Other methods include the dynamic method, sulphite method and hydrogen peroxide method 
(Villadsen et al., 2011). However, they are not suitable when calculating kLa as a soft sensor 
online since they either require that the supply oxygen is cut (the dynamic method) or the addi-
tion of chemicals (sulphite and hydrogen methods). Since Novozymes also have the appropriate 
equipment needed, the direct method is used throughout the thesis project. 

2.2.2 Empirical correlations 
A range of empirical correlations for estimating kLa have previously been created, and most of 
these can be written as Eq. (2.9) (Villadsen et al., 2011). However, the viscosity can increase 
with more than a factor of a hundred during a fermentation, and intuitively this should also 
influence the oxygen transfer. Various literature data also suggests the inclusion of the viscosity 
in the model, as seen in Eq. (2.10)(Albaek, 2012). 

 (2.9) 

 μ  (2.10) 

K, a, b and c are parameters obtained experimentally, P/V is the specific power consumption, 
ug is the superficial gas velocity and μ is the dynamic viscosity of the fermentation broth. 
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2.3 Rheology 
To understand what viscosity is and how it is connected to the rheological characteristics of a 
fluid, some concepts need to be addressed. A fluid can be described as a series of layers that 
moves on top of each other. The shear rate, , is the velocity gradient and it is proportional to 
the shear stress. The shear stress, τ, is the force per area i.e., the pressure required to maintain 
the momentum of the layer furthest from the wall and it is usually expressed as a function of 
the shear rate. The viscosity, μ, is a measure of how resistant a fluid is to deformation and is 
defined as the quotient of shear stress and shear rate (Eq. (2.11)) (Bird et al., 2001).  
 

 (2.11) 

A fluid behaves in different ways depending on its rheological characteristics. Water, for ex-
ample, is a Newtonian fluid, meaning that the shear stress is linearly proportional to the shear 
rate resulting in a constant viscosity. However, nature is seldom ideal, and most fluids show 
non-Newtonian behaviour which can be classified into three major groups.  

Shear thinning fluids, also known as pseudoplastic fluids, have a decrease in viscosity with 
increased shear rate. Contrarily, shear thickening fluids, also known as dilatant fluids, have an 
increase in viscosity with increased shear rate. There are also Bingham plastic fluids which will 
not flow until a critical shear stress, τ0, is exceeded. Three common examples for pseudoplastic, 
dilatant and Bingham plastic fluids are paint, a mixture of potato starch and water, and tooth-
paste, respectively. The rheological characteristics of a fluid are usually visualized in a rheo-
gram, where the shear stress is plotted as a function of the shear rate. (Bird et al., 2001). A 
typical rheogram is shown in Figure 2.2.  

 

Figure 2.2. Typical rheogram for Newtonian, shear thinning, shear thickening and Bingham plastic flu-
ids. The figure is inspired by (Bird et al., 2001).  

Most non-Newtonian fluids are shear thinning, and most fungal fermentation broths are no ex-
ceptions. This does not make the estimations of the viscosity easier since the shear rate in the 
fermentor needs to be accounted for (Oniscu et al., 2003). Fluids are usually described flowing 
over a surface, and the shear rate is thereby related to the flowrate. In a fermentor, however, the 
shear rate is connected to the agitation intensity, but it will differ throughout the fermentor.  
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One way of estimating the effective shear rate, , is by using the approach of Metzner and 
Otto, where the effective shear rate in laminar flow is proportional to the impeller speed, Ni, as 
seen in Eq. (2.12).  
  (2.12) 

The shear rate constant ks = 11 is used throughout the thesis for all of the fermentors at Novo-
zymes in accordance with (Albaek, 2012). It is not ideal to assume that the viscosity is constant 
throughout the fermentor, but the alternative would be computational fluid dynamics, CFD, 
which necessarily is not better since it is difficult, expensive and time consuming. It is important 
to remember what the objective of the viscosity estimation is, and since it is only vital to know 
the trends, the exact value is of less importance. Metzner and Otto’s approach is therefore 
deemed sufficient.  

2.3.1 Rheological measurements 

Offline 

The rheological characteristics of a fluid can be measured in a laboratory using a rheometer. A  
common method, and the one used at Novozymes, is a controlled rate rotational rheometer, but 
many other experimental methods are also available (Wazer et al., 1963). The shear stress is 
measured at varying shear rates and a fit is then created expressing the shear stress as a function 
of the shear rate. There are several empirical models to use when fitting the rheometer data, and 
the more complex they get, the more parameters are used. Simple correlations are the Bingham, 
Ostwald–de Waele, and Herschel–Bulkley model, and the parameters are obtained by fitting 
the shear stresses vs the shear rates. (Bird et al., 2001). The Bingham model can be seen in Eq. 
(2.13) where  is the critical shear stress and kb is the consistency index. 
  (2.13) 

The Ostwald–de Waele model, also known as the power law model, can be seen in Eq. (2.14), 
where kpl is the consistency index and npl is the flow behaviour index.  
  (2.14) 

Finally, the Herschel–Bulkley model, which is a combination of the Bingham and power law 
model, can be seen in Eq. (2.15). , khb and nhb are the critical shear stress, consistency index 
and flow behaviour index, respectively.   
  (2.15) 

If a fluid has a rheological characteristic which fits the power law and/or the Herschel–Bulkley 
model, the flow behaviour index indicates whether the fluid is shear thinning or shear thicken-
ing. Per definition, the fluid is shear thinning if 0 < n < 1 and shear thickening if n > 1. 

The effective shear stress  is then calculated using the rheological parameters and appropri-
ate rheological model, substituting for Metzner and Otto’s effective shear rate . The apparent 
viscosity μapp in the fermentation broth is then finally calculated using Eq. (2.11), substituting 
for  and  (Villadsen et al., 2011). As discussed earlier, the use of the effective shear rate 
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when calculating the effective shear rate and apparent viscosity is a rough estimate, since both 
the shear rate and viscosity should differ in the fermentor. The highest shear rates would be 
found around the impeller whereas the shear rates will be lowest further away from the impeller 
and close to the wall. If the broth is shear thinning, the viscosity will be lowest where the shear 
stress is highest and if it is shear thickening, the opposite is true. 

Online 

Novozymes have installed vibrating viscosity probes in some, but not all, of the fermentors. 
These probes measure the viscosity inside the tanks continuously. The solid probe (Figure 2.3) 
is submerged in the fermentation broth and set to vibrate microscopically, or resonate. By 
quickly turning back and forth at a specific frequency, the resonating probe dissipates energy 
as waves through the liquid. The dissipated energy is measured as the solid stainless-steel probe 
shears through the broth while resonating. The more viscous the broth is, the more energy is 
lost, resulting in a higher reading. However, these probes are expensive and sensitive to differ-
ences in shear rate, i.e., changes in agitation intensity. (Hydramotion, 2022).  

 
Figure 2.3. Example of a vibrating viscosity probe installed in different tanks at Novozymes. The fig-
ure was retrieved from (Hydramotion, 2022).   

2.4 Viscosity and the volumetric mass transfer coefficient 
As previously mentioned, the viscosity is an important variable when estimating the kLa. At the 
same time, the viscosity measurement is either time consuming or expensive and not prevalent 
in all fermentors. It was therefore explored if it would be possible to rearrange the kLa  
correlation in Eq. (2.10) and instead estimate the viscosity as a function of the calculated kLa, 
as seen in Eq. (2.16).  

 
μ  

(2.16) 

Two sets of the parameters K, a, b, and c used by (Albaek, 2012) in the kLa correlation (Eq. 
(2.10)) were explored, both of which estimated the kLa to an accuracy of ±30 %. These two sets 
were especially of interest since (Albaek, 2012) used the same fermentors as in this MSc thesis 
project. 
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3 Material and methods

3.1 Fermentors
The fermentors at Novozymes were equipped with two different types of impellers. The smaller 
reactors had either a Rushton turbine impeller or a Hayward Tyler B2 impeller. The larger fer-
mentors had three Rushton turbine impellers. The same shear rate constant of ks=11 could be 
used independently on the impeller, and it was therefore used for all fermentors, in accordance 
with (Albaek, 2012). Each fermentor was also equipped with four equally spaced baffles and a 
standard ring-type sparger. A schematic figure of a fermentor can be seen in Figure 3.1. An
overview of some of the relevant geometries of the different fermentor scales can be seen in 
Table 3.1, where DT, Di and Ni is the tank diameter, impeller diameter and number of impellers,
respectively.

Table 3.1. Overview of some relevant 
geometries for the two fermentors scales.

550 L 2500 L

DT 0.68 m 1.08 m

Di 0.33 m 0.54 m

Ni 1 3

Figure 3.1. Schematic figure of a fermentor. Impel-
lers, baffles and a sparger are visible.

3.2 Fermentation media
Generally, the fermentation media is complex waterbased solution which contains salts, a ni-
trogen source, and a carbon source. It is also common that the media contains amino acids, 
vitamins, and growth factors etc. (Villadsen et al., 2011). However, due to proprietary reasons, 
the fermentation media used in this thesis project cannot be expanded on. This was not a prob-
lem since the differences in fermentation media were outside of the scope of this thesis project.

3.3 Overview of batches
In total, 117 samples from 15 batches were observed. The viscosity and kLa estimations were 
done in a busy pilot plant, on batches which ran with different settings and purposes. This was 
not ideal, but the aim of the report was not to derive the best possible new sets of parameters; 
rather the aim was to see if the correlations worked and if they gave useful results. An overview 
of the batches and some of the settings used can be seen in Table 3.2.
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Table 3.2. Overview of the batches observed and some relevant settings. The lowercase letters attached 
to the Recipe No. represents differences in run setting but with the same media recipe, whereas a differ-
ent number represent a different recipe all together. The fermentation time, the specific host organism 
strain, the DO setpoint profile, and the recipe is not expanded on due to proprietary reasons.  

Batch 
Host  
organism 

Scale 
Cycle 
time 

No. of 
samples 

DO setpoint 
profile 

Recipe 
Additional  
comments 

No. 1 
A. niger, 
strain 1 

550 L 3 min 6 No. 1 No. 1a 
Online viscosity 
probe available.  

No. 2 
A. niger, 
strain 1 

550 L 3 min 6 No. 1 No. 1b 
Online viscosity 
probe available. 

No. 3 
A. niger, 
strain 1 

550 L 3 min 6 No. 2 No. 1c 
Online viscosity 
probe available. 

No. 4 
A. niger, 
strain 1 

550 L 3 min 6 No. 2 No. 2 
Online viscosity 
probe available. 

No. 5 
A. oryzae, 
strain 1 

550 L 8 min 9 No. 3 No. 3a  

No. 6 
A. oryzae, 
strain 1 

550 L 8 min 9 No. 3 No. 3b  

No. 7 
A. oryzae, 
strain 1 

550 L 
5min, 
8min 

9 No. 4 No. 4  

No. 8 
A. oryzae, 
strain 2 

2 500 L 8 min 8 No. 5 No. 5a  

No. 9 
A. oryzae, 
strain 2 

2 500 L 8 min 8 No. 5 No. 5b  

No. 10 
A. oryzae, 
strain 2 

2 500 L 8 min 3 No. 5 No. 5c  

No. 11 
A. oryzae, 
strain 2 

2 500 L 8 min 3 No. 5 No. 5d  

No. 12 
A. oryzae, 
strain 2 

550 L 8 min 11 No. 5 No. 5b 
Prolonged fer-
mentation time. 

No. 13 
A. oryzae, 
strain 2 

550 L 
8 min, 
1 min 

11 No. 5 No. 5b 
Prolonged fer-
mentation time. 

No. 14 
A. oryzae, 
strain 2 

550 L 
8 min, 
4 min 

11 No. 5 No. 5b 
Prolonged fer-
mentation time. 

No. 15 
A. oryzae, 
strain 2 

550 L 8 min 11 No. 5 No. 5b 
Prolonged fer-
mentation time. 
Lower pH and T.  

3.4 Offline rheology 
The rheology measurements were conducted using a “vane-and-cup” geometry that Novozymes 
typically uses, see Figure 3.2. The rheometer used was provided by TA Instruments, model AR-
G2. The cup was cylindrical with a 15 mm radius which contained approximately 30 mL of 
fermentation broth, just enough to cover the vane. The vane consisted of four symmetrical 
blades, each with the dimension H = 42 mm, W = 14 mm. The gap between the vane and the 
bottom of the cup was 4000 μm and it was recalibrated with each new sample. The 
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measurements were performed in steady state flow at a constant temperature equal to the fer-
mentation temperature. The shear stresses were measured at varying shear rates, where each 
sample used 19 evenly distributed shear rates from 10 to 100 s-1. The power law model, Her-
schel–Bulkley model and Bingham model were then compared to see which model best de-
scribed the rheological characterization. The apparent viscosities μapp were then calculated us-
ing the effective sheer rates  from Eq. (2.12). 

 

   

Figure 3.2. Left: AR-G2 rheometer from TA instruments, mounted with a vane-and-cup. Midde: the 
cup with the specified geometry. Right: the vane with the specified geometry. 

3.4.1 Estimation of rheology parameters 
The rheology data was loaded into python where the three different rheology models were com-
pared. The curve_fit function from pythons science library, scipy, was used to fit the shear rate 
vs the shear stress data for each sample, using the trust region reflective, trf, method (Virtanen 
et al., 2020). The boundaries used when fitting the data against the rheology models can be seen 
in Table 3.3.  

Table 3.3. Boundaries for the parameters when fitting the different rheology models. 

Model k – lower k – upper n – lower n – upper τ0 – lower τ0 – upper 

Bingham 1e-9 50   0.0001 100 

Power law 1e-9 50 1e-9 5   

Herschel–Bulkley 1e-9 50 1e-9 5 0.0001 100 

3.5 Mean filtering process data 
The process data used were retrieved from Novozymes PI-database, which stores process data 
continuously. The datapoints used were filtered and reduced to 15 minutes intervals. Since the 
dissolved oxygen oscillated considerably due to the feeding regime, it had to be filtered further. 
By using two hours moving average it was possible to smoothen the data, as seen in the com-
parison of the data going into the kLa calculation (see Figure 3.3). This mean filtering was 
especially appropriate for the parameter estimation, but also for the viscosity estimations since 
the viscosity shouldn’t oscillate with different dissolved oxygen concentrations. The mean fil-
tering was therefore used on all the data from the PI-database before doing any calculations. 
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3.6 Calculation of process variables 
DO is retrieved in percentage and it must therefore be transformed into mol/L to use in the kLa  
calculations (Eq. (2.1) to (2.7)). This is done by first determining what a DO of 100% corre-
sponds to, i.e., what the initial saturated concentration  is in mol/m3. This is possible if 
the initial temperature and pressure used when calibrating the  (Eq. (2.2)) are known. The 
initial temperature is used to estimate Henry’s constant HO (Eq. (2.3)) and the initial pressure 
is used to calculate the initial partial pressure of oxygen (Eq. (3.1)). XO is the fraction of oxygen 
in the inlet air and is assumed to equal 0.2095 since this is the fraction of oxygen in normal air. 
Pinit is the total pressure in the fermentor at the time when  is calibrated.  
  (3.1) 

DO in percentage is then scaled with  to yield a DO concentration in mol/m3 (Eq. (3.2)). 

  (3.2) 

The broth volume, V, is calculated as the quotient of weight and broth density as Eq. (3.3) where 
m is the weight in kg, and ρbroth is the broth density. The density is assumed to be constant at 
1050 kg/m3 in accordance with Novozymes.   

  (3.3) 

It is assumed that the total energy dissipated in the fermentation broth can be simplified to the 
measured power consumption, P, which does not take the power losses due to bearings, seal, 
and gearbox into account. This assumption is deemed reasonable at the scale used in this thesis, 
however, at larger scales it would not apply. The specific power consumption is therefore just 
calculated as P/V, with the unit kW/m3. 

The air flow rate, F, is retrieved as normal L/min, which mean that it is retrieved in L/min at 
normal pressure and temperature. Since the pressure and temperature are different inside the 
fermenter, F must be transformed into m3/s before calculating the superficial gas velocity, ug. 
This is done using Eq. (3.4), where Fnormal, pnormal and Tnormal is the normal air flow rate, pressure 
in Pa and temperature in K, respectively. P is the pressure in Pa in the fermentor and T is the 
temperature in the fermentor in K.  

  (3.4) 

Finally, ug is calculated using Eq. (3.5), where DT is the inner diameter of the fermentor. 

  (3.5) 

3.7 Online viscosity 
The online viscosity probe measurements were retrieved and mean filtered as the other process 
data. However, since the online viscosity probe data was relative and uncalibrated, it had to be 
transformed in some manner to compare it with the offline viscosity measurements or the vis-
cosity correlation. The online viscosity probe measurements were therefore first normalized by 
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dividing with the mean and then scaled to the offline measurements, see Eq. (3.6). Since none 
of the online viscosity probes had been calibrated, each probe was scaled with the offline vis-
cosity measurements for the corresponding batch. 

  (3.6) 

3.8 Soft sensors 
The relevant process data was loaded into Jupyther, where the calculations were conducted, and 
the plots created. The volumetric oxygen mass transfer coefficient, kLa, was calculated using 
the direct method (Eq. (2.6) and (2.8)) while assuming that OUR = OTR. The change in the 
saturated oxygen concentration due to the added pressure from the liquid column in the fermen-
tor was not accounted for.  

3.8.1 Estimation of new correlation parameters 
After loading the relevant process parameters and offline measurements into Jupyther, the 
curve_fit function from scipy using the trf method was used to estimate two new sets of param-
eters in the kLa-viscosity correlation (Eq. (2.10) and (2.16)) (Virtanen et al., 2020). The two 
new parameter sets were estimated using the exact same data, only differentiated by which 
variable the correlation was fitted against. One set was derived by fitting relevant data against 
the measured kLa (Eq. (2.10)) whereas another set was derived by fitting relevant data against 
the offline measured μapp (Eq. (2.16)). The same boundaries were used for both parameter esti-
mations and they can be seen in Table 3.4. 

Table 3.4. Boundaries for the parameter estimation when estimating kLa and apparent viscosity using 
the kLa-viscosity correlations (Eq. (2.10) and (2.16)).  

 K a b c 

Upper ∞ ∞ ∞ 1e–9 

Lower 1e–9 1e–9 1e–9 –∞ 

3.8.2 Statistics 
The goodness of fit was evaluated in accordance with (Bates & Watts, 1988)(Eq.(3.7)), where 
σ is the residual mean square standard deviation based on N – P degrees of freedom. N is the 
number of measurements, P is the number of parameters,  is the model response at any 
variable vector x with parameters pi, and y is the vector with experimental measurements. 

 
 (3.7) 

A 1 – α confidence band for the viscosity correlation with α = 0.05 was created in accordance 
with (Bates & Watts, 1988)(Eq. (3.8)), where J is the Jacobian matrix of  in a single 
point, and F is Fischer’s F distribution with uncertainty 1 – α, P and N – P degrees of freedom.  
 

 (3.8) 
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The confidence band is used to describe the uncertainty of the model response and is based on 
the uncertainty of the parameters from the parameter estimation. It is not a predictor for the 
certainty of future measurements, i.e., it only describes the uncertainty for the dataset used in 
the estimation (Bates & Watts, 1988). However, it still gives an indication for the expected 
variance and could therefore be used on future estimations as well. 

Correlation matrices CM, with row and column index i and j, were also created for the two new 
parameter sets in accordance with (Bates & Watts, 1988) and (Virtanen et al., 2020)(Eq.(3.9)). 
pcov is the estimated covariance matrix of parameters pi generated from the curve_fit method. 
σp is the standard deviation errors on pi, calculated as the square root of the pcov diagonal.  

  (3.9) 

The correlation matrix portrays the correlation between each possible pair of correlation coef-
ficients for the different parameters and it is a common way to evaluate the reliability of a 
parameter estimation. Small correlation coefficients indicate a high reliability and vice versa. 
The matrix is a powerful tool which identifies patterns in a large dataset (Bates & Watts, 1988).   

3.9 Biomass  
The biomass measurements were conducted in a series of steps. First, empty glass tubes were 
weighed. Approximately 5 ml of fermentation broth was then added to the tubes, and they were 
weighed again. Then, the tubes were centrifuged for 20 minutes at 2800 g. After that, the su-
pernatants were removed. The cell pellets were then washed with 5 ml of milli-Q water. A 
vortex mixer was used to dissolve the pellets and additionally 20 minutes of centrifugation at 
2800 g followed. The supernatant was then removed, and the tubes were put in the oven at 105 
ºC overnight. Finally, the tubes were weighed one last time. The biomass concentration, X, was 
then calculated using Eq. (3.10). 
 

 (3.10) 

CDW and CWW is the cell dry weight and cell wet weight, respectively. The density, ρbroth, is 
assumed to have a constant value of 1050 g/L. Triplicates were used for every sample. An 
overview of the equipment used for the biomass measurements can be seen in Figure 3.4. 

 
              

   

Figure 3.4. Left: XP204 Scale from Mettler Toledo. Midde: Heareus Multifuge 3SR+ centrifuge from 
Thermo Scientific. Right: Memmert oven from Buch & Holm. 
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4 Results and discussion
4.1 Calculations of the volumetric mass transfer coefficient
An overview of all variables going into the kLa calculation can be seen in Figure 4.1. The mark-
ers represent the process data used in the parameter estimation. It’s visible that the OUR and 
DO profiles differ for the different batches, resulting in varying kLa values. The DO is high in 
the initial phase of the fermentations which gives very small driving forces DO* – DO. These
small driving forces thus results in very high kLa values in the beginning of the batches.

                All batches – variables going into the kLa calculations

Figure 4.1. Variables from all batches going into the kLa calculation (Eq. (2.6)). The lines represent all 
of the process data, and the markers represent the 111 samples going into the parameter estimation. The 
data are differiented by color, line style and marker. Dotted lines with circle markers represent A. niger, 
strain 1, dash-dotted lines with triangle markers represent A. oryzae, strain 1, and dashed lines with 
square markers represent A. oryzae, strain 2. Note that the OUR is shown as relative values and that
time axis labels are removed on purpose due to proprietary reasons.

g g
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Eq. (2.1) to (2.6) as well as the assumption that OUR = OTR are only valid in steady state, and 
since the DO varies most in the beginning, the early kLa values should be treated with suspicion. 
In the very beginning, the DO is also close to DO* resulting in miniscule driving forces which 
in turn causes really high estimates of the kLa. When the DO stabilizes, the driving forces in-
creases resulting in lower and reasonable kLa values ranging from 50 to 500 h-1. The use of the 
mean filter should resolve the issue caused by initial low driving forces but it has not been 
investigated further if the early kLa estimations really are inaccurate or not. 

The use of the logmean driving force (Eq. (2.7)) instead of DO* – DO was also evaluated, but 
the difference caused by the added liquid column pressure was less than 10% and thus consid-
ered negligible at the scale observed in this thesis project. It is therefore not included in the 
report either. However, it would be important to take the added liquid pressure into considera-
tion when calculating the kLa using the direct method at production scale.

4.2 Rheology measurements
Initially, the R-squared value was used as a measure of how well each rheology model fitted 
the rheology data. A comparison of the resulting R-squared values for the different models for 
all samples can be seen in Figure 4.2.

A general trend was visible were the R-squared values were worst in the beginning of a batch.
It should be noted that all the noisy samples with poor R-squared values were from batches that 
had A. oryzae, strain No. 2 as its host organism, i.e., batch No. 8 to 15. It was observed that 
samples from these batches were grainier compared to the other batches, and although it was 
not investigated, the hypothesis was that the graininess caused the noise. However, this was not 
necessarily an effect of the host organism used. Instead, it could be because of a difference in 
the complex cultivation media, for example. The fact that the noisiness was worst in the begin-
ning also reinforces the hypothesis that the noisiness was a result of a grainy cultivation media. 
If true, the grainy fraction of the broth decreased as the fermentation proceeded, resulting in R-
squared values which increased with time.

Figure 4.2. Comparison of the R-squared values for different rheology models as a function of time.
Note that the time axis labels are removed on purpose due to proprietary reasons.

However, it was difficult to decide on how to interpret the R-squared results. Initially, a thresh-
old was used and every sample which had an R-squared value of under 0.5 was excluded from 
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the parameter estimation. However, the R-squared value is not a good measure of goodness of 
fit for non-linear models, since the general mathematic framework for calculating the value 
only works for linear regression models. (Spiess & Neumeyer, 2010). Therefore, the idea to 
filter the data using the R-squared values was abandoned. Instead, each rheology sample was 
observed individually, specifically looking at how good the estimation of the effective shear 
stress, τeff, was with regards to surrounding measurements.

A comparison of the rheology models for three different samples from Batch No. 10 can be 
seen in Figure 4.3. As described in the Material and Methods section, the shear stress was meas-
ured at 19 evenly spaced shear rates creating a dataset of measurements for every sample. 
Sample 1 shows some variance between the models in the resulting effective shear stress, sam-
ple 2 shows similar results but with poor fits, and sample 3 shows very similar results and with 
good fits. Sample 2 was thereby deleted from the data set whereas sample 1 and 3 were kept. 
The same rationale was used for all samples.

Figure 4.3. Comparison of the Bingham, Power law and Herschel–Bulkley models. The effective shear 
stress was calculated by inserting the effective shear rate in the appropriate model function (Eq. (2.13), 
(2.14) or (2.15)).

After manual inspection of all rheology measurements for all batches, it was clear that the ef-
fective shear stresses had the most satisfactory results using the Herschel–Bulkley model. This
was expected since the Herschel–Bulkley model has more parameters than the other two mod-
els. Thus, the Herschel–Bulkley model was chosen as the primary rheology model in the fol-
lowing parameter estimation. It resulted in fewer deleted samples from the data set, which was 
satisfactory since it yielded a larger data set for the parameter estimation. An important note, 
however, was that the difference between the effective shear stresses using the different rheol-
ogy models were very small for most of the samples. The difference was only significant for 
the samples that had noisy measurements.

In total, six samples were excluded from the data set before continuing with the parameter 
estimation resulting in a total of 111 samples. The excluded samples were all from an early part 
of batches that had A. oryzae strain No. 2 as its host organism, which was in line with the 
hypothesis that the noisiness was caused by the graininess of the cultivation media. (Table 4.1). 
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Table 4.1. Excluded samples due to poor fitting of the rheology measurements.

Batch No. 9 Batch No. 10 Batch No. 11 Batch No. 13 Batch No. 15

Sample No. 2 2 1, 2 4 4

A plot of the rheological parameters and viscosity vs time for all 111 samples shows an 
alarming result related to the flow behavior index n. As seen in Figure 4.4, approximately half 
of the nhb values were larger than 1 indicating that the broth showed shear thickening behav-
iour. This is not in line with the expected shear thinning flow behaviour examined in most fil-
amentous fermentation broths and they should therefore be treated with suspicion. At the 
same time, each sample was inspected manually and the model fitted the experimental data 
well. The shear thickening bevaiour may be caused by human error when conducting the rhe-
ology measurements, but most probably because of the graininess in many of the samples. It 
should be noted that these high nhb values were prevalent in all batches but it was not investi-
gated why so many of the samples showed shear thickening flow behaviour.

    All batches – flow behaviour index vs time

Figure 4.4. The flow behaviour index calculated using the Herschel–Bulkley model vs time for all 111 
samples. Note that the time axis labels are removed on purpose due to proprietary reasons.

4.3 Parameter estimation
When evaluating the parameter estimation, it was useful to plot an overview of all the batches 
and how much each variable in the viscosity correlation varied, see Figure 4.5. As previously 
discussed, the early kLa values need to be treated with suspicion, but otherwise the kLa values 
seems reasonable ranging from 50 to 500 h-1. The specific power consumption, P/V, also 
seemed reasonable with values below 20 kW/m3. The P/V starts at low values and then in-
creases rapidly as the agitation intensities ramp up. The agitation intensities were then constant 
but since the fermentations ran at fed-batch mode, it was expected that the P/V would decrease 
as the volume increased, which is also seen in the figure. The superficial gas velocity, ug, can 
be seen distributed at three different levels depending on the process settings and fermentor
geometry for the different batches. These levels were approximately 0.007, 0.01 and 0.013 m/s,
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respectively. Batch No. 8 to 11, for example, ran in the larger 2500 L fermentors which is part 
of the explanation why the ug is larger for these batches. Finally, the offline viscosity was the 
variable that varied the most, with the lowest and highest values differing with a factor of ap-
proximately 100. The offline viscosities are presented in the log-scale to ease comparison be-
tween the early measurements. Except for some outliers in Batch No. 12, the apparent viscosi-
ties ranged from approximately 0.01 to 0.5 Pa s, which also seems very reasonable. The most 
viscous samples are more than 100 times viscous than water, but this is expected for fungal 
fermentation broths (Oniscu et al., 2003).

             All batches – variables going into the parameter estimation

Figure 4.5. Variables from all batches going into the viscosity correlation (Eq. (2.16)). The lines repre-
sent all of the process data, and the markers represent the 111 samples going into the parameter estima-
tion. The data are differiented by color, line style and marker. Dotted lines with circle markers represent
A. niger, strain 1, dash-dotted lines with triangle markers represent A. oryzae, strain 1, and dashed lines 
with square markers represent A. oryzae, strain 2. The μapp-axis have been log-transformed to ease in-
terpretation. Note that the time axis labels are removed on purpose due to proprietary reasons.

g g p
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The resulting parameter estimations can be seen in Table 4.2, where parameter set No. 1 and 2 
were taken from (Albaek, 2012) and parameter set No. 3 and 4 were created using the data for 
the 15 batches, excluding the deleted samples in Table 4.1. The only difference between the 
two newly created parameter sets was how they were generated, i.e., the same data was used. 
Parameter set No. 3 was generated by curve-fitting of kLa measurements vs the kLa correlation 
(Eq. ), the same approach used by (Albaek, 2012) when parameter sets No. 1 and 2 were gen-
erated. The result using set No. 3 was a model which predicted kLa more accurately than it 
predicted μapp. Contrarily, parameter set No. 4 was generated by curve-fitting μapp vs the μapp 
correlation (Eq. (2.16)). The result using set No. 4 was a model which predicted μapp more 
accurately than it predicted kLa. This is an astounding result, since it was expected that the 
generated parameter sets would be the same or at least nearly equal. The cause of this difference 
was not investigated, but it may be because the different models weight the variables differently 
thus resulting different parameter estimations. This shows that it really matters which variable 
the data is fitted to.  

Table 4.2. Four sets of parameters for the kLa-viscosity correlations (Eq. (2.10)  and (2.16)). Parameter 
set No. 1 and 2 are taken from previous work by (Albaek, 2012). Parameter set No. 3 and 4 were created 
from the dataset of 111 samples collected from the 15 batches. Set No. 3 is derived by curve-fitting 
measured kLa vs the kLa correlation, and parameter set No.4 is derived by curve-fitting measured μapp vs 
the viscosity correlation. 

Parameter set K a b c 

set No. 1 32 0.52 0.15 –0.50 

set No. 2 63 0.41 0.16 –0.39 

set No. 3 1530 0.00 0.62 –0.40 

set No. 4 20 0.80 0.44 –1.14 
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It should be noted however, that parameter a is equal to 0.00 in parameter set No. 3, which is 
unreasonable. As previously mentioned, parameter set No. 3 was created by fitting kLa meas-
urements vs the kLa correlation (Eq. (2.10)). Thus, a = 0.00 might indicate that the specific 
power consumption, P/V, in this dataset did not vary enough to impact kLa, but as discussed in 
the background, previous correlations show that the kLa is in fact dependent on P/V (Albaek, 
2012). It is also a result of using bounds on the parameter estimation, where there lower limit 
of parameter a was delibrelately set to be 1e-9, as seen in Table 3.4. This indicates that the 
resulting parameter estimation of a probably is a suboptima. However, if P/V had been varied 
deliberately, it would be expected to see an effect on kLa and thus a parameter a value above 
zero. Parameter set No. 3 may work when describing this dataset, but caution is advised when 
working with other datasets with varying P/V. 

A way of comparing the goodness of fit for a non-linear model is to calculate the residual mean 
square standard deviation, σ (Eq. (3.7)). This was done for the four different parameter sets and 
their estimations of kLa and μapp, as seen in Table 4.3. It was especially interesting to compare 
the standard deviation for parameter set No. 3 and 4, since the same data was used when the 
parameter sets were generated. The best kLa estimation was observed using parameter set No. 
3, whereas the best μapp estimation was observed using parameter set No. 4, indicated by the 
smallest σ in each case. A visual comparison of the four parameter sets for kLa and μapp can also 
be seen in Figure 4.6, where A1 to A4 compares measured kLa vs estimated kLa and B1 to B4 
compares measured μapp vs estimated μapp. The visual comparison show similar results as Table 
4.3, where the best correlation for viscosity can be seen in B4. 

Table 4.3. Residual mean square standard deviations for the four different parameter sets and their  
estimations of kLa and μapp. The standard deviations were calculated using Eq. (3.7). 

Parameter set   

set No. 1 113 h-1 0.20 Pa s 

set No. 2 105 h-1 0.67 Pa s 

set No. 3 91 h-1 1.27 Pa s 

set No. 4 604 h-1 0.09 Pa s 
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4.3.1   Statistics 
Different things were considered when evaluating the results of the parameter estimation. It 
was of interest so see how robust the parameter estimation was, and one way to test this was to 
change the initial guesses for the parameters going into the curve_fit function. At first, no guess 
was specified resulting in the estimated parameter sets No. 3 and 4. Then, the parameters from 
the previous work by (Albaek, 2012) was used as initial guesses; i.e., parameter set No. 1 and 
2. Both of them also resulted in the same estimated parameter sets No. 3 and 4. Finally, param-
eter set No. 3 was tried as the initial guess for No. 4 and vice versa. The parameter estimations 
remained the same indicating that the curve fit converged satisfactorily. To conclude, all sets 
of different initial parameters resulted in the same parameter estimations No. 3 and 4. The 
choice of initial guesses was thus deemed irrelevant. However, as previously mentioned, it 
should be noted that parameter a in set No. 3 is estimated to equal 0.00 which is on the boundary 
and this is therefor a suboptima. It was not explored whether a different non-linear regression 
model would yield different results. It should also be noted that no cross-validations were done 
for the parameter estimations. This would have been beneficial to further evaluate the 
robustness of the models.  

The correlation matrices for model No.3 and 4 can be seen in Table 4.4. The parameters were 
surprisingly uncorrelated which indicates that the models are quite reliable. This is also in line 
with the result regarding the initial guesses, i.e., the model converges, and a true minimum is 
found. This is an improvement compared to the correlation matrix presented by (Albaek, 2012), 
where the parameters showed signs of large correlation. There was one exception, however, 
and that was the correlation coefficient for pair K-b, which had a value of over 0.9 for both 
parameter sets indicating very high correlation. This may be caused by the relatively low vari-
ance in the superficial gas velosity, ug. 

Table 4.4. Correlation matrices for parameter set No. 3 and 4, calculated using Eq. (3.9). Each value in 
the matrix ranges from –1 to 1, where 1 represents perfect correlation, 0 represent no correlation at all 
and –1 represents perfect inverse correlation 

set 
No. 3 K a b c 

 set 
No. 4 K a b c 

K 1 –0.30 0.92 0.03  K 1 –0.27 0.97 0.21 

a –0.30 1 0.07 –0.17  a –0.27 1 –0.06 –0.17 

b 0.92 0.07 1 –0.18  b 0.97 –0.06 1 0.08 

c 0.03 –0.17 –0.18 1  c 0.21 –0.17 0.08 1 

 
To conclude, the dataset generated during this theses was not ideal for a parameter estimation. 
However, it really matters if the parameters are estimated by curve-fitting kLa vs the kLa corre-
lation, or by curve-fitting μapp vs the μapp correlation. The recommendation to Novozymes is 
therefore to look at the dataset used by (Albaek, 2012) and estimate new parameters by curve-
fitting μapp vs the μapp correlation.
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4.4 Viscosity estimation
The apparent viscosities were estimated using the viscosity correlation in Eq. (2.16). The four 
different parameter sets presented in Table 4.2 were used when creating the plots. Good and 
bad estimates, respectively can be seen in Figure 4.7.

Figure 4.7. Plots of viscosity estimations using the different sets of parameters. The upper and bottom 
figures are examples of relatively good and bad fits to the experimental data, respectively. A 95% con-
fidence band for a non-linear model was also created for set No. 4 using Eq. (3.8) in accordance with
(Bates & Watts, 1988). Note that the time axis labels are removed on purpose due to proprietary reasons.
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The newly estimated parameter set No. 4 was deemed the best one and it is probably because 
this parameter set was created using the same data that it estimated. Parameter set No. 1 also 
showed quite promising results. However, when comparing the data set generated during this 
thesis with the data set generated by (Albaek, 2012), the latter is more diverse, with greater 
variance in power input and superficial gas velocity for example. However, parameter set No. 
1 and 2 were created to fit kLa and as seen when comparing parameter set No. 3 and 4, this does 
not achieve the best possible parameter set for estimating viscosity. A final recommendation 
would therefore be to look back at the dataset generated by (Albaek, 2012) and see if it is pos-
sible to create a new parameter set by fitting the data to the apparent viscosity instead. If No-
vozymes wishes to implement a soft sensor for the viscosity before creating a new parameter 
set, parameter set No. 4 should be used, since this is the only parameter set created to fit the 
apparent viscosity and it shows promising results. It also has a confidence band which could be 
used to highlight the uncertainty of the estimation.

It was also of interest to see how the estimated viscosity compared with the online viscosity. 
But first, a comparison of the online probe viscosities and offline measured viscosities was
done, as seen in Figure 4.8. Only Batch No. 1 to 4 had viscosity probes installed in the fermen-
tors, so the evaluation of the viscosity probe data could therefore only be done on these four 
batches. Batch No. 1 and 2 ran on almost the same settings, and the same was true for Batch
No. 3 and 4. It was also visible that these two groups of batches had almost identical offline 
viscosity results. When comparing the online viscosities, Batch No. 3 and 4 were very similar
whereas Batch No. 1 and 2 almost differed by a factor of two, even though capturing the same 
trends. Batch No. 1 also had some visible spikes, but they were not a result of spikes in the 
impeller intensity or any other measured process parameter. However, the spikes were not fur-
ther explored and therefore just considered as noise in the data. It is important to note that the 
online probe data only gave a relative viscosity, and that the probes were not calibrated either.
Therefore, the probes did not necessarily give the same results even though they were identical.

Figure 4.8. Comparison of online and offline viscosities vs time. Only batch No. 1 to 4 had online 
viscosity probes installed in the fermentors. Note that the time axis labels are removed on purpose due 
to proprietary reasons.
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It was clearly visible that the viscosity probes did not give reliable data to use for implementing 
different control concepts. However, it was possible to compare the online viscosities with the 
estimated viscosities after scaling each batch’s online viscosity probe data to the experimental 
apparent viscosities (Eq. (3.6)). As seen in Table 4.5, the viscosity probe measurements for 
Batches No. 2 to 4 where much more similar in scale compared to the probe in Batch No. 1.  

Table 4.5. Viscosity probe scale factor. Calculated as the mean online viscosity divided by the mean 
offline viscosity, as in Eq. (3.6).

Batch No. 1 Batch No. 2 Batch No. 3 Batch No. 4

Scale factor 125:1 69:1 64:1 65:1

As seen in Figure 4.9, the scaled probe data follows the same trend as the offline measured data.
However, it has not been investigated if the scale factors are altered with different agitation 
intensities, different host organisms or any other difference in process settings, but the scale 
factors cannot be assumed to be constant either. To conclude, the online viscosity probes are 
worthless if they are to be used to implement any control concepts, since they would need to be 
scaled to offline apparent viscosity data first. The disadvantages with price and sensitivity are
also still prevalent whereas the estimated soft sensor viscosity shows promising results, is easily 
implemented and free of charge. The recommendation to Novozymes is therefore to continue 
investigating the viscosity estimation and not invest in more online viscosity probes.

Comparison of scaled online viscosity, offline viscosity and estimated viscosity vs time

Figure 4.9. Scaled online probe data vs estimated viscosity using parameter set No. 4. with a 95% con-
fidence band. Offline viscosity data was also included. Note that the time axis labels are removed on 
purpose due to proprietary reasons.
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4.5 Cycle time influence on carbon efficiency, biomass and viscosity
Three batches were observed. Batch No. 9 was run at a larger scale, but aside from that, the 
settings for Batch No. 9, 13 and 14 were almost identical. The only difference between the 
batches was the change of cycle time; at a specific point in time, the cycle times for Batch No.13 
and 14 were changed from 8 minutes to 1 and 4 minutes, respectively. The effect that the cycle 
time change had on carbon efficiency, the biomass, and the viscosity is seen in Figure 4.10.

The cycle times’ influence on carbon efficiency, biomass, and viscosity

Figure 4.10. Influence of the change in cycle time on carbon efficiency, biomass concentration, and 
estimated as well as offline apparent viscosity. The apparent viscosity was estimated using parameter 
set No. 4 and Eq. (2.16). The carbon efficiency and biomass are only shown as relative values due to 
proprietary reasons. Note that the time axis labels are removed on purpose, also due to proprietary rea-
sons.
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The result that the change in cycle time has on the viscosity estimation is difficult to compre-
hend by just looking at plots in Figure 4.10. When looking at the specific moment for the change 
in cycle time, it might indicate that the slope of the viscosity flattens out a bit for Batch No.13 
and 14 because of a shorter cycle time, but it is uncertain if this change in the slope was caused 
by the change cycle time or if it’s just by coincidence. It was also difficult to draw relevant 
conclusions when looking at the cycle times’ effect on biomass concentration. Batch No. 13 
and 14 showed almost identical results whereas Batch No. 9 had lower concentrations almost 
throughout. Thus, the differences in biomass concentrations were not necessarily because of 
the difference in cycle times. Sample No. 4 for each batch, for example, are generated before 
the change in cycle times but still show a huge difference between Batch No. 9 and Batch No. 
13 and 14.

Finally, when looking at the carbon efficiency, the effect of changing cycle times was not ob-
vious either. The final sample might have shown some difference between Batch No. 13 and 
14, where a shorter cycle time resulted in a higher carbon efficiency, but the general effect is 
not obvious. To conclude, a more thorough investigation with a larger dataset is needed to draw 
relevant conclusions on the effect cycle time has on viscosity, biomass and carbon efficiency. 

4.6 Biomass results and correlation with rheology parameters.

4.6.1 Biomass measurements
A summary of the biomass measurements can be seen in Figure 4.11, and the biomass meas-
urements are reasonable. The biomass increased with time, which was expected. The standard 
deviations for the replicates were small, resulting in neat confidence intervals.

Summary of biomass measurements with 95% confidence intervals

Figure 4.11. Summary of all the biomass measurements with 95% confidence intervals. Note that both 
the time and biomass axis labels are removed on purpose due to proprietary reasons.
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As seen in Figure 4.7, the viscosity increases dramatically for Batch No. 12 and this dramatic 
change can also be seen in the biomass measurements in Figure 4.11. It is only possible to 
speculate why this sample is an outlier, but it is not caused by a difference in the media recipe. 
The difference is probably caused by an earlier initiation of the substrate feed. A visual timeline 
of the biomass experimental method can be seen in Figure 4.12, where some samples are shown 
before centrifugation, after washing and centrifugation, and after drying. 

 

 

 

 

 

 

Figure 4.12. Left: Broth before centrifugation. Middle: Wet cells after washing and centrifugation. 
Right: Dry cells after drying in the oven. 

4.6.2 Biomass and rheology 
The left plot in  Figure 4.13 was created to explore whether it was possible to model the rheol-
ogy parameters as a function of the biomass concentration and it shows the different rheology 
parameters for the Herschel–Bulkley model for all the 111 samples. It was also observed how 
the rheology parameters changed with time, as seen the right plot (Figure 4.13). Since the bio-
mass concentration increases with time, as seen in Figure 4.11, the similarities between the 
plots in  were expected. Similar plots were also created for the Bingham and Power law models, 
however, these were not included in the report. It should be noted that the y-axis for khb, τ0,hb 

and μapp have been displayed in the logarithmic scale to get a better visualization.  

There is some indication that the flow behaviour index nhb decreases with the biomass, but the 
variance is still too large to get any meaningful correlations. The variance for the consistency 
index khb, and the critical shear stress τ0,hb is even larger with values differing by factors of 10. 
τ0,hb also shows some outliers where the values lay on the specified boundary as seen in Table 
3.3. The biomass vs viscosity seemed to have the best correlation; however, it was still not 
enough to yield any meaningful correlations for estimating biomass as a function of the appar-
ent viscosity. It was also explored whether it was possible to observe a correlation between the 
rheology parameters and the biomass, differentiating for the three host organisms used. How-
ever, no obvious correlation could be seen for any of the host organisms either. Rheology vs 
biomass plots for the different strains and host organisms used in the thesis can be seen in the 
appendix (Figure 7.1, Figure 7.2, and Figure 7.3).  

In conclusion, it was not possible to derive any meaningful correlations from the dataset ana-
lyzed in this thesis. It might be possible for other host organisms or if the dataset was analyzed 
more thoroughly, but the idea to have a model which predicts the biomass concentration from 
the viscosity regardless of the host organism used seems far-fetched.  
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5 Overall conclusion and suggestion for future work 
Overall, this thesis project has been a great achievement. Novozymes can now continuously 
monitor the kLa as a soft sensor online at their pilot production site in Bagsværd, Denmark. The 
process data should however first be filtered to reduce oscillation and get smoother plots. It was 
also possible to derive a useful viscosity estimation using the online calculated kLa and param-
eter set No. 4, with a standard deviation of 0.09 Pa s, thereby creating yet another soft senor for 
Novozymes to implement. It was concluded that it matters if the parameters are estimated by 
curve-fitting kLa vs the kLa correlation, or by curve-fitting μapp vs the μapp correlation. It was 
also concluded that the dataset generated in this thesis was not suitable for a parameter 
estimation due to low variance in the variables. The parameter set used in the viscosity estima-
tion could thus be improved if a dataset with a larger variance in P/V, ug and kLa was used. 
Instead of generating a new dataset, Novozymes is recommended to look back at the work 
previously done by (Albaek, 2012) and use his dataset to do a new parameter estimation by 
curve-fitting μapp vs the μapp correlation.  

Nevertheless, by assuming that the offline measured value of the apparent viscosity is true, the 
resulting viscosity estimation still estimates the apparent viscosity better than the current online 
viscosity probes, since they only give a relative viscosity. Novozymes is therefore recom-
mended to continue working on perfecting the viscosity estimation and not invest in new online 
viscosity probes.  

The influence that the substrate feed pulse-pause cycle time had on viscosity, biomass and car-
bon efficiency was not completely clear. Further investigation is therefore still needed before 
implementing new control concepts using the cycle time and estimated viscosity.  

The final objective to explore whether it was possible to correlate the biomass with rheology 
parameters was achieved. However, the observation did not yield promising results since no 
clear correlation could be observed. It is still an interesting idea and further investigations could 
result in relevant insight in how the rheology of a specific host organism and process is corre-
lated to the biomass. However, it seems unlikely that a general correlation could be found for 
any host organism and process. 
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7 Appendix

7.1 Additional figures

Batch No. 1 to 4 – rheology parameters and viscosity vs biomass

Figure 7.1. Rheology parameters using the Herschel–Bulkley model vs biomass as well as viscosity vs 
biomass for the samples from Batch No. 1-4. The host organism was A. niger, strain 1. The y-axes for 
khb, τ0,hb and μapp were log-transformed for better visualization. Note that the biomass measurements only 
show relative values on purpose due to proprietary reasons.
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Batch No. 5 to 7 – rheology parameters and viscosity vs biomass

Figure 7.2. Rheology parameters using the Herschel–Bulkley model vs biomass as well as viscosity vs 
biomass for the samples from Batch No. 5-7. The host organism was A. oryzae, strain 1. The y-axes for 
khb, τ0,hb and μapp were log-transformed for better visualization. Note that the biomass measurements only 
show relative values on purpose due to proprietary reasons.
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Batch No. 8 to 15 – rheology parameters and viscosity vs biomass

Figure 7.3. Rheology parameters using the Herschel–Bulkley model vs biomass as well as viscosity vs 
biomass for the samples from Batch No. 8-15. The host organism was A. oryzae, strain 2. The y-axes 
for khb, τ0,hb and μapp were log-transformed for better visualization. Note that the biomass measurements 
only show relative values on purpose due to proprietary reasons.
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